OH-Initiated Atmospheric Degradation of Hydroxyalkyl Hydroperoxides: Mechanism, Kinetics, and Structure-Activity Relationship

Long Chen,^{1,2} Yu Huang, *^{,1,2} Yonggang Xue,^{1,2} Zhihui Jia,³ Wenliang Wang⁴

¹ State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an, 710061, China

² CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China

³ School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China

⁴ School of Chemistry and Chemical Engineering, Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China

Submitted to Atmospheric Chemistry & Physics

*Corresponding author:

Prof. Yu Huang, E-mail address: huangyu@ieecas.cn

Contents:

Table S1 Y//X (Y = M06-2X, CCSD(T), X = 6-311+G(2df,2p), ma-TZVP) calculated energy barrier ($\Delta E_a^{\#}, \Delta G_a^{\#}$) for OH + HHPs reactions based on the M06-2X/6-311+G(2df,2p) optimized geometries (kcal mol⁻¹)

Table S2 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of every elementary pathway and their branching ratios (Γ) involved in the initial reaction of HO-CH₂OO-H with OH radical computed at different temperatures

Table S3 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of every elementary pathway and their branching ratios (Γ) involved in the initial reaction of HO-CH(CH₃)OOH with OH radical computed at different temperatures

Table S4 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of every elementary pathway and their branching ratios (Γ) involved in the initial reaction of HO-C(CH₃)₂OOH with OH radical computed at different temperatures

Table S5 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of HO₂ radical reactions with HOCH₂OO (R19), HOCH₃CHOO (R20) and HO(CH₃)₂COO radicals (R21) computed at different temperatures

Table S6 The relative free energy and Boltzmann populations (w_i) of the conformer of HOCH₂OO radical at the M06-2X/6-311+G(2df,2p) level of theory

Table S7 The single-conformer rate coefficients ($k_{IRC-TST}$) and multi-conformer rate coefficients (k_{MC-TST}) of HOCH₂OO radical computed at different temperatures

Table S8 The relative free energy and Boltzmann populations (w_i) of the conformer of HOCH₃CHOO radical at the M06-2X/6-311+G(2df,2p) level of theory

Table S9 The single-conformer rate coefficients ($k_{IRC-TST}$) and multi-conformer rate coefficients (k_{MC-TST}) of HOCH₃CHOO radical computed at different temperatures

Table S10 The relative free energy and Boltzmann populations (w_i) of the conformer of HO(CH₃)₂COO radical at the M06-2X/6-311+G(2df,2p) level of theory

Table S11 The single-conformer rate coefficients ($k_{IRC-TST}$) and multi-conformer rate coefficients (k_{MC-TST}) of HO(CH₃)₂COO radical computed at different temperatures

Table S12 Rate coefficients of R27 and R29 in the HOCH₂OO \cdot + NO system computed at different temperatures

Table S13 Rate coefficients of R32 and R33 in the HOCH₃CHOO \cdot + NO system computed at different temperatures

Table S14 Rate coefficients of R38 and R39 in the $HO(CH_3)_2COO \cdot + NO$ system computed at different temperatures

Figure S1. PES ($\Delta G_a^{\#}$ and $\Delta E_a^{\#}$, in italics) for the autoxidation of HOCH₃CHOO radical predicted at the M06-2X/ma-TZVP//M06-2X/6-311+G(2df,2p) level of theory

Figure S2. PES ($\Delta G_a^{\#}$ and $\Delta E_a^{\#}$, in italics) for the autoxidation of HO(CH₃)₂COO radical predicted at the M06-2X/ma-TZVP//M06-2X/6-311+G(2df,2p) level of theory

Fraters	CCSD(T)/6-311+G(2df,2p)		ma-T	ma-TZVP	
Entry	$\Delta {E_a}^{\#}$	$\Delta {G_a}^{\#}$	$\Delta {E_a}^{\#}$	$\Delta {G_a}^{\#}$	
$HO-CH_2OOH + OH$					
$R1(O_1-H_1)$	6.0	6.4	6.1	6.4	
$R2(C_1-H_1)$	5.0	5.3	5.3	5.1	
R3(C ₁ -H ₂)	4.4	5.6	4.6	5.8	
R4(O ₃ -H ₂)	1.1	2.1	0.5	1.5	
$HO-CH(CH_3)OOH + OH$					
R1'(O ₁ -H ₁)	6.5	7.1	6.5	7.2	
R2'(C ₁ -H)	0.5	1.4	1.3	2.2	
R3'(-CH ₃ (R1))	4.9	6.2	4.6	5.9	
R4'(O ₃ -H ₂)	0.7	2.0	0.3	1.7	
$HO-C(CH_3)_2OOH + OH$					
R1"(O ₁ -H ₁)	6.4	7.0	6.7	7.4	
R2"(-CH ₃ (R1))	6.9	7.4	7.5	8.0	
R3"(-CH ₃ (R2))	5.2	5.9	5.1	5.8	
R4"(O ₃ -H ₂)	4.7	5.1	5.2	5.5	

Table S1 Y//X (Y = M06-2X, CCSD(T), X = 6-311+G(2df,2p), ma-TZVP) calculated energy barrier ($\Delta E_a^{\#}, \Delta G_a^{\#}$) for OH + HHPs reactions based on the M06-2X/6-311+G(2df,2p) optimized geometries (kcal mol⁻¹)

temperatu	165				
T/K	$R1(O_1-H_1)$	$R2(C_1-H_1)$	R3(C ₁ -H ₂)	R4(O ₃ -H ₂)	k_{tot}
273	2.9×10^{-12}	1.6×10^{-13}	3.0×10^{-13}	4.5×10^{-11}	4.8×10^{-11}
280	2.3×10^{-12}	1.5×10^{-13}	2.7×10^{-13}	3.6×10^{-11}	3.9×10^{-11}
298	1.8×10^{-12}	1.4×10^{-13}	2.6×10^{-13}	2.9×10^{-11}	3.2×10^{-11}
300	1.5×10^{-12}	1.3×10^{-13}	2.4×10^{-13}	2.4×10^{-11}	2.6×10^{-11}
320	1.1×10^{-12}	1.1×10^{-13}	2.3×10^{-13}	1.7×10^{-11}	1.9×10^{-11}
340	8.6×10^{-13}	9.5×10^{-14}	2.2×10^{-13}	1.3×10^{-11}	1.4×10^{-11}
360	7.2×10^{-13}	8.2×10^{-14}	2.1×10^{-13}	1.0×10^{-11}	1.1×10^{-11}
380	6.2×10^{-13}	7.1×10^{-14}	2.1×10^{-13}	8.2×10^{-12}	9.1×10^{-12}
400	5.6×10^{-13}	6.2×10^{-14}	2.1×10^{-13}	6.8×10^{-12}	7.6×10^{-12}

Table S2 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of every elementary pathway and their branching ratios (Γ) involved in the initial reaction of HO-CH₂OO-H with OH radical computed at different temperatures

T/K	$\Gamma_{R1(O1-H1)}(\%)$	$\Gamma_{R2(C1-H1)}(\%)$	$\Gamma_{R3(C1-H2)}(\%)$	$\Gamma_{R4(O3-H2)}(\%)$
273	5.97	0.32	0.61	93.09
280	5.83	0.38	0.71	93.08
298	5.76	0.43	0.81	92.99
300	5.74	0.49	0.93	92.84
320	5.84	0.58	1.21	92.37
340	6.07	0.67	1.53	91.73
360	6.41	0.73	1.91	90.95
380	6.84	0.78	2.34	90.04
400	7.34	0.81	2.82	89.03

unificient to	emperatures				
T/K	R1'(O ₁ -H ₁)	R2'(C ₁ -H)	R3'(-CH ₃ (R1))	R4'(O ₃ -H ₂)	$k'_{ m tot}$
273	3.8×10^{-12}	1.1×10^{-12}	4.6×10^{-14}	4.2×10^{-11}	4.7×10^{-11}
280	2.9×10^{-12}	1.0×10^{-12}	4.4×10^{-14}	3.4×10^{-11}	3.8×10^{-11}
298	2.3×10^{-12}	9.5×10^{-13}	4.2×10^{-14}	2.8×10^{-11}	3.1×10^{-11}
300	1.9×10^{-12}	9.0×10^{-13}	4.0×10^{-14}	2.3×10^{-11}	2.6×10^{-11}
320	1.3×10^{-12}	8.3×10^{-13}	3.7×10^{-14}	1.7×10^{-11}	1.9×10^{-11}
340	1.0×10^{-12}	7.7×10^{-13}	3.4×10^{-14}	1.3×10^{-11}	1.4×10^{-11}
360	8.2×10^{-13}	7.4×10^{-13}	3.1×10^{-14}	9.8×10^{-12}	1.1×10^{-11}
380	7.0×10^{-13}	7.1×10^{-13}	2.9×10^{-14}	7.9×10^{-12}	9.4×10^{-12}
400	6.2×10^{-13}	6.9 ×10 ⁻¹³	2.8×10^{-14}	6.6×10^{-12}	7.9×10^{-12}

Table S3 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of every elementary pathway and their branching ratios (Γ) involved in the initial reaction of HO-CH(CH₃)OOH with OH radical computed at different temperatures

T/K	$\Gamma_{\rm R1'(O1-H1)}(\%)$	$\Gamma_{R2'(C1-H)}(\%)$	$\Gamma_{R3'(-CH3(R1))}(\%)$	$\Gamma_{\rm R4'(O3-H2)}(\%)$
273	8.10	2.32	0.10	89.51
280	7.69	2.68	0.12	89.48
298	7.39	3.08	0.14	89.40
300	7.19	3.49	0.16	89.16
320	7.00	4.40	0.20	88.40
340	7.02	5.40	0.24	87.35
360	7.19	6.46	0.27	86.08
380	7.46	7.56	0.31	84.66
400	7.81	8.69	0.35	83.15

uniterent t	emperatures				
T/K	R1"(O ₁ -H ₁)	R2"(-CH ₃ (R1))	R3"(-CH ₃ (R2))	R4"(O ₃ -H ₂)	$k''_{ m tot}$
273	2.5×10^{-12}	3.8×10^{-14}	2.5×10^{-14}	8.0×10^{-12}	1.1×10^{-11}
280	1.9×10^{-12}	3.7×10^{-14}	2.5×10^{-14}	6.5×10^{-12}	8.4×10^{-12}
298	1.5×10^{-12}	3.6×10^{-14}	2.3×10^{-14}	5.4×10^{-12}	6.9×10^{-12}
300	1.2×10^{-12}	3.5×10^{-14}	2.3×10^{-14}	4.6×10^{-12}	5.8×10^{-12}
320	8.5×10^{-13}	3.3×10^{-14}	2.2×10^{-14}	3.5×10^{-12}	4.4×10^{-12}
340	6.4 ×10 ⁻¹³	3.1×10^{-14}	2.2×10^{-14}	2.8×10^{-12}	3.5×10^{-12}
360	5.2×10^{-13}	2.9×10^{-14}	2.1×10^{-14}	2.4×10^{-12}	2.9×10^{-12}
380	4.4×10^{-13}	2.8×10^{-14}	2.1×10^{-14}	2.1×10^{-12}	2.5×10^{-12}
400	3.8×10^{-13}	2.7×10^{-14}	2.0×10^{-14}	1.8×10^{-12}	2.2×10^{-12}

Table S4 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of every elementary pathway and their branching ratios (Γ) involved in the initial reaction of HO-C(CH₃)₂OOH with OH radical computed at different temperatures

T/K	$\Gamma_{R1''(O1-H1)}(\%)$	$\Gamma_{R2"(-CH3(R1))}(\%)$	$\Gamma_{R3"(-CH3(R2))}(\%)$	$\Gamma_{R4''(O3-H2)}(\%)$
273	23.74	0.36	0.24	75.66
280	22.55	0.44	0.28	76.73
298	21.52	0.52	0.33	77.62
300	20.64	0.60	0.39	78.37
320	19.26	0.75	0.51	79.49
340	18.28	0.88	0.63	80.22
360	17.61	0.99	0.73	80.66
380	17.18	1.10	0.84	80.88
400	16.93	1.21	0.93	80.93

5		, , I	-
T/K	R19	R20	R21
273	3.1×10^{-11}	9.1×10^{-11}	1.5×10^{-10}
280	2.3×10^{-11}	6.4×10^{-11}	1.0×10^{-10}
298	1.7×10^{-11}	4.6×10^{-11}	7.4×10^{-11}
300	1.3×10^{-11}	3.4×10^{-11}	5.3×10^{-11}
320	8.1×10^{-12}	2.0×10^{-11}	3.0×10^{-11}
340	5.4×10^{-12}	1.2×10^{-11}	1.8×10^{-11}
360	3.8×10^{-12}	8.3×10^{-12}	1.2×10^{-11}
380	2.8×10^{-12}	5.8×10^{-12}	8.3×10^{-12}
400	2.1×10^{-12}	4.2×10^{-12}	5.9×10^{-12}

Table S5 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of HO₂ radical reactions with HOCH₂OO (R19), HOCH₃CHOO (R20) and HO(CH₃)₂COO radicals (R21) computed at different temperatures

Conformer	$\Delta G(\text{kcal mol}^{-1})$	Wi				
HOCH ₂ OO-a	0.000	46.39%				
HOCH ₂ OO-b	0.001	46.31%				
HOCH ₂ OO-c	1.623	2.99%				
HOCH ₂ OO-d	1.406	4.32%				

Table S6 The relative free energy and Boltzmann populations (w_i) of the conformer of HOCH2OOradical at the M06-2X/6-311+G(2df,2p) level of theory

T/K	k _{IRC-TST} (TS22-a)	k _{IRC-TST} (TS22-b1)	$k_{\text{IRC-TST}}(\text{TS22-b2})$	k _{MC-TST}
273	1.9×10^{-17}	2.1×10^{-17}	6.6×10^{-20}	1.8×10^{-17}
280	9.5×10^{-17}	1.0×10^{-16}	3.8×10^{-19}	9.1×10^{-17}
298	4.6×10^{-16}	4.8×10^{-16}	2.1×10^{-18}	4.4×10^{-16}
300	2.2×10^{-15}	2.3×10^{-15}	1.1×10^{-17}	2.0×10^{-15}
320	4.3×10^{-14}	4.4×10^{-14}	2.7×10^{-16}	4.1×10^{-14}
340	7.6×10^{-13}	7.7×10^{-13}	6.0×10^{-15}	7.1 × 10 ⁻¹³
360	1.2×10^{-11}	1.2×10^{-11}	1.1×10^{-13}	1.1×10^{-11}
380	1.5×10^{-10}	1.5×10^{-10}	1.8×10^{-12}	1.4×10^{-10}
400	1.6×10^{-09}	1.6×10^{-09}	2.4×10^{-11}	1.5×10^{-09}

Table S7 The single-conformer rate coefficients ($k_{IRC-TST}$) and multi-conformer rate coefficients (k_{MC-TST}) of HOCH₂OO radical computed at different temperatures

Conformer	$\Delta G(\text{kcal mol}^{-1})$	Wi			
HOCH ₃ CHOO-a	0.000	80.13%			
HOCH ₃ CHOO-b	0.942	16.33%			
HOCH ₃ CHOO-c	2.218	1.89%			
HOCH ₃ CHOO-d	2.299	1.65%			

Table S8 The relative free energy and Boltzmann populations (*w*_i) of the conformer of HOCH₃CHOO radical at the M06-2X/6-311+G(2df,2p) level of theory

T/K	k _{IRC-TST} (TS23-a)	k _{IRC-TST} (TS23-b)	$k_{\text{IRC-TST}}(\text{TS23-c1})$	$k_{\text{IRC-TST}}(\text{TS23-c2})$	k' _{MC-TST}
273	8.0×10^{-18}	8.3 ×10 ⁻¹⁴	3.3×10^{-18}	1.8×10^{-13}	1.7×10^{-14}
280	4.3 × 10 ⁻¹⁷	3.5 ×10 ⁻¹³	1.5×10^{-17}	7.9×10^{-13}	7.2×10^{-14}
298	2.3×10^{-16}	1.4×10^{-12}	6.9×10^{-17}	3.3×10^{-12}	2.9×10^{-13}
300	1.2×10^{-15}	5.1 ×10 ⁻¹²	3.1 ×10 ⁻¹⁶	1.3×10^{-11}	1.1 ×10 ⁻¹²
320	2.6×10^{-14}	5.8 ×10 ⁻¹¹	6.1 ×10 ⁻¹⁵	1.5×10^{-10}	1.2×10^{-11}
340	5.2 × 10 ⁻¹³	5.5 ×10 ⁻¹⁰	1.1 ×10 ⁻¹³	1.6 ×10 ⁻⁹	1.2×10^{-10}
360	8.6 × 10 ⁻¹²	4.5×10^{-09}	1.8 ×10 ⁻¹²	1.3 ×10 ⁻⁸	9.8 ×10 ⁻¹⁰
380	1.2×10^{-10}	3.2×10^{-08}	2.5×10^{-11}	9.7×10^{-8}	7.1 ×10 ⁻⁹
400	1.3 ×10 ⁻⁹	2.0×10^{-7}	3.0 ×10 ⁻¹⁰	6.3 ×10 ⁻⁷	4.6×10^{-8}

Table S9 The single-conformer rate coefficients ($k_{\text{IRC-TST}}$) and multi-conformer rate coefficients ($k_{\text{MC-TST}}$) of HOCH₃CHOO radical computed at different temperatures

(5/2		1, 5
Conformer	$\Delta G(\text{kcal mol}^{-1})$	Wi
HO(CH ₃) ₂ COO-a	0.000	88.04%
HO(CH ₃) ₂ COO-b	1.334	9.25%
HO(CH ₃) ₂ COO-c	2.062	2.71%

Table S10 The relative free energy and Boltzmann populations (w_i) of the conformer of HO(CH₃)₂COO radical at the M06-2X/6-311+G(2df,2p) level of theory

T/K	k _{IRC-TST} (TS24-a)	k _{IRC-TST} (TS24-b1)	k _{IRC-TST} (TS24-b2)	k _{IRC-TST} (TS24-c)	$k''_{\rm MC-TST}$
273	1.4×10^{-13}	1.2×10^{-13}	2.0×10^{-14}	1.6×10^{-12}	1.8×10^{-13}
280	6.1 ×10 ⁻¹³	5.7 ×10 ⁻¹³	9.0×10^{-14}	6.2×10^{-12}	7.7×10^{-13}
298	2.5×10^{-12}	2.4×10^{-12}	3.9×10^{-13}	2.3×10^{-11}	3.0×10^{-12}
300	9.2 ×10 ⁻¹²	9.6 ×10 ⁻¹²	1.5 × 10 ⁻¹²	8.0×10^{-11}	1.1 ×10 ⁻¹¹
320	1.1×10^{-10}	1.2×10^{-10}	2.0 ×10 ⁻¹¹	8.3×10^{-10}	1.3 ×10 ⁻¹⁰
340	1.1 ×10 ⁻⁹	1.3 ×10 ⁻⁹	2.2×10^{-10}	7.2×10^{-9}	1.3 ×10 ⁻⁹
360	8.7×10^{-9}	1.1×10^{-8}	1.9 ×10 ⁻⁹	5.3 × 10 ⁻⁸	1.0×10^{-8}
380	6.3 ×10 ⁻⁸	8.3 ×10 ⁻⁸	1.5 ×10 ⁻⁸	3.5 × 10 ⁻⁷	7.4×10^{-8}
400	4.1×10^{-7}	5.4×10^{-7}	1.0×10^{-7}	2.1×10^{-6}	4.7×10^{-7}

Table S11 The single-conformer rate coefficients ($k_{\text{IRC-TST}}$) and multi-conformer rate coefficients ($k_{\text{MC-TST}}$) of HO(CH₃)₂COO radical computed at different temperatures

T/K	$k_{ m R27}$	$k_{ m R29}$
273	5.1×10^{-12}	4.3×10^{-18}
280	4.9×10^{-12}	$5.0 imes 10^{-18}$
298	4.3×10^{-12}	$7.6 imes 10^{-18}$
300	4.2×10^{-12}	$7.9 imes 10^{-18}$
320	3.5×10^{-12}	$1.2 imes 10^{-17}$
340	2.2×10^{-12}	$1.8 imes 10^{-17}$
360	1.8×10^{-12}	2.6×10^{-17}
380	1.4×10^{-12}	3.7×10^{-17}
400	1.3×10^{-12}	5.1×10^{-17}

 Table S12 Rate coefficients of R27 and R29 in the HOCH2OO ·+ NO system computed at different temperatures

T/K	$k_{ m R32}$	<i>k</i> _{R33}
273	7.6×10^{-12}	2.0×10^{6}
280	5.8×10^{-12}	2.9×10^{6}
298	4.3×10^{-12}	7.3×10^{6}
300	$4.2 imes 10^{-12}$	8.1×10^6
320	3.8×10^{-12}	1.9×10^7
340	$2.7 imes 10^{-12}$	4.4×10^7
360	1.9×10^{-12}	9.0×10^{7}
380	1.4×10^{-12}	$1.7 imes 10^8$
400	1.1×10^{-12}	3.1×10^{8}

 Table S13 Rate coefficients of R32 and R33 in the HOCH₃CHOO ·+ NO system computed at different temperatures

T/K	$k_{ m R38}$	$k_{ m R39}$
273	7.9×10^{-12}	$2.6 imes 10^6$
280	6.3×10^{-12}	3.8×10^{6}
298	4.8×10^{-12}	9.5×10^{6}
300	4.7×10^{-12}	1.0×10^7
320	3.2×10^{-12}	$2.5 imes 10^7$
340	2.6×10^{-12}	5.6×10^{7}
360	1.9×10^{-12}	1.1×10^{8}
380	1.7×10^{-12}	$2.2 imes 10^8$
400	1.5×10^{-12}	3.8×10^8

Table S14 Rate coefficients of R38 and R39 in the $HO(CH_3)_2COO + NO$ system computed at different temperatures

Figure S1. PES ($\Delta G_a^{\#}$ and $\Delta E_a^{\#}$, in italics) for the autoxidation of HOCH₃CHOO radical predicted at the M06-2X/ma-TZVP//M06-2X/6-311+G(2df,2p) level of theory

Figure S2. PES ($\Delta G_a^{\#}$ and $\Delta E_a^{\#}$, in italics) for the autoxidation of HO(CH₃)₂COO radical predicted at the M06-2X/ma-TZVP//M06-2X/6-311+G(2df,2p) level of theory