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Abstract. 3-hourly Net Ecosystem Exchange (NEE) is estimated at spatial scales of 0.25 degrees over the European continent, 

based on the pre-operational inverse modelling framework “CarboScope Regional'' (CSR) for the years 2006 to 2019. To 

assess the uncertainty originating from the choice of a-priori flux models and observational data, ensembles of inversions were 

produced using three terrestrial ecosystem flux models, two ocean flux models, and three sets of atmospheric stations. We find 

that the station set ensemble accounts for 61% of the total spread of the annually aggregated fluxes over the full domain when 15 

varying all these elements, while the biosphere and ocean ensembles resulted in much smaller contributions to the spread of 

28% and 11%, respectively. These percentages differ over the specific regions of Europe, based on the availability of 

atmospheric data. For example, the spread of the biosphere ensemble is prone to be larger in regions that are less constrained 

by CO2 measurements. We investigate the impact of unprecedented increase of temperature and simultaneous reduction of 

Soil Water Content (SWC) observed in 2018 and 2019 on the carbon cycle. We find that NEE estimates during these two years 20 

suggest an impact of drought occurrences represented by the reduction of Net Primary Productivity (NPP), which in turn lead 

to less CO2 uptake across Europe in 2018 and 2019, resulting in anomalies up to 0.13 and 0.07 PgC yr-1 above the climatological 

mean, respectively. Annual temperature anomalies also exceeded the climatological mean by 0.46 °C in 2018 and by 0.56 °C 

in 2019, while standardized-precipitation-evaporation-index (SPEI) anomalies declined to -0.20 and -0.05 SPEI units below 

the climatological mean in both 2018 and 2019, respectively. Therefore, the biogenic fluxes showed a weaker sink of CO2 in 25 

both 2018 and 2019 (-0.22±0.05 and -0.28±0.06 PgC yr-1, respectively) in comparison with the mean -0.36±0.07 PgC yr-1 

calculated over the full analysed period (i.e., fourteen years). These translate into a continental-wide reduction of the annual 

sink by 39 % and 22 %, respectively, larger than the typical year-to-year standard deviation of 19 % observed over the full 

period. 

 30 
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1 Introduction 

The atmospheric mole fractions of Greenhouse Gases (GHGs) like CO2, CH4, and N2O have drastically increased since the 

industrial era began (Friedlingstein et al., 2019), primarily caused by anthropogenic GHG emissions. As a consequence, the 

globally averaged surface air temperature has risen by 0.87 °C from 1850 to 2015 (Jia et al., 2019). Carbon dioxide is ranked 

as the most prominent anthropogenic GHG owing to its atmospheric abundance, resulting from a) the natural exchange through 35 

the biogeochemical interactions with the organic molecules in the biosphere and hydrosphere (represented by the Net Primary 

Productivity - NPP), b) significant anthropogenic emissions from burning of fossil carbon and from cement production, and c) 

land use changes such as deforestation. The largest uptake of atmospheric CO2 is carried out through terrestrial Gross Primary 

Production (GPP) and thought to derive an uptake of about one-third of anthropogenic emissions owing to enhancement of 

photosynthetic CO2 uptake in the recent decades (Cai and Prentice, 2020). However, measurements of NEE (Net Ecosystem 40 

Exchange) cannot be easily achieved at finer spatial and temporal scales over the globe. Ancillary data from the atmosphere 

and the biosphere are thus applied in the inverse modelling setups to estimate the natural CO2 fluxes. Such a method of using 

atmospheric data to constrain NEE obtained from the terrestrial biogenic models is also called a top-down method.  

The continuous expansion of GHG in-situ measurement capabilities enabled atmospheric tracer inversion systems to better 

infer the sources and sinks of CO2 at global (Ciais et al., 2010; Enting et al., 1995; Kaminski et al., 1999; Rödenbeck et al., 45 

2003), and regional scales (Gerbig et al., 2003; Kountouris et al., 2018b; Lauvaux et al., 2016). Meanwhile, regional 

atmospheric inversions have employed atmospheric transport models at finer spatial resolution to deal with the complex 

atmospheric circulation at continental measurement stations (Broquet et al., 2013; Lauvaux et al., 2016; Monteil et al., 2020).  

The observational site network across Europe has been markedly homogenized since the Integrated Carbon Observation 

System (ICOS) was established in 2015, allowing for better estimation of the regional budgets of CO2 over Europe (Monteil 50 

et al., 2020). Consequently, this has allowed for a better understanding of the impacts of climate extremes on the ecosystem 

productivity such as the drought episode that occurred in 2018 (Bastos et al., 2020; Rödenbeck et al., 2020; Thompson et al., 

2020). The inversions typically assume anthropogenic emissions to be well known, and thus target the more uncertain 

biosphere-atmosphere fluxes.  

The regional inversion framework encounters various sources of uncertainties, such as 1) the uncertainty of a-priori knowledge 55 

(necessary in the Bayesian framework inversions to regularize the solution of the ill-posed inverse problem), and 2) the 

representation error resulting from the inaccuracies in simulating the atmospheric transport. The structure of prior uncertainty 

(e.g., uncertainties in the prior biosphere flux estimates) is of particular importance as it determines the way in which the flux 

corrections calculated from the data information should be spread in space and time (Chevallier et al., 2012; Kountouris et al., 

2015) Defining proper error covariance matrices in both flux and measurement space is therefore essential to obtain an optimal 60 

estimate of the true fluxes. Non-optimized flux components used as prescribed fluxes in the inverse frameworks should be 

provided with the highest achievable confidence, as any uncertainty in these components will directly modify the estimated 

biosphere-atmosphere fluxes. 
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Here, we present NEE estimates from a pre-operational regional inversion system set up over Europe covering fourteen years 

since 2006. An ensemble is created by varying a) a-priori biogenic fluxes, b) a-priori ocean fluxes, and c) the number of 65 

available atmospheric observation sites in order to estimate their impact on a-posteriori optimized biogenic fluxes. We 

furthermore discuss the interannual variability (IAV) over this period, with special focus on the changes of NEE in 2018 and 

2019, specifically in light of the water availability and temperature variations that occurred in the wake of anomalously warm 

and dry conditions over the continent. These changes are analysed using the seasonal and annual NEE fluxes aggregated over 

different subregions in Europe.  70 

The inversion setup, observational dataset, and prior fluxes used are described in Section 2, including details on ensemble 

members configuration. A statistical analysis of uncertainty and spreads over the ensembles of inversions are presented and 

discussed in Section 3.1. Section 3.2 presents the NEE estimated in the pre-operational inverse system based on several 

analysed cases. Finally, discussions and conclusions are summarized in Section 4. 

2 Methods 75 

2.1 Inversion framework 

The CarboScope Regional inversion system (CSR) is used to infer NEE from observed atmospheric CO2 dry mole fractions at 

high spatiotemporal resolution over Europe. The CSR makes use of Bayesian inference to regularise the solution of the under-

determined inverse problem (i.e., there are more unknown fluxes than atmospheric observations). For details about the 

mathematical concepts, we refer the reader to Rödenbeck (2005); the specifications of the set-up largely follow previous studies 80 

by Kountouris et al. (2018a, 2018b). The inversion at the regional domain is embedded into the global atmosphere using the 

“two-step scheme” described in Rödenbeck et al. (2009). The system scheme allows for using far-field contributions calculated 

from optimized fluxes in a separate global inversion run within the regional inversion without a direct nesting between the 

global and regional models at the boundaries in space and time. A global forward run is then carried out using 'global' 

observations to obtain simulated concentrations for the regional sites. A second forward run is conducted applying zero-fluxes 85 

outside of the regional domain. This can be considered as a regional run utilizing a global transport model at a coarse spatial 

resolution. For each simulated site, the subtraction of the 'regional' signal from that simulated from the 'global' run results in 

the far field contribution on the sites within the regional domain. Subtracting the latter from the measurements yields the 

remaining regional mixing ratio that is used in the regional inversion, which applies the regional-scale transport model at finer 

spatial resolution. 90 

The inversion searches for the optimal flux vector at 3-hourly temporal resolution through minimizing the cost function 𝐽 (Eq. 

1) with respect to the adjustable parameters 𝒑 (indicated in Eq. (2)) that are assumed to have zero mean and unit variance 

𝐽 = 	 𝐽! +
1
2	𝒑

"𝒑																																																																																																																																																				(1) 
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In CSR, the a-priori probability distribution of the fluxes is defined in a different way than the traditional way through a linear 

flux model 𝑓. This flux model is written as a function of a fixed term 𝑓!"# and an adjustable term containing the information 95 

of flux uncertainties and correlations in the matrix 𝑭, in which the covariance matrix is implicitly defined: 

𝑓 = 	𝑓#$% + 𝑭	𝒑																																																																																																																																																	(2),	

𝐽$ in Eq. (1) represents the observational constraint term (Eq. 3), consisting of the model-data mismatch (𝑐%&'( − 𝑐%)*)	and 

the respective observation error covariance matrix 𝑸𝒄 (also containing the transport and representativeness uncertainty) 

𝐽! =	
1
2 (𝑐&'() − 𝑐&*+)

"𝑸𝒄-𝟏	(𝑐&'() − 𝑐&*+)																																																																																										(3) 100 

The modelled concentrations 𝑐%)* are calculated using the atmospheric transport model over the measurement values 𝑐%&'( 

sampled at different times and locations. For detailed mathematical description of the inversion scheme, the reader is referred 

to Rödenbeck (2005). 

Atmospheric transport is simulated by the Stochastic Time-Inverted Lagrangian Transport (STILT) model (Lin et al., 2003), 

which is utilized to calculate surface influences at the stations (i.e., “footprints”) at the spatial resolution of 0.25° (longitude) 105 

× 0.25° (latitude) over hourly time intervals. The model is driven by meteorological fields from the high-resolution 

implementation of Integrated Forecasting System (IFS HRES) model of the European Centre for Medium Range Weather 

Forecasts (ECMWF), extracted at the 0.25° x 0.25° horizontal, and 3-hourly temporal resolution. The overall quality of the 

driving meteorological fields increased following the evolution of the forecast system, which underwent regular updates 

throughout the study period. The most significant of these changes occurred on June 26th, 2013, when the vertical resolution 110 

of the HRES model was increased from L91 to L137. In our modelling framework that translates into a 150 % increase in 

vertical resolution, as we use 60 and 90 levels (surface to approximately 20.1 km agl) as input data before and after June 2013, 

respectively. The upstream influence is simulated over the past 10 days by releasing 100 virtual particles at the sampling 

heights of stations (receptors). Additionally, we use the Eulerian global model TM3 (Heimann and Körner, 2003) within the 

CarboScope global inversion framework (Rödenbeck et al., 2003) to provide the far field contributions to the regional domain 115 

at a coarser spatial resolution of 5° (longitude) × 4° (latitude). 

2.2 Atmospheric data 

Since CO2-dry-mole-fractions are the main constraint of the inversion system, we have aimed in our study to maximize the 

data coverage by using the observations available through the ICOS network as well as further atmospheric observation sites 

(both ICOS-associated and independent). All of the datasets are high-quality products of the level 2 ICOS Atmospheric 120 

Release, which underwent a strict filtration procedure described in Hazan et al. (2016). This homogenized data treatment makes 

the data suitable for inverse modelling. For measurement sites with multiple sampling levels, the top one is chosen, as this one 

is expected to be represented best in the STILT transport model.  
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The core of our observational dataset consists of data from 44 sites collected in the ICOS Carbon Portal under the 2018 drought 

initiative (https://doi.org/10.18160/ERE9-9D85), covering the period 2006-2018. This base dataset was extended into 2019 by 125 

the level 2 data (L2) released by ICOS in 2020, as well as included data from four new sites. From the total number of sites, 

23 are currently ICOS-labelled and provide data since 2015, while the rest are non-labelled sites, providing datasets since 

2006. Figure 1 shows the distribution of all sites throughout the domain of Europe. The figure also shows the division of the 

domain into six sub-regions (North, South, West, East, South-east, and Central Europe) used for post-processing, to outline 

the impact of the observational constraint distribution on posterior fluxes. 130 

The representation error is assumed to be specific for different station types, which are categorized to 5 classes according to 

the ability for regional transport models to reasonably simulate the atmospheric concentration, given the variable complexity 

to represent the local circulation, over each station (Rödenbeck, 2005). Weekly representation errors are presented in Table 1, 

defining the measurement error covariance matrix in the cost function. The observations are mostly provided at hourly 

frequency, especially in recent years. We also include measurements from flask sampling (mostly weekly) when available 135 

from the corresponding sites. To better represent the well-mixed boundary layer in the STILT model, we limit our analyses to 

measurements of 6-hour day-time for all stations, i.e., 11:00 to 16:00 (local time), except for mountain sites. For the latter, 

night-time hours (23:00 to 04:00, local time) are chosen, as mountain sites experience free tropospheric conditions, depending 

on the mountain height. Particularly before establishing ICOS in 2015, the variability of station data coverage across the period 

of interest was rather high, underlining the sparsity of available data (Fig. 2). Since then, the site network over Europe has 140 

been markedly expanded as new stations were installed. It should be noted that the variability in data coverage is expected to 

result in an inconsistency of annual flux variations. Therefore, we combined stations into 3 subsets: a) the full set of stations, 

referred to as “all sites”, b) a subset of 15 stations that have consistent coverage from 2006 to 2019, to which we will refer as 

“core sites”), and c) a third subset of 16 stations that do not have gaps longer than 1 month during 2015-2019, subsequently 

referred to as “recent sites”. The far field contributions provided to the regional domain were calculated in the two-step 145 

inversion approach (Rödenbeck et al., 2009) using a global observational record from 75 sites (doi:10.17871/CarboScope-

s10oc_v2020), which has best data coverage in the 2010-2019 period.  

2.3 A-priori-fluxes 

Terrestrial ecosystem flux models are utilized to provide prior knowledge of biogenic fluxes (NEE, defined as the net 

ecosystem exchange). To appropriately represent the diurnal cycle in our modelling framework, NEE is obtained from the 150 

biosphere models at hourly temporal resolution. Three biosphere models were used as priors in the inversion runs. The first is 

the Vegetation Photosynthesis and Respiration Model, VPRM (Mahadevan et al., 2008). VPRM is a diagnostic model driven 

by shortwave radiation and temperature at 2-meter from the ECMWFs high resolution operational forecast product (IFS 

HRES). To calculate NEE and respiration fluxes, it uses MODIS (Moderate Resolution Imaging Spectroradiometer) indices 

derived from surface reflectance, namely Enhanced Vegetation Index (EVI) and land surface water (LSWI) together with type-155 

specific vegetation parameters optimized against the eddy covariance (EC) data. Parameter values for VPRM previously used 
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by Kountouris et al. (2018b), were updated using the most recent EC data, and are available at https://www.bgc-

jena.mpg.de/bsi/index.php/Services/VPRMparam. The second biosphere prior is from the data driven modelling approach 

FLUXCOM, which combines eddy covariance measurements and satellite observations in several machine learning algorithms 

to quantify the surface-atmosphere energy and carbon fluxes (Jung et al., 2020). Here, we use an extension of the modelling 160 

set-up described in Bodesheim et al. (2018), which employs daily and hourly surface meteorological information from ERA5 

as well as a mean annual cycle of satellite data to produce NEE estimates at hourly temporal and 0.5-degree spatial resolution. 

It should be noted that the magnitude of interannual changes in the data-driven flux estimates is generally found to be 

unrealistically small (Jung et al., 2012). The terrestrial biosphere model SiBCASA (Schaefer et al., 2008) is used as the third 

biosphere model. SiBCASA is a combined framework based on the Simple Biosphere (SiB) model and the Carnegie-Ames 165 

Stanford Approach (CASA) model. As explained in Schaefer et al. (2008), Gross Primary Productivity (GPP) is calculated by 

SiB assuming that it is in balance with heterotrophic and autotrophic respiration (RH, RA), meaning that diurnal and seasonal 

variations are well represented; however, the long-term terrestrial carbon changes cannot be predicted by SiB component alone. 

CASA fills this gap as it includes a light-use-efficiency model to estimate Net Primary Productivity (NPP, equal to GPP - RA). 

In turn, CASA cannot calculate NEE during night time. Therefore, combining both models in a hybrid version of SiBCASA 170 

combines the advantages in their biophysical and biogeochemical aspects to calculate NEE from RH, RA (SiB) and NPP 

(CASA).  

Following Kountouris et al. (2018b), we assume that the spatial correlation of the prior uncertainty follows a hyperbolic decay 

function, similar as in the inversion case nBVH described in that study. In this case, the annually aggregated uncertainty 

matches the assumed prior uncertainty without need for an additional bias term to the biosphere flux model. The spatial 175 

correlation length scales are 66.4 km in the zonal direction and 33.2 km in the meridional direction. One notable difference in 

the current work is the improved implementation of the directional dependence, with a twofold increase of decay distance in 

meridional direction. Temporarily, prior uncertainties are assumed to be correlated over 30 days, as found in Kountouris et al. 

(2015). 

Ocean CO2 fluxes and anthropogenic emissions are considered as prescribed fluxes in the inversion system. Ocean fluxes are 180 

taken from two sources at coarse spatial resolution, (5 × 4 degrees): a climatological flux product with monthly fluxes of 

Mikaloff Fletcher et al. (2007), and the CarboScope pCO2-based ocean flux, providing fluxes at 6-hourly temporal resolution 

(Rödenbeck et al., 2013). The CarboScope pCO2-based ocean fluxes comprise seasonal, interannual, and day-to-day variations, 

and are updated in the CarboScope global inversion based on the Surface Ocean CO2 Atlas pCO2 observations (SOCAT). We 

have used fossil fuel emissions developed in-house based on the category and fuel-type specific emission inventories of 185 

EDGAR-v4.3, and further processed following the COFFEE approach (Steinbach et al., 2011) to include diurnal, weekly , 

seasonal, and annual variations. These emissions are updated annually according to national consumption data from the BP 

(British Petroleum) statistical review of world energy (BP, 2019), and are available from the ICOS Carbon Portal under 

https://doi.org/10.18160/Y9QV-S113. We estimate the uncertainty associated with the anthropogenic emissions for 2014 by 

comparing fossil fuel emissions over the EU27+UK as reported in (Petrescu et al., 2021). In their study, they have reported 190 



7 
 

data from eight sources, including an EDGAR product, and the spread over the annual total is 0.038 PgC with a mean of 0.974 

PgC per year, suggesting uncertainty of around 4% among those emission products. If we assume this is also the uncertainty 

of our anthropogenic emission product, we can compare it to the spread of prior NEE in our study (0.940 PgC per year). As a 

result, prescribing fossil fuel in the inversion and solving for NEE is appropriate; however, when interpreting posterior 

biosphere-atmosphere exchange fluxes, one has to take into account that part of the fluxes and their variability might be 195 

compensating for errors in anthropogenic emissions. 

2.4 Set-up of the inversion runs 

We conduct three ensembles of inversion runs listed in Table 2 utilizing different setups of prior products (biosphere and ocean 

ensembles), as well as selected sets of observational data (station set ensemble). The inversion runs are labelled with unique 

codes for reference. B0 is defined as the base case of our analysis. It is configured using default settings of the inversion runs, 200 

with biogenic fluxes from VPRM, climatological ocean fluxes, and using all available atmospheric data as input. In the 

biosphere ensemble (consisting of B0, B1, B2), FLUXCOM and SiBCASA replace the VPRM model in both B1 and B2, 

respectively, allowing for distinguishing the effect of using different prior flux models on posterior NEE. This ensemble of 

inversions was performed for the period 2006-2018, as the availability of SiBCASA fluxes was limited to this period of time. 

In the ocean ensemble, we replace the climatological ocean fluxes used in B0 with the pCO2-based CarboScope ocean fluxes 205 

in O1. The station set ensemble is formed by running the inversion with varying measurement station subsets: B0 - all sites, 

S1 - core sites, and S2 - recent sites, as explained in Section 2.2. For each of the three ensembles of inversions, its spread is 

calculated as the standard deviation of the differences between each ensemble member and the ensemble mean over the 

respective overlapping period of time. The statistical uncertainty is calculated in the inverse system based on model-data 

mismatch, and the prescribed prior uncertainty, and was performed for the base case inversion (B0) as they remain identical 210 

independent of the biosphere model used.  

3 Results 

3.1 Statistical analysis of ensemble uncertainties   

The annual NEE estimates among the biosphere ensemble (Fig. 3) show good agreement across the three biosphere models 

but also across S1 and O1 inversions, yielding similar budgets of CO2 fluxes over the full domain. The findings suggest that 215 

atmospheric data constraints are more dominated in the posterior NEE fluxes in comparison with the prior constraint. 

Subregions that are characterized by strong observational constraints such as Central Europe show a closer consistency in the 

posterior fluxes despite large prior differences among the biosphere models compared to the regions less constrained by 

atmospheric data, such as Northern Europe. 

Noteworthy, there is a striking similarity of interannual variations between the a-posteriori fluxes and both VPRM and 220 

SiBCASA prior fluxes for the years 2009-2013. This agreement does not necessarily mean that posterior interannual variability 
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(IAV) is driven by biosphere models. This can be deduced from B1 (FLUXCOM) estimates of which the IAV differ in both 

the prior and posterior fluxes, and where FLUXCOM NEE has weak interannual variations. Instead, VPRM and SiBCASA 

are likely to entail this signal from the meteorological data used to force these models. However, the VPRM model 

overestimates the mean CO2 uptake compared to the a-posteriori fluxes, while SiBCASA underestimates the mean CO2 uptake, 225 

and this dissimilarity is persistent for all years as well.  

The statistical uncertainty and spreads over the ensembles are evaluated, and affect our data (Fig.3). It is noticed that the 

spreads over the posterior fluxes and prior fluxes are comparable with the corresponding uncertainties over the full domain 

(All Europe), Central Europe, and Northern Europe. Note that calculating the spread over a small size of samples might not 

reflect the true standard deviation. There is a clear reduction of uncertainty and spread in posterior fluxes either over the full 230 

domain (All Europe) or in subregions like Central and Northern Europe. Unlike prior uncertainty, posterior uncertainty slightly 

differs from year to year following the number of atmospheric sites available (Fig 2). This gets even clearer when looking at 

the marked reduction of the posterior uncertainty in Central Europe, as well as in regions with high station density, resulting 

in a stronger observational constraint. In contrast to Central Europe, a smaller reduction of posterior spread is found in Northern 

Europe as well as in other regions where there are few or no stations (e.g., Eastern Europe, Fig. S1 in the supplementary). In 235 

this case, NEE estimates are not well constrained by atmospheric data. Instead, a-posteriori flux is driven by the inversion 

using biosphere models and their uncertainty, particularly for the distant areas that cannot be constrained by observations 

through the spatial correlation. Table 3 denotes the reduction of the biosphere ensemble spread in the a-posteriori relative to 

the a-priori over the full domain, Central and Northern Europe (95.1%, 96.0%, and 74.8%, respectively). It indicates less 

reduction in Northern Europe due to the sparseness of observational sites. The large reduction of spread in Central Europe 240 

reflects a notable dependency of NEE estimates on the atmospheric measurements, substantially where the observation network 

is dense. 

To analyse the seasonal variations, seasonal cycle from B0, B1, B2, S1, and O1 inversions is averaged over 13 years for the 

full domain of Europe together with the corresponding biogenic prior fluxes for VPRM, FLUXCOM, and SiBCASA (Fig.4). 

Results show good agreement amid a-posteriori results of all inversions, while prior biosphere models show large differences, 245 

a pattern similar to the one seen over the annual fluxes in Fig.3. Nevertheless, posterior NEE fluxes estimated in S1 inversion 

show differences during May-August when compared with the estimates of other runs, reflecting a larger sensitivity of IAV to 

summer fluxes when applying a different set of stations. In addition, the difference of posterior fluxes seen in Fig. 3 over the 

annually aggregated estimates computed from B1 inversion over the period 2014-2018 largely results from the estimates during 

May and June when comparing it to the rest of biosphere ensemble elements (Fig. 4).  250 

Figure 5 illustrates the statistical uncertainty and the spread through the overall ensembles of inversions (listed in Table 2) 

calculated annually over three regions. As was discussed in the time series of NEE (Fig. 3), a reduction in posterior NEE 

uncertainty with respect to the assumed prior uncertainty is clear (dark grey bars in Fig. 5). A larger reduction is realized in 

Central Europe, emphasising a strong atmospheric signal constraint in the inversion. The spread among ensemble members 

(Fig. 5, yellow bars) represents the standard deviation of the respective inversion results. The ensemble spread over the a-priori 255 
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biosphere models agrees with the assumed prior uncertainty, with relatively high value (about 0.44 PgC yr-1 domain-wide) 

indicating large discrepancies between prior flux models. This confirms that the prior uncertainty assumed in the CSR system 

is realistic. The IAV of B0 was calculated separately for prior and posterior fluxes (blue bars) from the anomalies relative to 

the long-term mean to reveal the magnitudes of interannual deviation in comparison with the spread variability.  

In terms of the spread of the biosphere ensemble, the standard deviation of posterior fluxes declines from 0.666 to 0.032 PgC 260 

yr-1 over All Europe. Spatial differences are expected as stations are not evenly distributed across the domain of Europe. This 

can be noticed from the spread over Central Europe (a large number of stations, 18 sites) and Northern Europe. (a lesser number 

of stations, 8 sites). As a result, lack of observations leads to inflating the spread over the biosphere ensembles. 

The largest impact on NEE estimates in the ensembles are observed when the spread over station set ensemble is analysed. In 

this regard, a robust analysis can be based on a subset from Central Europe, as the subsets of stations in this region are clearly 265 

contrasting in the two ensemble members (core sites and recent sites). The spread of the station set ensemble was found to be 

0.11 PgC yr-1 - larger than those resulting from the biosphere and ocean ensembles (0.05 and 0.02 PgC yr-1, respectively). 

Noteworthy, the spread in the station set ensemble is slightly larger than the statistical uncertainty, highlighting the importance 

of performing ensembles of inversions using different numbers of stations to assess the posterior uncertainty. In addition, NEE 

estimated among the station set ensemble suggests that while in all cases the posterior fluxes are data-driven, modification of 270 

the observation inputs leads to interannual variations. The spread of the ocean ensemble remains the smallest in all the regions, 

pointing out quite a weak dependency of posterior NEE estimates on ocean fluxes, in particular over inland regions (e.g., 

Central Europe). 

The spatially distributed spread of all ensembles is depicted in Fig. 6. In this instance, the standard deviation was calculated 

for each grid cell rather than aggregating fluxes over regions first and then computing the spread (Fig. 5). The spatial spread 275 

here illustrates the deviations of the biosphere ensemble (Biosphere spread), the biosphere models (Prior biosphere spread), 

the station set ensemble (Stationset spread), and the ocean ensemble (Ocean spread). The maximum spread of 0.191×10-4 (PgC 

yr-1) was observed over the a-priori terrestrial biosphere models, particularly concentrated in Central and Southern Europe. 

The spread of a-posteriori biosphere ensemble is significantly reduced. In the station set ensemble, isolated stations like 

Hegyhatsal in Hungary and Sierra de Gredos in Spain demonstrate relatively high impact on the NEE spatial patterns over 280 

broader areas, reflecting the inversion correlation length. However, such an impact is not clearly realized on the “Stationset 

spread” map amid dense clusters of sites due to the commutative constraint that compensates for the excluded sites within the 

subsets of stations. These results highlight the importance of defining a proper function of spatial correlation decay in the prior 

uncertainty structure. A quite small influence is seen through the spread over ocean where a slight impact emerges only in 

wider coastal regions, being almost negligible inland (e.g., in Central and Eastern Europe). 285 

Figure 7 indicates the spatial distributions of prior and posterior NEE averaged over the full 13-year period, estimated from 

B0, B1, and B2 inversions, as well as the corresponding innovation of fluxes (the difference between posterior and prior 

fluxes). Positive corrections have been made to the biosphere flux models that are regarded to be negatively biased (VPRM 

and FLUXCOM, as was unequivocally confirmed by the annual time series of NEE in Fig. 3). In contrast, SiBCASA results 
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are closer to the mean of posterior fluxes, with a small domain-wide negative correction, except for local positive innovations 290 

seen over Northern Germany and Western Mediterranean coast. 

3.2 NEE estimates of 2018 and 2019 in a preoperational system 

In this section, we present CO2 fluxes for two selected years estimated in a preoperational system in the context of long-term 

estimates. In synergy with research project VERIFY in alignment with the scope of the Paris Climate Agreement, the system 

is used to provide annual updates of estimated fluxes over Europe once the atmospheric observations and auxiliary data 295 

required to force prior flux models and atmospheric transport models are available. The CSR is described as a “pre-operational 

system”, as it is still under development from year to year. The period of interest is chosen to start from 2006 in which a better 

coverage of observations exists within the domain of Europe. Here, we give special attention to analysis of the drivers of 

spatiotemporal differences in line with climate disturbances that occurred in 2018 and 2019, during which inaccuracies of 

estimating the continental fluxes of CO2 have been reported (Friedlingstein et al., 2019). This is due to the sensitivity of 300 

ecosystem respiration and photosynthetic fluxes to extreme events like lasting droughts. The analysis here is based on two 

inversion runs using observational data only from the subset of core sites that have consistent measurements, i.e., 1) S1 

inversion set-up and 2) a similar set-up to S1 performed with FLUXCOM instead of VPRM. The choice of using consistent 

measurements is essential to study the IAV to diminish the uncertainty caused by gaps of data coverage over years. The IAV 

of estimated CO2 fluxes is then compared with the IAV of the biosphere flux models (VPRM and FLUXCOM) used as priors 305 

in the two inversion runs.   

Summer NEE anomalies between 2006 and 2019 (ΔNEE, Fig. 8) are positive in the years 2007, 2010, 2016, 2018 and 2019 

indicating that the mean uptake of CO2 during the growing season was lower than average in these years. The magnitudes of 

anomalies during these years are comparable with findings of NEE anomalies reported by Rödenbeck et al. (2020), but 

estimated using different global inversion runs (2019 was not included in that study). Herein, we shed more light on 2019 NEE 310 

estimates which suggest even a weaker uptake of CO2 in comparison with the summer of 2018. It is noticed that the posterior 

fluxes estimated using the biosphere model FLUXCOM exhibit the largest anomaly of NEE during the summer of 2019. 

Despite slight differences in the amplitude of IAV, there is good agreement in the posterior fluxes estimated with both the 

FLUXCOM and VPRM models. Such common agreement is inherited from the identical observations used in both the 

inversion runs, as demonstrated in case of the biosphere ensemble in section 3.1. Therefore, the IAV in this case is more likely 315 

to be attributed to climate anomalies, in particular during drought occurrence in the growing season. 

The agreement between posterior fluxes using FLUXCOM and prior fluxes of VPRM in the spring season confirms two 

important conjectures: 1) posterior IAV are largely derived by atmospheric data regardless of the biosphere model used, 2) the 

VPRM model can capture year-to-year variations during spring, reflecting its capability to represent dynamic biospheric 

activity during the growing season. It is clear that FLUXCOM exhibits remarkably weaker annual variations during spring and 320 

fall in comparison with the VPRM and the a-posteriori. In winter, VPRM model agrees well with FLUXCOM in the interannual 

variations, showing less IAV compared to the NEE estimates. We attribute this to the lower signal of temperature assimilated 
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in the biosphere models from the meteorological data, as well as less information of radiation reflectance obtained from the 

remote sensing data due to dominant cloudy scenes in winter, provided that the VPRM and FLUXCOM models use forcing 

data from meteorology and remote sensing. In addition, misrepresentation in the anthropogenic emissions prescribed in the 325 

inversion may contribute to the posterior IAV, in particular during winter due to the fact that the biosphere signal is generally 

weak. 

To assess the temporal changes of NEE in response to such climate variations, we compare the seasonal anomalies of NEE 

(prior and posterior) to the anomalies of 2-m air temperature and Standardized Precipitation and Evapotranspiration Indices 

(SPEI) (Beguería et al., 2014) during spring, summer, fall, and winter, as well as the annual mean (Fig. 9). Here we show 330 

estimated NEE integrated over the full domain. Monthly near-real-time data of SPEI (SPEI01) are obtained from 

https://spei.csic.es/map/maps.html at 1° spatial resolution and monthly 2-m air temperature accessed from 

https://psl.noaa.gov/data/gridded/index.html at 0.5 spatial resolution. The anomalies were normalized with the standard 

deviation of the interannual variations since 2006. In addition, Pearson correlation coefficients between posterior fluxes, prior 

fluxes, temperature and SPEI for the full year and calendar seasons were calculated. Of note, due to the fact that the biosphere 335 

model VPRM utilizes temperature from meteorological fields and EVI data from the satellite sensor MODIS, it is anticipated 

to systematically correlate with temperature and SPEI. Consequently, we mostly devote our comparison to the posterior fluxes. 

The findings of standardized anomalies in Fig. 9a show that the decrease of CO2 uptake in 2018 and 2019 during the growing 

season was concurrent with a profound deficit of SWC (negative SPEI anomalies, dry conditions). The reduction/very low 

SWC also coincided with an unprecedented rise of temperature (positive T anomalies, highest in 2018) across Europe. Being 340 

an indicative factor of drought occurrences, SPEI links water availability in the surface including soil moisture (crucial 

limitation of GPP, especially in the temperate regions) and temperature to the precipitation and evapotranspiration rate. Hence, 

there is quite good agreement between posterior NEE and SPEI not only at spatial scales but also at temporal scales. The 

standard deviations of the interannual variations of posterior NEE, SPEI, and temperature over all Europe in the annual mean 

through the 14 years were equal to 0.17 PgC yr-1, 0.12, and 0.45 K, respectively. When relating the changes occurring during 345 

2018 and 2019 to the context of the previous 12 years, the annual anomalies of SPEI found to decline to more than twice as 

much as the climatological deviation around -0.29 in 2018 and to around -0.08 in 2019. As a consequence, posterior NEE 

anomalies increased to 0.14 and 0.08 PgC yr-1 above the climatological mean in 2018 and 2019, respectively.  

The excess of annually averaged temperature was predominant in 2018 and 2019, reaching around 0.40 and 0.47 °C above the 

climatological mean, respectively. Despite the fact that the impact of the 2018 and 2019 drought on NEE is realized from the 350 

SPEI and temperature anomalies, there is a relatively moderate correlation between estimated NEE and SPEI and temperature 

at the annual scale over the full domain (Fig. 9b). However, the correlation coefficients largely vary between seasons. A high 

anticorrelation (-0.86) between estimated NEE and temperature is found to be consistent during spring. In contrast, 

anticorrelation drastically decreases and turns out to almost vanish in summer and fall. Nonetheless, the relatively moderate 

correlation of SPEI with posterior NEE during summer is adequate to deduce the lack of SWC under dry conditions through 355 

the anticorrelation between SPEI and temperature. This implies, warm conditions accelerate the depletion of soil moisture 
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content, in particular on the soil top layer that lacks water content in its deeper layers to compensate for the higher evaporation 

rate at the surface layer. This affects photosynthesis efficiency during the growing season by decreasing the gross primary 

productivity, but also increases the contribution of soil respiration, more pronounced in 2019.   

During winter, water availability does not seem to be a limiting factor of NEE as we notice from low correlations between 360 

posterior NEE and SPEI. Instead, temperature negatively correlates with posterior NEE indicating that the increase of 

temperature coincides with enhanced uptake of CO2 where photosynthesis can occur, e.g., in evergreen areas. But cold years 

have more and longer snow cover which decreases photosynthesis, whereas soil heterotrophic respiration contributes more to 

CO2 release since soil temperature is expected to be larger than air temperature owing to snow cover insulation. Meanwhile, 

the anticorrelations between estimated NEE and temperature may result from a misattribution of anthropogenic emissions, as 365 

warmer winters mean less anthropogenic emissions (the opposite holds true for colder winters). Of note, December X, January 

X+1 and February X+1 are incorporated into the winter estimate of a specific year (X). Figure 10 illustrates the seasonal 

contribution of NEE to IAV, which is dominated by summer and spring variability in comparison with winter. We note that 

the posterior fluxes are in agreement with the biosphere model VPRM in summer and fall, while the variability of posterior 

fluxes is larger during winter and smaller during spring compared to prior fluxes; the opposite holds true for the prior fluxes. 370 

Temperature is, however, shown to largely vary during winter, while SPEI contribution does not show a significant variability 

between seasons. 

Spatial differences of NEE estimates in 2018 and 2019  

Using an identical set of observation sites for the last 5 years, S2 inversion demonstrates the differences between NEE estimates 

in 2018 and 2019 as noticed from Fig. 11. Results emphasise the aftermath of drought episodes, showing a smaller uptake of 375 

CO2 in France, Germany, and Northern Europe during spring of 2018 (March-April-May), while during summer of 2019 (June-

July-August) the estimates of NEE, to some extent, suggest a higher CO2 release, in particular in the United Kingdom, France, 

Germany, and Southern Europe. NEE estimates during fall of 2018 suggests less uptake in Western, Northern, and Southern 

Europe compared to fall of 2019. Obviously, during winter time (December-January-February) the differences are 

infinitesimally small throughout the full domain, while the annual mean fluxes indicate much smaller uptake in 2018 compared 380 

to 2019. This confirms a longer impact of the drought lasting from the early growing season during spring until the end of 

summer. To explain the changes of spatial distribution of NEE alongside SPEI and temperature in 2019, anomalies of NEE 

were estimated using S1 inversion with respect to 2006-2018 anomalies. Figure 12 indicates the coincidence of the large 

release of CO2 during summer time in Central Europe with the positive anomalies of temperature and the negative anomalies 

of SPEI over those regions. The prior fluxes, to a lesser extent, show the impact of temperature and SWC on NEE during the 385 

growing season.  However, in the United Kingdom positive NEE anomalies can only be detected from the posterior fluxes. 

The positive anomalies of temperature during winter show a slight impact on NEE (positive anomalies). This can be interpreted 

as an increase of soil respiration. 

The annual budgets of NEE in 2019 and 2018 are summarized in Fig. 13 for six subregions estimated using B0 and S2 

inversions. The choice to use B0 inversion is to estimate annual flux budgets of CO2 through assimilating as many atmospheric 390 
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observations as possible to strengthen the observational constraint in the spatial and temporal aspects. S2 inversion is 

specifically used to keep identical observations in 2018 and 2019 for the purpose of assessing the NEE differences between 

the two years. The annually aggregated fluxes estimated from B0 inversion over the full domain yield -0.28 and -0.22 PgC in 

2019 and 2018, respectively. The performance of the inversion reflected in the a-posteriori fluxes is associated with an 

uncertainty reduction of 85.5 to 88% with respect to assumed prior uncertainty for 2019 and 2018, respectively. Likewise, the 395 

underlying European regions indicate uncertainty reduction with different magnitudes based on atmospheric data availability. 

The relatively observational weak constraint in 2019 has thus resulted in a small increment of posterior uncertainty in regions 

that have a fewer number of stations. For instance, the uncertainty in Southern Europe amplified from 0.018 PgC in 2018 to 

0.027 PgC in 2019, coincided with an increase of the net source of CO2 fluxes from 0.016 PgC in 2018 to 0.069 PgC in 2019. 

Despite the data coverage difference in both years, Southern Europe still shows a larger annual flux of 0.04 PgC in 2019 400 

estimated using S2 inversion in comparison with 0.02 PgC in 2018. 

These results, again, highlight the sensitivity of the inversion to data coverage, but also the stronger impact of warmer summers 

on NEE, where S2 estimates suggest larger flux budgets in 2019 compared to 2018 over Western and Southern Europe. Overall, 

B0 and S2 results suggest a suppression of GPP, predominantly in Central and Northern Europe. 

4 Discussion and conclusions  405 

4.1 Sensitivity of posterior fluxes to input data 

The smaller spread in the a-posteriori fluxes found through the ensembles of inversions is evident over All Europe reflecting 

the good performance of the inversion system. In the biosphere ensemble, flux estimates are not very sensitive to a-priori 

terrestrial ecosystem fluxes. We deduce this from the small spread over the a-posteriori fluxes (Fig. 3), occurring despite major 

differences in a-priori fluxes. Likewise, different ocean flux models have the smallest effect on estimating NEE, in particular 410 

inland, where ocean-land exchange is dissipated. However, the spread in the station set ensemble is strongest, at 0.11 PgC yr-

1 for the annually aggregated fluxes over the full domain. This points out a higher sensitivity of the inversion to the number of 

stations in comparison with 0.06 and 0.02 PgC yr-1 spreads in the biosphere and ocean ensembles, respectively. This effect is 

most pronounced over Central Europe, where measurements of CO2-dry-mole-fractions are available from a large number of 

stations, and thus a contrasting number of sites manifests amongst station subsets, given that the station subsets were not 415 

selected based on geographical locations but on the long record of data coverage. Further, this finding corroborates the 

dominant influence of observational constraint on NEE estimates in the biosphere and ocean ensembles seen through 

interannual variations. Such influence is, however, subject to the availability of the atmospheric data which can otherwise be 

altered by the prior constraint to maintain the posterior estimates according to Bayes’ approach. For example, the relative 

spread over biosphere ensembles in Northern Europe, having less dense coverage, increases to 38.4%, compared to 23.9% in 420 

Central Europe. Conversely, in the stationset ensemble, the spread calculated for Northern Europe was found to be smaller 

than that in Central Europe (51.8% versus 71.7%), reflecting the biogenic flux constraints in this case, given the smaller 
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differences of observations among the station subsets in this ensemble. The ocean ensemble spread remains at a minimum 

percentage in both regions, albeit it elevates to 9.6% in Northern Europe in comparison with only 4.3% in Central Europe. 

Although the impact of ocean fluxes on NEE estimates can be negligible over the full domain and inlands, the results point to 425 

a relatively higher influence in the coastal regions. 

Our results denote a comparable reduction of posterior uncertainty and the spread relative to their a-priori (Fig. 5). Noteworthy, 

the indirect effect of statistical posterior uncertainty on the corresponding spread over the ensembles of inversions emerges 

from the common dependency on observational data, which predominantly appear in the well-constrained areas in Germany, 

France, Benelux, and the U.K. Over such regions, the posterior uncertainty and spreads are greatly reduced and the inversions 430 

tend to converge regardless of which prior flux model is used. It is essential to consider the prior uncertainty assumption, as 

well as the prior error structure in the spatial and temporal aspects. This will determine to which extent the posterior fluxes are 

dependent on the uncertainty biogenic fluxes, specifically in the regional inversions where the degrees of freedom can 

drastically increase following the finer spatial and temporal resolution of biosphere flux models and atmospheric transport 

models. 435 

4.2 Response of NEE estimates to climate variation  

The linkage between NEE and climate variation has been examined via SPEI and temperature as proxy data of climate 

variation. The anomalies of SPEI and temperature are analysed along with NEE anomalies during the recent years 2018 and 

2019 in the context of the period 2006-2017. The recent drought events decreased the efficiency of GPP, in particular during 

spring and summer, where soil moisture markedly declined during the summer of 2018 and 2019 accompanied with an 440 

exceptional rise of temperature (Ma et al., 2020). But GPP during 2019 spring showed a higher efficiency (larger uptake of 

CO2) than the spring of 2018, benefiting from the increment of temperature, SWC, and light availability. The finding is 

consistent with a study on seasonal NEE over North America implemented by Hu et al. (2019) and seems to hold for Northern 

regions where temperature is substantially considered as a limiting factor to NEE. Additionally, our results showed that Central 

Europe experienced higher sources of CO2 during 2019, which can be impacted by an extended legacy of the drought of 2018, 445 

where forests were profoundly stressed and thus their growth was negatively impacted. MacKay et al. (2012) found about 17% 

reduction of drought plot growth relative to a reference plot and showed that growth reduction in the forests across Europe 

exceeded this value under drought conditions depending on tree species. Furthermore, the ecosystem respiration response to 

the temperature increment may contribute to such a positive anomaly, given that temperature anomalies during 2019 over 

Central and Southern Europe were unprecedented in line with the 2018 anomaly (Hari et al., 2020). In agreement with 450 

Rödenbeck et al. (2020), we found that summer NEE anomalies were in agreement with the anomalies of temperature and 

SPEI, occurring in different summers including 2018. 

In terms of estimated winter fluxes, the medium anticorrelation between temperature and NEE (also shown by the anomalies 

in Fig. 9a) may imply that an increase of CO2 release occurs in cold winters if thicker and lasting snow cover prevail. Snow 

insulation prevents the soil temperatures from decreasing as strongly as air temperature. In comparatively warmer soils 455 
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respiratory carbon dioxide emissions by the soil biota are sustained also during winter. Being in agreement with our results, 

Monson et al. (2006) found that soil temperature during winter increases nonlinearly with the depth of snowpack resulting in 

enhancement of soil respiration. Even though the study was carried out at site level in the Northern Hemisphere in the U.S, the 

agreement with our findings refers to a similar impact at a wide scale.  

Besides the previous explanation of T-NEE anticorrelation in winter, one should take into account a hypothesis of the vertical 460 

mixing height being systematically biased in the atmospheric transport models (Lin and Gerbig, 2005). In this case, a 

misrepresentation of mixing height during colder winters might occur, as was demonstrated in a study conducted by Gerbig et 

al. (2008) devoted to characterizing the uncertainty of atmospheric transport models resulting from vertical mixing changes 

during day and night time. Given that, the shallow boundary layer developed during night holds similar characteristics during 

cold winters. A separate study is required to investigate such an impact which will lead to improving vertical mixing in the 465 

atmospheric transport models, and thus reducing the uncertainty in atmospheric tracer inversions. Apart from that, the 

contribution of winter fluxes to the interannual variations is lower than that resulting from summer fluxes, denoting a lesser 

impact.  

Overall, the NEE response to SWC and temperature varies depending on the temporal and spatial aspects of the region of 

interest, and is connected to the hydrological cycle and physical dynamics of soils and the ambient atmosphere. 470 

In this paper, the NEE flux budgets of 2018 and 2019 are estimated in a pre-operational method to keep track of the changes 

of net terrestrial fluxes of CO2. Results still suggest the domain of Europe as a net sink of CO2, albeit in 2018 and 2019 CO2 

uptake decreases to -0.22 ± 0.05 and -0.28 ± 0.06 PgC yr-1, respectively, due to drought occurrences compared to a multi-year 

average uptake of -0.36±0.07 PgC yr-1 (2006-2019). In contrast to the a-posteriori, the prior fluxes obtained from VPRM are 

by far overestimating CO2 uptake, especially in the growing season, resulting in -1.47 ± 0.43 and -1.37 ± 0.43 PgC yr-1 in 2018 475 

and 2019, respectively. The posterior fluxes constrained in the regions or individual countries whose observational data are 

denser, such as France, Germany, and the U.K, are more reliable than those that have sparse observation network (e.g., Poland 

or Spain) or do not have any monitoring sites at all (e.g., Turkey). This implies that NEE in some countries within the domain 

of Europe is constrained either by weak observational signal from the neighbouring regions through the a-priori spatial 

correlation length, or mostly dominated by the prior flux constraint. This kind of flux constraints skews the total aggregated 480 

fluxes at the expense of well-constrained regions and is expected to amplify the posterior uncertainty. For example, when 

comparing 2019 NEE budgets in France and Turkey, the a-posteriori fluxes are summed up to -0.032 ± 0.008 and 0.045 ± 

0.020 PgC yr-1, respectively. Despite the fact that they have different areas, the uncertainty in the latter is about 45%, notably 

greater than that realized in the first, up to 25%. These results emphasise the importance of using a wider coverage of CO2 

observations in the regional inversions to better estimate the continental flux budgets, and thus understanding the biogenic flux 485 

changes amid climate variation. 

 

Code and data availability 
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NEE estimates and the respective prior fluxes, as well as codes used in this study can be made available upon request to the 

corresponding author. Atmospheric dry mole fraction measurements of CO2 are available from the ICOS Carbon Portal and 490 

can be accessed from http://doi.org/10.18160/GZ5S-4GPR. SPEI01 can be downloaded from the near-real-time data through 

https://spei.csic.es/map/maps.html.  
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Figure 1: Stations network distribution over Europe. Different graphical symbols denote the type of station classifications; coloured 630 
regions indicate Central Europe (green), Northern Europe (blue), Western Europe (purple), Southern Europe (orange), Eastern 
Europe (yellow), and South-eastern Europe (light red). 
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Figure 2: Dataset density measured from 2006 until 2019 over Europe. Yellow to red colour scale denotes monthly-averaged dry 
mole fractions of CO2. Symbols on the right-hand axis: C - core site, R - recent site. 635 
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Figure 3: NEE fluxes estimated using B0, B1, B2, S1, and O1 inversions for the 2006-2018 period over the full domain of Europe 
(top), Central Europe (middle), and Northern Europe (bottom). Posterior fluxes are plotted with solid lines and their a-priori in the 
dotted lines. Priors and posteriors of the biogenic ensemble are distinguished by identical colours for each modelled scenario. Light 640 
red shadowing denotes the statistical uncertainty and error bars indicate the spread among the biosphere inversions’ ensemble. 
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Figure 4: Seasonal cycle of NEE calculated as the average of monthly fluxes over 13-year estimated using the ensembles of inversions 
(solid lines) B0, B1, B2, S1, O1, as well as the biogenic prior fluxes (dotted lines) obtained from VPRM, FLUXCOM, and SiBCASA. 

 645 
Figure 5: Spread uncertainties calculated from 3 inversion ensembles of biosphere, ocean, and station set (yellow bars). Grey bars 
refer to the statistical uncertainties, and blue bars denote the standard deviations of IAV. 
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Figure 6: Spatial spread of biosphere, prior, station set, and ocean ensembles. Standard deviation (sd) on the legend is normalized 
over maximum spread 1.91×10-4 in units of PgC yr-1 per grid pixel. Stations used in the station set ensemble are referred to by circles 650 
(B0), dots (S1) and plus symbol (S2). 
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Figure 7: Posterior, prior, and innovation of fluxes (posterior - prior) averaged over the 2006-2018 period calculated from the 
biosphere ensemble of inversions (B0, B1 and B2). Green circles refer to observing sites. 655 
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Figure 8: Anomalies of NEE fluxes during spring, summer, fall and winter estimated from two inversion runs differing in biosphere 
models (FLUXCOM in red colour and VPRM in blue colour) using the atmospheric data of core sites. Solid lines indicate the a-
posteriori while dashed lines refer to the corresponding a-priori (biosphere models). 
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 660 
Figure 9: Left panel (a) shows the anomalies of posterior NEE (post), prior NEE (prior), SPEI (spei) and 2-m air temperature (T) 
standardized relative to the standard deviation of climatological variations at annual and seasonal scales since 2006 over the full 
domain of Europe. Units of NEE and temperature are in PgC yr-1 and K, respectively, while SPEI is unitless. Right panel (b) refers 
to the correlation coefficients of posterior and prior NEE on y-axis with SPEI and air temperature on x-axis calculated in springs 
(mam), summers (jja), fall (son), and winters (djf), and at annual scales (yr) over the full domain of Europe. Note: seasonal T and 665 
SPEI correspond to NEE seasons mentioned on y-axis. 
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Figure 10: Seasonal contribution to IAV calculated relative to 14 years for posterior NEE fluxes (post), VPRM NEE fluxes (prior), 
SPEI, and T during the four seasons over the full domain. 

 670 
Figure 11: Differences of NEE estimates for 2018 – 2019 in seasonal and annual mean calculated from S2 inversion setup. 
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Figure 12: 2019 anomalies of prior fluxes (first row), posterior NEE estimated from S1 inversion (second row), 2-meter air 675 
temperature (third row), and SPEI (fourth row) relative to 2006-2019 over Europe. Columns denote mean estimates of spring, 
summer, fall, winter and annual NEE estimates, from left to right. 
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Figure 13: Posterior NEE flux budgets over 6 European regions in 2018 and 2019 using B0 and S2 inversions (dark colours) 680 
compared to their priors from the VPRM model (light colours). Uncertainties associated with B0 and VPRM fluxes are referred to 
in the error bars. 

Table 1: Representation error of station locations 

Classification Mountain Tower Ocean Continental Urban 

Code M T S C UP 

Error (µmol mol-1) 1.5 1.5 1.5 2.5 4 

 
Table 2: Set-ups of the inversions 685 

Inv. code Biosphere Ocean Station-set Time period 

B0 (base) VPRM Mikaloff all 2006-2018 

B1 FLUXCOM Mikaloff all 2006-2018 

B2 SiBCASA Mikaloff all 2006-2018 

O1 VPRM Carboscope all 2006-2018 

S1 VPRM Mikaloff core sites 2006-2019 
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S2 VPRM Mikaloff recent sites 2015-2019 

 
Table 3: Reduction of the biosphere ensemble NEE spread over Europe 

Region Prior spread (PgC/yr) Posterior spread (PgC/yr) Spread Reduction (%) 

All Europe 0.666 0.032 95.1 

Central Europe 0.137 0.005 96.0 

Northern Europe 0.098 0.024 74.8 

Southern Europe 0.061 0.023 61.7 

Eastern Europe 0.129 0.024 80.9 

Western Europe 0.142 0.015 89.1 

 


