
We	are	thankful	for	the	numerous	constructive	comments	and	suggestions	provided	
by	the	two	reviewers.	Below,	the	comments	of	the	reviewers	are	indicated	in	grey,	
our	answers	in	black	and	the	modifications	of	the	text	in	blue.	

Reviewer	#1	
Overview	
The	paper	compares	different	MOS	methods	applied	to	the	regional	CAMS	forecast	at	
stations	 locations	 over	 the	 Iberian	 Peninsula	 for	 ozone	 in	 2018-19.	 It	 uses	 an	
“operational	 scenario	 approach”,	 namely	 that	 observations	 become	 only	 gradually	
available	to	 learn	the	different	methods.	The	paper	 finds	that	 the	MOS	approaches	
have	different	strength	and	weaknesses	with	respect	to	improvements	of	the	overall	
reduction	of	 the	 forecast	error	and	the	error	specifically	 for	high	pollution	episodes	
and	threshold	exceedances.					
	
General	comments	
The	paper	 reports	about	a	 sound	scientific	effort,	 in	particular	 the	consideration	of	
accuracy	measures	 in	 general	 and	 for	 exceedances	 of	 threshold	 during	 episodes	 of	
high	 pollutions	 is	 very	welcome.		 But,	 some	methodological	 aspects	 need	 to	 be	 re-
considered.	 Also,	 the	 result,	 method	 and	 choice	 of	 accuracy	 measures	 are	 not	
explained	 with	 enough	 detail,	 which	 would	 be	 required	 to	 better	 understand	 the	
results	and	applicability	of	the	different	approaches.	The	paper	does	not	present	well	
the	 large	 amount	 of	 information	 coming	 from	 the	 combination	 of	 the	many	MOS	
approaches	and	accuracy	measures.	 The	authors	need	 to	 introduce	 tables	 showing	
the	 accuracy	measures	 for	 each	MOS	 type,	 which	 allows	 the	 reader	 to	 digest	 the	
information.	 Tables	 could	 also	 help	 to	 substantially	 shorten	 the	 long	 narrative	
descriptions.	
	
As	discussed	 in	more	details	below,	we	proposed	 in	 the	 revised	version	numerous	
modifications	 that	will	hopefully	 improve	the	manuscript	along	the	 lines	suggested	
by	reviewer	#1.	We	added	a	new	section	to	present	the	different	metrics	used	(while	
at	 the	 same	 time	 reducing	 the	 corresponding	 section	 in	 the	 Appendix)	 and	 to	
introduce	the	corresponding	skill	scores	to	be	discussed.		
	
Regarding	tables,	 in	the	initial	version	of	the	manuscript	we	decided	on	purpose	to	
avoid	 including	 tables	 essentially	 because	 the	 results	 shown	 in	 Fig.	 3	 are	
multidimensional	 (for	each	statistical	metric	 :	MOS	method,	 lead	 time,	 time	scale).	
Thus,	to	our	opinion,	tables	are	not	necessarily	the	most	convenient	way	to	present	
such	a	 large	quantity	of	results	as	they	would	not	allow	the	different	metrics	to	be	
easily	 compared	 among	each	other	 (as	 this	would	 require	many	 tables).	However,	
we	 agree	 that	 some	 tables	 can	 facilitate	 the	 reading	 and	 shorten	 the	 discussion.	
Therefore,	 	 we	 selected	 a	 subset	 of	 these	 statistics	 and	 included	 them	 into	 two	
tables.	We	 included	 additional	 tables	 in	 the	 Supplement	 (notably	 for	 the	 different	
sensitivity	tests).	
	
Also,	 as	 shown	 below,	we	 shortened	 the	 narrative	 descriptions	while	 analyzing	 in	
more	detail	the	results	shown	in	Fig.	3.	



	
On	the	other	hand,	sensitivities	to	input	parameters	and	variation	of	the	methods	are	
discussed	with	some	detail,	which	make	the	paper	somewhat	unbalanced.	Although	
interesting	 in	 itself,	 it	 is	also	not	 clear	what	 the	purpose	of	 that	 section	 is.	Are	 the	
results	 presented	 in	 3.3	 and	 3.2	 already	 carried	 out	 with	 the	 optimal	 choice	 of	
parameter	setting	or	not	?	The	discussion	in	3.4.	should	be	shortened	by	focusing	on	
application	with	a	very	high	sensitivity	to	parameter	choice.	
	
In	the	revised	version	of	the	manuscript,	we	reorganized	the	discussion	of	the	results	
in	Sect.	3.2	and	3.3	(see	below)	and	shortened	the	discussion	on	the	sensitivity	tests	
(section	 3.4),	 which	 should	 improve	 the	 balance	 of	 the	 paper.	 Regarding	 this	 last	
section,	 although	 it	might	 disrupt	 a	 bit	 the	 general	 narrative	 of	 the	 paper,	we	 do	
think	 it	 is	 important	 to	 show	 the	 sensitivity	 of	 these	 different	 methods	 to	 their	
internal	parameters.	The	methods	used	 in	Sect.	3.2	and	3.3	are	not	considering	an	
optimal	 choice	 of	 internal	 parameters	 for	 the	 simple	 reason	 already	 raised	 in	 the	
discussion	 that	 there	 is	 no	 optimal	 MOS	 methods	 without	 a	 proper	 definition	 of	
user-specific	 needs	 and	 interests	 (in	 other	 words,	 a	 clear	 choice	 of	 the	 metric	 of	
strongest	 interest).	 We	 understand	 the	 frustration	 that	 the	 absence	 of	 clear	
recommendations	might	 create	 but	 this	 is	 one	of	 the	 conclusions	 of	 our	 study	 (as	
reflected	in	the	title	we	choose):	the	behavior	of	the	different	MOS	methods	strongly	
varies	with	the	choice	of	metric,	for	instance	with	some	MOS	methods	showing	the	
best	continuous	metrics	and	the	worst	categorical	ones.	Therefore,	in	an	operational	
context,	 the	 choice	 of	 the	 MOS	 method	 (and	 its	 internal	 parameters)	 directly	
depends	on	the	desired	behavior	of	the	forecast	system	(Is	the	user	more	interested	
in	having	forecasts	with	lowest	bias	and	error	or	in	predicting	exceedances?	For	this	
latter	category,	is	the	user	more	interested	in	avoiding	false	alarms	at	the	potential	
cost	of	missed	episodes,	or	is	he	interested	in	a	more	precautionary	approach	where	
more	false	alarms	are	accepted?).		
We	applied	the	following	modifications	in	the	introduction	of	section	3.4	:		

• L333	 :	 “In	 the	 previous	 sections,	 we	 provided	 a	 first	 evaluation	 of	 the	
performance	of	a	set	of	MOS	methods.	All	methods	rely	on	specific	choices	or	
parameters	 that	 can	 substantially	 influence	 the	 behavior	 of	 the	 MOS-
corrected	 forecasts,	 and	 thus	 its	 general	 performance.	 In	 this	 section,	 we	
discuss	 some	 of	 these	 choices	 and	 investigate	 their	 impact	 on	 the	
performance	 through	 different	 sensitivity	 tests.”	!	 “Each	 of	 the	 forecast	
methods	 considered	 in	 this	 study	 relies	on	a	 specific	 configuration,	e.g.	 the	
time	window	 of	 PERS	 or	MA	methods,	 the	metric	 used	 internally	 in	 KF	 for	
optimizing	 the	 variance	 ratio,	 the	 number	 of	 analogs	 taken	 into	 account	 in	
AN,	the	choice	of	input	features	or	metrics	used	internally	for	fitting	the	ML	
model	 in	 GBM.	 This	 configuration	 can	 substantially	 influence	 their	 general	
performance,	although	 in	a	different	way	depending	on	 the	metric	used.	 In	
the	 previous	 sections,	 we	 evaluated	 the	 performance	 of	 these	 different	
methods	 considering	 a	 relatively	 simple	 baseline	 configuration.	 In	 this	
section,	we	discuss	some	of	these	choices	and	investigate	their	impact	on	the	
performance	 through	 different	 sensitivity	 tests.	 Corresponding	 statistical	
results	 on	 continuous	 and	 categorical	 metrics	 are	 given	 in	 Tables	 in	 the	
Supplement.”	



And	we	slightly	shortened	some	of	subsections	:		
• L338	 :	 “The	persistence	method	essentially	 relies	on	 the	choice	of	 the	 time	

window	 over	 which	 past	 observations	 are	 averaged	 to	 provide	 the	 O3	
forecast.	In	the	previous	section,	we	used	a	window	of	1	d.	A	sensitivity	test	is	
performed	with	windows	ranging	between	1	and	10	d	(hereafter	referred	to	
as	 PERS(n)	 with	 n	 the	 window	 in	 days).	 Results	 are	 shown	 in	 Fig.	 G1	 in	
Appendix	 G,	 and	 indicate	 that,	 while	 PERS(1)	 forecasts	 were	 unbiased	
(whatever	the	time	scale),	increasing	the	window	leads	to	a	growing	negative	
bias	 on	 d1max	 and	 d8max	 scales.	 The	 bias	 is	 substantially	 reduced	 when	
working	at	dd1max	and	dd8max	scales,	i.e.	when	applying	the	PERS	approach	
directly	on	daily	1-hour	and	8-hour	maximums	rather	than	on	the	hourly	time	
series.	The	differences	between	the	two	approaches	originate	from	the	day-
to-day	 variability	 in	 the	 hour	 of	 the	 day	 when	 O3	 mixing	 ratios	 peak.	 For	
illustration	purposes,	let's	assume	that	O3	peaks	between	15	and	17	h;	on	a	
given	 day,	O3	mixing	 ratios	 at	 15/16/17h	 reach	 50/60/50	 ppbv	 and	 on	 the	
following	day	70/70/80	ppbv.	Then,	 the	PERS(2)dd1max	O3	would	be	70	ppbv	
(mean	of	60	and	80	ppbv),	while	the	PERS(2)d1max	O3	would	be	only	65	ppbv	
(maximum	 of	 the	 mean	 diurnal	 profile	 of	 these	 two	 days,	 in	 this	 case	
60/65/65).	
	
Conversely,	 both	 RMSE	 and	 PCC	 can	 be	 slightly	 improved	 with	 longer	
windows.	However,	averaging	past	observations	over	more	days	reduces	the	
variability,	 which	 was	 unbiased	 in	 PERS(1)),	 thus	 introducing	 a	 substantial	
negative	nMSDB.	As	a	consequence,	both	H	and	F	are	slightly	reduced,	which	
means	 that	 PERS	 forecasts	 become	 more	 "conservative"	 with	 longer	
windows.	The	impact	on	SR	for	detecting	exceedances	of	the	target	threshold	
is	 ambiguous	 for	 short	 lead	 times	 but	 positive	 for	 the	 longest	 ones.	
Interestingly,	for	information	thresholds,	the	best	SR	are	obtained	around	4-7	
d.	 However	 and	 more	 importantly,	 using	 longer	 windows	 deteriorates	 the	
general	performance	of	 the	 forecast,	as	 shown	by	 the	decrease	of	both	CSI	
and	PSS.	This	deterioration	is	stronger	in	the	first	lead	days,	and	softer	during	
the	 last	ones.	 Interestingly,	 there	are	also	 important	differences	 in	terms	of	
AUC	for	detecting	exceedances	of	the	target	threshold	depending	on	the	lead	
day,	 ranging	 from	 a	 decrease	 of	 AUC	 with	 longer	 windows	 at	 D+1	 to	 an	
increase	at	D+4.”		
!	 “The	 persistence	method	 with	 a	 1-d	 time	 window	 (PERS(1))	 provides	 a	
reference	 forecast	 for	 assessing	 the	 skill	 scores	 on	 the	 different	 RAW	 and	
MOS-corrected	forecasts.	Here	we	explore	how	the	time	window,	from	1	to	
10	d	 (hereafter	 referred	 to	as	PERS(n)	with	n	 the	window	 in	days),	 impacts	
the	 performance	 of	 this	 PERS	 forecasts.	 Results	 are	 shown	 in	 Fig.	 G1	 in	
Appendix	G.		
	
Increasing	the	window	leads	to	a	growing	negative	bias	on	d1max	and	d8max	
scales	 that	 can	 be	 substantially	 reduced	 when	 working	 at	 dd1max	 and	
dd8max	scales,	i.e.	when	applying	the	PERS	approach	directly	on	daily	1-hour	
and	 8-hour	maxima	 rather	 than	 on	 the	 hourly	 time	 series.	 The	 differences	
between	the	two	approaches	originate	from	the	day-to-day	variability	in	the	



hour	of	 the	day	when	O3	mixing	 ratios	peak.	For	 illustration	purposes,	 let's	
assume	that	O3	peaks	between	15	and	17	h;	on	a	given	day,	O3	mixing	ratios	
at	15/16/17h	reach	50/60/50	ppbv	and	on	the	following	day	70/70/80	ppbv.	
Then,	 the	 PERS(2)dd1max	 O3	 would	 be	 70	 ppbv	 (mean	 of	 60	 and	 80	 ppbv),	
while	 the	 PERS(2)d1max	 O3	 would	 be	 only	 65	 ppbv	 (maximum	 of	 the	mean	
diurnal	 profile	 of	 these	 two	 days,	 in	 this	 case	 60/65/65).	 Conversely,	 both	
nRMSE	 and	 PCC	 can	 be	 slightly	 improved	with	 longer	windows,	 but	 at	 the	
cost	of	a	growing	underestimation	of	the	variability.	As	a	consequence,	both	
H	and	F	are	slightly	reduced,	which	means	that	PERS	forecasts	become	more	
"conservative"	 with	 longer	 windows.	 The	 impact	 on	 SR	 for	 detecting	
exceedances	of	 the	target	threshold	 is	 low	for	short	 lead	times	but	positive	
for	the	longest	ones.	Interestingly,	for	information	thresholds,	the	best	SR	are	
obtained	 around	 4-7	 d.	 However	 and	 more	 importantly,	 using	 longer	
windows	deteriorates	the	general	performance	of	the	forecast,	as	shown	by	
the	decrease	of	both	CSI	and	PSS,	especially	at	short	lead	times.	Interestingly,	
there	 are	 also	 important	 differences	 in	 terms	 of	 AUC	 for	 detecting	
exceedances	of	the	target	threshold	depending	on	the	lead	day,	ranging	from	
a	decrease	of	AUC	with	longer	windows	at	D+1	to	an	increase	at	D+4.”	

• L377	:	“As	explained	in	Sect.	2.3.3	(and	Appendix	B),	the	behaviour	of	the	KF	
intrinsically	 depends	 on	 the	 sigmaeta2/sigmaepsilon2	 ratio	 chosen.	 So	 far,	 this	
parameter	 has	 been	 adjusted	 dynamically	 (and	 updated	 regularly)	 to	
optimize	 the	 RMSE	 on	 past	 data.	 Here,	 a	 sensitivity	 test	 is	 performed	with	
alternative	strategies	in	which	the	variance	ratio	is	chosen	to	optimize	the	SR,	
CSI,	PSS	or	AUC	with	threshold	values	of	60	or	90	ppbv	(hereafter	referred	to	
as	 SR-60,	 SR-90,	 CSI-60,	 CSI-90,	 PSS-60,	 PSS-90,	 AUC-60	 and	 AUC-90).	 The	
objective	 is	 to	 investigate	 to	 what	 extent	 tuning	 the	 KF	 algorithm	 with	
appropriate	 categorical	metrics	 allows	 improving	 the	 exceedance	 detection	
skills.	 Results	 (Fig.	 G3	 in	 Appendix	G)	 show	 that	 this	 tuning	 strategy	 barely	
impacts	the	performance	obtained	on	continuous	metrics,	except	for	CSI-60	
and	 PSS-60	 that	 show	 slightly	 deteriorated	 RMSE	 and	 PCC.	 In	 return,	 the	
latter	 offer	 some	 PSS/CSI	 improvements	 compared	 to	 KF(RMSE)	 regarding	
the	 detection	 of	 target	 threshold	 exceedances,	 but	 these	 are	 mostly	
restricted	to	the	first	lead	day.	The	improvement	is	stronger	for	the	detection	
of	 the	 information	threshold	exceedances	and	extends	 further	 in	 lead	time,	
especially	for	PSS-60.	Surprisingly,	a	better	performance	on	the	detection	of	
the	90	ppbv	threshold	 is	obtained	with	KF(PSS-60)	compared	to	KF(PSS-90).	
The	reasons	for	this	unexpected	result	are	not	clear	but	may	include	the	fact	
that	optimizing	KF	based	on	the	metric	PSS-90	relies	on	much	fewer	events	
compared	 to	 PSS-60,	 which	 introduces	 more	 instability	 for	 rare	 events.	
Indeed,	 a	 common	 and	 well-known	 issue	 of	 PSS	 (as	 well	 as	 CSI	 and	 most	
other	categorical	metrics)	is	that	it	degenerates	to	trivial	values	(either	0	or	1)	
for	rare	events	:	as	the	frequency	of	the	event	decreases,	the	numbers	of	hits	
(a),	 false	 alarm	 (b)	 and	 missed	 exceedances	 (c)	 all	 decay	 toward	 zero	 but	
typically	 at	 different	 rates,	 which	 causes	 the	 metric	 to	 take	 meaningless	
values	 (either	 0	 or	 1	 in	 the	 case	 of	 PSS)	 (Jolliffe	 et	 al.,	 2011,	 Ferro	 et	 al.,	
2011).	It	is	not	entirely	clear	if	we	are	already	in	a	regime	of	rare	events	here	
but	 this	 potential	 issue	 may	 explain	 part	 of	 the	 results	 obtained	 here,	



although	 further	analysis	are	 required	 to	clarify	 this	point.	With	KF(PSS-60),	
PSS	 at	 D+1/D+4	 reaches	 about	 0.17/0.05,	 against	 0.02/0.01	 for	 KF(RMSE).	
Therefore,	 the	 performance	 for	 detecting	 such	 high	 O3	 concentrations	
remains	 very	 poor,	 especially	 far	 in	 time,	 but	 this	 sensitivity	 test	
demonstrates	that	choosing	an	appropriate	tuning	strategy	can	help	slightly	
improving	 the	 detection	 skills	 at	 a	 potential	 cost	 in	 terms	 of	 continuous	
metrics.”		
!	 “As	 explained	 in	 Sect.	 2.3.3	 (and	 Appendix	 B),	 the	 behavior	 of	 the	 KF	
intrinsically	 depends	 on	 the	 sigmaeta2/sigmaepsilon2	 ratio	 chosen.	 So	 far,	 this	
parameter	 has	 been	 adjusted	 dynamically	 (and	 updated	 regularly)	 to	
optimize	 the	 RMSE	 on	 past	 data.	 Here,	 a	 sensitivity	 test	 is	 performed	with	
alternative	strategies	in	which	the	variance	ratio	is	chosen	to	optimize	the	SR,	
CSI,	PSS	or	AUC	with	threshold	values	of	60	or	90	ppbv	(hereafter	referred	to	
as	 SR-60,	 SR-90,	 CSI-60,	 CSI-90,	 PSS-60,	 PSS-90,	 AUC-60	 and	 AUC-90).	 The	
objective	 is	 to	 investigate	 to	 what	 extent	 tuning	 the	 KF	 algorithm	 with	
appropriate	 categorical	metrics	 allows	 improving	 the	 exceedance	 detection	
skills.		
	
Results	(Fig.	G3	in	Appendix	G)	show	that	this	tuning	strategy	barely	impacts	
the	performance	obtained	on	continuous	metrics,	except	for	CSI-60	and	PSS-
60	that	show	slightly	deteriorated	RMSE	and	PCC.	Only	small	differences	are	
also	 found	 on	 target	 threshold	 exceedances,	 except	 again	 with	 these	 two	
methods	that	show	slightly	 improved	CSI/PSS	at	short	 lead	time.	Results	on	
information	threshold	exceedances	show	more	variability	depending	on	the	
time	 scale,	 but	 both	 CSI	 and	 PSS	 can	 typically	 be	 improved	 when	 used	
internally	 in	 the	KF	procedure,	although	often	only	at	short	 lead	times.	The	
choice	 of	 the	 threshold	 in	 this	 optimizing	metric	 leads	 to	more	 ambiguous	
results.	For	instance,	besides	giving	the	best	PSS	on	target	threshold,		KF(PSS-
60)	 also	 gives	 better	 results	 than	 KF(PSS-90)	 on	 the	 information	 threshold.	
Reasons	 behind	 this	 behavior	 are	 not	 clear	 but	 may	 be	 due	 to	 some	
instabilities	brought	into	PSS-90	by	the	rareness	of	such	exceedances.	Indeed,	
a	 common	 and	 well-known	 issue	 of	 PSS	 (as	 well	 as	 CSI	 and	 most	 other	
categorical	metrics)	 is	that	 it	degenerates	to	trivial	values	(either	0	or	1)	for	
rare	events	:	as	the	frequency	of	the	event	decreases,	the	numbers	of	hits	(a),	
false	alarm	(b)	and	missed	exceedances	(c)	all	decay	toward	zero	but	typically	
at	different	rates,	which	causes	the	metric	to	take	meaningless	values	(either	
0	or	1	in	the	case	of	PSS)	(Jolliffe	et	al.,	2011,	Ferro	et	al.,	2011).	All	in	all,	the	
performance	 for	 detecting	 such	high	O3	 concentrations	 remains	 very	 poor,	
especially	far	in	time,	but	this	sensitivity	test	demonstrates	that	choosing	an	
appropriate	tuning	strategy	can	help	improving	slightly	the	detection	skills	at	
a	potential	cost	in	terms	of	continuous	metrics.”	

• L400	 :	 “The	 AN	method	 identifies	 the	 closest	 analog	 days	 to	 estimate	 the	
corresponding	prediction,	 and	 thus	depends	on	 the	number	of	 analog	days	
taken	into	account.	We	performed	a	sensitivity	test	with	1,	5,	10,	15,	20,	25	
and	 30	 analog	 days	 (hereafter	 referred	 to	 as	 AN(N)	with	 N	 the	 number	 of	
analogs).	Results	are	shown	in	Fig.	Fig.	G4	in	the	Appendix	G.	Increasing	the	
number	 of	 analog	 days	 up	 to	 5	 (AN(5))	 positively	 impacts	 PCC	 but	



deteriorates	 it	when	more	days	 are	 included.	 It	 also	 increases	 the	negative	
bias	 affecting	 the	 variability	 (nMSDB),	 which	 leads	 to	 a	 worse	 slope	 and	
intercept.	 Concerning	 the	 detection	 of	 target	 threshold	 exceedances,	
increasing	 the	 number	 of	 analog	 days	 logically	 makes	 the	 forecast	 more	
"conservative"	 (lower	 H	 and	 F),	 although	 the	 best	 SR	 are	 found	 with	 a	
number	of	analogs	around	20.	However,	best	CSI	and	PSS	are	obtained	with	
lowest	 numbers	 of	 analogs	 (1	 in	 this	 case).	When	 focusing	 on	 information	
threshold	exceedances,	the	AN	forecasts	based	on	10	analogs	or	more	never	
reach	such	high	O3	values.	Therefore,	similarly	to	PERS	and	MA	methods	that	
reached	their	best	skills	for	the	shortest	time	windows,	with	AN	the	best	CSI	
and	PSS	skills	are	obtained	when	using	the	lowest	number	of	analogs	(with	a	
cost	 in	 the	 continuous	 metrics,	 as	 for	 PERS	 and	 MA).	 Computing	 the	 AN-
corrected	 O3	 mixing	 ratios	 based	 on	 a	 larger	 number	 of	 analogs	 gives	
smoother	predictions,	and	our	choice	to	weight	the	average	by	the	distance	
to	the	different	analogs	is	unable	to	substantially	mitigate	this	issue.”		
!	 “The	 AN	 method	 identifies	 the	 closest	 analog	 days	 to	 estimate	 the	
corresponding	prediction,	 and	 thus	depends	on	 the	number	of	 analog	days	
taken	into	account.	We	performed	a	sensitivity	test	with	1,	5,	10,	15,	20,	25	
and	 30	 analog	 days	 (hereafter	 referred	 to	 as	 AN(N)	with	 N	 the	 number	 of	
analogs).	Results	are	shown	in	Fig.	G4	in	the	Appendix	G.		
	
Although	the	best	slopes	are	found	with	smallest	number	of	analogs,	the	best	
nRMSE	and	PCC	are	obtained	using	around	5-15	analogs.	Using	too	numerous	
analogs	increases	the	underestimation	of	the	variability	and	deteriorates	the	
slope.	Regarding	the	detection	of	target	thresholds,	increasing	the	number	of	
analogs	makes	 the	 forecast	more	"conservative"	 (lower	H	and	F,	higher	SR)	
and	 deteriorates	 the	 CSI	 and	 PSS.	When	 focusing	 on	 information	 threshold	
exceedances,	the	AN	forecasts	based	on	10	analogs	or	more	never	reach	such	
high	 O3	 values.	 Highest	 CSI	 and	 PSS	 are	 finally	 obtained	 with	 one	 single	
analog.		
	
Therefore,	similarly	to	PERS	and	MA	methods	that	reached	their	best	skills	for	
the	shortest	time	windows,	with	AN	the	best	CSI	and	PSS	skills	are	obtained	
when	 using	 the	 lowest	 number	 of	 analogs	 (with	 a	 cost	 in	 the	 continuous	
metrics,	as	for	PERS	and	MA).	Computing	the	AN-corrected	O3	mixing	ratios	
based	 on	 a	 larger	 number	 of	 analogs	 gives	 smoother	 predictions,	 and	 our	
choice	 to	 weight	 the	 average	 by	 the	 distance	 to	 the	 different	 analogs	 is	
unable	to	substantially	mitigate	this	issue.”	

• L430	:	“In	this	context,	it	appears	interesting	to	evaluate	to	which	extent	the	
performance	is	altered	when	not	relying	on	this	specific	information.	Results	
are	shown	in	Fig.	G5	in	the	Appendix	G.”		

• L436	:	“Regarding	the	skills	for	detecting	d8max	O3	above	60	ppbv,	stronger	
weights	 typically	 increase	 both	 H	 and	 F,	 improve	 the	 (underestimated)	 FB,	
but	 deteriorate	 the	 SR	 and	 AUC	 (the	 forecasts	 become	 more	 liberal).	
Regarding	 the	 more	 balanced	 metrics	 (of	 strongest	 interest	 here),	 adding	
more	weights	on	the	tails	of	the	O3	distribution	has	a	positive	although	small	
impact	 on	 PSS.	 A	minor	 positive	 impact	 is	 also	 found	 on	 CSI,	 but	 the	 best	



results	 are	 obtained	 with	 GBM(W2),	 thus	 moderate	 weights.	 For	 both	
metrics,	 improvements	are	most	obvious	at	the	d8max	scale,	while	changes	
at	the	dd8max	scale	are	much	smaller.	Regarding	the	detection	of	d1max	O3	
above	90	ppbv,	the	influence	of	the	weighting	strategies	is	more	ambiguous	
but	the	detection	skills	generally	remain	very	poor.	Again,	 the	strongest	CSI	
or	 PSS	 improvements	 are	 obtained	 at	 the	 d1max	 scale	 with	 much	 lower	
changes	of	the	dd1max	results.”	!	“Regarding	the	skills	for	detecting	target	
threshold	 exceedances,	 stronger	 weights	 typically	 increase	 both	 H	 and	 F,	
improve	 the	 (underestimated)	 FB,	 but	 deteriorate	 the	 SR	 and	 AUC	 (the	
forecasts	 become	 more	 liberal).	 Regarding	 the	 more	 balanced	 metrics	 (of	
strongest	 interest	 here),	 adding	 more	 weights	 on	 the	 tails	 of	 the	 O3	
distribution	 typically	 has	 a	 positive	 although	 small	 impact	 on	 CSI	 and	 PSS.	
Regarding	the	detection	of	information	threshold	exceedances,	both	CSI	and	
PSS	can	also	be	slightly	improved	by	adding	some	weight	into	the	GBM,	but	
the	performance	for	detecting	such	high	O3	values	remain	relatively	low.	The	
interest	of	using	the	O3	concentration	observed	one	day	before	is	here	found	
to	be	limited.”	

	
	
It	remains	unsatisfactory	to	treat	the	persistence	approach	as	a	variant	of	MOS.	As	
the	 author	 explain	 themselves,	 persistency	 is	 a	 reference	 forecast	 (to	 identify	 if	 a	
given	forecast	has	skill	compared	to	the	reference)	and	both	the	RAW	as	well	as	the	
other	MOS	approaches	 should	be	more	directly	 compared	against	 it.	 An	 important	
question	 for	 all	 forecast	 application	 is,	 	if	 RAW	 beats	 PERS	 (depending	 on	 the	
accuracy	measure)		and	if	and	how	MOS	(using	RAW)	can	improve	the	skill.	
We	 agree	 with	 the	 reviewer	 regarding	 the	 specificity	 of	 the	 PERS	 method,	 that	
cannot	 be	 considered	 as	 an	 additional	MOS	method.	 In	 the	 revised	 version	of	 the	
manuscript,	 we	 modified	 the	 text	 to	 avoid	 confusion	 regarding	 this	 aspect.	
Concerning	the	presentation	of	the	results,	we	consider	it	is	useful	to	keep	showing	
and	discussing	the	different	metrics	for	the	RAW,	the	PERS	and	the	different	MOS-
corrected	forecast	 taken	 individually	as	done	 in	the	 initial	version.	However,	 in	the	
revised	 version,	 we	 added	 some	 extra	 discussion	 of	 the	 results	 in	 terms	 of	 skill	
scores,	 taking	 the	 PERS(1)	 forecast	 as	 a	 reference.	 We	 included	 a	 new	 figure	
equivalent	to	Fig.	3	showing	the	corresponding	skills	scores.	
We	applied	the	following	modifications	:		

• L4	 :	 “In	 this	 study,	 we	 investigate	 to	 what	 extent	 AQ	 forecasts	 can	 be	
improved	 using	 a	 variety	 of	 MOS	 methods,	 including	 persistence	 (PERS),	
moving	 average	 (MA),	 quantile	 mapping	 (QM),	 Kalman	 Filter	 (KF),	 analogs	
(AN),	 and	 gradient	 boosting	 machine	 (GBM).”	 !	 “In	 this	 study,	 we	
investigate	 to	what	extent	AQ	 forecasts	 can	be	 improved	using	a	variety	of	
MOS	methods,	 including	moving	average),	quantile	mapping,	Kalman	Filter,	
analogs,	and	gradient	boosting	machine,	and	consider	as	well	the	persistence	
method	as	a	reference.”	

• L126	 :	 “This	 section	describes	 the	different	MOS	methods	 implemented	 for	
correcting	 the	 raw	 forecasts	 (hereafter	 referred	 to	 as	 RAW),	 namely:	
persistence	 (PERS),	 moving	 average	 (MA),	 Kalman	 filter	 (KF),	 quantile	
mapping	(QM),	analogs	(AN)	and	gradient	boosting	machine	(GBM).	All	MOS	



methods	 are	 applied	 independently	 on	 each	 monitoring	 station.”	!	 “This	
section	describes	the	different	MOS	methods	implemented	for	correcting	the	
raw	forecasts	(hereafter	referred	to	as	RAW),	namely:	moving	average	(MA),	
Kalman	 filter	 (KF),	 quantile	 mapping	 (QM),	 analogs	 (AN)	 and	 gradient	
boosting	 machine	 (GBM).	 All	 MOS	 methods	 are	 applied	 independently	 on	
each	monitoring	station.	The	skill	of	 these	different	 forecasts	 (including	 the	
RAW)	is	assessed	relative	to	the	Persistence	(PERS)	reference	method,	which	
uses	 the	previously	observed	concentration	values	at	 a	 specific	hour	of	 the	
day	 (averaged	 over	 1	 or	 several	 days)	 as	 the	 predicted	 value.	 As	 a	 first	
approach,	we	use	a	time	window	of	one	single	day	(hereafter	referred	to	as	
PERS(1)).”	

• L129	 :	 “2.3.1	 Persistence	 (PERS)	 and	 moving	 average	 (MA)	 methods”	 !	
“2.3.1	Moving	average	(MA)	methods”	

• L130	 :	 “We	 primarily	 consider	 two	 relatively	 simple	 MOS	 methods:	 the	
persistence	 (PERS)	 and	 the	moving	 average	 (MA).	 The	PERS	method	 simply	
uses	 the	 previous	 observed	 concentrations	 values	 at	 a	 specific	 hour	 of	 the	
day	(averaged	over	1	or	several	days)	as	the	predicted	value	for	this	specific	
hour.	 It	 is	often	used	as	a	 reference	 to	measure	 the	skill	achieved	by	other	
methods,	 especially	 for	 very	 short-term	 forecasts.	 In	 the	 MA	 method,	 the	
forecast	bias	in	the	previous	day	or	days	is	used	to	correct	the	forecast.	As	a	
first	approach,	we	use	a	time	window	of	one	single	day	for	both	PERS	and	MA	
methods.	The	corresponding	approaches	are	hereafter	referred	to	as	PERS(1)	
and	MA(1).	The	sensitivity	of	both	PERS	and	MA	methods	to	the	time	window	
is	 discussed	 in	 Sect.	 3.4..”	!	 “We	 primarily	 consider	 the	Moving	 Average	
(MA)	method,	by	which	the	raw	CAMS	forecast	bias	in	the	previous	day(s)	is	
used	 to	 correct	 the	 forecast.	As	a	 first	 approach,	we	use	a	 time	window	of	
one	 single	day	 (hereafter	 referred	 to	 as	MA(1)).	 The	 sensitivity	 to	 the	 time	
window	is	discussed	in	Sect.	3.4”.	

	
We	 added	 a	 dedicated	 section	 to	 describe	 the	 evaluation	 metrics	 and	 the	
corresponding	skill	scores	(and	removed	the	corresponding	text	in	L226-236)	:	
L221	:	“2.5		Evaluation	metrics	and	skill	scores		
In	this	study,	O3	forecasts	are	evaluated	using	an	extended	panel	of	continuous	and	
categorical	metrics	to	provide	a	comprehensive	view	of	the	 impact	of	the	different	
MOS	 methods	 on	 the	 predictions.	 Continuous	 metrics	 used	 to	 evaluate	 the	 O3	
concentrations	include	:	

- nMB	:	normalized	Mean	Bias	
- nRMSE	:	normalized	Root	Mean	Square	Error	
- PCC	:	Pearson	correlation	coefficient	
- Slope	 :	 slope	of	 the	predicted-versus-observed	O3	mixing	 ratio,	 to	 quantify	

how	well	lowest	and	highest	O3	concentrations	are	predicted	
- nMSDB	:	normalized	Mean	Standard	Deviation	Bias,	 to	 investigate	how	well	

the	O3	variability	is	reproduced	by	the	forecast	
	
Categorical	metrics	used	to	evaluate	the	O3	exceedances	beyond	certain	thresholds	
include	:	



- H	 :	 Hit	 rate,	 to	 quantify	 the	 proportion	 of	 observed	 exceedances	 that	 are	
correctly	detected	

- F	:	False	alarm	rate,	to	quantify	the	proportion	of	observed	non-exceedances	
erroneously	forecast	as	exceedances	

- FB	:	Frequency	Bias,	to	investigate	to	which	extent	the	forecast	is	predicting	
the	 same	 number	 of	 exceedances	 as	 observed	 (no	 matter	 if	 they	 are	
predicted	on	the	correct	days)	

- SR	 :	 Success	 Ratio,	 to	 show	 how	 much	 of	 the	 predicted	 exceedances	 are	
indeed	observed	

- CSI	:	Critical	Success	Index,	to	quantify	the	proportion	of	correctly	predicted	
exceedances	when	discarding	all	the	corrected	rejections	

- PSS	:	Peirce	Skill	Score,	to	investigate	to	which	extent	the	forecast	is	able	to	
separate	exceedances	from	non-exceedances	

- AUC	:	Area	Under	the	ROC	Curve,	to	quantify	the	probability	that	the	forecast	
predicts	 higher	 O3	 concentrations	 during	 a	 situation	 of	 exceedance	
compared	to	a	situation	of	non-exceedance	
	

The	formula	of	these	different	metrics	can	be	found	in	the	Appendix	E.	Each	of	them	
thus	highlights	a	specific	aspect	of	the	performance.	Regarding	categorical	metrics,	
Jolliffe	 et	 al.	 (2011)	 gave	 a	 detailed	 explanation	 of	 the	 different	metric	 properties	
desirable	for	assessing	the	quality	of	a	forecasting	system	(see	Table	3.4	in	Jolliffe	et	
al.	 (2011)).	 In	 this	 framework,	 PSS	 can	 be	 considered	 as	 the	 one	 of	 the	 most	
interesting	 metric	 for	 assessing	 the	 accuracy	 of	 the	 different	 RAW	 and	 MOS-
corrected	 forecasts,	 given	 that	 it	 gathers	 numerous	 valuable	 properties:	 (i)	 truly	
equitable	 (all	 random	 and	 fixed-value	 forecasting	 systems	 are	 awarded	 the	 same	
score,	 which	 provides	 a	 single	 no-skill	 baseline),	 (ii)	 not	 trivial	 to	 hedge	 (the	
forecaster	 cannot	 cheat	 on	 his	 forecast	 in	 order	 to	 increase	 PSS),	 (iii)	 base	 rate	
independent	 (PSS	 only	 depends	 on	 H	 and	 F,	 which	 makes	 it	 invariant	 to	 natural	
variations	 in	 climate,	 which	 is	 particularly	 interesting	 in	 the	 frame	 of	 AQ	 forecast	
where	 AQ	 standards	 and	 subsequently	 the	 base	 rate	 can	 also	 change)	 and	 (v)	
bounded	 (values	 are	 comprised	 within	 a	 fixed	 range).	 It	 is	 worth	 noting	 that	 no	
perfect	 metric	 exists,	 and	 PSS	 (as	 most	 other	 metrics)	 does	 not	 benefit	 from	 the	
properties	of	non-degeneracy	(it	tends	to	meaningless	values	for	rare	events).	
In	 addition,	 results	 are	 also	 discussed	 in	 terms	 of	 skill	 scores,	 using	 the	 1-d	
persistence	 (PERS(1))	 as	 the	 reference	 forecast.	 Skill	 scores	 aim	 at	 measuring	 the	
accuracy	of	a	forecast	relatively	to	the	accuracy	of	a	chosen	reference	forecast	(e.g.	
persistence,	 climatology,	 random	 choice).	 They	 can	 be	 computed	 as	 S(X)=(X-
Xreference)/(Xperfect-Xreference)	with	X	the	score	of	the	forecast,	Xreference	the	score	of	the	
PERS(1)	 reference	 forecast	 and	 Xperfect	 the	 score	 expected	with	 a	 perfect	 forecast.	
Skill	 scores	 indicate	 if	 a	given	 forecast	has	a	perfect	 skill	 (value	of	1),	a	better	 skill	
than	 the	 reference	 forecast	 (value	 between	 0-1),	 an	 equivalent	 skill	 than	 the	
reference	 forecast	 (value	of	 0)	 or	 a	worse	 skill	 than	 the	 reference	 (value	below	0,	
unbounded).	 To	 be	 converted	 into	 skill	 scores,	 the	 aforementioned	 metrics	 of	
interest	 need	 to	 be	 transformed	 into	 scores	 following	 the	 rule	 "the	 higher	 the	
better"	(to	constrain	the	skill	score	to	values	below	1).	For	the	different	metrics	M,	
the	 corresponding	 score	 X(M)	 is	 obtained	 applying	 the	 following	 transformations	 :	
X(M)=-M	 for	 nRMSE	 and	 F	 and	 X(M)	 =	 -|1-M|	 for	 slope;	 no	 transformation	 are	



required	for	the	other	metrics	(H,	SR,	CSI,	PSS	and	AUC).	Note	that,	as	indicated	by	
its	 name,	 PSS	 is	 already	 intrinsically	 defined	 as	 a	 skill	 score	 (where	 the	 reference	
corresponds	 to	 a	 climatology	 or	 random	 choice,	 both	 giving	 PSS	 values	 tending	
toward	0),	but	it	does	not	prevent	it	to	be	converted	into	a	skill	score	related	to	the	
persistence	forecast.		
In	 order	 to	 ensure	 fair	 comparisons	 between	 observations	 and	 all	 the	 different	
forecasts,	 O3	 values	 at	 a	 given	 hour	 are	 discarded	 when	 at	 least	 one	 of	 these	
different	dataset	does	not	have	data.	Over	the	2018-2019	period,	the	resulting	data	
availability	exceeds	94%	whatever	the	time	scale	considered.	Note	that	about	4%	of	
the	data	is	here	missing	due	to	the	aforementioned	minimum	of	30	days	(i.e.	January	
2018)	 of	 accumulated	 historical	 data	 requested	 to	 start	 computing	 the	 corrected	
forecasts	with	some	MOS	methods.”	
	
We	re-organized	the	sections	3.1	and	3.2,	but	first	focusing	on	the	observations	in	a	
section	 entitled	 “Ozone	 pollution	 over	 Iberian	 Peninsula”,	 and	 then	 on	 the	
“Performance	on	continuous	forecasts”	and	“Performance	on	categorical	forecasts”,	
each	of	these	two	last	sections	being	divided	into	a	subsection	“RAW	forecasts”	and	
“MOS-corrected	forecasts”	and	including	a	discussion	on	both	the	evaluation	metrics	
and	their	corresponding	skill	scores	(for	which	a	figure	is	added):	
L266-305	(section	3.2)	is	replaced	by	:	
“3.2	Performance	on	continuous	forecasts		
3.2.1	RAW	forecasts	
Considering	 the	 annual	mean	O3	mixing	 ratios	 at	 all	 456	 stations	 (Fig.	 1),	 the	 raw	
CAMS	 ensemble	 forecast	 represents	 moderately	 well	 the	 spatial	 distribution	 of	
annual	O3	over	 the	 Iberian	Peninsula	 (PCC	of	 0.54	 for	D+1	 forecasts)	 and	 strongly	
underestimates	the	spatial	variability	(nMSDB	of	-42%).	At	least	part	of	these	errors	
are	due	to	the	fact	that	all	station	types	are	taken	into	account	here,	including	traffic	
stations	where	local	road	transport	NOx	emissions	can	strongly	reduce	the	O3	levels	
(titration	by	NO),	which	cannot	be	properly	represented	by	models	at	10	km	spatial	
resolution.	 In	 this	 study,	 all	 station	 types	 are	 included	 because	 we	 are	 ultimately	
interested	in	predicting	O3	exceedances	at	all	locations	where	they	can	be	observed	
(and	thus,	where	air	quality	standards	apply).	 It	 is	worth	noting	 that	 the	 impact	of	
the	MOS	methods	on	 the	different	metrics	might	vary	 from	one	 type	of	 station	 to	
another,	 although	 this	 aspect	 is	 beyond	 the	 scope	 of	 our	 study.	 The	 raw	 CAMS	
ensemble	forecast	correctly	identifies	regions	where	most	exceedances	of	the	target	
threshold	occur	but	often	with	underestimated	frequency,	especially	around	Madrid,	
in	 southern	 Spain	 (in-land	 part	 of	 Andalusia	 region)	 and	 along	 the	Mediterranean	
coast.	 More	 severe	 deficiencies	 are	 found	 with	 the	 information	 threshold	 that	 is	
almost	 never	 reached	 by	 the	 CAMS	 ensemble	 (with	 one	 single	 exception	 around	
Porto).		
	
The	overall	statistical	results	are	shown	in	Fig.	3	for	the	different	forecast	methods,	
and	a	subset	of	these	statistics	is	given	in	Table	1	(and	in	Table	S1	in	the	Supplement	
for	 additional	 time	 scales).	 For	 a	 given	 lead	day	 and	 time	 scale,	 statistics	 are	here	
computed	after	aggregating	data	from	all	monitoring	stations;	therefore,	statistics	of	
D+1	 O3	 forecasts	 at	 hourly	 scale	 can	 be	 based	 on	 730	 d	 x	 24	 h	 x	 455	 stations	 =	
7,971,600	 points	 if	 there	 are	 no	 data	 gaps.	 The	 RAW	 forecast	 overestimates	



moderately	 the	 O3	 mixing	 ratios,	 especially	 at	 hourly	 and	 daily	 time	 scales,	 but	
shows	 a	 reasonable	 correlation	 at	 all	 time	 scales	 (above	 0.75).	 However,	 its	main	
deficiency	 lies	 in	 the	 underestimated	 variability	 (nMSDB	 around	 -30%),	 which	 is	
reflected	 in	 the	 low	 model-versus-observation	 linear	 slope	 obtained	 (around	 0.5-
0.6).	The	deterioration	of	the	performance	of	the	raw	CAMS	forecasts	with	lead	time	
is	 very	 low,	 with	 hourly-scale	 nRMSE/PCC	 decreasing	 from	 38%/0.75	 at	 D+1	 to	
39%/0.72	at	D+4,	potentially	due	to	their	relatively	coarse	spatial	resolution.	
	
As	 expected	 (by	 construction),	 the	 PERS(1)	 reference	 forecast	 gives	 unbiased	 O3	
forecasts.	 Due	 to	 the	 temporal	 auto-correlation	 of	 O3	 concentrations,	 reasonable	
results	 are	 obtained	 at	 D+1	 (nRMSE/PCC/slope	 of	 36%/0.74/0.74)	 but	 quickly	
deteriorate	 with	 the	 lead	 time	 (down	 to	 42%/0.65/0.64	 at	 D+4).	 A	 subset	 of	 skill	
scores	 with	 PERS(1)	 as	 reference	 is	 shown	 in	 Fig.	 4.	 Apart	 from	 the	 slope	 that	 is	
always	better	 reproduced	by	PERS(1),	 the	RAW	forecast	 reaches	better	 skill	 scores	
than	PERS(1)	on	both	the	nRMSE	and	PCC	but	only	beyond	D+1	(with	values	typically	
ranging	 between	 0-0.2),	 and	 not	 at	 all	 time	 scales	 (for	 instance,	 PERS(1)	
systematically	shows	better	RMSE	than	RAW	at	daily	scale).	
	
3.2.2	MOS-corrected	forecasts	
The	MA(1)	method	 removes	most	of	 the	bias	of	O3	concentrations	and	variability.	
Some	residual	biases	appear	when	computing	the	daily	1-h	maximum	from	the	MOS-
corrected	 hourly	 O3	 concentrations	 (i.e.	 d1max	 scale),	 but	 can	 be	 removed	 by	
applying	the	MA(1)	method	directly	at	this	time	scale	(i.e.	dd1max	scale).	The	MA(1)	
method	substantially	improves	the	other	metrics	for	all	lead	days,	with	hourly-scale	
nRMSE/PCC/slope	 of	 31%/0.81/0.82	 at	 D+1	 and	 36%/0.74/0.75	 at	 D+4.	 Thus,	 the	
performance	still	deteriorates	with	 lead	time,	but	slight	 less	dramatically	than	with	
PERS(1).	In	terms	of	skill	scores,	such	a	simple	approach	as	MA(1)	is	found	to	strongly	
improve	the	skills	initially	obtained	with	RAW	alone,	whatever	the	time	scale	or	lead	
time.	Skills	scores	range	between	0.1-0.3	for	nRMSE	and	0.3-0.4	for	PCC	and	slope,	
with	slightly	higher	values	at	daily	and	d8max	scales.	The	variations	of	skill	along	lead	
time	differ	between	nRMSE/PCC	(lowest	and	highest	skills	typically	obtained	at	D+1	
and	D+2/D+3/D+4,	respectively)	and	slope	(skills	tend	to	progressively	decrease	from	
D+1	to	D+4,	although	slightly).	
	
The	QM	method	shows	quite	similar	results	than	the	MA(1)	method,	but	usually	with	
worse	(better)	performance	at	short	(long)	lead	time.	Thus,	the	deterioration	of	the	
performance	with	lead	time	tends	to	be	slower	in	QM	than	in	MA(1).	Biases	on	O3	
concentrations	 and	 O3	 variability	 are	 often	 slightly	 higher	 with	 QM	 but	 remain	
relatively	low	(below	±5%).	The	strongest	improvements	of	QM	compared	to	MA(1)	
are	 found	at	hourly	 scale	 for	 longest	 lead	 times.	On	 these	continuous	metrics,	 the	
skills	of	the	QM	method	are	only	slightly	positive	or	even	negative	at	D+1	(except	at	
hourly	 scale	where	 skill	 scores	 are	 always	 positive)	 but	 are	much	 higher	 between	
D+2	and	D+4,	and	often	slightly	better	than	MA(1).	
	
Compared	 to	 the	 previous	 MOS	 methods,	 the	 KF	 method	 provides	 a	 substantial	
improvement	on	both	nRMSE	and	PCC,	leading	to	skill	scores	of	0.3-0.4	and	0.4-0.6,	
respectively.	However,	this	comes	at	the	cost	of	an	underestimation	of	the	variability	



(nMSDB	around	-10%,	still	much	better	than	the	-30%	of	nMSDB	found	in	RAW).	As	
for	the	previous	methods,	some	small	biases	appear	at	d1max	scale	and	to	a	lesser	
extent	at	d8max	scale	but	applying	this	MOS	method	directly	on	d1max	or	d8max	O3	
mixing	ratios	rather	than	hourly	data	(i.e.	dd1max	and	dd8max	scales)	mitigates	the	
issue.	
	
Overall,	 comparable	 results	 are	 found	 with	 AN	 and	 GBM	 methods,	 but	 the	
aforementioned	issues	are	typically	exacerbated.	The	negative	biases	at	d1max	and	
d8max	 time	 scales	 are	 much	 higher,	 especially	 for	 GBM,	 but	 can	 be	 removed	 at	
dd1max	and	dd8max	scales.	Similarly,	the	underestimation	of	the	variability	is	much	
more	 pronounced,	 with	 nMSDB	 values	 around	 -15%	 and	 -10%	 for	 AN	 and	 GBM,	
respectively.	These	two	MOS	methods	thus	show	a	good	performance	for	predicting	
the	central	part	of	 the	distribution	of	O3	mixing	 ratios,	but	have	more	difficulty	 in	
capturing	 the	 lowest	 and	 highest	 O3	 concentrations	 observed	 on	 the	 tails	 of	 this	
distribution.	 Besides	 the	 negative	 nMSDB,	 this	 typically	 leads	 to	 lower	 slopes	
compared	 to	 the	other	MOS	methods.	Skill	 scores	on	nRMSE	and	PCC	span	over	a	
relatively	large	range	of	values	depending	on	the	time	scale	and	the	lead	time.	They	
are	typically	the	lowest	at	short	lead	times	and/or	at	specific	time	scales	(e.g.	d1max)	
but	 can	 reach	 among	 the	 highest	 values	 (although	 slightly	 lower	 than	 KF),	 for	
instance	with	GBM,	at	hourly	and	daily	scale	at	D+2/D+3/D+4.	Concerning	the	slope,	
the	aforementioned	issues	are	here	illustrated	by	the	typically	low	skills	of	both	AN	
and	 (to	 a	 slightly	 lesser	 extent)	 GBM	methods,	 often	 worse	 than	 the	 other	 MOS	
methods.	
	
Therefore,	on	this	set	of	continuous	metrics,	the	impact	of	the	MOS	corrections	on	
the	performance	strongly	varies	with	 the	method	considered.	Among	 the	different	
MOS	methods,	KF	seems	to	give	the	most	balanced	improvement	with	biases	mostly	
removed,	 errors	 and	 correlation	 substantially	 improved	 and	 variability	 not	 too	
strongly	underestimated.	However,	it	is	worth	noting	that	since	some	MOS	methods	
(namely	QM,	AN	and	GBM)	can	 ingest	 increasing	amounts	of	 input	data	over	time,	
we	can	expected	their	performance	to	change	(increase)	between	the	beginning	of	
the	period	when	very	 limited	past	data	 information	 is	available	and	the	end	of	the	
period	when	more	past	data	have	been	accumulated.	Investigating	this	aspect	would	
ideally	require	a	proper	analysis,	comparing	the	performance	obtained	over	a	given	
period	 using	 variable	 amount	 of	 past	 input	 data.	 Here,	 we	 simply	 provide	 some	
insights	by	comparing	the	relative	difference	of	performance	of	these	MOS	methods	
against	RAW,	(1)	when	evaluated	over	the	entire	2018-2019	period	(i.e.	including	the	
beginning	of	 the	period	of	study	when	MOS	methods	can	only	rely	on	 limited	past	
data),	 and	 (2)	when	 evaluated	 only	 over	 the	 year	 2019	 (i.e.	when	 the	 first	 year	 is	
discarded).	In	the	first	case	(evaluation	over	2018-2019),	the	QM,	AN	and	GBM	show	
nRMSE	31,	41	and	44%	lower	than	RAW,	respectively.	In	the	second	case	(evaluation	
over	 2019),	 these	 MOS	 methods	 give	 nRMSE	 33,	 44	 and	 49%	 lower	 than	 RAW.	
Therefore,	 this	 basic	 comparison	 suggests	 that	 these	 MOS	 methods	 can	 indeed	
benefit	 from	 a	 larger	 amount	 of	 past	 data.	 Here,	 the	 change	 is	more	 pronounced	
more	GBM,	which	 suggests	 that	 this	MOS	method	 is	 the	 one	 benefiting	 the	most	
from	 more	 past	 training	 data.	 For	 GBM,	 this	 improvement	 is	 mainly	 due	 to	 the	



relatively	 poor	 predictions	 made	 during	 the	 very	 first	 months	 of	 2018	 when	 the	
training	dataset	was	the	most	limited	(see	time	series	in	Fig.	F1	in	Appendix	F).	
	
3.3	Performance	on	categorical	forecasts		
3.3.1	RAW	forecasts	
Focusing	now	on	the	performance	for	detecting	target	and	 information	thresholds,	
Fig.	3	(middle	and	bottom	panels)	shows	a	comprehensive	set	of	metrics,	where	the	
most	interesting	ones	are	probably	CSI	and	PSS,	followed	by	SR	and	AUC.	
	
The	RAW	forecast	shows	low	H	and	F	(very	few	true	positives	and	false	negatives).	
With	an	intermediate	SR	(0.45,	 i.e.	only	45%	of	the	exceedances	predicted	by	RAW	
indeed	 occur),	 it	 can	 be	 seen	 as	 a	 moderately	 "conservative"	 forecast	 for	 target	
thresholds	 (d8max	 O3	 above	 60	 ppbv);	 the	 term	 "conservative"	 here	 refers	 to	
forecasting	 systems	 that	 predict	 exceedances	 only	 with	 strong	 evidence	 (it	 thus	
predicts	very	few	exceedances	but	with	a	moderate	confidence).	Despite	showing	a	
reasonably	good	AUC,	the	RAW	forecast	strongly	fails	at	reproducing	high	O3	mixing	
ratios,	as	illustrated	by	the	low	FB	(0.25,	i.e.	RAW	predicts	4	times	less	exceedances	
than	 the	 observations),	 and	 finally	 shows	 the	 worst	 performance	 in	 terms	 of	 CSI	
(0.10)	or	PSS	 (0.15).	 In	 comparison,	 the	PERS(1)	 reference	 forecast	provides	better	
detection	skills	regarding	target	thresholds.	This	is	especially	true	at	short	lead	days,	
but	 the	 performance	 then	 quickly	 decreases	 with	 the	 lead	 time,	 with	 CSI/PSS	
reduced	 from	 about	 0.27/0.42	 at	 D+1	 to	 about	 0.14/0.23	 at	 D+4.	 Except	 FB,	 all	
categorical	metrics	show	a	similarly	strong	sensitivity	to	the	lead	time.	With	PERS(1)	
taken	 as	 a	 reference,	 the	 skill	 scores	 of	 RAW	 clearly	 show	 negative	 and	 positive	
values	for	H	and	F,	respectively	 (i.e.	 it	predicts	 less	true	exceedances	but	produces	
less	false	alarms).	The	consequence	in	terms	of	SR	skills	is	positive	but	only	beyond	
D+1.	With	positive	skills	on	AUC,	RAW	is	able	to	discriminate	exceedances	and	non-
exceedances	slightly	better	than	PERS(1),	but	only	beyond	D+2.	However,	its	skills	on	
the	 important	 CSI	 and	 PSS	 metrics	 are	 strongly	 negative	 at	 all	 lead	 times,	 which	
highlights	its	overall	deficiency	for	predicting	correctly	the	exceedances	of	the	target	
threshold	(i.e.	without	too	many	false	alarms).		
	
Exceedances	of	 the	 information	threshold	 (d1max	O3	above	90	ppbv)	appear	even	
more	difficult	to	capture	for	the	RAW	forecast	with	CSI	and	PSS	typically	below	0.02.	
However,	 given	 that	 it	 is	 also	 more	 difficult	 for	 PERS(1)	 to	 capture	 these	
exceedances,	 the	 skills	 of	 RAW	 on	 these	 two	 metrics	 are	 substantially	 better	
(although	 still	 negative)	 on	 this	 information	 threshold	 compared	 to	 the	 target	
threshold.	 Results	 also	 show	much	 better	 SR,	 especially	 at	 longest	 lead	 times	 (i.e.	
most	 of	 the	 predicted	 exceedances	 indeed	 occur),	 but	 this	 apparently	 good	 result	
has	 to	 be	 put	 in	 front	 of	 the	 extremely	 low	 H	 (i.e.	 RAW	 almost	 never	 predict	
exceedances).	
	
3.3.2	MOS-corrected	forecasts	
Although	 the	RAW	 forecast	 alone	 shows	quite	 limited	 skills	 for	 predicting	 high	O3	
exceedances,	 its	 potential	 usefulness	 is	 nicely	 illustrated	 by	 the	 results	 obtained	
when	 it	 is	 combined	with	observations,	 such	as	 in	MA(1),	QM	or	KF(RMSE).	When	
considering	 the	 target	 threshold	 exceedances,	 CSI	 and	 PSS	 are	 indeed	 greatly	



improved	with	 these	 last	MOS	methods,	 and	 to	 a	 lesser	 extent	 by	 the	 two	 other	
methods,	AN(10)	and	GBM.	KF(RMSE),	AN(10)	and	GBM	clearly	appear	as	the	most	
"conservative"	MOS	approaches	here,	with	relatively	low	H	and	F,	but	strong	SR.	In	
other	terms,	they	predict	fewer	exceedances	but	with	a	higher	reliability.	In	terms	of	
skill	 scores,	 all	 these	MOS-corrected	 forecasts	 always	have	better	 skills	 than	RAW.	
However,	 only	MA(1)	 always	beats	PERS(1)	 at	 all	 lead	 times,	while	 the	other	MOS	
methods	 provide	 positive	 skills	 only	 beyond	 D+1/D+2.	 This	 MA(1)	 method	 thus	
clearly	outperforms	the	other	methods	at	D+1,	while	differences	of	performance	are	
reduced	 when	 considering	 longer	 lead	 times.	 At	 longer	 lead	 times,	 the	 ranking	
between	 these	 different	 MOS	 methods	 varies	 substantially	 depending	 on	 the	
considered	metric,	with	MA(1),	KF(RMSE)	and	GBM	showing	best	 skills	on	CSI,	and	
MA(1)	and	QM	showing	best	skills	on	PSS.	
	
However,	 when	 considering	 the	 detection	 of	 the	 information	 threshold,	 the	
KF(RMSE),	AN(10)	and	GBM	methods	still	benefit	 from	a	strong	SR	but	are	missing	
too	many	of	the	observed	exceedances,	which	 leads	to	a	dramatic	deterioration	of	
both	 CSI	 and	 PSS.	 As	 for	 RAW,	 this	 means	 that	 there	 is	 a	 high	 change	 that	 an	
exceedance	 predicted	 by	 these	methods	 indeed	 occurs	 but	 such	 exceedances	 are	
too	rarely	predicted.	Most	of	their	skill	scores	on	PSI	are	found	to	be	negative,	while	
only	a	few	positive	skills	are	obtained	on	CSI	for	specific	time	scales	in	KF	and	GBM	
methods.	 For	 detecting	 such	 high	 O3	 values,	 best	 methods	 are	 finally	 MA(1)	 for	
shortest	lead	times.	At	longer	lead	times,	the	skills	of	MA(1)	quickly	deteriorate	and	
best	 skills	 are	 finally	 obtained	 for	 QM.	 Both	 methods	 reproduce	 fairly	 well	 the	
geographical	 distribution	 of	 high	 O3	 episodes	 (PERS(1)	 reproduces	 it	 perfectly,	 by	
construction),	 as	 shown	 in	 Fig.	 5,	 but	 still	 with	 very	 low	 SR	 (below	 0.25	 for	
exceedances	of	the	information	threshold).”	
	
The	AQ	observations	 are	 used	without	 discrimination	 of	 the	 representativeness	 for	
the	 scale	 of	model	 grid	 boxes	 of	 the	 regional	 ensemble	 (10km).	One	would	 expect	
that	some	stations	(i.e.	rural,	urban)	are	more	representative	than	others	(i.e.	traffic).	
It	 is	a	missed	opportunity	of	the	paper	to	discuss	the	amount	of	correction	by	MOS	
for	the	different	air	quality	observations	stations	based	on	the	station	type.	
Indeed,	such	relatively	coarse	spatial	resolution	does	not	allow	to	properly	represent	
the	pollutant	 concentrations	observed	at	 stations	 close	 to	 strong	emission	 sources	
(e.g.	urban	traffic,	 industrial),	as	already	mentioned	in	the	text	(L257	:	“Part	of	this	
positive	nMB	and	negative	nMSDB	is	expected	since	this	broad	comparison	includes	
all	station	types,	including	traffic	stations	where	local	road	transport	NOx	emissions	
can	strongly	reduce	the	O3	levels	(titration	by	NO),	which	cannot	be	fully	represented	
by	 models	 at	 10	 km	 spatial	 resolution.”).	 In	 this	 study,	 we	 chose	 to	 consider	 all	
stations	 because	we	 are	 ultimately	 interested	 in	 predicting	 O3	 exceedances	 at	 all	
locations	where	observations	are	available	and	therefore	where	air	quality	standards	
apply.	Given	 the	numerous	aspects	already	 covered,	we	consider	 that	 it	 is	beyond	
the	scope	of	this	study	to	explore	in	more	detail	the	impact	of	the	station	types.	We	
added	a	brief	comment	:		
L260	 :	 “In	 this	 study,	 all	 station	 types	 are	 included	 because	 we	 are	 ultimately	
interested	in	predicting	O3	exceedances	at	all	locations	where	they	can	be	observed	
(and	thus,	where	the	air	quality	standards	apply).	It	is	worth	noting	that	the	impact	



of	 the	MOS	methods	on	 the	different	skills	might	vary	 from	one	 type	of	 station	 to	
another,	although	this	aspect	is	beyond	the	scope	of	our	study.”	
	
The	 assumption	 about	 an	 operational	 scenario	 (observations	 become	 gradually	
available	 after	 the	 start	 of	 the	 application	 on	 1.1.2018)	 is	 in	 principle	 a	 welcome	
approach	but	several	questions	remain.	It	is	unclear	how	different	spin-up	times	(i.e.	
the	 time	 until	 further	 improvements	 by	 adding	 more	 previous	 data	 become	 very	
small)	 of	 the	 methods,	 which	 should	 also	 be	 stated	 more	 clearly,	 are	 taken	 into	
account	in	the	evaluation.	Second,	it	remains	unclear	what	happens	in	the	case,	that	
observations	 are	 not	 available	 in	 near-real-time	 to	 be	 fed	 in	 to	 the	MOS	 scheme.	
Consequently	,it	 is	more	important	from	an	operational	point	of	view	to	apply	MOS	
approaches	for	the	case	that	observations	are	always	available	 in	NRT	or	that	they	
are	 not,	which	means	 that	 these	MOS	approaches	 could	 only	 be	 trained	with	 past	
data.	 The	 latter	 is	 a	 typical	 cross-validation	 approach,	which	 uses	 one	 data	 set	 to	
train	 and	 the	 other	 to	 evaluate	 the	MOS.	 The	 impact	 of	missing	 data	 needs	 to	 be	
discussed	in	more	detail.	
Again,	the	reviewer	is	raising	here	interesting	questions	but	the	application	of	MOS	
methods	to	operational	air	quality	forecasts	is	a	vast	topic	of	research	and	we	do	not	
claim	in	this	first	study	to	cover	all	its	relevant	aspects.	To	our	opinion,	regarding	the	
application	of	MOS	methods	to	air	quality	forecasts,	this	work	already	goes	beyond	
most	of	the	other	studies	available	in	the	literature,	and	therefore	we	consider	the	
points	 raised	 by	 the	 reviewer	 as	 important	 aspects	 but	 beyond	 the	 scope	 of	 the	
present	 study.	 Nonetheless,	 according	 to	 the	 reviewer	 comments	 we	 discussed	
these	different	points	in	the	revised	version	:		
L124	:	“We	note,	however,	that	methods	relying	on	 limited	past	data	may	respond	
better	to	an	abrupt	change	in	environmental	conditions,	as	experienced	for	instance	
during	 the	 COVID-19	 lockdowns.	 Although	 not	 covered	 by	 the	 present	 study,	 we	
acknowledge	 here	 that	 in	 an	 operational	 context,	 the	 relationship	 between	 the	
length	 of	 past	 training	 data	 and	 the	 performance	 of	 the	 corresponding	 MOS	
prediction	is	an	interesting	aspect	to	investigate,	as	is	the	quantification	of	the	spin-
up	time	beyond	which	the	MOS	method	might	not	significantly	improve.	Only	some	
insights	 will	 be	 given	 by	 comparing	 the	 performance	 obtained	 in	 2019	 with	 and	
without	using	 the	data	available	 in	2018.	Similarly,	our	study	does	not	 investigates	
how	 potential	 issues	 (delays)	 in	 the	 near-real	 time	 availability	 of	 the	 observations	
can	 impact	 the	performance	of	 the	MOS	methods,	although	 this	might	be	another	
important	aspect	to	take	 into	account	 in	operational	conditions;	 to	the	best	of	our	
knowledge,	EEA	observations	are	typically	available	with	a	2-h	lag	but	some	sporadic	
technical	failures	can	induce	extended	delays.”	
	
It	 does	 not	 make	 sense	 to	 use	 ER5	 as	 a	 reference	 meteorological	 data	 set	 with	
respect	to	the	HRES	NWP	forecast	in	this	application.		The	HRES	(IFS)	forecast	(9km)	
should	 be	 compared	 against	 HRES	 analysis	 that	 were	 the	 initial	 conditions	 of	 the	
forecast	(step=0)		(Both	HRES	and	ER5	are	produced	with	the	IFS)	
We	 thank	 the	 reviewer	 for	 clarifying	 this	 point.	 However,	 to	 the	 best	 of	 our	
knowledge,	only	a	limited	subset	of	the	meteorological	variables	used	in	this	paper	
are	available	in	the	HRES	analysis,	which	thus	prevents	a	fully	consistent	comparison	
between	 the	 two	 meteorological	 products	 (HRES	 forecast	 and	 analysis).	



Nonetheless,	 in	 order	 to	 avoid	 the	 confusion	 existing	 in	 the	 first	 version	 of	 the	
manuscript,	 we	modified	 the	 corresponding	 sections	 by	 presenting	 this	 test	 HRES	
versus	ERA5	as	a	simple	sensitivity	test	on	the	meteorological	input	data	:		
L99	:	“2.1.3	IFS	and	ERA5	meteorological	data	
Some	MOS	methods	rely	on	meteorological	data.	In	this	study,	meteorological	data	
are	taken	from	the	European	Centre	for	Medium-Range	Weather	Forecasts	(ECMWF)	
Integrated	 Forecast	 System	 (IFS)	 (Flemming	 et	 al.,	 2015).	 IFS	 has	 a	 native	 spatial	
resolution	of	about	9	km	and	137	vertical	levels.	In	addition,	to	investigate	to	which	
extent	the	quality	of	the	meteorological	input	data	impacts	the	performance	of	the	
meteorology-dependent	MOS	methods	(Sect.	3.5),	we	replicated	all	our	experiments	
with	 the	ERA5	 reanalysis	dataset	 (Copernicus	Climate	Change	Service	 (C3S),	 2017).	
ERA5	data	have	a	native	 spatial	 resolution	of	 about	31	km	and	137	vertical	 levels,	
although	 data	 were	 downloaded	 on	 a	 0.25°x0.25°	 regular	 longitude-latitude	 grid	
from	 the	 Climate	 Data	 Store.	 Although	 reanalysis	 meteorological	 data	 would	
obviously	not	be	available	in	an	operational	context,	testing	the	MOS	methods	with	
this	reference	dataset	allows	to	estimate	the	upper	range	of	performance	that	could	
be	expected.	
At	 all	 surface	 O3	 monitoring	 stations,	 for	 both	 IFS	 and	 ERA5,	 we	 extracted	 the	
following	 variables	 at	 the	hourly	 scale:	 2-m	 temperature	 (code	167),	 10-m	 surface	
wind	 speed	 (207),	 normalized	 10-m	 zonal	 and	 meridian	 wind	 speed	 components	
(165	 and	 166),	 surface	 pressure	 (134),	 total	 cloud	 cover	 (164),	 surface	 net	 solar	
radiation	(176),	surface	solar	radiation	downwards	(169),	downward	UV	radiation	at	
the	surface	(57),	boundary	layer	height	(159),	and	geopotential	at	500	hPa	(129).”		
!	“2.1.3	HRES	and	ERA5	meteorological	data	
Some	MOS	methods	rely	on	meteorological	data.	In	this	study,	meteorological	data	
are	 taken	 from	 the	 Atmospheric	 Model	 high	 resolution	 10-days	 forecast	 (HRES)	
(https://www.ecmwf.int/en/forecasts/datasets/set-i)	 provided	 by	 the	 European	
Centre	 for	Medium-Range	Weather	 Forecasts	 (ECMWF).	 HRES	 has	 a	 native	 spatial	
resolution	 of	 about	 9	 km	 and	 137	 vertical	 levels.	 In	 addition,	 to	 investigate	 the	
sensitivity	to	the	meteorological	 input	data,	we	replicated	all	our	experiments	with	
the	 ERA5	 reanalysis	 dataset	 (Copernicus	 Climate	 Change	 Service	 (C3S),	 2017)	
(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5).	ERA5	data	
have	a	native	spatial	resolution	of	about	31	km	and	137	vertical	levels,	although	data	
were	downloaded	on	a	0.25°x0.25°	regular	longitude-latitude	grid	from	the	Climate	
Data	 Store.	 At	 all	 surface	 O3	 monitoring	 stations,	 for	 both	 HRES	 and	 ERA5,	 we	
extracted	 the	 following	variables	at	 the	hourly	 scale:	2-m	 temperature	 (code	167),	
10-m	 surface	 wind	 speed	 (207),	 normalized	 10-m	 zonal	 and	meridian	 wind	 speed	
components	(165	and	166),	surface	pressure	(134),	total	cloud	cover	(164),	surface	
net	 solar	 radiation	 (176),	 surface	 solar	 radiation	 downwards	 (169),	 downward	 UV	
radiation	at	 the	surface	 (57),	boundary	 layer	height	 (159),	and	geopotential	at	500	
hPa	(129).”	
And	we	substantially	reduced	the	size	of	section	3.5	and	included	it	as	a	subsection	
in	section	3.4	(i.e.	as	an	additional	sensitivity	tests)	:	
“3.4.6	Influence	of	the	meteorological	input	data	in	AN	and	GBM	methods		
In	 the	previous	 sections,	O3	corrections	with	AN	and	GBM	methods	 relied	on	HRES	
meteorological	 forecasts.	 Here,	 we	 investigate	 the	 impact	 of	 using	 an	 alternative	
meteorological	 data,	 namely	 the	 ERA5	meteorological	 reanalysis.	 For	 both	AN	and	



GBM	 methods,	 the	 MOS-corrected	 O3	 mixing	 ratios	 obtained	 with	 these	 two	
meteorological	dataset	are	 very	 similar,	with	PCC	above	0.95.	The	 results	obtained	
against	observations	are	 shown	 in	Fig.	G6	 in	 the	Appendix	G,	 for	 the	AN(1),	AN(5),	
AN(10)	and	GBM	methods.	Since	O3	predictions	are	close,	the	statistical	performance	
against	observations	 is	also	 very	 consistent	between	both	meteorological	datasets.	
For	 both	 continuous	 and	 categorical	metrics,	 the	 performance	 obtained	with	HRES	
data	 is	 found	 to	 be	 slightly	 lower	 than	 with	 ERA5.	 Discrepancies	 between	 both	
meteorological	 dataset	 tend	 to	 increase	 with	 lead	 time,	 with	 GBM	 being	 slightly	
more	sensitive	to	the	meteorological	input	data	than	AN.	
Therefore,	this	experiment	highlights	a	relatively	low	sensitivity	of	both	AN	and	GBM	
methods	 to	 the	 two	 meteorological	 datasets	 tested	 here.	 The	 very	 similar	 results	
obtained	with	IFS	and	ERA5	meteorological	input	data	are	likely	not	explained	by	the	
fact	 that	 both	 datasets	 give	 very	 similar	 values	 for	 the	 different	 meteorological	
variables,	 but	 rather	by	 the	 intrinsic	 characteristics	of	 both	AN	and	GBM	methods.	
The	AN	method	make	use	of	the	meteorological	data	only	to	identify	past	days	with	
more	or	 less	similar	meteorological	conditions,	and	can	thus	handle	to	some	extent	
the	presence	of	biases	in	meteorological	variables	as	far	as	they	are	systematic	(and	
thus	 do	 not	 impact	 the	 identification	 of	 the	 analogs).	 On	 the	 other	 side,	 the	GBM	
method	uses	past	information	to	learn	the	complex	relationship	between	O3	mixing	
ratios	and	the	other	ancillary	features.	Although	the	better	the	input	data,	the	higher	
the	chances	are	 to	 fit	a	 reliable	model	 for	predicting	O3,	 the	GBM	models	can	also	
learn	 indirectly	 at	 least	 part	 of	 the	 potential	 errors	 affecting	 some	meteorological	
variables	and	how	they	relate	to	O3	mixing	ratios.	Therefore,	the	presence	of	biases	
in	some	of	the	ancillary	features	is	not	expected	to	strongly	impact	the	performance	
of	the	predictions.”	
We	also	modified	the	abstract	:	
L13	 :	 “When	 considering	MOS	methods	 relying	on	meteorological	 information	and	
comparing	the	results	obtained	with	 IFS	forecasts	and	ERA5	reanalysis,	 the	relative	
deterioration	brought	by	the	use	of	IFS	is	minor,	which	paves	the	way	for	their	use	in	
operational	 MOS	 applications.”	!	 “The	 MOS	 methods	 relying	 on	 meteorological	
data	 were	 found	 to	 provide	 relatively	 similar	 performance	 with	 two	 different	
meteorological	inputs.”	
	
The	 graphical	 representation	 (Figures)	 needs	 to	 be	 improved.	 Choice	 of	 the	 colour	
range	 in	maps	and	 choice	of	 colour	 in	 time	 series	 plot	make	 it	 often	 impossible	 to	
discern	the	different	data	sets.	Various	aspects	of	Fig	3	remain	unexplained.	
Regarding	the	maps	(Figs.	1	and	4	in	the	first	version),	the	color	range	corresponds	to	
the	 range	 of	 values	 obtained	 at	 the	 different	 stations	 (for	 both	 OBS	 and	 RAW,	 in	
order	 to	 allow	 a	 direct	 comparison).	 We	 suspect	 that	 the	 reviewer’s	 comment	 is	
more	directly	related	to	the	bottom	panels	(about	exceedances	of	d1max	above	90	
ppbv)	in	which	the	color	bar	values	range	between	0	and	20	while	most	of	the	points	
shown	 on	 the	 corresponding	maps	 are	 purple/blue.	 The	 reason	 is	 that	 some	 high	
values	were	hidden	behind	other	overlapping	points.	We	modified	the	plot	to	make	
it	easier	to	read,	and	updated	accordingly	the	 legend	by	adding	 :	“In	order	to	 limit	
the	overlap,	stations	are	here	plotted	by	decreasing	value	and	with	decreasing	size	
(lowest	values	with	largest	symbols	but	in	background,	highest	values	with	smallest	
symbols	but	in	foreground).”.	We	also	modified	the	color	of	the	time	series	(Fig.	2	in	



the	 first	version)	 to	make	easier	 to	read.	Regarding	Fig.	3,	we	greatly	modified	the	
discussion	in	the	revised	version.	
	
Please	summarise	the	result	of	3.2,	3.3	and	3.4	in	tables.	That	will	shorten	the	paper	
and	make	it	possible	to	compare	the	different	results	more	easily.	
We	 included	 in	 the	 Supplement	 several	 tables	 to	 show	 a	 subset	 of	 the	 evaluation	
results	on	continuous	and	categorical	metrics	for	all	these	sensitivity	tests.	We	also	
modified	the	corresponding	figures	in	the	Appendix	so	that	to	be	consistent	with	the	
new	 version	 of	 Fig.	 3	 (fewer	metrics).	 As	 described	 in	 another	 answer,	we	 greatly	
shortened	the	discussion	on	the	sensitivity	tests	(section	3.4).	
	
Some	specific	comments:	
Abstract:	 Please	 quantify	 the	 achieved	 improvements	 by	MOS	 to	 replace	 or	 justify	
phrases	such	“can	be	substantially	improved”	
We	added	information	on	the	improvement	in	terms	of	RMSE	and	PCC	:	
L11	:	“Our	results	show	that	O3	forecasts	can	be	substantially	 improved	using	such	
MOS	corrections	and	that	this	improvement	goes	much	beyond	the	correction	of	the	
systematic	 bias.	 Although	 it	 typically	 affects	 all	 lead	 times,	 some	 MOS	 methods	
appear	more	adversely	impacted	by	the	lead	time.	When	considering	MOS	methods	
relying	on	meteorological	 information	and	comparing	 the	results	obtained	with	 IFS	
forecasts	and	ERA5	reanalysis,	the	relative	deterioration	brought	by	the	use	of	IFS	is	
minor,	which	paves	the	way	for	their	use	in	operational	MOS	applications.	”	!	“Our	
results	 show	 that	 O3	 forecasts	 can	 be	 substantially	 improved	 using	 such	 MOS	
corrections	and	that	improvements	go	well	beyond	the	correction	of	the	systematic	
bias.	Depending	on	the	time	scale	and	lead	time,	root	mean	square	errors	decreased	
from	20-40%	to	10-30%,	while	Pearson	Correlation	coefficients	 increased	from	0.7-
0.8	to	0.8-0.9.	Although	the	improvement	typically	affects	all	lead	times,	some	MOS	
methods	 appear	 more	 adversely	 impacted	 by	 the	 lead	 time.	 The	 MOS	 methods	
relying	on	meteorological	data	were	found	to	provide	relatively	similar	performance	
with	two	different	meteorological	inputs.”	
	
L67-71	A	summary	of	the	results	of	the	paper	is	not	required	in	the	introduction	
We	removed	these	lines.	
	
L	98	mention	forecast	start	time	
We	modified	the	sentence	L97	 :	“The	CAMS	regional	 forecasts	are	provided	over	4	
lead	days,	hereafter	referred	to	as	D+1,	D+2,	D+3	and	D+4	(starting	at	0	UTC).”	
	
L	101	Flemming	et	al.	 2015	 is	not	a	 reference	 for	 the	operational	NWP	 forecast	of	
ECMWF	
We	 replaced	 this	 reference	 by	 the	 following	 link	 :	
https://www.ecmwf.int/en/forecasts/datasets/set-i	
	
L	120	Please	consider	the	general	comment	about	NRT	availability	of	observations	
As	 far	 as	we	 know,	 EEA	 observations	 are	 usually	 available	with	 a	 2-hours	 lag.	We	
included	this	information,	as	described	in	a	previous	answer.	
	



L	Please	clarify,	if	model	output	is	required	for	the	PERS	and	MA	approach.	Please	use	
the	model	independent	methods	as	reference	(see	general	comments)		and	not	as	an	
other	MOS	variant.	
The	 persistence	 (PERS)	 approach	 only	 depends	 on	 observations,	 and	 is	 now	
considered	 apart	 from	 the	 MOS	 methods	 (and	 used	 as	 a	 reference	 forecast	 for	
computing	skill	scores).	The	moving	average	(MA)	method	is	a	MOS	method	where	
the	raw	CAMS	predictions	are	used	together	with	the	observations	:	the	raw	forecast	
on	 a	 given	 day	 is	 corrected	 by	 the	 mean	 difference	 between	 raw	 and	 observed	
concentrations	one	or	several	days	before.	The	modifications	of	this	part	of	the	text	
are	 described	 in	 another	 answer	 (related	 to	 the	 reviewer’s	 comment	 on	 the	
persistence	method).	
	
L	 145	 Can	 the	 choice	 of	 the	 length	 of	 the	 adjustment	 period	 (30	 days)	 be	
substantiated	?		
The	choice	of	30	days	is	arbitrary	and	motivated	only	by	computational	reasons,	we	
extended	the	discussion	related	to	this	aspect	:		
L146	:	“For	computational	reasons,	both	CDFs	are	updated	every	30	days	(although	
an	 update	 frequency	 of	 one	 single	 day	 would	 be	 optimal	 in	 a	 real	 operational	
context).”	!	 “For	 computational	 reasons,	 both	 CDFs	 are	 updated	 every	 30	 days	
(although	 an	 update	 frequency	 of	 one	 single	 day	 would	 be	 optimal	 in	 a	 real	
operational	context).	The	choice	of	a	30-day	update	frequency	only	aims	at	reducing	
the	computational	cost	of	running	all	MOS	methods	at	all	stations	during	the	2-year	
period.	 In	 a	 real	 operational	 context,	 only	 one	 day	 would	 have	 to	 be	 run,	 which	
would	 allow	 increasing	 the	update	 frequency	up	 to	1	day,	 i.e.,	 the	CDFs	would	be	
updated	every	day	ensuring	that	we	are	taking	benefit	from	the	entire	observational	
dataset	available	at	a	given	time.”		
	
L	 155	KF	and	other	method	are	based	on	unbiased	 linear	 estimates	 (BLUE)	 So,	 the	
biases	are	not	addressed	in	KF	theory	in	general.	Please	clarify.	
To	the	best	of	our	understanding,	although	biases	are	 indeed	not	addressed	 in	the	
KF	 theory,	 the	application	of	KF	as	 a	MOS	approach	 is	 specific	 in	 the	 sense	 that	 it	
takes	the	forecast	bias	itself	as	the	state	variable	of	interest.	We	reformulated	part	
of	this	section	:	
L150	 :	 “Over	 the	 last	 decades,	 the	 Kalman	 filter	 (KF)	 theory	 has	 found	 numerous	
applications	in	problems	with	different	levels	of	complexity.	In	atmospheric	sciences,	
it	 offers	 a	 popular	 frame	 for	 sophisticated	 data	 assimilation	 applications	 (e.g.,	
Gaubert	et	al.,	 2014,	Di	Tomaso	et	al.	 2017),	but	 can	also	be	used	as	a	 simple	yet	
powerful	 MOS	 method	 for	 correcting	 forecasts	 (e.g.,	 Delle	 Monache	 et	 al.,	 2006,	
Kang	et	al.,	2008,	De	Ridder	et	al.,	2012).	A	detailed	description	of	the	KF	algorithm	
can	be	found	in	Appendix	B	(as	well	as	in	Delle	Monache	et	al.,	2006).		
KF	provides	an	efficient	way	of	estimating	the	forecast	bias	based	on	past	model	and	
observation	 information.	 For	 a	 given	 day	 at	 a	 given	 hour,	 the	 forecast	 bias	 is	
computed	as	a	weighted	average	of	(1)	the	forecast	bias	estimated	one	day	before	
and	 (2)	 the	 corresponding	 observed	 forecast	 bias.	 Each	 of	 these	 two	 terms	 is	
weighted	according	 to	 the	value	of	 the	 so-called	Kalman	gain	 (Kt)	 that	 intrinsically	
depends	on	the	so-called	variance	ratio	(see	Appendix	B	for	more	details).	The	value	
chosen	for	this	internal	parameter	substantially	affects	the	behaviour	of	the	KF,	and	



thus	 the	 obtained	 MOS	 corrections.“	 !	 “The	 Kalman	 Filter	 (KF)	 is	 an	 optimal	
recursive	 data	 processing	 algorithm	 with	 numerous	 science	 and	 engineering	
applications	 (see	 Pei	 et	 al.,	 2017	 for	 an	 introduction).	 In	 atmospheric	 sciences,	 it	
offers	a	popular	frame	for	sophisticated	data	assimilation	applications	(e.g.,	Gaubert	
et	al.,	2014,	Di	Tomaso	et	al.	2017),	but	can	also	be	used	as	a	simple	yet	powerful	
MOS	method	for	correcting	forecasts	(e.g.,	Delle	Monache	et	al.,	2006,	Kang	et	al.,	
2008,	 De	 Ridder	 et	 al.,	 2012).	 The	 KF-based	 MOS	 method	 aims	 at	 estimating	
recursively	the	unknown	forecast	bias	 (here	taken	as	the	state	variable	of	 interest)	
combining	 previous	 forecast	 bias	 estimates	 with	 forecast	 bias	 observations.	 The	
updated	 forecast	 bias	 estimate	 is	 computed	 as	 a	 weighted	 average	 of	 these	 two	
terms,	both	being	considered	as	uncertain,	 i.e.	affected	by	a	noise	with	zero-mean	
and	 a	 given	 variance.	 A	 detailed	 description	 of	 the	 KF	 algorithm	 can	 be	 found	 in	
Appendix	B	but	an	important	aspect	to	be	mentioned	here	is	that	each	of	these	two	
terms	 is	 weighted	 according	 to	 the	 value	 of	 the	 so-called	 Kalman	 gain	 that	
intrinsically	 depends	 on	 the	 ratio	 of	 both	 variances	 (hereafter	 referred	 to	 as	 the	
variance	ratio).	The	value	chosen	for	this	internal	parameter	substantially	affects	the	
behavior	of	the	KF,	and	thus	the	obtained	MOS	corrections.”	
Also,	 to	 make	 it	 easier	 to	 follow,	 we	 modified	 the	 corresponding	 Appendix	 and	
adopted	 notations	 more	 consistent	 with	 those	 used	 by	 Pei	 et	 al.	 (2017)	 in	 their	
gentle	introduction	to	KF.		
	
L	180	Please	clarify	“best	analogue	days”.	How	many	days	are	required	to	get	a	spun-
up	AN	(10)	method.		
The	aforementioned	distance	metric	 is	used	 to	compute	 the	distance	between	the	
current	 forecast	 day	 and	 each	 of	 the	 past	 days,	 this	 distance	 representing	 how	
similar	 or	 different	 are	 the	 current	 forecast	 day	 and	 one	 given	 past	 day	 (a	 small	
distance	means	that	both	are	very	similar).	In	this	frame,	best	analog	days	refers	to	
the	most	similar	days	 (i.e.	 the	days	with	smallest	distance	to	the	current	 forecast).	
We	clarified	the	text	:		
L176	:	“The	current	forecast	is	compared	to	past	forecasts	based	on	a	set	of	features	
including	the	raw	O3	mixing	ratio	forecast	from	the	AQ	model	and	the	10-meter	wind	
speed,	 2-meter	 temperature,	 surface	 pressure	 and	 boundary	 layer	 height	 forecast	
from	 the	meteorological	model.	 The	 similarity	 of	 each	 day	 of	 forecast	 is	 assessed	
using	 the	distance	metric	proposed	by	Delle	Monache	et	 al.	 (2011)	 and	previously	
used	in	Djalalova	et	al.	 (2015)	(see	the	formula	in	Appendix	C).	As	a	first	approach,	
we	consider	the	10	best	analog	days,	hereafter	referred	to	as	AN(10);	other	values	
are	tested	in	Sect.	3.4).”	!	“The	current	forecast	is	compared	to	each	individual	past	
forecasts	 in	 order	 to	 identify	 which	 ones	 are	 the	most	 similar.	 Based	 on	 a	 set	 of	
features	 including	the	raw	O3	mixing	ratio	 forecast	 from	the	AQ	model	and	the	10-
meter	 wind	 speed,	 2-meter	 temperature,	 surface	 pressure	 and	 boundary	 layer	
height	 forecast	 from	 the	 meteorological	 model,	 the	 distance	 metric	 proposed	 by	
Delle	Monache	et	al.	 (2011)	and	previously	used	 in	Djalalova	et	al.	 (2015)	 (see	 the	
formula	 in	 Appendix	 C)	 is	 used	 to	 compute	 the	 distance	 (i.e.,	 to	 quantify	 the	
similarity)	of	each	individual	past	forecast	with	respect	to	the	current	forecast.	Then,	
as	 a	 first	 approach,	 the	 10	 best	 analog	 days	 that	 correspond	here	 to	 the	 10	most	
similar	past	forecasts	are	identified	(hereafter	referred	to	as	AN(10);	other	values	are	
tested	in	Sect.	3.4).”	



	
L	209	Please	motivate	the	choice	of	the	30	day	training	period.	
See	previous	answer	on	the	topic.	
	
L	233	Missing	here	is	a	skill	score	that	assess	the	forecast	skill	against	the	persistency	
forecast	
See	previous	answer	on	the	topic.	
	
L	225-233	The	amount	of	accuracy	measures	is	overwhelming	and	the	reader	can	not	
easily	follow	that.	Please	reduce	the	number	of	measures	to	a	minimum	and	explain	
what	 specific	 characteristic	 of	 the	 forecast	 performance	 is	 quantified	 by	 that	
measure.	 	Try	 to	 introduce	 a	 nomenclature	 (say	 upper	 case	 vs	 lower	 case,	 latin	 vs	
bold)	for	name	of	MOS	methods	and	accuracy	measures.	
Although	we	understand	it	might	appear	overwhelming	at	first	read,	we	do	think	it	is	
useful	to	show	such	a	comprehensive	set	of	metrics	to	highlight	different	aspects	of	
the	forecast	performance	(while	MOS	results	in	the	literature	are	often	shown	only	
with	 a	 very	 limited	 number	 of	 metric,	 typically	 only	 continuous).	 	 In	 the	 revised	
version,	we	 simplified	 Fig.	 3	 (and	 the	 figures	 in	 the	 Appendix)	 by	 removing	 a	 few	
metrics,	 namely	 MB	 and	 RMSE	 (we	 only	 kept	 nMB	 and	 nRMSE),	 as	 well	 as	 the	
intercept	 and	 the	 base	 rate,	 which	 should	make	 it	 slightly	 easier	 to	 follow.	More	
importantly,	 we	 added	 a	 section	 where	 metrics	 are	 more	 clearly	 introduced	 (as	
previous	mentioned	in	another	answer),	and	we	tried	to	interpret	in	more	detail	the	
discussion	of	these	different	metrics	in	the	discussion	of	the	results.	
	
L	266	Please	explain	Fig	3	in	more	detail.	What	do	the	overlaying	symbols	mean	(one	
per	stations	,	forecast	day	?).			
We	 clarified	 the	 legend	 of	 Fig.	 3	 :	 “Figure	 3.	 Statistical	 performance	 of	 RAW	 and	
MOS-corrected	 CAMS	 O3	 forecasts	 for	 continuous	 metrics	 (top	 panels)	 and	
categorical	 metrics	 related	 to	 the	 exceedance	 of	 the	 target	 (intermediate	 panels)	
and	 information	 threshold	 (bottom	 panels).	 The	 different	 symbols	 depict	 results	
obtained	at	different	time	scales	(h:	hourly;	d:	daily	mean;	d1max/dd1max:	daily	1-
hour	maximum;	d8max/dd8max:	daily	8-hour	maximum).	 In	each	panel,	results	are	
shown	for	the	different	methods	(each	with	a	given	color).	The	overlaying	symbols	of	
decreasing	transparency	show	the	results	at	the	different	lead	days	from	D+1	(most	
transparent)	to	D+4	(most	opaque).	[…]”	
We	also	extended	the	discussion	of	Fig.	3,	as	described	in	another	answer.	
	
L	 277…	Please	 provide	 the	 various	 accuracy	measure	 in	 a	 table	 (also	 including	 the	
MOS	results)	for	a	better	representation	of	the	results.	
Done.	
	
L	335-445	Please	see	my	general	comment	on	section	3.4	
As	described	in	another	answer,	we	shortened	this	section.	
	
L448	Using	the	ER5	data	set	as	“truth”	compared	to	the	HRES	NWP	forecast	does	not	
make	 sense.	 The	 HRES	 analysis	 should	 be	 used	 for	 that.	 Because	 of	 different	
resolution	 and	model	 cycle	 the	 two	 data	 sets	 are	 not	 consistent.	 Please	 avoid	 the	



term	 IFS	 for	 the	 forecast	 because	 both	 ER5	 and	 HRES	 are	 produced	with	 the	 IFS.;		
L446	 ER5	 and	 HRES	 will	 not	 differ	 in	 the	 number	 of	 assimilated	 observations,	 if	
anything	HRES	will	be	better.	
As	described	 in	another	answer,	we	modified	 this	 section	 to	 take	 into	account	 the	
comments	of	the	reviewer.		
	
L	484	Please	provide	quantitative	information	about	the	improvements.	
Given	that	numerous	quantitative	information	was	provided	in	the	previous	section,	
we	do	not	think	it	is	useful	to	provide	again	some	quantitative	information	here.	We	
rather	prefer	to	keep	this	discussion	for	a	general	discussion	around	the	use	of	MOS.	
	
L	494	The	skill	of	a	forecast	(in	a	scientific	sense)	is	defined	by	the	improvements	w.r.t	
to	a	reference,	which	should	be	persistency	in	your	case.	How	compares	RAW	and	the	
MOS	methods	using	RAW	 to	PERS	 is	 a	question	 that	 should	be	answered.	 See	 text	
book	by	D.S.	Wilks,	Statistical	methods	for	atmospheric	science.			
As	described	in	another	answer,	we	take	into	account	the	comments	of	the	reviewer	
regarding	this	aspect,	and	greatly	modified	the	manuscript.	
	
L517	The	finding	that	MOS	results	(using	RAW)	were	more	sensible	to	forecast	 lead	
time	than	PERS	is	interesting.	One	would	expect	a	strong	impact	of	the	lead	time	for	
PERS.	Please	elaborate	a	bit	more.	Do	the	forecast	show	a	drift	perhaps	 introduced	
by	the	initialisation	with	analysis	(assimilating	AQ	surface	information)	
We	 are	 not	 sure	 to	 follow	 the	 reviewer	 on	 this	 comment.	 Among	 all	 the	 forecast	
methods,	 PERS	 is	 clearly	 the	 most	 strongly	 impacted	 by	 the	 lead	 time,	 while	 the	
impact	of	the	lead	time	on	RAW	is	found	to	relatively	small	(and	we	indicated	in	the	
text	 that	 it	 could	be	 “potentially	due	 to	 their	 relatively	 coarse	 spatial	 resolution”).	
The	MOS	methods	are	typically	moderately	impacted	by	the	lead	time,	likely	simply	
because	 they	 typically	 rely	on	both	 raw	 forecast	and	past	 recent	observations.	We	
added	L517	:	“The	performance	of	the	RAW	forecasts	was	found	to	be	only	slightly	
sensitive	 to	 the	 lead	day,	 but	 this	 sensitivity	was	 substantially	 stronger	with	 some	
MOS	methods	(although	lower	than	for	the	persistence	method).”	
	
L	 575	 After	 all	 this	 long	 discussions,	 it	 would	 be	 good	 to	 still	 make	 a	
recommendation.	 Which	 MOS	 scheme	 performed	 overall	 best	 and	 would	 be	
recommended	for	operational	implementation.	
One	 key	 message	 of	 our	 study	 lies	 in	 the	 large	 variability	 of	 performance	 of	 the	
different	 MOS	 methods	 from	 one	 metric	 to	 another.	 Thus,	 it	 is	 not	 possible	 to	
conclude	with	 a	 clear	 recommendation	 as	 it	 directly	 depends	 on	what	 the	 user	 is	
most	 interested	 in,	 and	 in	 the	 specific	 case	 of	 O3	 exceedances	 forecasts,	 the	
respective	cost	of	false	positive	and	false	negative	predictions.	However,	through	its	
results	 and	 sensitivity	 tests,	 our	 study	 provides	 a	 rich	 and	 useful	material	 to	 help	
users	 to	 make	 their	 decision	 (although	 any	MOS	 implementation	 requires	 testing	
different	MOS	methods	and/or	 configurations	as	 results	obtained	here	with	CAMS	
ensemble	forecasts	over	Spain	might	evidently	differ	with	another	model	and/or	in	a	
different	region).	
	
L	575	Please	provide	reference	for	GHOST	



Although	it	is	still	in	preparation,	the	reference	for	GHOST	is	already	provided	in	the	
list	 of	 references	 (Bowdalo,	 D.:	 Globally	 Harmonised	 Observational	 Surface	
Treatment:	Database	of	global	surface	gas	observations,	in	preparation).	
	

Reviewer	#3	
The	 paper	 entitled	 “Model	 Output	 Statistics	 (MOS)	 applied	 to	 CAMS	O3	 forecasts:	
trade-offs	between	 continuous	and	 categorical	 skill	 scores”	by	Petetin	 et	al.	 is	well	
written	and	provides	a	very	 interesting	perspective	on	different	statistical	tools	and	
machine	 learning	 approaches	 that	 can	 be	 used	 to	 improve	 air	 quality	 forecasts.	 It	
falls	within	the	scope	of	ACP	and	I	truly	enjoyed	reading	it.	The	analysis	is	sound	and	
truly	comprehensive.		I	have	only	a	few	minor	comments,	that	the	authors	may	want	
to	consider	to	improve	the	manuscript	further.	
		
In	line	85	the	authors	say	that	in	this	study,	daily	mean,	daily	1-hour	maximum	and	
daily	8-hour	maximum	are	computed	only	when	at	least	75%	of	the	hourly	data	are	
available	(i.e.	18	over	24	hours).	Theoretically	speaking	a	day	during	which	the	data	
from	 9	 am	 to	 4	 pm	 is	 missing	 could	 qualify	 this	 criterion,	 yet	 both	 the	 computed	
d1max	and	d8max	of	such	a	day	would	be	far	off.	Instrumental	interventions	such	as	
service	visits,	purging	with	zero	air	to	get	moisture	out	of	the	system	and	calibrations	
usually	 occur	 during	 working	 hours.	 Hence	 the	 authors	 may	 want	 to	 consider	
applying	a	 filter	directed	at	daytime	rather	than	night-time	observations	next	time.	
This	may	remove	a	few	extra	data	points	but	would	have	been	preferable	considering	
the	target	of	 the	paper.	The	current	choice	 is,	however,	hardly	going	to	 impact	 the	
results	pertaining	to	the	model	evaluation	of	the	various	techniques	with	respect	to	
d8max	 and	 d1max.	 The	 days	 analysed	 are	 driven	mostly	 by	 observational	 stations	
reporting	 d8max	 >60	 ppb	 or	 D1max>90.	 Hence	most	 days	 included	 in	 the	 analysis	
would	have	daytime	data.	Nigh	time	events	with	d8max	>60	ppb	and	d1max	>90	ppb	
are	relatively	rare,	although	they	do	occur	occasionally	at	high	altitude	stations.	So,	
in	my	opinion	the	best	way	out	without	redoing	the	analysis	would	be	to	run	a	quick	
check	on	the	data	for	the	following	two	parameters	
How	many	days	with	large	data	gaps	during	the	day	(9	am	to	4	pm)	were	included	in	
the	analysis?	
How	many	of	the	observed	d8max	and	d1max	events	are	night	time	events?	
Both	numbers	would	be	small	and	can	be	reported	and	discussed	as	limitation.	
Considering	all	 Spanish	stations	and	all	days	 in	2018-2019	with	at	 least	18	over	24	
hourly	 values	 available,	 we	 checked	 how	 many	 had	 at	 least	 6-hour	 data	 gaps	
occurring	between	8	and	15	UTC.	In	total,	the	frequency	of	such	large	daytime	data	
gaps	 is	 only	 167/314,005	 (0.05%),	 of	which	 only	 12	 are	 exceedances	 of	 the	 target	
threshold	 (over	 a	 total	 of	 13,221),	 and	 0	 are	 exceedances	 of	 the	 information	
threshold.	 Checking	 how	 many	 days	 and	 stations	 have	 at	 least	 4-hour	 data	 gaps	
occurring	 between	 8	 and	 15	 UTC,	 the	 total	 frequency	 increases	 to	 1854/314,005	
(0.6%),	 of	 which	 only	 77	 are	 exceedances	 of	 the	 target	 threshold	 and	 0	 are	
exceedances	 of	 the	 information	 threshold.	 Therefore,	 the	 situation	 of	 large	 data	
gaps	 during	 daytime	 indeed	 occurs,	 but	 very	 rarely,	 and	 thus	 should	 not	 impact	
significantly	 our	 results.	 We	 added	 some	 elements	 of	 information	 regarding	 this	



point	 :	 L83	 :	 “In	 this	 study,	 daily	 mean,	 daily	 1-hour	 maximum	 and	 daily	 8-hour	
maximum	(hereafter	respectively	referred	to	as	d,	d1max	and	d8max)	are	computed	
only	when	at	least	75%	of	the	hourly	data	are	available	(i.e.	18	over	24	hours).	Note	
that	 despite	 such	 data	 availability	 criteria,	 large	 data	 gaps	 at	 some	 stations	 and	
during	 some	 days	 might	 occur	 mainly	 during	 daytime	 (for	 instance	 due	 to	
maintenance	operations	 that	 typically	occur	during	working	hours).	Considering	all	
stations	 and	 days	 with	 at	 least	 18	 hours	 of	 data,	 the	 frequency	 of	 data	 gaps	
exceeding	4	hours	between	8	and	15	UTC	was	found	to	be	only	0.6%	(1854/314,005).	
Such	 situation	 occurs	with	 a	 similarly	 low	 frequency	 on	 days	 exceeding	 the	 target	
threshold	(77/13,221	or	0.6%)	and	never	occurs	on	days	exceeding	the	information	
threshold.”	
	
Figure	2:	I	find	it	hard	to	see	the	colour	difference	between	the	purple	and	black	line.	
In	particular	where	they	are	not	superimposed.	The	colour	contrast	in	Figure	F1	which	
is	similar	is	much	better	
We	modified	the	color	of	this	plot,	and	updated	the	caption	:	
“Figure	 2.	 Time	 series	 of	 the	mean	O3	mixing	 ratios	 over	 the	 Iberian	 Peninsula,	 as	
observed	by	monitoring	 stations	 (in	black)	 and	as	 simulated	by	 the	CAMS	 regional	
ensemble	D+1	forecasts	(in	purple	yellow).	Time	series	are	shown	at	the	hourly	(h),	
daily	mean	(d),	daily	1-hour	maximum	(d1max)	and	daily	8-hour	maximum	(d8max)	
time	scales.	O3	mixing	ratios	are	averaged	over	all	surface	stations	of	the	domain.”	
	
Figure	3:	Some	people	have	bad	memory	for	abbreviations	or	the	habit	of	skipping	to	
the	 figures.	 Just	 like	 the	 authors	 gave	 the	 full	 form	 for	 (h:	 hourly;	 d:	 daily	 mean;	
d1max/dd1max:	 daily	 1-hour	 maximum;	 d8max/dd8max:	 daily	 8-hour	 maximum)	
which	is	much	appreciated	can	they	please	give	the	full	form	of	the	abbreviations	S,	
H,	F,	FB,	SR,	CSI,	PSS,	AUC,	PCC	(which	people	may	be	more	familiar	with	a	R)	in	the	
figure	caption.	It	will	save	a	lot	of	readers	from	having	to	scroll	back	to	the	method	
section	where	these	are	defined.	
We	 added	 more	 information	 in	 the	 caption	 (note	 that	 following	 the	
recommendation	of	 the	other	reviewer,	we	removed	some	of	 the	metrics	 to	make	
the	plot	easier	to	follow)	:	
“Figure	3.	Statistical	performance	of	RAW	and	MOS-corrected	CAMS	O3	forecasts	for	
continuous	metrics	(top	panels)	and	categorical	metrics	related	to	the	exceedance	of	
the	 target	 (intermediate	 panels)	 and	 information	 threshold	 (bottom	 panels).	 The	
different	symbols	depict	results	obtained	at	different	time	scales	(h:	hourly;	d:	daily	
mean;	 d1max/dd1max:	 daily	 1-hour	 maximum;	 d8max/dd8max:	 daily	 8-hour	
maximum).	In	each	panel,	results	are	shown	for	the	different	methods	(each	with	a	
given	color).	The	overlaying	symbols	of	decreasing	transparency	show	the	results	at	
the	different	lead	days	from	D+1	(most	transparent)	to	D+4	(most	opaque).	Metrics	:	
normalized	Mean	Bias	 (nMB	 in	%),	normalized	Root	Mean	Square	Error	 (nRMSE	 in	
%),	Pearson	correlation	coefficient	(PCC),	slope	(unitless),	normalized	Mean	Standard	
Deviation	bias	(nMSDB	in	%),	Hit	rate	(H),	False	alarm	rate	(F),	Frequency	Bias	(FB),	
Success	Ratio	 (SR),	Critical	 Success	 Index	 (CSI),	 Peirce	 Skill	 Score	 (PSS),	Area	Under	
the	ROC	Curve	 (AUC).	See	Sect.	2.4	and	2.5	 for	details	on	 time	scales	and	metrics,	
respectively.”	



Other	modifications	
• We	 harmonized	 the	 manuscript	 to	 use	 exclusively	 American	 English	 (e.g.	

“behavior”)	
• We	 added	 at	 L245	 :	 “Over	 the	 Iberian	 Peninsula,	 annual	 mean	 O3	 mixing	

ratios”	
• L237	:	“Ozone	pollution	over	Iberian	Peninsula	and	raw	CAMS	forecasts”	!	

“Ozone	pollution	over	Iberian	Peninsula”	
• Abstract	L7	:	“A	key	aspect	of	our	study	is	the	evaluation,	which	is	performed	

using	 a	 very	 comprehensive	 set	 of	 continuous	 and	 categorical	 metrics	 at	
various	time	scales	(hourly	to	daily),	along	different	lead	times	(1	to	4	days),	
and	using	different	meteorological	input	data	(forecast	vs	reanalyzed).”	!	“A	
key	 aspect	 of	 our	 study	 is	 the	 evaluation,	 which	 is	 performed	 using	 a	
comprehensive	 set	 of	 continuous	 and	 categorical	 metrics	 at	 various	 time	
scales,	 along	 different	 lead	 times,	 and	 using	 different	meteorological	 input	
datasets.”	

• Abstract	L16	:	“However,	they	are	not	necessarily	the	best	 in	predicting	the	
highest	 O3	 episodes,	 for	 which	 simpler	 MOS	 methods	 can	 give	 better	
results.”	!	 	 “However,	 they	 are	 not	 necessarily	 the	 best	 in	 predicting	 the	
peak	 O3	 episodes,	 for	 which	 simpler	 MOS	 methods	 can	 achieve	 better	
results.	

• L37	 :	 “As	 these	MOS	methods	 often	 significantly	 reduce	 systematic	 errors,	
bringing	mean	 biases	 close	 to	 zero,	 they	 are	 also	 commonly	 referred	 to	 as	
bias-correction	or	bias-adjustment	methods,	although	they	may	not	aimed	at	
reducing	directly	this	specific	metric.	MOS	methods	relying	on	local	data	(first	
and	 foremost	 the	 local	 observations)	 can	 also	 be	 seen	 as	 so-called	
downscaling	methods	as	they	allow	capturing	some	of	the	local	features	that	
cannot	be	reproduced	at	typical	CTM	spatial	resolution.”	!	“As	these	MOS	
methods	 often	 significantly	 reduce	 systematic	 errors,	 bringing	mean	 biases	
close	to	zero,	they	are	also	commonly	referred	to	as	bias-correction	or	bias-
adjustment	methods,	 although	 they	may	not	 be	 aimed	 at	 reducing	 directly	
this	 specific	metric.	MOS	methods	 relying	 on	 local	 data	 (first	 and	 foremost	
the	 local	 observations)	 can	 also	 be	 seen	 as	 so-called	 downscaling	methods	
since	 they	 allow	 capturing	 some	 of	 the	 local	 features	 that	 cannot	 be	
reproduced	at	typical	CTM	spatial	resolution.”	

• L113	:	“Applying	MOS	in	a	worse	case	scenario	of	operational-like	conditions”	
!	“Applying	MOS	under	restrictive	operational	conditions”	

• L114	:	“A	novel	aspect	of	this	study	is	that	it	provides	a	comparison	of	a	set	of	
MOS	 methods	 under	 a	 worse	 case	 scenario	 of	 operational-like	 conditions,	
which	can	be	described	through	two	assumptions:”	!	“A	novel	aspect	of	this	
study	 is	 that	 we	 provide	 a	 comparison	 of	 a	 set	 of	 MOS	 methods	 under	
potentially	 restrictive	 training	 conditions	 in	 operational	 context.	 To	 mimic	
such	restrictions	we	assume	that”	

• L119	:	“On	a	given	day,	all	MOS	methods	can	only	rely	on	the	historical	data	
accumulated	 so	 far.”	!	 “On	 a	 given	 day,	 the	MOS	methods	 can	 therefore	
only	 rely	 on	 the	 historical	 data	 accumulated	 since	 the	 beginning	 of	 the	
period.	 Our	 approach	 consists	 in	 understanding	 the	 behaviour	 of	 the	



different	MOS	methods	 in	a	worse	case	scenario	where	a	new	or	upgraded	
operational	 AQ	 forecasting	 system	 is	 implemented	 together	 with	 a	 MOS	
module	for	which	there	is	little	or	no	hindcast	data.”	

• L121	:	“As	it	will	be	described	in	more	detail	 in	the	next	section,	some	MOS	
methods	 require	 very	 limited	 prior	 information	 to	 achieve	 their	 optimal	
performance,	 while	 other	 need	 a	 larger	 amount	 of	 training	 data.”	!	 “As	
described	 in	 detail	 in	 the	 next	 section,	 some	 MOS	 methods	 require	 very	
limited	prior	information	to	achieve	their	optimal	performance,	while	others	
need	a	larger	amount	of	training	data.”	

• L189	 :	 “In	 this	 study,	 we	 also	 explore	 the	 use	 of	 ML	 algorithms	 as	 an	
innovative	MOS	approach	for	correcting	AQ	forecasts.”	!	“We	also	explore	
the	use	of	ML	algorithms	as	an	 innovative	MOS	approach	for	correcting	AQ	
forecasts.”	

• L358	:	“Therefore,	 for	detecting	exceedances,	considering	PSS	and/or	CSI	as	
the	 most	 relevant	 metrics	 (Appendix	 E),	 the	 PERS	 method	 shows	 its	 best	
performance	for	a	time	window	of	1	d.”	

• L557	:	“In	this	study,	we	considered	a	relatively	short	2-year	dataset	but	using	
a	longer	training	dataset	would	likely	require	to	build	specific	methodologies	
to	 tackle	 this	 issue,	 either	 by	 identifying	 and	 discarding	 the	 potentially	
outdated	data,	or	by	giving	them	a	 lower	weight	 in	 the	procedure.”	 	!	 “In	
this	study,	we	considered	a	relatively	short	2-year	dataset	but	using	a	longer	
training	dataset	would	likely	require	building	specific	methodologies	to	tackle	
this	issue,	either	by	identifying	and	discarding	the	potentially	outdated	data,	
or	by	giving	them	a	lower	weight	in	the	procedure.”	


