

1

2

3

4 **Measurement Report: Interpretation of Wide Range**

5 **Particulate Matter Size Distributions in Delhi**

6

7 **Ülkü Alver Şahin¹, Roy M Harrison^{2,a}, Mohammed S. Alam^{2,b}**

8 **David C.S. Beddows^{2,3}, Dimitrios Bousiotis², Zongbo Shi²**

9 **Leigh R. Crilley⁴, William Bloss², James Brean², Isha Khanna^{5,c}**

10 **and Rulan Verma^{6,c}**

11

12 **¹ Istanbul University-Cerrahpaşa, Engineering Faculty, Environmental**

13 **Engineering Department, Istanbul, [Türkkiye](#)**

14

15 **² School of Geography, Earth and Environmental Sciences**

16 **University of Birmingham, Birmingham, B15 2TT, UK**

17

18 **³ National Centre for Atmospheric Science**

19 **University of York, Heslington, York, YO10 5DQ, UK**

20

21 **⁴ Department of Chemistry, York University**

22 **Toronto, Ontario, M3J 1P3, Canada**

23

24 **⁵ Puget Sound Clean Air Agency, Seattle, Washington, USA 98101**

25

26 **⁶ Institute of research on catalysis and the environment of Lyon - IRCELYON**

27 **Université De Lyon, 69626 Villeurbanne cedex, France**

28

29 **Corresponding author: E-mail: r.m.harrison@bham.ac.uk (Roy M. Harrison)**

30

31 **^a Also at: Department of Environmental Sciences / Centre of Excellence in Environmental**

32 **Studies, King Abdulaziz University, PO Box 80203, Jeddah, 21589, Saudi Arabia**

33

34 **^b Now at: School of Biosciences, University of Nottingham, Sutton Bonington**

35 **Campus, Leicestershire, LE12 5RD**

36

37 **^c Previously at: IIT Delhi, Hauz Khas, New Delhi, India 110016**

40 **ABSTRACT**

41 Delhi is one of the world's most polluted cities, with very high concentrations of airborne
42 particulate matter. However, little is known on the factors controlling the characteristics of wide
43 range particle number size distributions. Here, new measurements are reported from three field
44 campaigns conducted in winter, pre-monsoon and post-monsoon seasons on the Indian Institute of
45 Technology campus in the south of the city. Particle number size distributions were measured
46 simultaneously using a Scanning Mobility Particle Sizer and a Grimm optical particle monitor,
47 covering 15 nm to $>10 \mu\text{m}$ diameter. The merged, wide-range size distributions were categorised
48 into five size ranges: nucleation (15-20 nm), Aitken (20-100 nm), accumulation (100 nm-1 μm),
49 large fine (1-2.5 μm) and coarse (2.5-10 μm) particles. The ultrafine fraction (15-100 nm) accounts
50 for about 52 % of all particles by number (PN_{10} -total particle number from 15 nm to 10 μm), but
51 just 1 % by PM_{10} volume (PV_{10} - total particle volume from 15 nm to 10 μm). The measured size
52 distributions are markedly coarser than most from other parts of the world, but are consistent with
53 earlier cascade impactor data from Delhi. Our results suggest substantial aerosol processing by
54 coagulation, condensation and water uptake in the heavily polluted atmosphere, which takes place
55 mostly at nighttime and in the morning hours. Total number concentrations are highest in winter,
56 but the mode of the distribution is largest in the post-monsoon (autumn) season. The accumulation
57 mode particles dominate the particle volume in autumn and winter, while the coarse mode
58 dominates in summer. Polar plots show a huge variation between both size fractions in the same
59 season and between seasons for the same size fraction. The diurnal pattern of particle numbers is
60 strongly reflective of a road traffic influence upon concentrations, especially in autumn and winter,
61 although other sources such as cooking and domestic heating may influence the evening peak.
62 There is a clear influence of diesel traffic at nighttime when it is permitted to enter the city, and also
63 indications in the size distribution data of a mode $<15 \text{ nm}$, probably attributable to CNG/LPG
64 vehicles. New particle formation appears to be infrequent, and in this dataset is limited to one day

65 in the summer campaign. Our results reveal that the very high emissions of airborne particles in
66 Delhi, particularly from traffic, determine the variation of particle number size distributions.

67

68 1. INTRODUCTION

69 Air pollution in Delhi has been studied for many years, and the authorities have implemented several
70 interventions designed to limit the concentrations. The sulphur content of diesel and petrol fuels was
71 reduced to 50 ppm during 1996-2010, more than 1300 industries were shut down due to hazardous
72 emissions, commercial vehicles older than 15 years were gradually taken out of the traffic fleet, and
73 public transport vehicles and auto-rickshaws were converted to compressed natural gas (CNG) fuel
74 (Narain and Krupnick, 2007). An odd–even vehicle number plate restriction has been applied during
75 working days (Chowdhury et al., 2017). Although these measures have reduced gaseous pollutants
76 (SO₂ and CO) and primary particulate matter, in recent years, several studies have reported that the
77 PM_{2.5} concentrations have been constant or slowly increasing in India, especially in the winter and
78 autumn seasons (Babu et al., 2013; Balakrishnan et al., 2019; Dandona et al. 2017, Kumar et al.,
79 2017), except in 2020. In 2020, the PM_{2.5} level decreased by approximately 40 %, due to Covid-19
80 measures (Rodríguez-Urrego and Rodríguez-Urrego 2020; Mahato et al., 2020). Although the overall
81 emission sources in India are dominated by traffic, industry, construction, and local biomass burning,
82 haze pollution events in Delhi are frequently related to the large-scale open burning of post-harvest
83 crop residues/wood during the crop burning season in nearby rural regions (Cusworth et al. 2018;
84 Bikkina et al. 2019; Kanawade et al., 2020). Furthermore, the sources of particles are mostly local
85 (Hama et al., 2020), meteorological factors play an important role in influencing concentrations of
86 air pollution (Tiwari et al., 2014; Yadav et al., 2016; Guo et al., 2017; Dumka et al. 2019; Kumar et
87 al. 2020).

88

89 Annual average PM_{2.5} levels range between 81 and 190 µg/m³ in Delhi and are clearly higher than
90 the WHO guideline value (5 µg/m³) and Indian national limit value (40 µg/m³) (Hama et al., 2020).
91 To the best of our knowledge, most studies in India have focussed on the source apportionment from
92 chemical profiles of particles (Pant and Harrison, 2012; Jain et al. 2020; Bhandari et al., 2020; Rai
93 et al., 2020). Mostly they have reported that biomass burning contributes greatly to PM_{2.5} mass while

94 traffic contributes heavily to PM₁₀ mass in Delhi. Residential energy use contributes 50 % of the
95 PM_{2.5} mass concentration and the construction sectors are also evaluated as considered an important
96 source of particles mass (Guttikunda et al., 2014; Butt et al., 2016; Conibear et al., 2018).
97 Furthermore, it is particularly important to understand the absolute contribution and sources of
98 different sizes of particles within PM_{2.5}. A recently published paper by Das et al. (2021) highlighted
99 that <250 nm particles contribute a significant proportion of the total PM_{2.5} mass and are a potentially
100 important link with human health.

101

102 The Particle Number Size Distribution (PNSD) can provide air pollution source apportionment with
103 high time resolution compared to use of chemical species, and influences the aerosol transport and
104 transformation profiles in the urban atmosphere and toxicological effects on humans (Wu and Boor,
105 2021). Many PNSD studies have been conducted in urban, traffic and background sites over the past
106 decades and three review studies have been published (Vu et al., 2015; Azimi et al., 2014; Wu and
107 Boor, 2021). There are some studies evaluating the number or mass particle size distribution (PSD)
108 in Delhi (Mönkkönen et al., 2005; Chelani et al., 2010; Gupta et al., 2011; Pant et al., 2016; Gani et
109 al., 2020). Harrison (2020) compared PNSDs from Delhi, Beijing and London and reported that the
110 particles from Delhi are far greater in number with a much larger modal diameter, close to 100 nm.
111 In a recent paper, Gani et al. (2020) has investigated the PNSD up to 0.5 μm sizes from 2017 to 2018
112 and reported that rapid coagulation is an important process in Delhi.

113

114 The wide range PNSD is important to describe all sources of inhalable particles (<10 μm). It is not
115 easy to separate ly identify particles arising from resuspension, sea salt and construction, or from brake
116 wear and combustion or vehicle exhaust, using only the <0.5 μm particle sizes range. Harrison et al.
117 2011 reported that using wide range particle sizes in source apportionment is-was extremely
118 successful in identifying the separate contributions of on-road emission including brake wear and
119 resuspension. Although there are a few studies of wide range particle characterization in Beijing (Jing

120 et al., 2014) and source apportionment in Venice, Italy (Masiol et al., 2016), there has been no
121 previous wide range PN_{SD} study in Delhi. In this study, we aimed to interpret particulate matter size
122 distributions over a wide range (15 nm to 10 μm) in the winter, post-monsoon and pre-monsoon
123 seasons in Delhi. Future studies will look at two-step receptor modelling of wide range particulate
124 matter size distributions and chemical composition in Delhi.

125

126 **2. METHODS**

127 **2.1 Study Area**

128 The measurements were part of the NERC/MoES Air Pollution and Human Health in an Indian mega-
129 city (APHH-Delhi, www.urbanair-india.org) study, a joint UK-India project addressing air pollution
130 in Delhi. The sampling location was ~15 m above ground level on the 54th floor of the Civil
131 Engineering Department at the Indian Institute of Technology Delhi (IIT Delhi) campus, located in
132 New Delhi, representative of an urban background environment (28.545 N, 77.193 E) (Figure S1).

133 The measurement station is at a 120 m distance from a major arterial road. As part of APHH-Delhi,
134 there were three field campaigns: (i) Jan-Feb 2018 (winter), (ii) May-June 2018 (summer; pre-
135 monsoon) and (iii) Oct-Nov 2018 (autumn; post-monsoon). In all field campaigns, a suite of gas and
136 particulate phase instrumentation was deployed within a temperature controlled laboratory.

137

138 These sampling periods were representative of conditions for PM and gases during these seasons in
139 Delhi. We found the average PM_{2.5} concentration to be approximately 180 $\mu\text{g}/\text{m}^3$, 220 $\mu\text{g}/\text{m}^3$ and 120
140 $\mu\text{g}/\text{m}^3$ for winter, autumn (excluding Diwali) and summer, respectively measured by a TEOM-FDMS
141 (TEOM-Filter Dynamic Measurement System). Hama et al. (2020) studied the long term (from 2014
142 to 2017) trends of air pollution in Delhi at 6 stations (residential, commercial, and industrial sites)
143 and reported that the mean PM_{2.5} concentrations ranged between 147 – 248 $\mu\text{g}/\text{m}^3$, 147 – 248 $\mu\text{g}/\text{m}^3$
144 and 76 – 135 $\mu\text{g}/\text{m}^3$ for winter, autumn and summer, respectively, and a good correlation between

145 sites within Delhi. This gives reassurance that the PM_{2.5} concentrations measured at our site are within
146 the typical range of those observed in Delhi.

147

148 **2.2 Measurements**

149 ~~To measure the particle size range used in this study, two particle instruments were used to collect~~
150 ~~number size distributions (NSD). For the range 15-640nm, a TSI- Scanning Mobility Particle Sizer~~
151 ~~(SMPS) 3936 was used, consisting of a TSI 3080 Electrostatic Classifier, TSI 3081 DMA and TSI~~
152 ~~3775 CPC. To extend this range into the coarse mode a GRIMM 1.108 Portable Laser Aerosol~~
153 ~~Spectrometer and Dust Monitor (GRIMM 1.108) were used alongside the SMPS.~~

154

155 Aerosol particle sizes in the atmosphere span a very wide range from a few nanometers at the lower
156 end to some tens of micrometers at the upper end. Because of this very wide range of sizes, particle
157 properties vary considerably across the size spectrum with the behaviour of the smaller particles being
158 determined by their high mobility and hence diffusivity, whilst at the coarse end of the size
159 distribution inertial properties are especially important. Due to this divergence in behaviour, no
160 instrument is capable of measurement of the whole range of particle sizes. ~~The smaller particles are~~
161 ~~mostly measured as a function of their electric mobility when charged, while the larger particles are~~
162 ~~counted using their inertial or optical properties. In this study an SMPS (Scanning mobility particle~~
163 ~~sizer) based on mobility diameters and a GRIMM optical spectrometer were used to count smaller~~
164 ~~and larger particles, respectively.~~

165 ~~To measure the particle size range used in this study, two particle instruments were used to collect~~
166 ~~number size distributions (NSD). For the range 15-640nm, a TSI- Scanning Mobility Particle Sizer~~
167 ~~(SMPS) 3936 was used, consisting of a TSI 3080 Electrostatic Classifier, TSI 3081 DMA and TSI~~
168 ~~3775 CPC. To extend this range into the coarse mode a Portable Laser Aerosol Spectrometer and~~
169 ~~Dust Monitor (GRIMM 1.108) were used alongside the SMPS.~~

170

171

172 2.3 Merging Process

173 Merging procedures have usually been reported for merging SMPS and APS (Aerosol Particle Sizer)
174 data, but here Grimm optical spectrometer (OP) RIMM data is merged with SMPS data. For a
175 complete particle size distribution, simultaneously collected, paired hourly averaged particle number
176 size distributions collected from the SMPS and GRIMMrimm were merged. The merging procedure
177 is based on the principle of converting the diameters of the GrimmRIMM-derived data to a diameter
178 matching the SMPS-derived data, in the region where the size distribution measurements overlap.
179 The GrimmRIMM measures the optical diameter d_b^t whereas the SMPS measures the mobility
180 diameter d_a^t of the particles. Comprehensive descriptions of the procedure and mathematics are given
181 by DeCarlo et al. (2004) and Schmid et al. (2007). The GrimmRIMM NSD are translated onto the
182 extended electrical mobility diameter axis of the SMPS using equation (R1) (Beddows et al. 2010; Liu
183 et al., 2016; Ondracek et al., 2009).

184

185
$$d_b^t = \frac{d_a^t}{X} \sqrt{\frac{C(d_a^t)}{C(d_b^t)}} \quad (R1)$$

186

187 The Cunningham slip correction factor is given by C and the unknown variables such as the shape
188 factor of the particles are accounted for by a free parameter X (given by equation R2) which is adjusted
189 until the tails of the SMPS and GrimmRIMM NSD overlap each other giving a continuous NSD
190 across the particle size bins measured by the two instruments.

191

192
$$X = \sqrt{\frac{\rho_e^t}{\rho_o}} \quad (R2)$$

193

194 The estimated transition-regime effective density ρ_e^t (normalised by the unit density, ρ_o) typically
195 ranges from 0.77 to 2.56 g/cm³ when aerodynamic diameter is used in merging. Detailed

196 information upon the effective particle density based on the geographical regions is seen in the Wu
197 and Boor (2021) study.

198

199 The merging algorithm (originally programmed in CRAN R) was implemented using Excel
200 spreadsheets and the solver tool minimised the separation between the tails of the overlapping SMPS
201 and **GRIMM**rimm. Due to the imperfect nature of the data, each of the merges was allocated a factor
202 indicating quality based on whether: (i) there is a successful fit; (ii) the scatter of the data across the
203 overlapping tails; (iii) the fraction of points on the tail falling onto the fitted curve; and (iv) how
204 smooth the overlap is (Table S1). The size bins overlap (300-700 nm) between Grimm and SMPS.
205 This process was repeated for the winter, summer and autumn data sets and any results failing the test
206 were either repeated or the data removed from the analysis. In all, only 8 samples from 1117 failed
207 to give an acceptable fit in the merge procedure.

208

209 **2.4 Data and Quality Management**

210 Data from SMPS and **Grimm** **RIMM** were measured with 1-min resolution. ~~In this study, data sets~~
211 ~~were used by taking their and converted to~~ hourly averages. ~~Simultaneous measurement data from the~~
212 ~~SMPS and GRIMM were used.~~ The seasons were categorized as winter, autumn and summer. The
213 measurements were taken in winter from 12 January 16:00 to 11 February 04:00, in autumn from 24
214 October 16:00 to 11 November 10:00, in summer 16 May 19:00 to 05 June 15:00 in 2018. There
215 were 709, 403 and 477 total pairs (hours) in the data sets in winter, autumn and summer, respectively.
216 But 172, 43 and 257 pairs in winter, autumn and summer, respectively were excluded because of the
217 non-availability of data at that time. Data coverage is 76 % for winter, 95 % for autumn and 46 % for
218 summer. Figure S2 in the Supplementary shows hourly mean values of total particle counts for three
219 seasons. In order to evaluate day and night time PNC (particle number concentration) differences, the
220 day and night were defined as 07:00-19:00 and 19:00 – 07:00, respectively. All times reported are
221 local times recorded in Indian Standard Time (IST; GMT+05:30).

222

223 R version 3.1.2 was used to analyse the data (R Core Team, 2015). Firstly, all data were checked for
224 clean-up of the robustness of the data sets, to detect anomalous records and take out the extreme
225 values. Data greater than the 99.5th percentile were deleted. Diwali time in 2018 (7th of November
226 2018 from 16:00 to 23:00) was taken out the date set in order to exclude its extreme effect on P_{NSD}
227 values. Particle number concentrations during Diwali time are given in the Supplementary, Figure
228 S3. There were some single gaps in the data matrixes. These missing data were replaced by linearly
229 interpolated values from the nearest bins to those samples.

230

231 In the literature, PNCs measured below 1 μm are frequently split into three ranges: nucleation, Aitken
232 and accumulation (Gani et al., 2020). ~~Size range of modes can be highly variable according to the~~
233 ~~description of the nucleation size range and maximum measured size.~~ Nucleation size ranges have
234 variously been described as below 30 nm (Masiol et al. 2016) or below 25 nm (Gani et al., 2020) or
235 below 20 nm (Wu and Boor, 2021). ~~Despite this, there are also limited studies on wide range P_{NSD},~~
236 ~~some evaluating~~Some studies have evaluated wide range P_{NSDs} split into 4 ranges (nucleation,
237 Aitken, accumulation and coarse) (Masiol et al. 2016; Harrison et al., 2011). In this study, the modes
238 have been aggregated into five size groups: nucleation (15-20 nm), Aitken (20 -100 nm),
239 accumulation (100 nm – 1 μm), large fine (1 μm – 2.5 μm) and coarse (2.5 μm – 10 μm) based on
240 merged ~~data using SMPS and GRIMM observations~~. Ultrafine particles (UFP) are considered to be
241 total PN counts of Nucleation and Aitken modes (<100 nm).

242

243 The particle mass was calculated for the SMPS+OP Grimm merged data, assuming a density of 1.6
244 g cm^{-3} (Gani et al., 2020). Estimation of particle density as a function of size is extremely difficult,
245 and there are few data for particle density from Delhi. Since Gani et al (2020) used the density of
246 PM at the same location as in our study, we used the same density value to convert PN to PM mass.
247 Figure S4 shows the comparison of PM_{2.5} measured by SMPS+OPGRIMM and TEOM-FDMS in

248 Delhi for the three seasons. Figure S5 shows the comparison of PM_{2.5} with relative humidity measured
249 by SMPS+GRIMM OP and TEOM in Delhi for the three seasons. A good correlation of the estimated
250 particle mass with independent measurements with a co-located TEOM-FDMS was observed, except
251 in summer.

252 The cumulative frequency of observations as a function of particle size was calculated for each hour
253 of the day. Standard central measures from the cumulative frequency plots were represented by the
254 geometric mean diameter (GMD) for each size distribution. They were used to examine particle
255 growth processes. Firstly, the growth of GMD was estimated visually from the diurnal GMD data
256 plot (Fig. 8). The minimum growth time used for estimation of the growth rate (GR) was selected as
257 three hours, and if the growth lasted for long enough, the GR was estimated. The observed growth of
258 the GMD of the particle was quantified by fitting the GMD of particles during the growth process
259 event over a period of time 't' (eq.1). Detailed information on the method can be found in Sarangi et
260 al. (2015; 2018).

261 Growth rates (nm/hour)-GR =dGMD/dt (1)

263

264

265 3. RESULTS

266 3.1 Particle Number and Size

267 Table S2 gives the descriptive statistics of particle number counts (#/cm³) calculated using every 1-
268 hour measurements for the nucleation, Aitken, accumulation, large fine and coarse modes between
269 15 nm and 10 μ m in all seasons. Time series of total particle number counts are presented in Figure
270 S2. The average total PN levels were $36.73 \times 10^3 \text{ cm}^{-3}$ $36,730 \text{#/cm}^3$ in winter, $29.35 \times 10^3 \text{ cm}^{-3}$ $29,355 \text{#/cm}^3$
271 in autumn and $18.91 \times 10^3 \text{ cm}^{-3}$ $18,906 \text{#/cm}^3$ in summer. Generally, the wintertime PN levels
272 were higher than the other seasons. The wintertime PN levels of nucleation, Aitken and accumulation
273 modes were ~1.5, 1.8 and 2.2 times higher than in summer, respectively. Similar ratios were obtained
274 by Guttikunda and Gurjar (2012) in Delhi for particulate matter concentrations. This is attributed to

275 the unfavorable dispersion conditions, including low wind speed and low mixing height during the
276 winter season. The autumn PN levels of nucleation, Aitken and accumulation modes were ~ 1.5 , 1.3
277 and 1.9 times higher than in summer, respectively. The wintertime and autumn average PN levels are
278 similar except for the Aitken mode for which winter is 1.4 times higher than in autumn. However, for
279 the large fine and coarse modes the PN level was not markedly different between winter, autumn, and
280 summer. Gani et al. (2020) reported that the average PN levels were $52.50 \times 10^3 \text{ cm}^{-3}$ $52,500 \text{#/cm}^3$ in
281 winter, $43.40 \times 10^3 \text{ cm}^{-3}$ $43,400$ in summer, and $38.00 \times 10^3 \text{ cm}^{-3}$ $38,000 \text{#/cm}^3$ in autumn in Delhi
282 measured in 2017. The differences in the magnitude of number counts between the two studies are
283 potentially explained by the difference in the sampling period time and changes in emissions.
284

285 Figure 1 shows a comparison of average particle number and volume and the contribution to total
286 PN. The average PV (particle volume) levels indicate that PV of the Aitken mode is highest in winter,
287 while the accumulation mode is highest in autumn and the coarse mode is highest in summer. The
288 contribution of UFP($<100\text{nm}$) to numbers is highest in summer (57 %) but their contribution to
289 volume is the lowest in autumn and summer (<1 %). The contribution to both number and volume
290 of the accumulation mode is highest in autumn with 51 % and 75 %, respectively. UFP contributions
291 to total PV are below 1 % in Delhi. Furthermore, it can be seen clearly that the coarse fraction of
292 particles dominates in summer, while the accumulation mode dominates in autumn and winter.

293 Wu and Boor (2021) analysed the P_{NSD} observations made between 1998 and 2017 in 114 cities in
294 43 countries around the globe. They reported that there are significant variations in the magnitude of
295 urban aerosol P_{NSD} among different geographical regions. The main finding of their study is that the
296 number P_{NSD} in Europe, North America, Australia, and New Zealand are dominated by nucleation-
297 and Aitken-mode particles while in Central, South, Southeast and East Asia they are dominated by
298 the substantial contribution from the accumulation mode, which is consistent with our finding. Pant
299 et al. (2016) report mass size distributions for particulate matter sampled by cascade impactor in Delhi
300 in winter. The dominant modes appear at around $3\text{-}4 \mu\text{m}$ and $0.6 \mu\text{m}$, with a lesser peak at $0.2 \mu\text{m}$

301 aerodynamic diameter. These are respectively in the coarse (former mode) and accumulation (latter
302 two modes) ranges as classified in the current study. The largest component of mass was in the
303 accumulation mode, and the distribution fits well with the pattern of data seen in Figure 1. Major
304 components of the coarse fraction were Al, Si, Ca and Fe (Pant et al., 2016), suggestive of soil and
305 street dust as major contributors. The elements most notably in the accumulation fraction were Cu,
306 Zn, Pb and Sb, indicative of non-exhaust traffic emissions and metallurgical sources, and S, which
307 showed a major peak due to sulphate, peaking at 0.9 μm (Pant et al., 2016).

308
309

310 3.2 Diurnal Change

311 Figure 2 shows the diurnal variation of particle number concentrations and of $\text{PM}_{2.5}$, BC, NO and
312 NO_2 for each season (excluding the day of Diwali), and the normalized time variations of all particle
313 fractions are given in Figure S6. Figure S7 represents the diurnal variation of meteorological
314 parameters. In general, there are large differences of PN levels between cold seasons (winter and
315 autumn) and warm season (summer) for nucleation size particles. Coarse mode particle numbers in
316 the summer are higher than in winter and autumn, except in the evening time. For autumn and winter,
317 particle counts are similar from 7 am to 7 pm (daytime). However, from 7 pm to 7 am particle counts
318 in winter are higher than in autumn. The lowest levels for all modes were present during the afternoon
319 in all seasons (2-4 pm), followed by highest levels during the night in winter (after 8 pm). The winter
320 and autumn diurnal profiles had two peaks for below 1 μm particle size in the morning and evening
321 corresponding to the traffic rush hours. But in the summer the same peaks for nucleation, Aitken and
322 accumulation modes are seen although of smaller magnitude, and one hour earlier comparing to the
323 winter and autumn. Pant et al. (2016) reported the diurnal variation of traffic at one of the major
324 arterial roads in Delhi and Dhyani et al. (2019) reported on traffic-related emission. Figure S98 shows
325 the diurnal variation in traffic at a major road intersection in Delhi. Cars, two/three wheelers, bus and
326 LCV (light commercial vehicle) fleet numbers increase in the morning, persist throughout daytime
327 and start to decrease at 22:00. Due to the prohibition of access for heavy-duty diesel vehicles to central

328 Delhi from 6:00 am until 11:00 pm in the night, during the daytime including the traffic rush hours
329 the HCV (heavy commercial vehicles) number is at its lowest level (Figure S98 or Dhyani et al. 2019).
330 While road traffic clearly influences the diurnal pattern in PN, other sources including cooking and
331 domestic combustion are likely to contribute. Small midday PN peaks were observed during the
332 summer in the nucleation, Aitken and coarse modes. Another study conducted in Delhi reported the
333 same midday peaks in the warm season and the highest levels in the cold season (Gani et al. 2020),
334 which may be related to bus and LCV emissions at midday.

335

336 Figure 3 shows the differences in diurnal variations of total PN levels between the weekday and
337 weekend. These are based upon a small dataset, and hence the rather small differences within a season
338 may not be meaningful. In winter the PN levels on Saturday and Sunday are higher than on the
339 weekdays during the night (from 8 pm to 10 am the next day). However, after the morning rush hour
340 peaks, during the daytime the PN levels are the same for all days. The diurnal variation of PN in the
341 autumn shows no significant differences among the days with the same main peaks in the morning
342 for all days, although highest on Saturday. There is a flattened peak (from 8 to 10 am) in the morning
343 rush hour for the weekday while there are pointed peaks at approximately 9 am on Saturday and
344 Sunday in winter and autumn. Measurements made during the summer period are very limited. Due
345 to there being only 4 full days and 9 half days of measurements, it is very hard to draw any
346 conclusions. Even so, there are indications of a weekday traffic effect upon the PN levels in summer.
347 There is only one day of measurements on a Sunday (3rd June 2018) and it shows the midday peaks.
348 Overall, despite seasonal differences, there appears to be a strong influence of light duty road vehicles
349 upon the diurnal profiles, reflecting traffic volumes, with an impact of heavy duty vehicles upon
350 nighttime concentrations of all particle fractions.

351

352 NPF events present variable seasonality for different areas, though in most cases they appear to be
353 more frequent during spring or summer (Salvador et al., 2021). Gani et al. 2020 studied long term

354 PNSD in Delhi and have stated that they did not see any NPF during the winter or autumn seasons in
355 Delhi. In this study, the identification of NPF events was conducted manually using the criteria set
356 by Dal Maso et al. (2005) and used by Bousiotis et al (2019; 2021). The data were analysed visually
357 on a day-to-day basis: each 24-hour period, from midnight to midnight. According to these criteria, a
358 NPF event is considered when: a distinctly new mode of particles appears in the nucleation mode size
359 range, prevails for some hours, and shows signs of growth. These are the initial criteria used in
360 identifying the events. Following that, as the dataset starts from a rather large size (15 nm), to be
361 more confident about the events and not to confuse them with pollution events, high time resolution
362 data for NO_x as well as the fluctuations of the condensation sink were also used to identify pollution
363 events affecting particle concentrations which were not considered. Hence, while we checked the
364 particle size distributions for the NPF events, we also looked at the levels of pollutants to ensure that
365 what was attributed to a NPF event was not particles from pollution / direct emissions. By considering
366 the pollution levels and condensation sink we can reduce the possibility of including particle
367 formation events that are not associated with secondary formation. After analysing all data,
368 measurements from only one day during the measurement campaign were compliant with the criteria
369 set as a class Ia NPF event. Figure 4 presents the contour plots of average diurnal variation for all
370 seasons and for the NPF event on 3rd June. NPF may be suppressed due to very high pre-existing
371 aerosol concentrations (Kanawade et al., 2020; Gani et al. 2020) during severe air pollution episodes
372 in Delhi. This suppression effect has also been observed in European cities (Bousiotis et al., 2019;
373 2021).

374 [A new study by Sebastian et al. \(2021\) analysed PNSD and the frequency of NPF at six different](#)
375 [locations in India. The Delhi observation site is in an urban area and located at CSIR-National](#)
376 [Physical Laboratory \(NPL\), approximately 8 km far from the IIT location described as urban](#)
377 [background in our study. They found that the NPF frequently occurs in the spring season, but this](#)
378 [least common in autumn and winter due to air pollution episodes suppressing the NPF. They also](#)
379 [stated that the highest concentration and frequency of occurrence of NPF events in was Delhi as](#)

380 compared to other sites. As in other studies (such as Bousiotis et al., 2021), this study also emphasized
381 that the increased concentrations of precursor gases are more important for the occurrence of NPF
382 and in urban areas.

383

384 3.3 Day and Night Time Differences in PN and PV

385 Table S3 presents the summary statistics of the particle number and mass levels derived from merged
386 particle number data and BC, NO_x and PM_{2.5} at night and day for each season, excluding Diwali.
387 Figure 5 shows the particle number comparison of all modes at night and day seasonally. In both
388 night and day, the nucleation counts are approximately the same in autumn and summer (N/D=1.1
389 and 1.0), and a little higher at night in winter (N/D=1.3). But in the night, Aitken and accumulation
390 counts are higher than in the day by factors of 1.4 and 1.5 times in summer, 1.2 and 1.5 times in
391 autumn, respectively and approximately 2 in winter. While the coarse mode PN counts are
392 approximately the same for all seasons and day / night, the large fine PN level in the nighttime are
393 significantly higher (1.7) than in the daytime in summer. It seems that in the nighttime high PM
394 concentrations are due to the increasing Aitken and accumulation modes occurring from coagulation
395 of nucleation mode particles, condensation of low volatility species or hygroscopic growth. In
396 addition, biomass burning and older diesel vehicles can contribute significantly to particles in these
397 fractions (Kumar et al., 2013; Chen et al., 2017; Gani et al., 2020). Meteorological factors can also
398 profoundly affect the PN levels in daytime and nighttime. The differences of wind speed between day
399 and night in summer are lower than in winter and autumn (Figure S7). Higher wind speed, and lower
400 humidity, may favour the resuspension of coarse dust as a dominant mechanism in the summer.
401 Seasonal changes in mixing depths are surprisingly small (Figure S7) and hence unlikely to have a
402 major influence. Furthermore, the major increases and decreases in the diurnal plots of
403 pollutants (Figure 2) are consistent with the diurnal plots of MLH (Figure S7). Autumn and winter
404 also have longer periods with low mixing heights, also seen in Figure S7. TPN showed a negative
405 exponential dependence upon MLH, which became more scattered at lower values of MLH, probably
406 reflecting the larger relative errors in MLH estimates at smaller values.

407 Figure S8 represents the relation between the ventilation coefficients (VC = MLH × wind speed) and
408 TPN as a function of hour and month. Gani et al. (2019) reported that the VC is being 4–6 times
409 slowersmaller for the wintertime compared to the summer in Delhi. In this study, the VC is 1.8 and
410 1.6 times higher in summer (mean 2732 m²/s) compared to the winter (mean 1491 m²/s) and autumn
411 (mean 1702 m²/s), respectively. The day-time hourly TPN levels are lower as related to the higher
412 VC and the lower VC in colder months gives higher TPN. Although there are not enough daily data
413 (especially for summer) to say give more detail, we can see the same trend as comparing to the weekly
414 data from Gani et al (2019) study.

415 Overall, for the daytime for all seasons, hourly averaged UFP (<100nm) concentrations are usually
416 less than the nighttime, however the UFP contribution to the PN₁ (55 % in day, 50 % in night for
417 winter; 52 % in day, 45 % in night for autumn; 58 % in day, 56 % in night for summer) and PN₁₀ (38
418 % in day, 38 % in night for winter; 40 % in day, 33 % in night for autumn; 36 % in day, 33 % in night
419 for summer) are mostly slightly higher in the daytime. Similarly, Gani et al. (2020) have reported the
420 highest contribution (of UFP to PNC) in the daytime compared with the nighttime in Delhi. Due to
421 the difference of PN size range (they measured down to 12nm), they found the UFP contribution to
422 PNC higher than in the present study.

423

424

425

426 3.4 Size Distributions

427 Figure 65 shows the average PNSDparticle number size distributions in three seasons in Delhi.
428 Volume and Area distributions are shown in the Supplementary Materials in Figure S910. The highest
429 number concentrations are seen in winter, followed by autumn, and then summer. Although the
430 number concentrations of particles below 200 nm are far greater in winter those between 200 and
431 600nm are greater in autumn, within the accumulation mode. The winter and summer PNSD show
432 modes at approximately 100 nm but the autumn PNSD shows the mode at approximately 200 nm.
433 This could be due to changing sources of particles in Delhi between seasons (Jain et al. 2020), in

434 addition to (differing) aerosol dynamical processes. The Delhi atmosphere is more polluted
435 comparing with most other cities based on particle number and mass (Harrison, 2020). This will cause
436 a tendency for particles to grow more rapidly by coagulation and condensation (Harrison et al., 2018),
437 but this might be expected to occur in all seasons.

438

439 As described above, in Delhi the nighttime particle concentrations are markedly higher than the
440 daytime concentrations. The PN_{SD} changes for each hour of the day across all three seasons were
441 analysed (Figure S1140) and categorized. Figure 7 presents the PN_{SD} differences between daytime
442 and nighttime and shows the variation in PN_{SDs} within the day in all seasons. The main difference
443 between day and night in winter is only the number concentration, with little change in the mode size
444 between day and night, while the PN_{SDs} in summer and autumn show bimodal distributions with
445 modes at approximately 30 and 140 nm in summer, and 35 and 200 nm in autumn. When we focus
446 on PN_{SD} during the daytime, it can be clearly seen that the modes are manifest at different times: In
447 winter, while the PN_{SD} shows the same mode at approximately 100 nm from 8 am to 2 pm, the mode
448 in the afternoon (from 2 pm to 6 pm) drops slightly in size (70 nm). In the morning and afternoon
449 there are two small peaks at 60 nm and 40 nm for the Aitken fraction and 170 and 130 nm for the
450 accumulation fraction in autumn. During the day in summer, there are two peaks at approximately 30
451 nm from 10 am to 6 pm. This may be associated with summer nucleation events and NPF on 3rd June
452 2018 (Figure 4). Furthermore it may be related to the growth of particles from 10 am to 2 pm in
453 autumn and summer. The full reasons for these changing PN_{SDs} are not clear, and it would be unwise
454 to attempt a detailed interpretation of a very small dataset.

455

456 Figure 8 shows the average geometric mean diameter (GMD) change with hour of the day. Two
457 overall periods of GMD increase are observed. One of them is in nighttime in all seasons with GMD
458 growing at between 4.6 nm/hour in summer and 6.2 nm/hour in winter. The particle growth in autumn
459 is predominantly (when compared to the winter and summer) both late in the night (from 0 am to 5

460 am) and in the morning (from 8 am to 12 pm). Considering the P_{NSD} trend in autumn (Figure 7), the
461 GMD rises at 9 nm/hour from morning to noon. Similar results were obtained in the USA (Kuang et
462 al., 2012), Canada (Jeong et al., 2010; Iida et al. 2008), Italy (Hamed et al., 2007) and Japan (Han et
463 al. 2013). However the calculated GMD growth rate is smaller than that calculated by Sarangi et al.,
464 (2015; 2018) in Delhi, by Kalafut-Pettibone et al. (2011) in Mexico City and by Zhang et al. (2011)
465 in Beijing. The changing GMD with time in Delhi could be the result of changing sources, and/or of
466 dynamics. Nocturnal growth may be the result of reducing temperatures and increasing RH causing
467 vapour condensation (Sarangi et al., 2018). Morning growth may be due to oxidation processes
468 leading to production of less volatile vapours which then condense onto the particles (Sarangi et al.
469 2018).

470

471 Figure 9 gives the average particle number, volume, area and mass size distribution for all seasons.
472 While the number size distributions have one mode, two peaks are observed in volume distributions,
473 centered at 0.5 μm and 6 μm . These relate to two different main sources, which might be secondary
474 aerosol (such as sulphate at high RH) in the fine mode and road dust resuspension, soil or construction
475 dust for the coarse mode (Pant et al. 2016). In winter and autumn fine mode particle volumes are
476 higher than the coarse mode. However, in summer the coarse mode particle volumes are higher than
477 the fine particle level. In a recent paper, Thamban et al. (2021) show that modes in the mass size
478 distributions of [hydrocarbon organic aerosol \(HOA\)](#), [Semi-volatile oxygenated organic aerosol](#)
479 ([SVOOA](#)), [biomass burning organic aerosol \(BBOA\)](#) and [low-volatile oxygenated organic aerosol](#)
480 ([LVOOA](#)) measured by aerosol mass spectrometry are typically in the range 300-600nm vacuum
481 aerodynamic diameter, very consistent with the peaks seen in the mass distributions in Figure 9.

482

483 Hama et al. (2020) obtained the spatiotemporal characteristics of daily-averaged air pollutants and
484 concluded that the particulate matter mass (PM₁₀ and PM_{2.5}) is dominated by local sources across
485 Delhi. The main local air pollutant sources in Delhi include traffic, construction, resuspension of dust,

486 diesel generators, power plants, industries and biomass burning (Kumar et al., 2013; Nagpure et al.,
487 2015; Hama et al., 2020).

488

489 All average P_{NSD} graphs show an increasing trend in PNC at particle sizes below 19 nm particle
490 diameter. SMPS measurements in this study were conducted only above 15 nm. So, the peak particle
491 size within this size range cannot be seen. However, the clear increase in particle number below 19
492 nm indicates that another source may be important in Delhi. This small mode and bimodal P_{NSD}
493 during the day (Figure 7) may be associated with the road transport vehicle types in Delhi. Despite
494 the diesel restriction during the rush hours and conversion of the public transport vehicles to CNG,
495 several studies have reported that PM_{2.5} concentrations have been remaining steady or are slowly
496 increasing in India, especially in the winter and autumn seasons (Babu et al., 2013; Balakrishnan et
497 al., 2019; Dandona et al. 2017; Kumar et al., 2017).

498

499 The fuels used in Delhi's traffic fleet are petrol, diesel, CNG and LPG. Legislation limits the sulphur
500 content of the fuel to 50 ppm in diesel as per Bharat Stage IV. The diesel vehicles are not required to
501 be fitted with particle traps. The technology of the gasoline vehicle fleet varies as vehicle engine
502 capacity changes. Cars, two/three wheelers, bus and LCV fleet volumes are high during the day. Due
503 to the time restrictions on trucks/heavy good vehicles entering the city, during the daytime the HCV
504 number is at its lowest level (Figure S98).

505 Previous published studies indicate that emissions of particles from CNG vehicles (Euro 4, 5, 6) with
506 diameter greater than 23 nm are as low as a diesel particle filter equipped vehicle, and an order of
507 magnitude lower than gasoline vehicles (Kontses et al. 2020; Giechaskiel, et al. 2019; Magara-Gomez
508 et al. 2014; Schreiber et al. 2007), and CNG vehicles mainly emit nuclei-mode particles (Zhu et a.,
509 2014; Toumasatos et al. (2020). Zhu et al. (2014) calculated size-resolved particle emission factors
510 from on-road diesel buses and CNG buses and reported that the P_{NSD} of diesel buses dominate the
511 accumulation mode diameters of 74-87 nm while the P_{NSD} of CNG buses dominated the nucleation

512 mode with modes at 21-24 nm. Total PN emissions of diesel buses per vehicle were 4 times higher
513 than the level of CNG buses. However, the PN level in the nucleation mode (15-25 nm) of CNG buses
514 was 1.7 times higher than from the diesel buses in the nucleation mode. Toumasatos et al. (2020)
515 studied the particle emission performance of the Euro 6 CNG and gasoline vehicles and discussed the
516 current EU cut-off solid PN size threshold of 23 nm. The results revealed that $\text{PN} > 23 \text{ nm}$ represented
517 43 % of $\text{PN} > 10 \text{ nm}$ and 8 % of $\text{PN} > 2.5 \text{ nm}$ for gasoline vehicles and 7 % of $\text{PN} > 10 \text{ nm}$ and 1 % of
518 $\text{PN} > 2.5 \text{ nm}$ for CNG vehicles respectively. These studies of emission PNNSDs show that a significant
519 number of particles reside below the EU lower measurement limit of 23 nm, and many are even
520 smaller than 10 nm. These probably contribute to the mode seen just appearing at the extreme small
521 particle limit of Figure 9.

522

523 When the PNNSD results measured in Delhi are compared with the main emission categories in the
524 literature (Kumar et al., 2013; Vu et al., 2015), it seems that the average size distributions measured
525 in the atmosphere in Delhi are much coarser, which is presumably due to condensation and
526 coagulation, or it could be that secondary particles dominate over the primary emissions. Pant et al.
527 (2016) hypothesised that the main accumulation mode peak in their winter measurements arose from
528 aqueous droplet evaporation, although this mechanism would be unlikely to explain the mode seen
529 in the summer data. Thamban et al. (2021) have also reported particle growth in the Delhi atmosphere
530 from condensation of organic compounds formed from oxidation processes.

531 Previous studies have attempted to quantify the relative contribution of primary and secondary
532 sources to the total and mode-segregated particle number concentrations (Kulmala et al. 2021;
533 Casquero-Vera et al. 2021; Hama et al. 2017; Kulmala et al. 2016; Rodríguez, & Cuevas, 2007).
534 Rodríguez and Cuevas (2007) first presented the methodology for the separation of traffic related
535 primary aerosol particles from the total using the BC as the main tracer of traffic. The method was
536 tested in this study, but did not prove appropriate as the BC sources in Delhi are more complex, and
537 arise not only from traffic. The BC diurnal trend (Figure 2) does not show the rush hour peaks, and

538 reflects mostly the combustion activity at night, presumably including the heavy duty diesel
539 emissions. A recent study by Kulmala et al. (2021) used NO_x as a tracer of primary sources. Figure 2
540 shows that only the NO₂ diurnal trend in autumn is clearly related to traffic sources. Furthermore the
541 sources of BC and NO_x are largely the same, as judged from the high similarity between BC and NO_x
542 diurnal trends (Figure 2).

543

544 **3.5 Correlations of PN with NO₂, NO, and BC**

545 Figure 10 shows the correlation coefficients between the hourly average PNs of five particle size
546 fractions and NO, NO₂, and BC measured in Delhi. Nucleation mode PN is better correlated with the
547 Aitken mode PN in winter and summer despite the lower correlation in autumn. The correlations
548 among >1 μm size fractions are higher in summer than winter and autumn. Tyagi et al. (2016) stated
549 that the major source of NO_x emissions is vehicle exhaust and power plants in Delhi. Furthermore,
550 studies have reported that approximately 80-90 % of NO_x and CO are produced from the transport
551 sector in Delhi (Gurjar et al., 2004; Gulia et al., 2015; Tyagi et al., 2016; Hama et al., 2020). As seen
552 in Figure 2, the NO₂ diurnal trend is very similar to nucleation and Aitken particle trends, especially
553 in the autumn. NO₂ peaks in autumn in the traffic rush hours are larger than in winter and summer.
554 In addition, there are no significant correlations between NO₂ and NO or BC in autumn (0.02 for NO,
555 0.03 for BC) compared to the summer (0.73 for NO, 0.61 for BC) and winter (0.37 for NO and 0.28
556 for BC) (Figure S124). NO and BC diurnal trends show the same higher level in the night (Figure 2)
557 and also, they have higher correlation coefficients (0.78 in winter, 0.77 in summer, 0.72 in autumn)
558 for all seasons, similar to the accumulation mode particle counts (Figure 2, Figure 10, Table S2). NO₂
559 and <100 nm particles may be associated with traffic sources, while the NO and BC and <1 μm
560 particles could be associated with biomass burning, industry, (small generator) power generation, or
561 possibly also with diesel vehicles.

562

563 **3.6 Wind Effects**

564 Figure S1³² represents polar plots of BC, NO and NO₂ measured in Delhi. This shows no consistent
565 pattern. There are differences between the pollutants in terms of directional and wind speed
566 associations, and for each pollutant / season. There is no obvious indication of a strong local source
567 influence, typically manifest as an intense area in the very centre of the plot circle. The plots for the
568 particle size fractions (Figure 11) also show little consistency between seasons for a given size
569 fraction. Within a season, however, adjacent size fractions often show a similarity of behaviour
570 (consistent with their correlations, see above) but this similarity does not extend across all size ranges
571 within a season.

572

573 4. CONCLUSIONS

574 This study serves to highlight the remarkable complexity of airborne particulate matter in Delhi. The
575 size distributions show marked seasonal changes, with coarse particles dominant in summer, but not
576 in the cooler seasons, when the accumulation mode dominates. The measured size distributions show
577 a fine mode aerosol with a considerably larger modal diameter than that typically seen in western
578 countries, and larger than the modal emission size from major source categories. It appears the that
579 the high particle concentrations and chemically reactive atmosphere are promoting rapid coagulation
580 and condensational growth of particles, and therefore the measured size distributions are driven more
581 by aerosol dynamical processes than source characteristics. Growth via a liquid droplet phase in the
582 cooler months may also occur. There is little evidence for a contribution of new particle formation
583 (although the summer season dataset is small), consistent with earlier work by Gani et al. (2020).
584 Another notable feature is the apparent complexity and seasonal variability of sources of NO, NO₂
585 and BC, pollutants which can often be used to identify or locate sources of emissions. This is reflected
586 in the various particle fractions, which generally correlate poorly with the other pollutants and with
587 other than proximate size fractions.

588

589 The diurnal variation of all particle fractions is strongly suggestive of a road traffic influence,
590 especially in the winter campaign. This appears strongly influenced by the emissions of heavy duty
591 diesel traffic which is only able to access central Delhi at night. A size mode of <15 nm may well
592 be attributable to vehicles using LPG/CNG fuels. However, the seasonal variability of the geographic
593 distribution and wind speed dependence of sources revealed by the polar plots is strongly indicative
594 of many other sources also contributing to all size fractions of particles.

595

596 **DATA ACCESSIBILITY**

597 Data supporting this publication are openly available from the UBIRA eData repository at
598 <https://doi.org/10.25500/edata.bham.00000730>

599

600 **AUTHOR CONTRIBUTIONS**

601 This study was conceived by RMH. WJB managed the research programme, and MSA and LRC
602 collected the data. DCB and UAS led the data analysis with contributions from JB and DB. UAS
603 and RMH co-authored the first draft. ZS and all co-authors provided comments and revisions.

604

605 **COMPETING INTERESTS**

606 The authors declare that they have no conflict of interest.

607

608 **FINANCIAL SUPPORT**

609 This research has been supported by the Natural Environment Research Council NE/P016499/1.

610

611 **ACKNOWLEDGEMENTS**

612 We are thankful the Scientific and Technical Research Council of Turkey (TUBITAK) (grant
613 number 1059B191801445) to support the author Ulku Alver Sahin to work on the ASAP project.

614 We would also like to acknowledgement the IIT Delhi team under the Principal Investigator-ship of

615 Professor Mukesh Khare who provided all the facilities including space and logistical help during
616 the experiment.

617

618 **REFERENCES**

619

620 Azimi, P., Zhao, D. and Stephens, B.: Estimates of HVAC filtration efficiency for fine and ultrafine
621 particles of outdoor origin, *Atmos. Environ.*, 98, 337-346,
622 <https://doi.org/10.1016/j.atmosenv.2014.09.007>, 2014.

623

624 Babu, S. S., Manoj, M.R., Moorthy, K. K., Mukunda, M. G., Vijayakumar, S.N., Sobhan, K.K.,
625 Satheesh, S.K., Niranjan, K., Ramagopal, K., Bhuyan, P.K. and Singh, D.: Trends in aerosol optical
626 depth over Indian region: Potential causes and impact indicators, *J. Geophys. Res.*, 118, 11794–
627 11806, <https://doi.org/10.1002/2013JD020507>, 2013.

628

629 Balakrishnan, K., Pillarisetti, A., Yamanashita, K. and Yusoff, K.: Air Pollution in Asia and the
630 Pasific: Science Based Solution, Published by the United Nations Environment Programme
631 (UNEP), Chapter 1.2 Air quality and health in Asia and the Pacific, January 2019, ISBN: 978-92-
632 807-3725-7, Bangkok, Thailand, 2019.

633

634 Beddows, D. C. S., Dall'osto, M. and Harrison, R. M.: An Enhanced Procedure for the Merging of
635 Atmospheric Particle Size Distribution Data Measured Using Electrical Mobility and Time-of-
636 Flight Analysers, *Aerosol Science and Technology*, 44, 11, 930-938,
637 <https://doi.org/10.1080/02786826.2010.502159>, 2010.

638

639 Bhandari, S., Gani, S., Patel, K., Wang, D. S., Soni, P., Arub, Z., Habib, G., Apte, J.S. and Ruiz, L.
640 H.: Sources and atmospheric dynamics of organic aerosol in New Delhi, India: insights from
641 receptor modeling, *Atmos. Chem. Phys.*, 20, 735–752, <https://doi.org/10.5194/acp-20-735-2020>,
642 2020.

643

644 Bikkina, S., Andersson, A., Kirillova, E. N., Holmstrand, H., Tiwari, S., Srivastava, A. K., Bisht,
645 D.S. and Gustafsson, Ö.: Air quality in megacity Delhi affected by countryside biomass burning,
646 *Nature Sustainability*, 2, 200–205, <https://doi.org/10.1038/s41893-019-0219-0>, 2019.

647

648 Bousiotis, D., Dall'Osto, M., Beddows, D. C. S., Pope, F. D., and Harrison, R. M.: Analysis of new
649 particle formation (NPF) events at nearby rural, urban background and urban roadside sites, *Atmos.*
650 *Chem. Phys.*, 19, 5679–5694, <https://doi.org/10.5194/acp-19-5679-2019>, 2019.

651

652 Bousiotis, D., Brean, J., Pope, F. D., Dall'Osto, M., Querol, X., Alastuey, A., Perez, N., Petäjä, T.,
653 Massling, A., Nøjgaard, J. K., Nordstrøm, C., Kouvarakis, G., Vratolis, S., Eleftheriadis, K., Niemi,
654 J. V., Portin, H., Wiedensohler, A., Weinhold, K., Merkel, M., Tuch, T., and Harrison, R. M.: The
655 effect of meteorological conditions and atmospheric composition in the occurrence and
656 development of new particle formation (NPF) events in Europe, *Atmos. Chem. Phys.*, 21, 3345–
657 3370, <https://doi.org/10.5194/acp-21-3345-2021>, 2021.

658

659 Butt, E. W., Rap, A., Schmidt, A., Scott, C. E., Pringle, K. J., Reddington, C. L., Richards, N. A.
660 D., Woodhouse, M. T., Ramirez-Villegas, J., Yang, H., Vakkari, V., Stone, E. A., Rupakheti, M., S.
661 Praveen, P., G. van Zyl, P., P. Beukes, J., Josipovic, M., Mitchell, E. J. S., Sallu, S. M., Forster, P.
662 M., and Spracklen, D. V.: The impact of residential combustion emissions on atmospheric aerosol,
663 human health, and climate, *Atmos. Chem. Phys.*, 16, 873–905, <https://doi.org/10.5194/acp-16-873-2016>, 2016.

664

665 Casquero-Vera, J. A., Lyamani, H., Titos, G., Minguillón, M. C., Dada, L., Alastuey, A., Querol,
666 X., Petäjä, T., Olmo, F. J. and Alados-Arboledas, L.: Quantifying traffic, biomass burning and
667 secondary source contributions to atmospheric particle number concentrations at urban and
668

669 suburban sites, *Science of The Total Environment*, 768, 145282,
670 doi.org/10.1016/j.scitotenv.2021.145282, 2021.

671

672 Chelani, A. B., Gajghate, D. G., ChalapatiRao, C. V. and Devotta, S.: Particle Size Distribution in
673 Ambient Air of Delhi and Its Statistical Analysis, *Bull. Environ. Contam. Toxicol.*, 85, 22–27,
674 https://doi.org/10.1007/s00128-010-0010-4, 2010.

675

676 Chen, F., Zhang, X., Zhu, X., Zhang, H., Gao, J. and Hopke, P. K.: Chemical Characteristics of
677 PM2.5 during a 2016 Winter Haze Episode in Shijiazhuang, China. *Aerosol Air Qual. Res.*, 17,
678 368-380, <https://doi.org/10.4209/aaqr.2016.06.0274>, 2017.

679

680 Chowdhury, S., Dey, S., Tripathi, S. N., Beig, G., Mishra, A. K. and Sharma, S.: "Traffic
681 intervention" policy fails to mitigate air pollution in megacity Delhi, *Environmental Science &*
682 *Policy*, 74, 8-13, <https://doi.org/10.1016/j.envsci.2017.04.018>, 2017.

683

684 Conibear, L., Butt, E. W., Knote, C., Arnold, S. R. and Spracklen, D. V.: Residential energy use
685 emissions dominate health impacts from exposure to ambient particulate matter in Indi., *Nat.*
686 *Commun.*, 9, 617, <https://doi.org/10.1038/s41467-018-02986-7>, 2018.

687

688 Cusworth, D. H., Mickley, L. J., Sulprizio, M. P., Liu, T., Marlier, M.E., DeFries, R. S.,
689 Guttikunda, S.K. and Gupta, P.: Quantifying the influence of agricultural fires in northwest India on
690 urban air pollution in Delhi, India, *Environ. Res. Lett.*, 13, 044018, <https://doi.org/10.1088/1748-9326/aab303>, 2018.

691

692

693 Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P. and Lehtinen, K. E.
694 J.: Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data
695 from SMEAR II, Hyytiala, Finland, *Boreal Environmental Research* 10, 323-336, 2005.

696

697 Dandona, L., Dandona, R., Kumar, G. A., Shukla, D. K., Paul, V. K., Balakrishnan, K.,
698 Prabhakaran, D., Tandon, N., Salvi, S., Dash, A. P., Nandakumar, A., Patel, V., Agarwal, S. K.,
699 Gupta, P. C., Dhaliwal, R. S., Mathur, P., Laxmaiah, A., Dhillon, P. K., Dey, S., Mathur, M. R.,
700 Afshin, A., Fitzmaurice, C., Gakidou, E., Gething, P., Hay, S.I., Kassebaum, N. J., Kyu, H., Lim, S.
701 S., Naghavi, M., Roth, G. A., Stanaway, J. D., Whiteford, H., Chadha, V. K., Khaparde, S. D., Rao,
702 R., Rade, K., Dewan, P., Furtado, M., Dutta, E., Varghese, C. M., Mehrotra, R., Jambulingam, P.,
703 Kaur, T., Sharma, M., Singh, S., Arora, R., Rasaily, R., Anjana, R. M., Mohan, V., Agrawal, A.,
704 Chopra, A., Mathew, A. J., Bhardwaj, D., Muraleedharan, P., Mutreja, P., Bienhoff, K., Glenn, S.,
705 Abdulkader, R. S., Aggarwal, A. N., Aggarwal, R., Albert, S., Ambekar, A., Arora, M., Bachani,
706 D., Bavdekar, A., Beig, G., Bhansali, A., Bhargava, A., Bhatia, E., Camara, B., Christopher, D. J.,
707 Das, S. K., Dave, P. V., Dey, S., Ghoshal, A. G., Gopalakrishnan, N., Guleria, R., Gupta, R., Gupta,
708 S. S., Gupta, T., Gupta, M. D., Gururaj, G., Harikrishnan, S., Iyer, V., Jain, S.K., Jeemon, P.,
709 Joshua, V., Kant, R., Kar, A., Kataki, A.C., Katoch, K., Khera, A., Kinra, S., Koul, P.A., Krishnan,
710 A., Kumar, A., Kumar, R. K., Kumar, R., Kurpad, A., Ladusingh, L., Lodha, R., Mahesh, P. A.,
711 Malhotra, R., Mathai, M., Mavalankar, D., Mohan Bv, M., Mukhopadhyay, S., Murhekar, M.,
712 Murthy, G.V.S., Nair, S., Nair, S. A., Nanda, L., Nongmaithem, R. S., Oommen, A.M., Pandian,
713 J.D., Pandya, S., Parameswaran, S., Pati, S., Prasad, K., Prasad, N., Purwar, M., Rahim, A., Raju,
714 S., Ramji, S., Rangaswamy, T., Rath, G. K., Roy, A., Sabde, Y., Sachdeva, K. S., Sadhu, H., Sagar,
715 R., Sankar, M. J., Sharma, R., Shet, A., Shirude, S., Shukla, R., Shukla, S. R., Singh, G., Singh, N.
716 P., Singh, V., Sinha, A., Sinha, D. N., Srivastava, R. K., Srividya, A., Suri, V., Swaminathan, R.,
717 Sylaja, P. N., Tandale, B., Thakur, J. S., Thankappan, K.R., Thomas, N., Tripathy, S., Varghese,
718 M., Varughese, S., Venkatesh, S., Venugopal, K., Vijayakumar, L., Xavier, D., Yajnik, C. S.,
719 Zachariah, G., Zodpey, S., Rao, J. V. R. P., Vos, T., Reddy, K. S., Murray, C. J. L. and
720 Swaminathan, S.: Nations within a nation: variations in epidemiological transition across the states

721 of India, 1990-2016 in the global burden of disease study. *The Lancet*, 390, 10111, 2437-2460,
722 [https://doi.org/10.1016/S0140-6736\(17\)32804-0](https://doi.org/10.1016/S0140-6736(17)32804-0), 2017.

723

724 Das, A., Kumar, A., Habib, G. and Vivekanandan, P.: Insights on the biological role of ultrafine
725 particles of size PM <0.25 : A prospective study from New Delhi, *Environmental Pollution*, 268, Part
726 B, 115638, <https://doi.org/10.1016/j.envpol.2020.115638>, 2021.

727

728 DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P. and Jimenez, J. L.: Particle
729 Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter
730 Measurements. Part 1: Theory, *Aerosol Science and Technology*, 38:12, 1185-
731 1205, <https://doi.org/10.1080/027868290903907>, 2004.

732

733 Dhyani, R., Sharma, N. and Advani, M.: Estimation of Fuel Loss and Spatial-Temporal Dispersion
734 of Vehicular Pollutants at a Signalized Intersection in Delhi City, India. *WIT Transection on*
735 *Ecology and the Environment: Air Pollution* 2019, WIT Press, 236, 233-247, ISBN: 978-1-78466-
736 343-8, Editor: Passerini et al., 2019.

737

738 Dumka, U. C., Tiwari, S., Kaskaoutis, D. G., Soni, V. K., Safai, P. D. and Attri, S. D.: Aerosol and
739 pollutant characteristics in Delhi during a winter research campaign, *Environ. Sci. Pollut. Res.*, 26,
740 3771-3794. <https://doi.org/10.1007/s11356-018-3885-y>, 2019.

741

742 Gani S., Bhandari, S., Patel, K., Seraj, S., Soni, P., Arub, Z., Habib, G., Ruiz, L.H. and Apte, J.S.:
743 Particle number concentrations and size distribution in a polluted megacity: the Delhi Aerosol
744 Supersite study, *Atmos. Chem. Phys.*, 20, 8533-8549, <https://doi.org/10.5194/acp-20-8533-2020>,
745 2020.

746

747 Giechaskiel, B., Lähde, T. and Drossinos, Y. Regulating particle number measurements from the
748 tailpipe of light-duty vehicles: The next step?, *Environmental Research*, 172, 1-9,
749 <https://doi.org/10.1016/j.envres.2019.02.006>, 2019.

750

751 Gulia, S., Shiva Nagendra, S.M., Khare, M. and Khanna, I.: Urban air quality management-A
752 review, *Atmospheric Pollution Research*, 6, 2, 286-304, <https://doi.org/10.5094/APR.2015.033>,
753 2015.

754

755 Guo, H., Kota, S.H., Sahu, S.K., Hu, J., Ying, Q., Gao, A. and Zhang, H.: Source apportionment of
756 PM 2.5 in North India using source-oriented air quality models, *Environmental Pollution*, 231, 1,
757 426-436, <https://doi.org/10.1016/j.envpol.2017.08.016>, 2017.

758

759 Gupta, S., Kumar, K., Srivastava, A., Srivastava, A. and Jain, V. K.: Size distribution and source
760 apportionment of polycyclic aromatic hydrocarbons (PAHs) in aerosol particle samples from the
761 atmospheric environment of Delhi, India, *Science of The Total Environment*, 409, 22, 4674-4680,
762 <https://doi.org/10.1016/j.scitotenv.2011.08.008>, 2011.

763

764 Gurjar, B. R., van Aardenne, J. A., Lelieveld, J. and Mohan, M.: Emission estimates and trends
765 (1990–2000) for megacity Delhi and implications, *Atmospheric Environment*, 38, 33, 5663-5681,
766 <https://doi.org/10.1016/j.atmosenv.2004.05.057>, 2004.

767

768 Guttikunda, S. K., Goel, R. and Pant, P.: Nature of air pollution, emission sources, and management
769 in the Indian cities, *Atmospheric Environment*, 95, 501-510,
770 <https://doi.org/10.1016/j.atmosenv.2014.07.006>, 2014.

771 Guttikunda, S.K. and Gurjar, B.R.: Role of meteorology in seasonality of air pollution in megacity
772 Delhi, India, Environ. Monit. Assess., 184, 3199–3211. <https://doi.org/10.1007/s10661-011-2182-8>,
773 2012.

774

775 Hama, S.M.L., Kumar, P., Harrison, R.M., Bloss, W.J., Khare, M., Mishra, S., Namdeo, A., Sokhi,
776 R., Goodman, P. and Sharma, C.: Four-year assessment of ambient particulate matter and trace
777 gases in the Delhi-NCR region of India, Sustainable Cities and Society, 54, 102003,
778 <https://doi.org/10.1016/j.scs.2019.102003>, 2020.

779

780 Hama, S.M.L., Cordell, R. L. and Monks, P. S.: Quantifying primary and secondary source
781 contributions to ultrafine particles in the UK urban background, Atmos. Environ., 166, 62-78,
782 doi.org/10.1016/j.atmosenv.2017.07.013, 2017.

783

784 Hamed, A., Joutsensaari, J., Mikkonen, S., Sogacheva, L., Dal Maso, M., Kulmala, M., Cavalli, F.,
785 Fuzzi, S., Facchini, M. C., Decesari, S., Mircea, M., Lehtinen, K. E. J., and Laaksonen, A.:
786 Nucleation and growth of new particles in Po Valley, Italy, Atmos. Chem. Phys., 7, 355–376,
787 <https://doi.org/10.5194/acp-7-355-2007>, 2007.

788

789 Han, Y., Iwamoto, Y., Nakayama, T., Kawamura, K., Hussein, T. and Mochida, M.: Observation of
790 new particle formation over a mid-latitude forest facing the North Pacific, Atmos. Environ., 64, 77-
791 84, <https://doi.org/10.1016/j.atmosenv.2012.09.036>, 2013.

792

793 Harrison RM.: Airborne particulate matter, Phil. Trans. R. Soc. A, 378, 20190319.
794 <http://dx.doi.org/10.1098/rsta.2019.0319>, 2020.

795

796 Harrison, R. M., Rob MacKenzie, A., Xu, H., Alam, M. S., Nikolova, I., Zhong, J., ... and Liang, Z.,
797 Diesel exhaust nanoparticles and their behaviour in the atmosphere. Proceedings of the Royal
798 Society A, 474(2220), 20180492, 2018.

799

800 Harrison, R. M., Beddows, D.C.S. and Dall’Osto, M.: PMF Analysis of Wide-Range Particle Size
801 Spectra Collected on a Major Highway, Environ. Sci. Technol., 45, 13, 5522–5528,
802 <https://doi.org/10.1021/es2006622>, 2011.

803

804 Jain, S., Sharma, S. K., Vijayan, N., Mandal, T. K.: Seasonal characteristics of aerosols (PM2.5 and
805 PM10) and their source apportionment using PMF: A four year study over Delhi, India,
806 Environmental Pollution, 262, 114337, <https://doi.org/10.1016/j.envpol.2020.114337>, 2020.

807

808 Jeong, C.H., Evans, G. J., McGuire, M. L., Chang, R. Y.W. and Abbatt, J. P. D.: Zeromskiene, K.,
809 Mozurkewich, M., Li, S.-M., and Leaitch, W. R.: Particle formation and growth at five rural and
810 urban sites, Atmos. Chem. Phys., 10, 7979–7995, <https://doi.org/10.5194/acp-10-7979-2010>, 2010.

811

812 Jing, H., Li, Y.F., Zhao, J., Li, B., Sun, J., Chen, R., Gao, Y. and Chen, C.: Wide-range particle
813 characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival,
814 Environmental Pollution, 192, 204-211, <https://doi.org/10.1016/j.envpol.2014.06.003>, 2014.

815

816 Kalafut-Pettibone, A. J., Wang, J., Eichinger, W. E., Clarke, A., Vay, S. A., Blake, D. R., and
817 Stanier, C. O.: Size-resolved aerosol emission factors and new particle formation/growth activity
818 occurring in Mexico City during the MILAGRO 2006 Campaign, Atmos. Chem. Phys., 11, 8861–
819 8881, <https://doi.org/10.5194/acp-11-8861-2011>, 2011.

820

821 Kanawade, V.P., Srivastava, A.K., Ram, K., Asmi, E., Vakkari, V., Soni, V.K., Varaprasad, V. and
822 Sarangi, C.: What caused severe air pollution episode of November 2016 in New Delhi?, *Atmos.*
823 *Environ.*, 222, 117125, <https://doi.org/10.1016/j.atmosenv.2019.117125>, 2020.

824

825 Kontses, A., Triantafyllopoulos, G., Ntziachristos, L. and Samaras, Z.: Particle number (PN)
826 emissions from gasoline, diesel, LPG, CNG and hybrid-electric light-duty vehicles under real-world
827 driving conditions, *Atmos. Environ.*, 222, 117126, <https://doi.org/10.1016/j.atmosenv.2019.117126>,
828 2020.

829

830 Kuang, C., Chen, M., Zhao, J., Smith, J., McMurry, P. H., and Wang, J.: Size and time-resolved
831 growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei, *Atmos. Chem. Phys.*,
832 12, 3573–3589, <https://doi.org/10.5194/acp-12-3573-2012>, 2012.

833

834 Kulmala, M., Dada, L., Daellenbach, K.r., Yan, C., Stolzenburg, D., Kontkanen, J., Ezhova, E.,
835 Hakala, S., Tuovinen, S., Kokkonen, T.V., Kurpp, M., Cai, R., Zhou, Y., Yin, R., Baalbaki, R.,
836 Chan, T., Chu, B., Deng, C., Fu, Y., Ge, M., He, H., Heikkinen, L., Junninen, H., Liu, Y., Lu, Y.,
837 Nie, W., Rusanen, A., Vakkari, V., Wang, Y., Yang, G., Yao, L., Zheng, J., Kujansuu, J.,
838 Kangasluoma, J., Petäjä, T., Paasonen, P., Järvi, L., Worsnop, D., Ding, A., Liu, Y., Wang, L.,
839 Jiang, J., Bianchi, F. and Kerminen, V.M.: Is reducing new particle formation a plausible solution to
840 mitigate particulate air pollution in Beijing and other Chinese megacities? *Faraday Discussion* 226,
841 221, doi.org/10.1039/D0FD00078G, 2021.

842

843 Kulmala M., Luoma K., Virkkula A., Petäjä T., Paasonen P., Kerminen V.-M., Nie W., Qi X., Shen
844 Y., Chi X. and Ding A.: On the mode-segregated aerosol particle number concentration load:
845 contributions of primary and secondary particles in Hyytiälä and Nanjing. *Boreal, Env. Res.*, 21,
846 319–331. 2016.

847

848 Kumar, A., Ambade, B., Sankar, T. K., Sethi, S. S. and Kurwadkar, S.: Source identification and
849 health risk assessment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in
850 Jamshedpur, India, *Sustainable Cities and Society*, 52, 101801,
851 <https://doi.org/10.1016/j.scs.2019.101801>, 2020.

852

853 Kumar, P., Gulia, S., Harrison, R. M. and Khare, M.: The influence of odd–even car trial on fine
854 and coarse particles in Delhi, *Environmental Pollution*, 225, 20-30,
855 <https://doi.org/10.1016/j.envpol.2017.03.017>, 2017.

856

857 Kumar, P., Pirjola, L., Ketzel, M., and Harrison, R. M.: Nanoparticle emissions from 11 non-
858 vehicle exhaust sources – A review, *Atmos. Environ.*, 67, 252–277,
859 <https://doi.org/10.1016/j.atmosenv.2012.11.011>, 2013.

860

861 Iida, K., Stolzenburg, M.R., McMurry, P.H. and Smith, J.N.: Estimating nanoparticle growth rates
862 from size-dependent charged fractions: Analysis of new particle formation events in Mexico City,
863 *J. Geophys. Res.*, 113, D05207, doi.org/10.1029/2007JD009260, 2008

864

865 Liu, J., Jiang, J., Zhang, Q., Deng, J., and Hao, J.: A spectrometer for measuring particle size
866 distributions in the range of 3 nm to 10 μm , *Front. Environ. Sci. Eng.*, 10, 63–72,
867 <https://doi.org/10.1007/s11783-014-0754-x>, 2016.

868

869 Magara-Gomez, K.T., Olson, M.R., McGinnis, J.E., Zhang, M. and Schauer, J.J.: Effect of Ambient
870 Temperature and Fuel on Particle Number Emissions on Light-Duty Spark-Ignition Vehicles,
871 *Aerosol Air Qual. Res.*, 14, 1360-1371. <https://doi.org/10.4209/aaqr.2013.06.0183>, 2014.

872

873 Mahato, S., Pal, S. and Ghosh, K. G.: Effect of lockdown amid COVID-19 pandemic on air quality
874 of the megacity Delhi, India, *Science of The Total Environment*, 730, 139086,
875 <https://doi.org/10.1016/j.scitotenv.2020.139086>, 2020.

876

877 Masiol, M., Vu, T. V., Beddows, D. C. S. and Harrison, R. M.: Source apportionment of wide range
878 particle size spectra and black carbon collected at the airport of Venice (Italy), *Atmospheric*
879 *Environment*, 139, 56-74, <https://doi.org/10.1016/j.atmosenv.2016.05.018>, 2016.

880

881 Mönkkönen, P., Koponen, I. K., Lehtinen, K. E. J., Hämeri, K., Uma, R., and Kulmala, M.:
882 Measurements in a highly polluted Asian mega city: observations of aerosol number size
883 distribution, modal parameters and nucleation events, *Atmos. Chem. Phys.*, 5, 57–66,
884 <https://doi.org/10.5194/acp-5-57-2005>, 2005.

885

886 Nagpure, A.S., Ramaswami, A. and Russell, A.: Characterizing the Spatial and Temporal Patterns
887 of Open Burning of Municipal Solid Waste (MSW) in Indian Cities, *Environ. Sci. Technol.*, 49, 21,
888 12904–12912, <https://doi.org/10.1021/acs.est.5b03243>, 2015.

889

890 Narain, U. and Krupnick, A., The Impact of Delhi's CNG Program on Air Quality. RFF Discussion
891 Paper No. 07-06, Available at
892 SSRN: <https://ssrn.com/abstract=969727> or <http://dx.doi.org/10.2139/ssrn.969727>, 2007.

893

894 Ondráček, J., Ždímal, V., Smolík, J., and Lazaridis, M.: A Merging Algorithm for Aerosol Size
895 Distribution from Multiple Instruments, *Water Air Soil Pollut.*, 199, 219–233,
896 <https://doi.org/10.1007/s11270-008-9873-y>, 2009.

897

898 Pant, P. and Harrison, R. M.: Critical Review of Receptor Modelling for Particulate Matter: A Case
899 Study of India, *Atmos. Environ.*, 49, 1-12, <https://doi.org/10.1016/j.atmosenv.2011.11.060>, 2012.

900

901 Pant, P., Baker, S. J., Goel, R., Guttikunda, S., Goel, A., Shukla, A. and Harrison, R.M.: Analysis of
902 size-segregated winter season aerosol data from New Delhi, India, *Atmos. Poll. Res.*, 7, 1, 100-109,
903 <https://doi.org/10.1016/j.apr.2015.08.001>, 2016.

904

905 R Core Team, 2015. R: a Language and Environment for Statistical Computing. R Foundation for
906 Statistical Computing, Vienna, Austria. <http://www.R-project.org/>.

907

908 Rai, P., Furger, M., Haddad, I.E., Kumar, V., Wang, L., Singh, A., Dixit, K., Bhattu, D., Petit, J.E.,
909 Ganguly, D., Rastogi, N., Baltensperger, U., Tripathi, S.N., Slowik, J.G. and Prévôt, A.S.H.: Real-
910 time measurement and source apportionment of elements in Delhi's atmosphere, *Science of The*
911 *Total Environment*, 742, 140332, <https://doi.org/10.1016/j.scitotenv.2020.140332>, 2020.

912

913 Rodríguez, S. and Cuevas, E.: The contributions of “minimum primary emissions” and “new
914 particle formation enhancements” to the particle number concentration in urban air, *Journal of*
915 *Aerosol Science* 38, 1207-1219, <https://doi.org/10.1016/j.jaerosci.2007.09.001>, 2007.

916

917 Rodríguez-Urrego, D. and Rodríguez-Urrego, L.: Air quality during the COVID-19: PM2.5 analysis
918 in the 50 most polluted capital cities in the world, *Environmental Pollution*, 266, 1, 115042,
919 <https://doi.org/10.1016/j.envpol.2020.115042>, 2020.

920

921 Salvador, P., Barreiro, M., Gómez-Moreno, F. J., Alonso-Blanco, E. and Artíñano, B.: Synoptic
922 classification of meteorological patterns and their impact on air pollution episodes and new particle
923 formation processes in a south European air basin, *Atmos. Environ.*, 245, 118016,
924 <https://doi.org/10.1016/j.atmosenv.2020.118016>, 2021.

925 Sarangi, B., Aggarwal, S. G., and Gupta, P. K.: A simplified approach to calculate particle growth
926 rate due to self-coagulation, scavenging and condensation using SMPS measurements during a
927 particle growth event in New Delhi, *Aerosol and air quality research*, 15(1), 166-179, <https://doi:10.4209/aaqr.2013.12.0350>, 2015.

929

930 Sarangi, B., Aggarwal, S. G., Kunwar, B., Kumar, S., Kaur, R., Sinha, D., Tiwari, S. and
931 Kawamura, K.: Nighttime particle growth observed during spring in New Delhi: Evidences for the
932 aqueous phase oxidation of SO₂, *Atmospheric environment*, 188, 82-96,
933 <https://doi.org/10.1016/j.atmosenv.2018.06.018>, 2018

934

935 Schmid, O., Karg, E., Hagen, D. E., Whitefield, P. D. and Ferron, G. A.: On the Effective Density
936 of Non-Spherical Particles as Derived From Combined Measurements of Aerodynamic and
937 Mobility Equivalent Size, *Atmos. Environ.*, 38, 431-443.
938 <https://doi.org/10.1016/j.jaerosci.2007.01.002>, 2007.

939

940 Schreiber, D., Forss, A. M., Mohr, M. and Dimopoulos, P.: Particle Characterisation of Modern
941 CNG, Gasoline and Diesel Passenger Cars, 8th International Conference on Engines for
942 Automobiles, Technical Paper 2007-24-0123, ISSN: 0148-7191, e-ISSN: 2688-3627,
943 <https://doi.org/10.4271/2007-24-0123>, 2007.

944

945 Tiwari, S., Bisht, D.S., Srivastava, A.K., Pipal, A.S., Taneja, A., Srivastava, M.K. and Attri, S.D.:
946 Variability in atmospheric particulates and meteorological effects on their mass concentrations over
947 Delhi, India, *Atmospheric Research*, 145-146, 45-56,
948 <https://doi.org/10.1016/j.atmosres.2014.03.027>, 2014.

949

950 [Thamban, N.M., Lalchandani, V., Kumar, V., Mishra, S., Bhattu, D., Slowik, J.G., Prevot, A.S.H.,](#)
951 [Satish, R., Rastogi, N., Tripathi, S.N.: Evolution of size and composition of fine particulate matter](#)
952 [in the Delhi megacity during later winter, Atmospheric Environment, 267,118752,](#)
953 [doi.org/10.1016/j.atmosenv.2021.118752. 2021.](#)

954

955 Toumasatos, Z., Kontses, A., Doulgeris, S., Samaras, Z. and Ntziachristos, L.: Particle emissions
956 measurements on CNG vehicles focusing on Sub-23nm, *Aerosol Science and Technology*, 55,
957 2, 182-193, <https://doi.org/10.1080/02786826.2020.1830942>, 2021.

958

959 Tyagi, S., Tiwari, S., Mishra, A., Hopke, P.K., Attri, S.D., Srivastava, A.K. and Bisht, D. S.: Spatial
960 variability of concentrations of gaseous pollutants across the National Capital Region of Delhi,
961 India, *Atmospheric Pollution Research*, 7, 5, 808-816, <https://doi.org/10.1016/j.apr.2016.04.008>,
962 2016.

963

964 Vu, T. V., Delgado-Saborit, J. M. and Harrison, R. M.: Particle number size distributions from
965 seven major sources and implications for source apportionment studies. *Atmospheric Environment*,
966 122, 114-132, <https://doi.org/10.1016/j.atmosenv.2015.09.027>, 2015.

967 Wu, T. and Boor, B. E.: Urban aerosol size distributions: a global perspective, *Atmos. Chem. Phys.*,
968 21, 8883-8914, <https://doi.org/10.5194/acp-21-8883-2021>, 2021.

969

970 Yadav, R., Sahu, L.K., Beig, G. and Jaaffrey, S.N.A.: Role of long-range transport and local
971 meteorology in seasonal variation of surface ozone and its precursors at an urban site in India,
972 *Atmospheric Research*, 176-177, 96-107, <https://doi.org/10.1016/j.atmosres.2016.02.018>, 2016.

973

974 Zhang, Y. M., Zhang, X. Y., Sun, J. Y., Lin, W. L., Gong, S. L., Shen, X. J. and Yang, S.:
975 Characterization of new particle and secondary aerosol formation during summertime in Beijing,

976 China, Tellus B: Chemical and Physical Meteorology, 63:3, 382-394,
977 <https://doi.org/10.1111/j.1600-0889.2011.00533.x>, 2011.

978

979 Zhu, C., Li, J.G., Wang, L., Morawska, L., Zhang, X. and Zhang, Y.L.: Size-resolved particle
980 distribution and gaseous concentrations by real-world road tunnel measurement, Indoor and Built
981 Environment, 23, 2, 225-235, <https://doi.org/10.1177/1420326X13509290>, 2014.

982 **FIGURE CAPTIONS:**

983

984 **Figure 1.** Comparison of average particle number counts ($\#/cm^3$) for nucleation, aitken,
985 accumulation, large fine and coarse modes of PM between 15 nm and 10 μm in all
986 seasons, and the volume contributions for comparison.

987

988 **Figure 2.** Average diurnal variation of particle number counts for nucleation, Aitken,
989 accumulation, large fine and coarse modes and $PM_{2.5}$, BC, NO and NO_2 in autumn,
990 summer and winter.

991

992 **Figure 3.** Average diurnal variation of total particle number counts (between 15 and 10 μm) for
993 weekday average (Monday to Friday), Saturday and Sunday in Delhi. (Summer data
994 are very limited. There are no data on Friday afternoon, night and Saturday early
995 morning (Figure S6)).

996

997 **Figure 4.** Diurnal contour plots for particles derived by SMPS between 15 and 660 nm averaged
998 for each season (a: winter, b: Autumn and c: Summer) and for 3 June 2018 data when
999 a NPF event probably occurred (d), the solid line showing the NO_x mixing ratio. Note
1000 the different scales for the seasons presented.

1001

1002 **Figure 5.** The hourly average of day and night particle numbers for all modes from the wide
1003 range particle sizes derived from the merged data. UFP =Nucleation +Aitken, PN_1 =
1004 UFP+Accumulation, PN_{10} = PN_1 +Large Fine+Coarse.

1005

1006 **Figure 6.** Seasonal average (line) and standard deviation (shadow) of particle number size
1007 distributions.

1008

1009 **Figure 7.** Hourly average day and night (left side) and during day hours (right side) particle
1010 number distributions in autumn, summer and winter in Delhi.

1011

1012 **Figure 8.** Diurnal change of the geometric mean diameter (GMD) calculated for winter, autumn
1013 and summer seasons. Growth rates (nm/hour) are calculated from $dGMD/dt$.

1014

1015 **Figure 9.** Hourly average particle number, volume and area distributions in the winter (a),
1016 autumn (b) and summer (c) in Delhi.

1017

1018 **Figure 10.** Correlation coefficient (R) between the hourly average PNs of five particle size
1019 fractions (left side) and NO, NO_2 , BC (right side).

1020

1021 **Figure 11.** Polar plots of PNs ($\#/cm^3$) for five particle size fractions in winter, autumn and
1022 summer in Delhi.

1023

1024

1025

1026

1027

1028

1029

1030 **Figure 1.** Comparison of average particle number counts ($\#/cm^3$) for nucleation, aitken,
 1031 accumulation, large fine and coarse modes of PM between 15 nm and 10 μm in all seasons, and the
 1032 volume contributions for comparison.

1033

1034

1043

1044

1045

1046 **Figure 3.** Average diurnal variation of total particle number counts (between 15 and 10 μm) for
 1047 weekday average (Monday to Friday), Saturday and Sunday in Delhi. (Summer data are very
 1048 limited. There are no data on Friday afternoon, night and Saturday early morning (Figure S6)).
 1049

Figure 4. Diurnal contour plots for particles derived by SMPS between 15 and 660 nm averaged for each season (a: winter, b: Autumn and c: Summer) and for 3 June 2018 data when a NPF event probably occurred (d), the solid line showing the NO_x mixing ratio. Note the different scales for the seasons presented.

1061
1062 **Figure 5.** The hourly average of day and night particle numbers for all modes from the wide range
1063 particle sizes derived from the merged data. UFP =Nucleation +Aitken, PN₁ = UFP+Accumulation,
1064 PN₁₀= PN₁+Large Fine+Coarse.
1065

1066

1067 **Figure 6.** Seasonal average (line) and standard deviation (shadow) of particle number size
1068 distributions.
1069

1070

1071

1072

1073

1074

1075

Figure 7. Hourly average day and night (left side) and during day hours (right side) particle number distributions in autumn, summer and winter in Delhi.

1076

1077 **Figure 8.** Diurnal change of the geometric mean diameter (GMD) calculated for winter, autumn
 1078 and summer seasons. Growth rates (nm/hour) are calculated from $dGMD/dt$.

1079

1091

1092 **Figure 10.** Correlation coefficient (R) between the hourly average PNs of five particle size
1093 fractions (left side) and NO, NO₂, BC (right side).
1094

1095

1096

1097 **Figure 11.** Polar plots of PNs (#/cm³) for five particle size fractions in winter, autumn and summer
 1098 in Delhi.
 1099