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Table SM1. WRF-Chem physico-chemical configuration used in the simulations.

Scheme Option Reference

Physics

Microphysics Lin Lin et al. (1983)

SW & LW radiation RRTM Iacono et al. (2008)

Planetary boundary layer YSU Hong et al. (2006)

Cumulus Grell 3D Grell and Dévényi (2002)

Soil Noah Tewari et al. (2004)

Chemistry

Gas-phase RACM-KPP
Stockwell et al. (1997)

Geiger et al. (2003)

Aerosols GOCART
Ginoux et al. (2001)

Chin et al. (2002)

Photolysis Fast-J Fast et al. (2006)

Biogenic emissions MEGAN Guenther et al. (2006)

Anthropogenic emissions ACCMIP Lamarque et al. (2010)
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Table SM2. Estimated annual premature deaths (PD × 103) by age range in all scenarios covered (in thousands).

Present PRE-P2010 RCP8.5 FUT-P2010 RCP8.5 REN80-P2010 RCP8.5 FUT-P2050 RCP8.5 REN80-P2050

Age Range PD × 103 PD/100,000 h. PD × 103 PD/100,000 h. PD × 103 PD/100,000 h. PD × 103 PD/100,000 h. PD × 103 PD/100,000 h.

25-29 4.4 7.5 4.4 7.5 4.2 7.2 3.2 7.2 3.0 6.9

30-34 8.0 13.8 8.0 13.8 7.7 13.3 6.4 13.6 6.2 13.0

35-39 12.7 22.0 12.7 22.1 12.2 21.1 10.9 22.3 10.5 21.3

40-44 18.0 31.4 18.0 31.5 17.3 30.2 15.7 32.4 15.1 31.1

45-49 28.5 48.0 28.5 48.1 27.4 46.2 21.8 47.6 20.9 45.7

50-54 43.6 77.1 43.6 77.2 41.9 74.2 34.5 75.1 33.1 72.2

55-59 60.8 118.3 60.8 118.5 58.5 113.9 58.4 117.5 56.2 113.0

60-64 80.0 182.5 80.1 182.6 77.0 175.6 103 .4 191.0 99.3 183.4

65-69 80.7 236.9 80.8 237.2 77.8 228.4 126.7 243.8 121.8 234.3

70-74 112.3 328.3 112.5 328.8 108.0 315.7 153.9 321.9 147.7 308.8

75-79 116.8 460.9 117.0 461.8 112.4 443.5 195 .4 458.6 187.6 440.2

80+ 328.7 1035.3 329.4 1037.5 317.2 999.3 807 .5 1043.7 778.0 1005.6

TOTAL 894.3 157.5 895.8 157.8 861.5 151.8 1537.9 254.3 1479.3 244.7

(PRE-P2010): PD for the present case; (FUT-P2010): PD for the future scenario with population at 2010 levels; (REN80-P2010): PD for the future mitigation scenario with population at

2010 levels; (FUT-P2050): PD for the future scenario with population projections of UN for 2050; (REN80-P2010): PD for the future mitigation scenario with population at 2010 levels;

(REN80-P2050): PD for the future mitigation scenario with population projections of UN for 2050.

Figure SM1. Target domain and European regions included in this contribution: Western Europe (yellow), Central Europe (blue) and Eastern

Europe (purple).
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Figure SM2. Population density (pop/km2) in each grid cell for the present case (top) and difference with UN-projected population in 2050

(bottom) over the European target domain (pop/km2).
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