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Abstract. The evaluation of radiative forcing associated with aerosol-cloud interactions remains a significant source of uncer-

tainty in future climate projections. The problem is confounded by the fact that aerosol particles influence clouds locally, and

that averaging to larger spatial and/or temporal scales carries biases that depend on the heterogeneity and spatial correlation of

the interacting fields and the non-linearity of the responses. Mimicking commonly applied satellite data analyses for calcula-

tion of albedo susceptibility So, we quantify So aggregation biases using an ensemble of 127 large eddy simulations of marine5

stratocumulus. We explore the cloud field properties that control this spatial aggregation bias, and quantify the bias for a large

range of shallow stratocumulus cloud conditions manifesting a variety of morphologies and range of cloud fractions. We show

that So spatial aggregation biases can be on the order of 100s of percent, depending on methodology. Key uncertainties emanate

from the typically applied adiabatic drop concentration Nd retrieval, the correlation between aerosol and cloud fields, and the

extent to which averaging reduces the variance in cloud albedo Ac and Nd. So biases are more often positive than negative,10

and are highly correlated to biases in the liquid water path adjustment. Temporal aggregation biases are shown to offset spatial

aggregation biases. Both spatial and temporal biases have significant implications for observationally based assessments of

aerosol indirect effects and our inferences of underlying aerosol-cloud-radiation effects.

1 Introduction

Shallow liquid clouds are a poorly quantified component of the climate system and one of the greatest sources of uncertainty15

for climate projections (e.g. Bony and Dufresne, 2005; Bony et al., 2017). The problem is multifaceted and encompasses

fundamental understanding of how these clouds are affected by the thermodynamic structure of the atmosphere, how they

might change in a warmer world, how they are influenced by the atmospheric aerosol, and how all of these components are

represented in climate models. The difficulty in quantifying the radiative effects of shallow clouds emanates, to a large extent,

from the large range of spatiotemporal scales involved: aerosol-cloud interaction processes need to be understood and resolved20

at the scale of centimeters (e.g. Hoffmann et al., 2019) while cloud fields and their organization are driven by larger scale

circulations at scales of 100s to 1000s of kms (e.g. Norris and Klein, 2000). Importantly, aerosol-cloud interactions acting at

scales on the order of 100 m need to be resolved; (a) because they can lead to fundamental changes in the radiative state of

a cloud system by changing the cloud albedo, cloud fraction, and spatial distribution of condensate (e.g. Sharon et al., 2006;
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Stevens et al., 2005; Wang and Feingold, 2009); and (b) because non-linearities in aerosol-cloud-radiation interactions mean25

that the methodology of averaging small-scale properties to larger-scales might generate biases in the radiative response.

This paper focuses on the ramifications of small-scale processes for cloud albedo susceptibility and cloud liquid water path

adjustments (changes in liquid water path in response to changes in aerosol concentration) within the context of how they are

treated in satellite-based analyses. Two key aspects are addressed: the first relates to spatial averaging from the level of the

satellite pixel (order 1 km) to commonly used aggregation scales on the order of 10s – 100s of kms; the second relates to30

temporal aggregation from the individual scene snapshot up to a timeframe on the order of months. Large scale analyses often

aggregate data both spatially and temporally into data sets that might cover e.g. 4◦ × 4 ◦ and five years (Chen et al., 2014), or

a range of scales from kms - 10s kms for cloud microphysics, liquid water path, and radiation, 1◦ × 1◦ for aerosol, and three

month seasonal responses (Lebsock et al., 2008). While it is impractical not to aggregate to some degree – e.g., to smooth noisy

retrievals or extract signals from a noisy background – the implications for quantifying aerosol-cloud interactions are still not35

well understood.

In the following, we will use the terms ‘aggregation’ and ‘averaging’ synonymously; ‘aggregation’ tends to be used when

speaking more broadly about including data from a larger range of spatial and temporal scales, whereas ‘averaging’ is used in

more of a mathematical sense.

We quantify aerosol-cloud interactions using the albedo susceptibility metric (Platnick and Twomey, 1994) defined here as40

So =
dlnAc
dlnNd

=
(1−Ac)

3

[
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5

2

dlnL
dlnNd

]
, (1)

where Ac is the cloud albedo, Nd is the drop concentration, and L is the liquid water path. The expression comprises the cloud

brightening or ‘Twomey’ component (1−Ac)/3 and the adjustment term Lo = dlnL/dlnNd, and assumes no changes in drop

distribution width (e.g. Feingold and Siebert, 2009). The factor of 5/2 suggests a potentially strong but uncertain contribution

from L adjustments; even the sign of this term varies from positive for precipitating clouds to negative for non-precipitating45

clouds (Christensen and Stephens, 2011; Glassmeier et al., 2021).

Using satellite-based observation systems, e.g., the MODerate Imaging Spectroradiometer (MODIS; Salomonson et al.,

1998), one can derive a drop concentration Nd,a, based on adiabatic assumptions, from retrieved visible cloud optical depth τ

and cloud-top drop effective radius re:

Nd,a =

√
5

2πk

(
fad cw(T,P ) τ

Qext ρw r5e

)1/2

, (2)50

where cw(T,P ) is related to the condensation rate and is a known function of cloud-base temperature T and pressure P ,

fad is the adiabatic fraction (assumed in this paper to be 0.8), Qext is the extinction coefficient (≈ 2 in the visible part of

the spectrum), ρw is the density of liquid water, and k is a factor that is inversely proportional to the width of the drop size

distribution (assumed to be 0.8). When fad = 1, Nd,a is the adiabatic drop concentration.

Liquid water path L is derived from MODIS data as55

L=
5

9
fad re τ. (3)
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Further details of these derivations can be found in Brenguier et al. (2000) and Grosvenor et al. (2018). Ac can be derived from

τ using a simple two-stream approximation for a plane-parallel cloud (Bohren, 1987)

Ac =
τ

γ+ τ
(4)

where γ depends on the degree of forward scattering. Equation(4) also assumes an overhead sun, no absorption, and a dark60

underlying surface. We do not consider 3-dimensional radiative transfer.

As an example of how averaging of data can affect the quantification of derived variables, we note that Eq. (4) is a concave

function, which following Jensen’s inequality, means that for an inhomogeneous cloud field, f(τ̄)> f(τ). Thus calculating

τ based on large length scale-averaged cloud properties, and then calculating Ac = f(τ̄) using Eq.(4), will generate a high

bias in Ac that is inherently a function of the inhomogeneity of the cloud field. Because this well-known albedo bias (e.g.65

Cahalan et al., 1994; Oreopoulos and Davies, 1998) is not the topic of this paper, we will assume in all calculations that Ac is

measured directly by an instrument like Clouds and the Earth’s Radiant Energy System (CERES) at the desired measurement

length-scale, and therefore does not suffer from an averaging bias. Instead, we explore similar biases that affect quantification

of So. For example, Eq. (2) is a highly non-linear function of τ and re so that whether one elects to calculate Nd,a before or

after averaging of component variables τ and re will potentially have a strong effect on So.70

McComiskey and Feingold (2012) analyzed large eddy simulation (LES) output of three cloud fields characterized by dif-

ferent degrees of inhomogeneity and showed that an aerosol-cloud interaction metric, dlnτ /dlnNd, increased as a result of

averaging – more so for heterogeneous fields than for homogeneous fields. To put the topic on firmer footing we first establish

a theoretical framework for assessing the biases. We then use a large number of LESs (127) as proxy data, which we then

use to simulate satellite retrievals. We apply typical methodologies used in satellite retrievals, as well as variants, to assess the75

provenance of the So bias. Both spatial and temporal aggregation scales are considered, with a focus on the former. Because of

the limited domain size available to LES, we concern ourselves with the effects of spatial averaging from scales on the order

of 1 km to 10 km. The multiple snapshots of different scenarios available from the LES output provide the basis for temporal

aggregation. We note that Grandey and Stier (2010) also looked at the effect of aggregation scale on quantification of aerosol

indirect effects (the radiative forcing of aerosol-cloud interactions). Their analysis addressed much larger scales (1◦, 4◦, and80

60◦) in climate models. Here we focus on a model framework that explicitly resolves aerosol-cloud interactions at the cloud

scale.

2 Theory

2.1 Spatial aggregation of variables derived from non-linear functions

The two fundamental geophysical variables associated with aerosol-cloud interactions are N (a generic concentration; drop85

or aerosol number concentration, which are well-correlated) and L. In the case of homogeneous aerosol and cloud fields,

averaging of data to different scales has no effect on derived quantities such as Nd, L, Ac, and So, and the order of calculation

of these fields is of no consequence. In reality, however, cloud fields exhibit different degrees of inhomogeneity: Condensation
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of cloud water responds to local updrafts, and to some extent, availability of cloud condensation nuclei. Drop concentration

depends on aerosol concentration – typically a less variable field than cloud water – as well as local supersaturation driven by90

updrafts. Under these conditions, the quantification of aerosol-cloud interaction metrics like So and the influence of averaging

could be far more important.

The theoretical framework for addressing this question is well-known from similar examples in the atmospheric sciences,

notably biases in rain formation processes that result from large-scale averaging of the cloud water and drop concentration terms

in expressions for autoconversion and accretion (e.g. Lebsock et al., 2013; Zhang et al., 2019). In the interest of completeness,95

we repeat the key equations here. Assuming a lognormal PDF of quantity x:

P (x) =
1√

2π x lnσg,x
exp[−(x−xg)/(2ln2σg,x)], (5)

where the lognormal parameters are geometric mean (or median) xg and geometric standard deviation σg,x. Quantity x rep-

resents Ac or L, and N . Using well-known integral properties of the lognormal function (e.g. Feingold and Levin, 1986) it is

easy to show that the bias in a moment xβx associated with averaging can be written as:100

Bx =
xβx

x̄βx
= (D2

x + 1)
β2x−βx

2 , (6)

with the relative dispersion Dx, the ratio of the standard deviation to the mean, defined as

Dx = ((x− x̄)2)1/2/x̄. (7)

If the two interacting fields, e.g. L and N , are assumed to follow a bivariate lognormal distribution, the bias associated with

the covariance between L and N is105

Bcov = exp(r(L,N) ·βL ·βN ·σg,L ·σg,N ), (8)

where r(L,N) is the spatial correlation between L and N . (Note that we elect to present the theory in terms of L and N rather

than Ac and N because Ac includes compounded dependence on N via τ . Since L and Ac are highly correlated, this choice

does not affect the general framework for discussion.)

The overall bias associated with averaging for two covarying fields is then given by110

B = BL ·BN ·Bcov. (9)

The equations allow theoretical calculation of the So biases associated with two covarying fields L and N , each characterized

by its own heterogeneity DL and DN , respectively.

To apply this analysis to biases in So associated with interacting L and N fields, we make a number of assumptions. In the

absence of an analytical form for the L adjustment, we assume it is negligible. We also assume that Ac depends linearly on τ ,115

which holds over a large range of τ . So is then approximated as being proportional to (1 − τ ) (Eq. 1). Note that because the

% bias in (1 - τ ), is equivalent to the % bias in τ , we can apply

τ = c L5/6N1/3 (10)
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(e.g. Brenguier et al., 2000), where c is a constant that does not require specification for the purpose of the current analysis.

Then, with βL = 5/6 and βN = 1/3, Eq. 9 can be calculated for given values of DL, DN , and r(L, N). These are shown in Fig.120

1 in DL; DN space, for three values of r(L,N). We note that large positive and negative biases can result from averaging; for

negative r(L,N), biases are positive, and on the order of 20 – 60 % whereas for positive values of r(L,N), biases are negative,

and on the order of -20 – -70%. When correlation between the fields is zero, biases are 10 – 20 %. The central role of r(L,N)

is further illuminated by plotting the bias in So as a function of r(L,N) for specified DL and DN combinations (Fig. 2).

Note that the assumption of a bivariate lognormal distribution is common when dealing with geophysical fields. Another125

cautionary note is that given the various assumptions applied to generate the results in Figs. (1) and (2), they should be

considered illustrative – i.e., they are primarily intended to highlight key variables that control aggregation bias. When we

embark on our analysis of LES output, we will assume that τ and re are known exactly, and quantitative comparison with Figs.

(1) and (2) should be avoided.

2.2 Effects of spatial and temporal averaging on variance, and correlation between fields130

The second framework for assessment of biases derives from the basic definition of the linear regression fit:

b̂= rx,y
σy
σx

(11)

where b̂ is the regression slope and σx is the standard deviation of field x. In our case, x = aerosol or drop concentration (we

will use Nd) and y = cloud variable (Ac or L). As shown by McComiskey and Feingold (2012), aveaging increases r(x,y) but

decreases σx and σy to varying degrees. Of interest is therefore, the extent to which averaging changes r(x,y) and the ratio135

σy/σx.

3 Large Eddy Simulation as a Data Source

We calculate So biases using output from 127 large eddy simulations of marine stratocumulus under a range of conditions from

fairly homogeneous overcast to broken open cellular structures.

Simulations are generated by the System for Atmospheric Modeling (SAM; Khairoutdinov and Randall, 2003). Input condi-140

tions are derived from ERA-5 reanalysis in the stratocumulus regime off the coast of California. The model set-up is similar to

Feingold et al. (2016) and Glassmeier et al. (2021), with initial meteorological and aerosol conditions sampled using the Latin

hypercube method. Simulations are nocturnal and of 12 h duration. The first 5 h of output from each simulation is discarded

to avoid cloud scenes that are not fully developed. The domain size is 48 km × 48 km × 2.5 km with a 500 m damping layer

below the model top at 2.5 km. The profile is extended up to 35 km (5 hPa) for radiation calculations. Grid spacings are dx145

= dy = 200 m, dz = 10 m. A two-moment bulk microphysical method that calculates all warm cloud processes (including

supersaturation and activation) is applied (Feingold et al., 1998). The simulations differ from Glassmeier et al. (2021) in one

key respect, namely surface fluxes are calculated interactively. Resultant cloud fields exhibit varying degrees of heterogeneity,

including closed-, open-, and transitions from closed-to-open cellular convection.
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The LES output provides microphysical fields of drop number concentration and liquid water content as three-dimensional150

prognostic variables, under the assumption of a bimodal lognormal distribution of cloud drops and rain drops with fixed

distribution width (σg = 1.2 for both). However to mimic satellite retrievals, we work with the derived model variables τ and

cloud-top re to calculate Nd, and L based on Equations (2) and (3). Both cloud water and rain water contribute to τ and

re. Cloud-top is calculated based on a liquid water mixing ratio threshold (0.01 g kg−1). Because these clouds are strongly

capped, the first grid point exceeding this value (when working from above, and downward towards the cloud-top) almost155

always exceeds the threshold significantly, providing a maximum, or near-maximum re in each model column.Ac is calculated

based on the modeled value of τ (Eq. 4) and then averaged, and therefore does not suffer from averaging bias. So is calculated

directly for each scene based on the definition (So = dlnAc/dlnNd) using least squares regression to the natural logarithms of

Ac and Nd.

3.1 Spatial Aggregation160

3.1.1 Level 2 Analysis

The standard averaging method follows the MODIS level 2 (L2) methodology in the sense that calculations are performed at

high resolution prior to averaging. In the current work, Eqns. (2) and( 3) are calculated based on the native 200 m model mesh

(n =1) and then averaged to n × n tiles. Results will be shown for n = 30 vs. n = 4, i.e., 6 km × 6 km boxes vs. 800 m ×
800 m boxes. These choices result from a desire for a reasonable number of regression points (n = 30) and for some small165

amount of smoothing (n = 4) to reduce the noise in Nd retrievals (Eq. 2). The choice of n = 4 also brings us close to the typical

1 km length-scale used for analysis of L2 MODIS data. (We did not use n= 5, i.e., 1 km, because the number of points in

the domain is even, and our desire is to maximize our coverage and simplify analysis.) Note that L2 methodology removes

the biases associated with non-linear functions applied to averaged data discussed in section 2.1 (Jensen’s inequality) since

Nd is calculated using Eq. (2) at the 200 m level and then averaged up. The same is true for Ac, which as previously noted is170

calculated based on Eq. (4).

Biases are defined as

(X̄ − X)/X, (12)

where X represents So calculated at n = 4 and X̄ represents So at n = 30 . Correlations r(L,Nd) refer to calculations for n = 4

unless otherwise stated. Nd in the L2 analysis represents cloudy-column averaged drop concentration, i.e., Nd = Nd,a based175

on Eq.(2).

The Nd retrieval (Eq. 2) is very sensitive to thin clouds particularly when re, but also τ are small. As is common in MODIS

data analyses, calculations are only applied to thicker clouds, in our case, to re > 3 µm and τ > 3.

3.1.2 Variants

Two variants of the calculations will be presented.180
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1. Mimic MODIS level 3 (L3) analysis. Here satellite-based retrievals are based on aggregated data. In other words Eqns.

(2) and (3) for Nd and L, respectively, are applied to data averaged to n= 4 and n= 30. By doing so the averaging

biases associated with Jensen’s inequality are introduced. The biases are expected to derive from a mix of influences:

low for Nd (a convex function in re dominates a concave function in τ ; Eq. 2), and negligible for L (Eq. 3). The effect

of smoothing associated with level 3 aggregation is thus likely to be highly dependent on cloud field heterogeneity.185

2. Mimic MODIS L2 analysis but eliminate uncertainties in the (sub)adiabatic retrieval of Nd by assuming a ‘perfect’ Nd,

which is taken directly from the LES. Because the LES Nd is a 3-dimensional variable, we use in-cloud, column average

values. This methodology will be referred to as L2N. Note that L is still calculated as per Eq. (3). The goal here is to

understand the extent to which the retrieval of Nd drives the regression biases.

3.2 Temporal aggregation190

To address temporal aggregation we consider the same individual LES snapshots described above but calculate So in two ways:

(i) So regression fits to individual cloud scenes are simply averaged up over all cloud scenes; (ii) LES output is temporally

aggregated to a large data set, from which So is calculated via regression. The first approach preserves the individual cloud

scene susceptibilities while the second aggregates many different cloud fields before performing the regression. The biases are

calculated based on Eq. (12), with the overbar indicating the second approach (ii). The methodology is followed (separately)195

for both n = 4 and n = 30 spatial averaging, and for L2, L3, and L2N.

4 Results

4.1 Spatial Aggregation

4.1.1 Effect of Spatial Aggregation on So and correlation

Figure 3 presents results for the three approaches (L2, L3, and L2N). We start with the figures showing S̄o vs. So to avoid200

ambiguity in the sign of the bias associated with Eq. (12). (According to Eq. 12, conditions under which S̄o is more negative

than So also manifest as positive biases.) The solid line is the 1:1 line.

Points are colored by cloud fraction fc (defined at the native 200 m grid spacing) since it also serves as a good proxy for

cloud field heterogeneity. (The correlation between fc and D(L) is 0.86.) For L2, we note that both S̄o and So are almost

always positive and that low fc states do not suffer from worse biases than high fc states. On the contrary, high fc is often205

associated with the largest biases. The reasons for this will become apparent in the subsequent analysis.

Responses for the L3 analysis are distinctly different in a number of ways: first, both S̄o and So are almost always negative,

and low fc cloud scenes often have lower biases than high fc scenes. This is because L3 averaging has a stronger smoothing

effect on broken cloud fields, and therefore somewhat unexpectedly reduces the averaging bias for broken cloud fields com-

pared to solid cloud fields. Nevertheless, the non-physical shift in the sign of So associated with L3 methodology should act as210

a cautionary note. We present an explanation for the reversal of sign in Appendix A.
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L2N analysis yields strongly positive So and a clearer dependence of the bias on fc. For broken cloud scenes So is sometimes

negative but biases tend to be scattered and relatively small. These low fc ≈ 0.3 states are dominated by cumulus cells with

stronger updrafts that result in coherent Nd. Since So and S̄o are only calculated in cloudy regions (above the re and τ

thresholds), this coherence in Nd results in a small bias. Thus the reasons for small susceptibility bias at low fc differ for L3215

and L2N. With increasing fc, biases tighten around the 1:1 line but start to deviate for fc > 0.85, and exhibit increasingly large

values.

To quantify the biases, these same analyses are shown as % biases in So (Eq. 12) as a function of the correlation between L
and Nd (r(L,Nd); Fig. 4), the calculations of which are consistent with the derivation of variables averaged to n= 4; e.g., L2

and L3 calculations apply r(L,Nd) based on Eqns. 2 and 3, and L2N calculates r(L,Nd) using the true Nd and Eq. 3.220

L2 biases are almost always positive and can reach values of many 100s of % (Fig. 4). As expected from Section 2.1, r(L,Nd)
has a strong influence over the So bias, particularly for L2, with the bias increasing noticeably with decreasing r(L,Nd), in a

manner qualitatively similar to Fig. 2. The high values and high variability in the bias as one approaches r(L,Nd)≈ 0 are to

some extent a consequence of an uncertain regression fit when the correlation between the L (or the closely related Ac) and

Nd fields is poor.225

Of note is that L3 analysis methodology (aggregate first, then derive) changes the sign of r(L,Nd) to negative values, as it

did the sign of So (Fig. 3). L3 biases are more widely dispersed and show no clear trend with r(L,Nd) or fc. L2N biases tend

to be capped at about 100% and values of r(L,Nd) are noticeably more positive than those in L2. These results reinforce two

points: (i) that L3 analysis generates non-physical results (negative So and a change in the sign of r(L,Nd)); and (ii) that the

use of the (sub)adiabatic assumption (Eq. 2) as a proxy for Nd incurs a significant increase in the So bias relative to L2N, most230

noticeably at low r(L,Nd) where Eq. 2 results in a significantly reduced (but for the most part, positive) correlation.

4.1.2 Effect of Spatial Aggregation on Regression

It is useful to turn to the underlying definitions of regression analysis (section 2.2) to explore more deeply the influence of

averaging on the So bias. According to Eq. (11), So biases are related to the ratio of b̂ (6 km) to b̂ (800 m):

¯̂
b/b̂=

r̄x,y
rx,y

( σ̄y
σ̄x

)
/
(σy
σx

)
, (13)235

with ¯̂
b denoting 6 km averaging and b̂ denoting 800 m averaging. We therefore consider (i) the ratio σ̄Ac/σ̄Nd to σAc/σNd

(henceforth the ‘σ-ratio’; Fig. 5), and (ii) the ratio r̄(Ac,Nd)/r(Ac,Nd) (henceforth the ‘r-ratio’; Fig. 6), which by Eq. (11)

are both determinants of the bias. Note that for the r-ratio, we use r(Ac,Nd) to adhere more rigorously to the regression

analysis definitions. The interpretation of these ratios is non-trivial. They express the extent to which σAc/σNd and r(Ac,Nd)

are modified by averaging. In the case of σAc/σNd this amounts to interpreting a ‘ratio of ratios’. Later we will delve into this240

in more detail.

L2 results show a clear dependence of the So bias on the σ-ratio, and especially large biases when the σ-ratio is high (Fig.

5a). These also happen to be points exhibiting high fc (cf. Fig 4a). Also apparent is that the separation of positive and negative

biases is demarcated at a σ-ratio of 1. The results suggest a strong correlation between the σ-ratio and fc. At high r(L,Nd),
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the So bias increases systematically with increasing σ-ratio (Fig. 5a) but with decreasing r(L,Nd) the strong, and orthogonal245

influence of the r-ratio becomes more important (Fig. 6a). Clearly evident in Fig. 6a is the anticipated unstable calculation of

the r-ratio in the vicinity of r(L,Nd) = 0.

The L3 methodology exhibits an even clearer dependence of the So bias on the σ-ratio, except for cloud fields with

r(L,Nd)≈ −0.2 (Fig. 5b) where the high bias is clearly related to both the σ- and r-ratios (Fig. 6b). The aforementioned

vertically oriented green colored points have a σ-ratio of about 1 and r-ratio of 2.5, i.e., the bias is driven by the r-ratio.250

For the L2N methodology, here too the σ-ratio (Fig. 5c) provides a clearer indication of the magnitude of the bias compared

to either the r-ratio (Fig. 6c) or fc (Fig. 4).

Based on Eq. (13), the influence of the σ- and r-ratios on So bias is expected. What is more revealing is the influence of

averaging on the components of these ratios. To this end, Fig. 7 examines the effect of averaging on the reduction in σAc and

σNd . In other words, we ask: to what extent does averaging smooth the Ac field relative to the smoothing in the Nd field?255

Accordingly, axes in Fig. 7 are calculated as normalized reductions in the variables.

L2 analysis shows that at low fc the normalized reductions in σ(Nd) tend to be smaller than those in σ(Ac) but that the

reverse tends to be true for fc > 0.75 (Fig. 7a), i.e. at high fc, averaging smooths the Nd field more than it smooths the

Ac field. We will show below that these high fc scenes, although inherently more homogeneous, often manifest significant

inhomogeneity in Nd as a result of the Nd retrieval. (See further discussion in section 4.1.4; Examples.)260

The clear exception to the trend of averaging smoothing Nd more than Ac with increasing fc is the group of low fc points

that exists in Fig. 4a at r(L,Nd)< 0.2. These anomalous points appear below the 1:1 line in Fig. 7a and show up as lower

r-ratio points (reddish points) in a sea of higher r-ratio points (brown colors) in Fig. 8a. Another distinct feature is the group of

vertically oriented high fc (Fig. 7a) and low r-ratio (Fig. 8a) points for which smoothing ofNd increasingly exceeds smoothing

in Ac as one moves below the 1:1 line. Because these points are characterized by small values of the r-ratio, there appears to265

be an offsetting of σ-ratio and r-ratio effects.

A closer look shows that these points manifest as a negative So bias (Fig. 9a); in other words, the reduction in the r-ratio

dominates the increase in the σ-ratio. Although these negative bias points tend to be more rare, they can be identified in Fig.

4a at high fc and low r(L,Nd) (< 0.3).

Analysis of L3 shows some similarities and some differences from L2. First, there is a much more significant scatter in270

points, particularly at lower fc (Fig. 7b); second, as in L2, averaging-related smoothing of Nd tends to exceed smoothing in

Ac at higher fc (Fig. 7b); third, and different from L2, values of the r-ratio of ≈ 1 (Fig. 8b, green colors) are associated with

higher So biases (Fig. 9b), which must derive from the σ-ratio.

Finally, L2N reveals a somewhat richer palette of responses. First the commonalities: (i) the general trend for smoothing

of Nd to exceed smoothing of Ac with increasing fc and increasing r-ratio is relatively robust (cf. Fig 7c and Figs 7ab); (ii)275

when the r-ratio ≈ 1, and smoothing of the fields is similar (Figs. 8a and 8c), the So bias is capped at about 100% (Figs. 9a

and 9c). In fact it is clear from Fig. 9 that So biases exceeding 100% always occur when averaging-related smoothing has a

stronger effect on Nd than on Ac, although the magnitude and even sign of these biases vary significantly depending on the
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methodology. The richness (lack of monotonicity) in responses under these conditions depends on the relative strength of the

r-ratio, and the extent to which it amplifies or counteracts the σ-ratio.280

We note one interesting difference between L2 and L2N: for the latter, low fc points reside in conditions under which

averaging-related smoothing is dominated by more as well as less significant smoothing of Nd vs Ac. (Fig. 7c). In very rare

cases the low fc points above, but close to the 1:1 line in Fig. 9c cause negative So biases (cf. Fig. 6c). Finally, some very

high positive So biases (up to 500 %) do exist for L2N. These can be traced to conditions when the r-ratio is large (Fig. 8c)

and averaging smooths Nd more than Ac. In this case the effects of averaging on the r-ratio and the σ-ratio work in unison to285

amplify the bias.

4.1.3 So bias vs. L adjustment bias

The topic of L adjustments is of great interest given that the term may both enhance or offset the overall albedo susceptibility

(Eq. 1) (e.g. Glassmeier et al., 2021). For example, a value of Lo = dlnL/dlnNd <−0.4 will change the sign of So from

positive to negative. Numerous recent articles, based on models and observations, point to Lo being positive in precipitating290

conditions, following the familiar Albrecht (1989) ‘cloud lifetime’ hypothesis which posits that aerosol perturbations will

suppress collision-coalescence and decrease precipitation, and therefore L losses, while it is negative in the non-precipitating

regime, as a result of enhanced evaporation-entrainment feedbacks (Wang et al., 2003; Ackerman et al., 2004; Xue et al., 2008;

Christensen and Stephens, 2011; Gryspeerdt et al., 2019). Fig. 10 shows the relationship between spatial averaging-related So

and Lo biases, with points colored by fc. For clarity we show a subsample of 58 of the total 127 simulations to avoid points295

clustering and obscuring points below. These 58 samples represent Latin hypercube sampling of the full data set and do not

exhibit any bias relative to the full set.

First, we note a strong positive correlation between the two biases, with Lo biases larger than So biases in L2 and L2N (Fig.

10a, c). The reverse is true for L3 (Fig. 10b). For L2 and L3, two distinct branches appear; the first is a tight relationship for

fc > 0.7, while the second is somewhat less well-defined and associated with lower fc. There is a saturation in the ratio for300

fc on the order of 0.3 in L2 (Fig. 10a), while L3 shows a distinctly stronger So bias at low fc compared to the approximately

linear relationship for high fc (Fig. 10b). Detailed analysis of this flip in the relative slope for high fc vs. low fc for L2 and L3

can be traced to relative differences in the degree of aggregation-related smoothing between Ac and L (see Appendix B).

The separation of these branches is much less distinct for L2N (Fig. 10c) but in general Lo biases are larger than So biases,

although to a lesser extent than in L2. The absence of a clear separation in the branches is a result of the use of the correct Nd305

such that cloud heterogeneities affect the biases to a similar degree. While the strong positive correlation between So and Lo
biases is not surprising given the expected tight relationship between So and Lo, it is clear that using the methodologies applied

here, satellite-based analyses of the Lo bias have the potential to be at least as severe as those associated with So biases.

4.1.4 Examples

While our goal has been to provide a broad assessment of susceptibility biases in terms of cloud field properties, some examples310

are helpful to illustrate the issues. We focus on L2 and L2N to isolate the effect of the Nd retrieval for individual cases,
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chosen randomly based on their visual physical characteristics, but supported by other cases. Figure 11 presents an LES-

generated stratocumulus scene characterized by high fc (= 0.98) and a very realistic closed-cellular structure ( Fig. 11a,c).

Drop concentration fields for the (sub)adiabatically-derived Nd (Eq. 2) and the ‘true’ (LES) Nd show the problem very clearly.

The retrievedNd shows a great deal more fine-scale structure than the trueNd, and although in the mean the retrievedNd is not315

highly unrealistic (retrieved Nd = 167 cm−3; true Nd = 227 cm−3 — an error of -26 %), the two fields are strongly negatively

correlated, with a fit slope of Nd (retrieved) = 378 - 0.9 × Nd (true). To quantify this further, we consider the correlations

between L and Nd: Applying the true Nd, r(L,Nd) = 0.78 whereas using the retrieved Nd, r(L,Nd) =−0.24. This shift from

strong positive r(L,Nd) to negative r(L,Nd) has implications for the So bias (e.g. Fig. 2): The L2-derived So bias is -2017

% whereas the L2N bias is +80 %. Here the use of true Nd reduces the So error very significantly. This example serves to320

explain why high So biases can exist in high fc scenes (e.g. Fig. 4). We emphasize that the significant inhomogeneity in Nd is

a result of the Nd retrieval, rather than an inherent property of the cloud field, and that it is this increase in inhomogeneity and

reduction in r(L,Nd) that drives up the So bias.

The second example (Fig. 12) is a low fc case (0.23) exhibiting classic open-cellular structure. Here the mean retrievedNd =

21 cm−3 and the true Nd = 12 cm−3 — an error of +75 %. The best fit linear regression between the two yields Nd (retrieved)325

= 20 + 0.075×Nd (true). Examining the true Nd, we find r(L,Nd) = 0.13 whereas using the retrieved Nd, r(L,Nd) =−0.05

The So biases are 285 % and 803 % for L2 and L2N respectively, i.e., the true Nd degrades the So bias. We have identified two

contributing factors to this unexpected result: (i) in the case of L2N , the proximity of r(L,Nd) to zero generates an unstable

r-ratio and unstable So bias (Eq. 13); (ii) more generally, unexpected results can occur when the base So (n= 4) is small,

which by Eq. (12), will generate unstable bias calculations. For the current case, So is small because the open cell walls are330

already very bright, i.e., (1 − Ac) in Eq. (1) is small.

Note that the results in Fig. 12 may seem counterintuitive at first glance since from a satellite remote sensing perspective, a

negative bias in retrieved Nd is generally expected in broken cloud scenes due to a positive bias in re and a negative bias in τ

(e.g., Grosvenor et al., 2018). However, the aforementioned bias is a satellite-based measurement bias. In our case, we assume

that re and τ are correct (taken directly from the model). We take the opportunity to emphasize that this work focuses on the335

effect of averaging cloud fields characterized by different morphologies, and not with the broken cloud re and τ biases. The

latter would need to be considered with a MODIS instrument simulator for a more complete assessment.

While examination of case studies proves useful, we argue that the broader statistical view is essential to understanding the

error landscape that might be encountered in highly variable natural cloud scenes. In this regard, Figs. 3 – 6, supported by Figs.

7 – 9, are essential.340

4.2 Temporal Aggregation

Although the focus of the work has been on spatial aggregation, we now briefly consider the effects of temporal aggregation,

which by Eq. (11) will also affect So. Large scale analyses often aggregate data over multiyear timescales (e.g. Chen et al.,

2014), or three month seasonal timescales (Lebsock et al., 2008), extending the range of conditions and changing the variance
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and correlation between the fields. The result is that the regression fit to a longterm, temporally aggregated data set will be345

different from the short timeframe fits, averaged up to include the same data.

Table 1 summarizes the results for the three methodologies (L2, L3, and L2N), and for spatial averaging of n = 4 and n

= 30. To represent the temporally unaggregated approach, first a regression fit to ln Ac vs lnNd is performed to each scene

(the entire domain) to generate a value of So; then the individual So values are averaged (represented by ΣSo). This is done

for all scenes that meet the criteria discussed in Section 3. The temporally aggregated approach (S̄o) aggregates all scenes350

into one large data-set before performing the regression. Because of the large number of individual Ac;Nd pairs required to

calculate S̄o, calculations are limited to 58 of the 127 simulations, as in Section 4.1.3. The biases are calculated based on Eq.

(12). Of immediate note is that the analysis shows that temporal aggregation results in a reduced So on the order of 70 – 110 %,

depending on the methodology applied. For L2 and L2N the average of local-in-time cloud albedo susceptibility is larger than

that calculated by temporally aggregating many scenes. This bias is of opposite sign to the typical biases associated with spatial355

aggregation (e.g. Fig. 4) and not significantly different in magnitude. This offsetting of errors should be seen as a cautionary

flag when making choices of how to aggregate data, rather than as a fortuitous occurrence, since as we have shown above, the

biases are highly dependent on cloud field properties.

In the case of L3, the temporal aggregation of many different scenes results in an increase in albedo susceptibility and a

change in sign from negative to weakly positive. Here too, the spatial and temporal aggregation has opposite effects (cf. Fig.360

3b). (Note that the % differences for L3 in Table 1 are somewhat misleading: because of the change in sign, increases in So

due to temporal averaging still show up as negative differences because of the normalization by the negative ΣSo.)

Finally, given the close relationship between the So and Lo spatial aggregation biases, we surmise that temporal averaging

will have similar effects on Lo as on So.

5 Discussion and Summary365

Satellite-based measurements are our best means of assessing aerosol-cloud-radiation interactions at the global scale and

providing model constraints for one of the most uncertain forcings of the atmospheric system, namely aerosol indirect effects.

Space-based data draw heavily on polar-orbiting satellites carrying passive instruments from which we infer aerosol properties

(e.g., aerosol optical depth), cloud properties (cloud optical depth, cloud-top drop effective radius, liquid water path), and

radiative fluxes. Typical approaches to quantification of aerosol-cloud-radiation interactions average these inferred properties370

spatially and temporally to suppress the ‘noisy’ retrievals inherent to these measurements. The goal of this paper has been

to address the ramifications of spatial and temporal aggregation for standard metrics of indirect effects in the form of cloud

albedo susceptibility So, which is in turn strongly dependent on the liquid water path adjustment (Lo) (Eq. 1). The question

is central to our ability to quantify aerosol indirect effects, and raises fundamental questions of non-linearities in the aerosol-

cloud interaction system, and natural co-variability of the interacting fields. Early work recognized the effects of aggregation375

on cloud albedo (Ac) – the so-called “albedo bias" (e.g. Cahalan et al., 1994). The current study has assumed no aggregation

error in Ac (as in the case of a direct CERES-based retrieval) but has focused instead on derivatives of the form of Eq. (1)
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that include highly non-linear satellite-based retrievals of drop concentration (Nd). In addition, we have derived liquid water

path L from the product of spectrometer-derived cloud optical depth and drop effective radius (Eq. 3), as is typically done for

MODIS-based retrievals, and have not addressed the question of how this derivation might affect the So bias.380

To provide context for the problem we start with a theoretical framework based on spatial distributions of the interacting

aerosol and cloud fields, which helps identify key variables that control the So bias (the variance in the fields and the correlation

between the fields). Then, picking up on earlier work (McComiskey and Feingold, 2012), which analyzed three stratocumulus

cloud scenes with varying degrees of cloud field variance, we extend the analysis to 127 simulations exhibiting a wide variety

of stratocumulus cloud scenes. The LES provides all essential microphysical properties from which standard retrievals can385

be performed. The key cloud field properties are cloud-top drop effective radius re, cloud optical depth τ (both of which are

taken directly from the LES) and Ac (based on LES τ and Eq. 4). Nd is derived from Eq. (2) and L, from Eq. (3). Within

the framework of standard regression analysis, we quantify the effects of aggregation on the variance in the fields and the

correlation between the fields, and the implications for So biases.

The assessment of spatial aggregation biases considers three methodologies. The first is standard level 2 (L2) satellite390

methodology, which retrieves cloud properties at high resolution (order 1 km) and averages them up to a scale on the order of

100 km. Given the limitations in our LES domain size (40 km), we instead compare So based on 800 m and 6 km scales. This

forms the basis of our spatial scale averaging. Recognizing that some might choose to use the more compact aggregated data

as a start point, our second approach is level 3 (L3) methodology, which applies microphysical retrievals to spatially averaged

data. Considering that a key and uncertain variable in the So calculation is the derived drop concentration (Nd), a third set of395

calculations repeats the level 2 analysis but uses the ‘true’ (LES-calculated) Nd, which we refer to as the L2N methodology.

All consider perfect cloud albedo retrievals based on LES cloud optical depth (Eq. 4), removing the well-known cloud albedo

averaging bias from the discussion. Furthermore, derived variables re and τ , which are central to the So bias analysis have been

assumed to be free of measurement error. Real-world satellite retrieval errors of these variables, especially in heterogeneous or

broken cloud fields, could amplify or perhaps counter the biases identified here. Therefore, applying the conclusions directly400

to satellite studies should be done with caution.

Key results pertaining to spatial aggregation biases are

1. So biases are generally positive for all three approaches and, consistent with theory, tend to increase with decreasing

correlation between the fields (Fig. 4). For L2, biases can reach 500 %, whereas they are capped at about 100 % for L2N.

These biases will translate to biases in aerosol-cloud radiative forcing.405

2. L3 methodology (falsely) creates negative correlations between the cloud fields, resulting in generally unpredictable So

bias behavior (Fig. 4b). Moreover, it generates negative So values (see Appendix A), exacerbated by increasing degrees

of averaging (Fig. 3b). The positive So biases for L3 are therefore misleading (Figs. 3b and 4b).

3. High cloud fraction fc states are equally or even more prone to So bias than low fc (highD(L)) states. This is in part due

to the nature of the Nd retrieval, which introduces heterogeneity into the field (see example Fig. 11), but L2N cases also410

tend to exhibit this trend. The literature tends to consider high fc states as homogeneous, but this works shows that this is
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not necessarily the case since the Nd retrieval generates unrealistic small-scale heterogeneity in relatively homogeneous

conditions.

4. Using regression theory (Eq. 11) we can interpret biases in So based on the extent to which averaging changes (i) the

ratio of the correlation rx,y (r-ratio) and (ii) the ratio of σy/σx (σ-ratio) at the 6 km vs. the 800 m scales. Fig. 5 shows415

that that the So bias is strongly dependent on the σ-ratio, particularly for L3 and L2N, and for L2 at high r(L,Nd). The

r-ratio has a weaker control over the So biases (Fig. 6).

5. Since the σ-ratio is a ratio-of-ratios, we further expand our analysis of this term to assess the extent to which averaging

changes σAc relative to σNd . We find that while averaging can reduce σAc as much as σNd , there is a tendency for larger

reductions in σNd (Fig. 7), particularly for high fc and low r-ratio L2 cases (Fig. 8) and for low fc L2N cases (Fig. 7).420

6. So biases exceeding 100% always occur when averaging-related smoothing has a stronger effect on Nd than on Ac (Fig.

9) although the magnitude and even sign of these biases vary significantly depending on the methodology. The lack of

monotonicity in responses under these conditions depends on the relative strength of the r-ratio, and the extent to which

it amplifies or counteracts the σ-ratio. This in turn, depends on the cloud fields themselves in ways that are not always

easy to clarify.425

7. As anticipated by Eq. (1) the So bias is a strong function of the Lo bias (Fig. 10). In the case of L2, the Lo bias is

noticeably smaller than the So bias at low fc, while the reverse is true for L3 (see Appendix B).

Regarding temporal aggregation, we note that if aerosol-cloud interaction metrics such as So are based on aggregation of

cloud scenes over an extended period of time, bias can be expected as a result of extending the range of conditions beyond the

natural local fluctuations inherent to covarying meteorological and aerosol conditions. To assess the effects of this temporal430

aggregation, we consider the difference between the average of So from individual cloud scenes, and the So that is derived from

a best-fit to the data from all those scenes, with the former reflecting the average of local-in-time So and the latter reflecting the

effect of temporal aggregation. Calculations are performed at both 800 m and 6 km scales (Table 1). Of note is that temporal

averaging, as calculated in this manner, reduces (in % terms) So at both averaging scales, and for L2, L3, and L2N analysis.

The negative bias is on the order of 70 – 80 % for L2 and L2N. As noted in section 4.1.1, L3 spatial aggregation methodology435

generates negative So, and temporal aggregation has the beneficial effect of creating small positive, and therefore more realistic

So (relative to temporally unaggregated) values. (In percentage change terms, however, the bias is negative.)

We emphasize that these offsetting effects of spatial and temporal So biases are very situationally-dependent and require

further investigation. As in the case of the regression analysis (Eq. 11) performed for spatial aggregation, the pertinent question

becomes the extent to which temporal aggregation will affect the σ- and r-ratios. Further work will need to place this offsetting440

effect on firmer footing.

Finally, it is of great importance that similar assessments of So biases be considered in real-world satellite-based data. This

will allow the community to assess the degree of coherence between the aforementioned studies and the model-based results

presented here, and the implications for quantification of aerosol-cloud radiative forcing.
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Table 1. Temporal averaging values and % differences. ΣSo refers to a simple average of the So for individual cloudy scenes; S̄o refers to

the So regression fit to the temporally aggregated data from all cloudy scenes; the % difference is defined as (S̄o −ΣSo)/ΣSo. n = 4 and n

= 30 refer to the 800 m and 6 km spatial averaging scales, respectively.

Temporal Averaging Values and % Differences

L2 L3 L2N

ΣSo S̄o % ΣSo S̄o % ΣSo S̄o %

n = 4 0.564 0.259 -74 -0.652 0.044 -107 1.012 0.301 -70

n = 30 0.966 0.298 -69 -0.959 0.073 -108 1.373 0.296 -78

Data availability. TEXT445

Model output is available on request.

Appendix A

Sorting or aggregation of data can generate unexpected responses. A common example of this is the relationship between

‘success at basketball’ and ‘height’ (Fig. A1). Although the expected positive correlation between these two variables emerges450

if one sorts the data by age group, the reverse occurs if one aggregates all the data together (‘first aggregate, then fit’), simply

because older players, while taller, do not typically perform as well as younger players. This apparent contradiction was noted

by Simpson (1951) and is known as Simpson’s Paradox. It is receiving more attention during the COVID-19 pandemic as

it explains apparent contradictions between vaccination rates and hospitalizations when data are not sorted by confounding

factors.455

Although hard to prove, the commonality for the current data is that L2 methodology takes the approach of fitting the

un-aggregated data, whereas L3 methodology first averages the data and then performs a fit. In our case the data are not

as clearly separated as in the simple example in Fig. A1 but L2 methodology has a much higher chance of retaining the

underlying physical relationship between variables than L3 methodology. Indeed, L2 produces positive So whereas L3 produces

a counterintuitive negative So.460

15



Appendix B

We address the flip in the relative slopes of low and high fc points for L2 and L3 in Fig. 10. Based on Fig. 7 and Eq. (13), our

intuition is that it is likely a function of the change in averaging-smoothing in Ac vs. averaging-smoothing in L. To test this,

we repeat Fig. 7 but now also look at smoothing in L and Nd.465

What is apparent is that for L3, there is much more smoothing in Ac than in L at low fc (the L3 points lie closer to the 1:1

line in Fig. B1b vs. Fig. 7b for low fc). For L2, more low fc points tend to lie below the 1:1 line in Fig. B1a vs. Fig. 7a, but

because of this migration of points from above to below the line, it is more difficult to interpret. For L2N the smoothing in L
and Ac, look similar, in line with our intuition (cf. Fig. 10 where one sees less of a bias in the relationship for low and high fc

points).470

To dig deeper, we look more closely at the σ-ratio (Eq. 13) for (i) Ac, Nd (σ-ratio (Ac, Nd)) and (ii) L, Nd (σ-ratio (L, Nd))

for the low fc points. We then fit a linear relation between points for 0.3 < fc < 0.43 (Fig. B2) andfc > 0.85 (not shown) and

obtain the following: For 0.3 < fc < 0.43, L2: y = 0.06 + 0.78x, L3: y =−0.25 + 1.03x, L2N: y =−0.22 + 1.02x (with x =

the σ ratio for L and Nd, and y, the σ-ratio for Ac and Nd. For fc > 0.85, L2: y = 0.1 + 0.90x, L3: y = 0.04 + 0.94x, L2N:

y = 0.23 + 0.81x.475

The high fc slopes for L2 and L3 are similar (0.90 vs. 0.94, respectively) but there is a more significant difference in the

low fc slopes (0.78 vs. 1.03 for L2 and L3 respectively), and in the direction consistent with the differences between L2 and

L3 (Fig. 10ab). Note the steepening of the low fc points in L3 and the negative intercept for L3 at low fc (Fig. B2), which is

consistent with Fig. 10b. This points strongly to the differences in degree of aggregation-related smoothing between Ac and L
in these low fc scenes being responsible for the flip in the relative sign of So vs. L adjustment slopes between Fig. 10a (L2)480

and Fig. 10b (L3).

We note that these differences in smoothing derive from the derivations of Ac (Eq. 4) and L (Eq. 3), with Ac a (non-linear)

function of τ only, and L a function of the product of τ and re. Anticipating how the aggregation biases play out is not intuitive,

and requires, in our experience, analyses of the kind shown here.
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Figure Captions565

Figure 1: Theoretical calculations of the albedo susceptibility bias (in %) for a range of relative dispersions in L and N (D(L)

and D(N ), respectively), for three different correlations (r) between L and N . Note the values of large positive and negative

biases.

Figure 2: As in Fig. 4 but for the So bias as a function of the spatial correlation between L and N , for a range of relative

dispersions in L (D(L)) and fixed D(N ). Of note is that for the conditions shown the biases are large and range from about570

-150 % (for positive r and large D(L)) to + 70 % (negative r, large D(L)).

Figure 3: So aggregated to a 6 km scale (S̄o) vs. So aggregated to an 800 m scale (So) for (a) L2, (b) L3 and (c) L2N

methodology as described in the text. Solid line is the 1:1 line. Dashed lines are drawn at ordinate and abscissa values of zero.

Note the general overestimate in So with increasing aggregation scale in (a) and (c) and the change of sign in So associated

with L3 aggregation in (b). Of note is that high cloud fraction/low heterogeneity conditions are often associated with high575

biases.

Figure 4: So bias in % as defined in Eq. (12) as a function of the correlation between liquid water path and drop concentration

r(L,Nd) with points colored by cloud fraction fc for (a) L2, (b) L3 and (c) L2N methodology. In (a) and (c) the So bias tends

to increase with decreasing r(L,Nd) and increasing cloud fraction fc, with noted exceptions. Use of the true Nd in (c) restricts

the So bias to about 100%.580

Figure 5: As in Fig. 4 but with points colored by the ratio of σAc/σNd at 6 km to σAc/σNd at 800 m (the σ-ratio). Note the

clear dependence of the So bias on the σ-ratio and that the bias∼ 0 when the σ-ratio∼1 (green colors). Exceptions to the latter

occur for L2 at low r(L,Nd).

Figure 6: As in Fig. 4 but with points colored by the ratio of correlations r(L,Nd) at 6 km to r(L,Nd) at 800 m (the r-ratio).

Comparison with Fig. 5 shows approximately orthogonal dependence of the σ- and r-ratios on the So bias. In (a) and (b),585

calculation of the r-ratio is mathematically unstable at r(L,Nd) = 0 as evidenced by saturating colors.

Figure 7: Effects of aggregation on normalized reduction in σ(Ac) vs. normalized reduction in σ(Nd) to shed light on results

in Fig. 5. Points are colored by fc. At high (low) fc averaging tends to more significantly reduce (increase) σ(Nd) relative to

σ(Ac). Notable exceptions occur in (c) for some low fc conditions. See text for further discussion.

Figure 8: As in Fig. 7 but with points colored by the r-ratio. See text for discussion.590

Figure 9: As in Fig. 7 but with points colored by So bias. Biases exceeding 100 % always occur when averaging-related

smoothing has a stronger effect on Nd than on Ac.
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Figure 10: So bias vs. the L-adjustment bias (dlnL/dlnNd in Eq. 1) for a limited set of model scenes (for clarity). Note a strong

positive correlation between the two biases, as expected from Eq. (1). In (a) and (b), the relative magnitude of these biases

depends on fc, although with opposite trend. In (a) and (c), the L-adjustment bias tends to be larger than the So bias.595

Figure 11: High resolution (n= 1) 2-D snapshot of (a) ‘true’ Nd, (b) retrieved Nd (Eq. 2); (c) L, and (d) the relationship

between (b) and (a). Note the different scales between (a) and (b). Although the mean values of Nd in (a) and (b) differ by only

-36 %, they exhibit negative correlation over the scene. The retrieved Nd introduces significant heterogeneity into the field.

Use of the true Nd reduces the absolute value of the So error from -2017 % to +80 %.

Figure 12: As in Fig. 11 but for an open-cellular case. Note the different scales between (a) and (b). Mean values of Nd in (a)600

and (b) differ by -75 %. Use of the true Nd degrades the So bias (285 % for L2 vs. 803 % for L2N).

Figure A1: Demonstration of Simpson’s Paradox (Simpson, 1951) with the often-quoted relationship between ‘success at

basketball’ (y-axis) and ‘height’ (x-axis). If data are separated by age, then the expected positive relationship emerges. If data

are first aggregated – i.e., age is not taken into account – then a negative relationship emerges. The analogy to the current

work is that aggregating blue points and red points separately and then fitting (as in L3 methodology) may explain negative So605

values.

Figure B1: Effects of aggregation on normalized reduction in σ(L) vs. normalized reduction in σ(Nd) to shed light on results

in Fig. 10. Points are colored by fc. In Fig. B1b, and at low fc, aggregation tends to less significantly reduce σ(L) relative to

σ(Ac) (Fig. 7b). (a) L2, (b) L3, (c) L2N. See Appendix B for further discussion.

Figure B2: Plots of σ-ratio (Eq. 13) for Ac, Nd (σ-ratio (Ac, Nd)) vs. L, Nd (σ-ratio (L, Nd)). The solid lines are best fit lines610

to the low fc points. The dash-dotted line is the 1:1 line. Note that the log scale distorts the solid-line linear relationships. (a)

L2, (b) L3, (c) L2N. See Appendix B for further discussion.
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