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Abstract. The evaluation of radiative forcing associated with aerosol-cloud interactions remains a significant source of uncer-
tainty in future climate projections. The problem is confounded by the fact that aerosol particles influence clouds locally, and
that averaging to larger spatial and/or temporal scales carries biases that depend on the heterogeneity and spatial correlation of
the interacting fields and the non-linearity of the responses. Mimicking commonly applied satellite data analyses for calcula-
tion of albedo susceptibility .S,, we quantify S, aggregation biases using an ensemble of 127 large eddy simulations of marine
stratocumulus. We explore the cloud field properties that control this spatial aggregation bias, and quantify the bias for a large
range of shallow stratocumulus cloud conditions manifesting a variety of morphologies and range of cloud fractions. We show
that S, spatial aggregation biases can be on the order of 100s of percent, depending on methodology. Key uncertainties emanate
from the typically applied adiabatic drop concentration /N retrieval, the correlation between aerosol and cloud fields, and the
extent to which averaging reduces the variance in cloud albedo A. and Ny. S, biases are more often positive than negative,
and are highly correlated to biases in the liquid water path adjustment. Temporal aggregation biases are shown to offset spatial
aggregation biases. Both spatial and temporal biases have significant implications for observationally based assessments of

aerosol indirect effects and our inferences of underlying aerosol-cloud-radiation effects.

Copyright statement. TEXT

1 Introduction

Shallow liquid clouds are a poorly quantified component of the climate system and one of the greatest sources of uncertainty
for climate projections (e.g. Bony and Dufresne, 2005; Bony et al., 2017). The problem is multifaceted and encompasses
fundamental understanding of how these clouds are affected by the thermodynamic structure of the atmosphere, how they
might change in a warmer world, how they are influenced by the atmospheric aerosol, and how all of these components are
represented in climate models. The difficulty in quantifying the radiative effects of shallow clouds emanates, to a large extent,
from the large range of spatiotemporal scales involved: aerosol-cloud interaction processes need to be understood and resolved
at the scale of centimeters (e.g. Hoffmann et al., 2019) while cloud fields and their organization are driven by larger scale

circulations at scales of 100s to 1000s of kms (e.g. Norris and Klein, 2000). Importantly, aerosol-cloud interactions acting at
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scales on the order of 100 m need to be resolved; (a) because they can lead to fundamental changes in the radiative state of
a cloud system by changing the cloud albedo, cloud fraction, and spatial distribution of condensate (e.g. Sharon et al., 2006;
Stevens et al., 2005; Wang and Feingold, 2009); and (b) because non-linearities in aerosol-cloud-radiation interactions mean
that the methodology of averaging small-scale properties to larger-scales might generate biases in the radiative response.

This paper focuses on the ramifications of small-scale processes for cloud albedo susceptibility and cloud liquid water path
adjustments (changes in liquid water path in response to changes in aerosol concentration) within the context of how they are
treated in satellite-based analyses. Two key aspects are addressed: the first relates to spatial averaging from the level of the
satellite pixel (order 1 km) to commonly used aggregation scales on the order of 10s — 100s of kms; the second relates to
temporal aggregation from the individual scene snapshot up to a timeframe on the order of months. Large scale analyses often
aggregate data both spatially and temporally into data sets that might cover e.g. 4° x 4 ° and five years (Chen et al., 2014), or
a range of scales from kms - 10s kms for cloud microphysics, liquid water path, and radiation, 1° x 1° for aerosol, and three
month seasonal responses (Lebsock et al., 2008). While it is impractical not to aggregate to some degree — e.g., to smooth noisy
retrievals or extract signals from a noisy background — the implications for quantifying aerosol-cloud interactions are still not
well understood.

In the following, we will use the terms ‘aggregation’ and ‘averaging’ synonymously; ‘aggregation’ tends to be used when
speaking more broadly about including data from a larger range of spatial and temporal scales, whereas ‘averaging’ is used in
more of a mathematical sense.

We quantify aerosol-cloud interactions using the albedo susceptibility metric (Platnick and Twomey, 1994) defined here as
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where A, is the cloud albedo, Ny is the drop concentration, and L is the liquid water path. The expression comprises the cloud
brightening or ‘Twomey’ component (1 — A.)/3 and the adjustment term £, = dIn£/dInN,, and assumes no changes in drop
distribution width (e.g. Feingold and Siebert, 2009). The factor of 5/2 suggests a potentially strong but uncertain contribution
from £ adjustments; even the sign of this term varies from positive for precipitating clouds to negative for non-precipitating
clouds (Christensen and Stephens, 2011; Glassmeier et al., 2021).

Using satellite-based observation systems, e.g., the MODerate Imaging Spectroradiometer (MODIS; Salomonson et al.,
1998), one can derive a drop concentration Ny o, based on adiabatic assumptions, from retrieved visible cloud optical depth 7
and cloud-top drop effective radius r:

V5 ([ faa co(T,P) 7\ '/*
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where ¢, (T, P) is related to the condensation rate and is a known function of cloud-base temperature 7" and pressure P,
faq 1s the adiabatic fraction (assumed in this paper to be 0.8), Q.. is the extinction coefficient (=~ 2 in the visible part of
the spectrum), p,, is the density of liquid water, and k is a factor that is inversely proportional to the width of the drop size

distribution (assumed to be 0.8). When f,4 = 1, Ny, is the adiabatic drop concentration.
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Liquid water path £ is derived from MODIS data as
5
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Further details of these derivations can be found in Brenguier et al. (2000) and Grosvenor et al. (2018). A, can be derived from

T using a simple two-stream approximation for a plane-parallel cloud (Bohren, 1987)

- T
_/Y+T

A, “4)

where v depends on the degree of forward scattering. Equation(4) also assumes an overhead sun, no absorption, and a dark
underlying surface. We do not consider 3-dimensional radiative transfer.

As an example of how averaging of data can affect the quantification of derived variables, we note that Eq. (4) is a concave

function, which following Jensen’s inequality, means that for an inhomogeneous cloud field, f(7) > f(7). Thus calculating
7 based on large length scale-averaged cloud properties, and then calculating A. = f(7) using Eq.(4), will generate a high
bias in A, that is inherently a function of the inhomogeneity of the cloud field. Because this well-known albedo bias (e.g.
Cahalan et al., 1994; Oreopoulos and Davies, 1998) is not the topic of this paper, we will assume in all calculations that A, is
measured directly by an instrument like Clouds and the Earth’s Radiant Energy System (CERES) at the desired measurement
length-scale, and therefore does not suffer from an averaging bias. Instead, we explore similar biases that affect quantification
of S,. For example, Eq. (2) is a highly non-linear function of 7 and 7. so that whether one elects to calculate Ny , before or
after averaging of component variables 7 and . will potentially have a strong effect on S,,.

McComiskey and Feingold (2012) analyzed large eddy simulation (LES) output of three cloud fields characterized by dif-
ferent degrees of inhomogeneity and showed that an aerosol-cloud interaction metric, dln7/dIn/NVg, increased as a result of
averaging — more so for heterogeneous fields than for homogeneous fields. To put the topic on firmer footing we first establish
a theoretical framework for assessing the biases. We then use a large number of LESs (127) as proxy data, which we then
use to simulate satellite retrievals. We apply typical methodologies used in satellite retrievals, as well as variants, to assess the
provenance of the S, bias. Both spatial and temporal aggregation scales are considered, with a focus on the former. Because of
the limited domain size available to LES, we concern ourselves with the effects of spatial averaging from scales on the order
of 1 km to 10 km. The multiple snapshots of different scenarios available from the LES output provide the basis for temporal
aggregation. We note that Grandey and Stier (2010) also looked at the effect of aggregation scale on quantification of aerosol
indirect effects (the radiative forcing of aerosol-cloud interactions). Their analysis addressed much larger scales (1°, 4°, and
60°) in climate models. Here we focus on a model framework that explicitly resolves aerosol-cloud interactions at the cloud

scale.
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2 Theory
2.1 Spatial aggregation of variables derived from non-linear functions

The two fundamental geophysical variables associated with aerosol-cloud interactions are N (a generic concentration; drop
or aerosol number concentration, which are well-correlated) and £. In the case of homogeneous aerosol and cloud fields,
averaging of data to different scales has no effect on derived quantities such as Ny, £, A., and S, and the order of calculation
of these fields is of no consequence. In reality, however, cloud fields exhibit different degrees of inhomogeneity: Condensation
of cloud water responds to local updrafts, and to some extent, availability of cloud condensation nuclei. Drop concentration
depends on aerosol concentration — typically a less variable field than cloud water — as well as local supersaturation driven by
updrafts. Under these conditions, the quantification of aerosol-cloud interaction metrics like S, and the influence of averaging
could be far more important.

The theoretical framework for addressing this question is well-known from similar examples in the atmospheric sciences,
notably biases in rain formation processes that result from large-scale averaging of the cloud water and drop concentration terms
in expressions for autoconversion and accretion (e.g. Lebsock et al., 2013; Zhang et al., 2019). In the interest of completeness,

we repeat the key equations here. Assuming a lognormal PDF of quantity x:

1
= expl=
V2r xlnog . Pl

where the lognormal parameters are geometric mean (or median) z, and geometric standard deviation o ;. Quantity x rep-

P(x) = T — xg)/(21n2097x)], 5)

resents A. or £, and N. Using well-known integral properties of the lognormal function (e.g. Feingold and Levin, 1986) it is

easy to show that the bias in a moment 2%+ associated with averaging can be written as:

II B2 —Ba
By=—5 = (DI+1)"= (©6)

with the relative dispersion D, the ratio of the standard deviation to the mean, defined as

D, = (z —2)%)Y?/z. (7)

If the two interacting fields, e.g. £ and N, are assumed to follow a bivariate lognormal distribution, the bias associated with

the covariance between £ and N is
Beoy = exp(r(L,N)-Br-BN-0gc 0g.N), ®)

where (L, N) is the spatial correlation between £ and N. (Note that we elect to present the theory in terms of £ and N rather
than A, and N because A, includes compounded dependence on NV via 7. Since £ and A, are highly correlated, this choice
does not affect the general framework for discussion.)

The overall bias associated with averaging for two covarying fields is then given by

B = B; By - Beow. )
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The equations allow theoretical calculation of the S, biases associated with two covarying fields £ and IV, each characterized
by its own heterogeneity D, and Dy, respectively.

To apply this analysis to biases in S, associated with interacting £ and N fields, we make a number of assumptions. In the
absence of an analytical form for the £ adjustment, we assume it is negligible. We also assume that A. depends linearly on T,
which holds over a large range of 7. S, is then approximated as being proportional to (1 — 7) (Eq. 1). Note that because the

% bias in (1 - 7), is equivalent to the % bias in 7, we can apply
T = cLYON'/3 (10)

(e.g. Brenguier et al., 2000), where c is a constant that does not require specification for the purpose of the current analysis.
Then, with 8z = 5/6 and B = 1/3, Eq. 9 can be calculated for given values of Dz, Dy, and r(L, N). These are shown in Fig.
lin D.; Dy space, for three values of r(L£, N'). We note that large positive and negative biases can result from averaging; for
negative (L, N), biases are positive, and on the order of 20 — 60 % whereas for positive values of (L, V'), biases are negative,
and on the order of -20 — -70%. When correlation between the fields is zero, biases are 10 — 20 %. The central role of (L, N)
is further illuminated by plotting the bias in S, as a function of r(£, N) for specified D and Dy combinations (Fig. 2).

Note that the assumption of a bivariate lognormal distribution is common when dealing with geophysical fields. Another
cautionary note is that given the various assumptions applied to generate the results in Figs. (1) and (2), they should be
considered illustrative — i.e., they are primarily intended to highlight key variables that control aggregation bias. When we
embark on our analysis of LES output, we will assume that 7 and r. are known exactly, and quantitative comparison with Figs.
(1) and (2) should be avoided.

2.2 Effects of spatial and temporal averaging on variance, and correlation between fields

The second framework for assessment of biases derives from the basic definition of the linear regression fit:

%y

(1)

b=1yy
Yo

where b is the regression slope and o, is the standard deviation of field z. In our case, z = aerosol or drop concentration (we
will use N,) and y = cloud variable (A, or £). As shown by McComiskey and Feingold (2012), aveaging increases r(x,y) but
decreases o, and oy, to varying degrees. Of interest is therefore, the extent to which averaging changes r(z,y) and the ratio

Oy/0z.

3 Large Eddy Simulation as a Data Source

We calculate S, biases using output from 127 large eddy simulations of marine stratocumulus under a range of conditions from
fairly homogeneous overcast to broken open cellular structures.
Simulations are generated by the System for Atmospheric Modeling (SAM; Khairoutdinov and Randall, 2003). Input condi-

tions are derived from ERA-5 reanalysis in the stratocumulus regime off the coast of California. The model set-up is similar to
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Feingold et al. (2016) and Glassmeier et al. (2021), with initial meteorological and aerosol conditions sampled using the Latin
hypercube method. Simulations are nocturnal and of 12 h duration. The first 5 h of output from each simulation is discarded
to avoid cloud scenes that are not fully developed. The domain size is 48 km x 48 km x 2.5 km with a 500 m damping layer
below the model top at 2.5 km. The profile is extended up to 35 km (5 hPa) for radiation calculations. Grid spacings are dx
=dy = 200 m, dz = 10 m. A two-moment bulk microphysical method that calculates all warm cloud processes (including
supersaturation and activation) is applied (Feingold et al., 1998). The simulations differ from Glassmeier et al. (2021) in one
key respect, namely surface fluxes are calculated interactively. Resultant cloud fields exhibit varying degrees of heterogeneity,
including closed-, open-, and transitions from closed-to-open cellular convection.

The LES output provides microphysical fields of drop number concentration and liquid water content as three-dimensional
prognostic variables, under the assumption of a bimodal lognormal distribution of cloud drops and rain drops with fixed
distribution width (o, = 1.2 for both). However to mimic satellite retrievals, we work with the derived model variables 7 and
cloud-top 7. to calculate Ny, and £ based on Equations (2) and (3). Both cloud water and rain water contribute to 7 and
re. Cloud-top is calculated based on a liquid water mixing ratio threshold (0.01 g kg~!). Because these clouds are strongly
capped, the first grid point exceeding this value (when working from above, and downward towards the cloud-top) almost
always exceeds the threshold significantly, providing a maximum, or near-maximum 7, in each model column. A, is calculated
based on the modeled value of 7 (Eq. 4) and then averaged, and therefore does not suffer from averaging bias. S, is calculated
directly for each scene based on the definition (S, = dinA./dlnN,) using least squares regression to the natural logarithms of
A, and Ng.

3.1 Spatial Aggregation
3.1.1 Level 2 Analysis

The standard averaging method follows the MODIS level 2 (L2) methodology in the sense that calculations are performed at
high resolution prior to averaging. In the current work, Eqns. (2) and( 3) are calculated based on the native 200 m model mesh
(n =1) and then averaged to n x n tiles. Results will be shown for n = 30 vs. n =4, i.e., 6 km x 6 km boxes vs. 800 m x
800 m boxes. These choices result from a desire for a reasonable number of regression points (n = 30) and for some small
amount of smoothing (n = 4) to reduce the noise in Ny retrievals (Eq. 2). The choice of n = 4 also brings us close to the typical
1 km length-scale used for analysis of L2 MODIS data. (We did not use n = 5, i.e., 1 km, because the number of points in
the domain is even, and our desire is to maximize our coverage and simplify analysis.) Note that L2 methodology removes
the biases associated with non-linear functions applied to averaged data discussed in section 2.1 (Jensen’s inequality) since
Ny is calculated using Eq. (2) at the 200 m level and then averaged up. The same is true for A., which as previously noted is
calculated based on Eq. (4).

Biases are defined as

(X - X)/X, (12)
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where X represents S, calculated at n = 4 and X represents S, at n = 30 . Correlations 7 (L, Ny) refer to calculations for n = 4
unless otherwise stated. Vg in the L2 analysis represents cloudy-column averaged drop concentration, i.e., Ny = Ny, based
on Eq.(2).

The Ny retrieval (Eq. 2) is very sensitive to thin clouds particularly when r., but also 7 are small. As is common in MODIS

data analyses, calculations are only applied to thicker clouds, in our case, to 7. > 3 ym and 7 > 3.
3.1.2 Variants
Two variants of the calculations will be presented.

1. Mimic MODIS level 3 (L3) analysis. Here satellite-based retrievals are based on aggregated data. In other words Eqns.
(2) and (3) for N4 and L, respectively, are applied to data averaged to n =4 and n = 30. By doing so the averaging
biases associated with Jensen’s inequality are introduced. The biases are expected to derive from a mix of influences:
low for Ny (a convex function in 7. dominates a concave function in 7; Eq. 2), and negligible for £ (Eq. 3). The effect

of smoothing associated with level 3 aggregation is thus likely to be highly dependent on cloud field heterogeneity.

2. Mimic MODIS L2 analysis but eliminate uncertainties in the (sub)adiabatic retrieval of N4 by assuming a ‘perfect’ Ny,
which is taken directly from the LES. Because the LES N, is a 3-dimensional variable, we use in-cloud, column average
values. This methodology will be referred to as L2y. Note that £ is still calculated as per Eq. (3). The goal here is to

understand the extent to which the retrieval of N, drives the regression biases.
3.2 Temporal aggregation

To address temporal aggregation we consider the same individual LES snapshots described above but calculate .S, in two ways:
(i) S, regression fits to individual cloud scenes are simply averaged up over all cloud scenes; (ii) LES output is temporally
aggregated to a large data set, from which S, is calculated via regression. The first approach preserves the individual cloud
scene susceptibilities while the second aggregates many different cloud fields before performing the regression. The biases are
calculated based on Eq. (12), with the overbar indicating the second approach (ii). The methodology is followed (separately)
for both n = 4 and n = 30 spatial averaging, and for L2, L3, and L2y.

4 Results
4.1 Spatial Aggregation

4.1.1 Effect of Spatial Aggregation on S, and correlation

Figure 3 presents results for the three approaches (L2, L3, and L2y). We start with the figures showing S, vs. S, to avoid
ambiguity in the sign of the bias associated with Eq. (12). (According to Eq. 12, conditions under which S, is more negative

than S, also manifest as positive biases.) The solid line is the 1:1 line.
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Points are colored by cloud fraction f. (defined at the native 200 m grid spacing) since it also serves as a good proxy for
cloud field heterogeneity. (The correlation between f. and D(L) is 0.86.) For L2, we note that both S, and S, are almost
always positive and that low f, states do not suffer from worse biases than high f. states. On the contrary, high f. is often
associated with the largest biases. The reasons for this will become apparent in the subsequent analysis.

Responses for the L3 analysis are distinctly different in a number of ways: first, both S, and S, are almost always negative,
and low f. cloud scenes often have lower biases than high f. scenes. This is because L3 averaging has a stronger smoothing
effect on broken cloud fields, and therefore somewhat unexpectedly reduces the averaging bias for broken cloud fields com-
pared to solid cloud fields. Nevertheless, the non-physical shift in the sign of S, associated with L3 methodology should act as
a cautionary note. We present an explanation for the reversal of sign in Appendix A.

L2y analysis yields strongly positive S, and a clearer dependence of the bias on f.. For broken cloud scenes S, is sometimes
negative but biases tend to be scattered and relatively small. These low f. ~ 0.3 states are dominated by cumulus cells with
stronger updrafts that result in coherent N4. Since S, and S, are only calculated in cloudy regions (above the . and 7
thresholds), this coherence in Ny results in a small bias. Thus the reasons for small susceptibility bias at low f. differ for L3
and L2y. With increasing f, biases tighten around the 1:1 line but start to deviate for f. > 0.85, and exhibit increasingly large
values.

To quantify the biases, these same analyses are shown as % biases in S, (Eq. 12) as a function of the correlation between £
and Ny (r(L, Ng); Fig. 4), the calculations of which are consistent with the derivation of variables averaged to n = 4; e.g., L2
and L3 calculations apply (£, N;) based on Eqns. 2 and 3, and L2y calculates (£, N4) using the true Ny and Eq. 3.

L2 biases are almost always positive and can reach values of many 100s of % (Fig. 4). As expected from Section 2.1, r(£, Ny)
has a strong influence over the .S, bias, particularly for L2, with the bias increasing noticeably with decreasing r (£, Ny), in a
manner qualitatively similar to Fig. 2. The high values and high variability in the bias as one approaches (£, N;) = 0 are to
some extent a consequence of an uncertain regression fit when the correlation between the £ (or the closely related A.) and
Ny fields is poor.

Of note is that L3 analysis methodology (aggregate first, then derive) changes the sign of (£, N;) to negative values, as it
did the sign of S, (Fig. 3). L3 biases are more widely dispersed and show no clear trend with (L, Ng) or f.. L2y biases tend
to be capped at about 100% and values of (L, Ny) are noticeably more positive than those in L2. These results reinforce two
points: (i) that L3 analysis generates non-physical results (negative S, and a change in the sign of (£, Ny)); and (ii) that the
use of the (sub)adiabatic assumption (Eq. 2) as a proxy for Ny incurs a significant increase in the .S, bias relative to L2y, most

noticeably at low (L, N;) where Eq. 2 results in a significantly reduced (but for the most part, positive) correlation.
4.1.2 Effect of Spatial Aggregation on Regression

It is useful to turn to the underlying definitions of regression analysis (section 2.2) to explore more deeply the influence of

averaging on the S, bias. According to Eq. (11), S, biases are related to the ratio of b (6 km) to b (800 m):

bh="m2 (20) (%), (13)
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with b denoting 6 km averaging and b denoting 800 m averaging. We therefore consider (i) the ratio G4_ /N, t0 04, /0N,
(henceforth the ‘o-ratio’; Fig. 5), and (ii) the ratio #(A., Ng)/r(A¢, Ng) (henceforth the ‘r-ratio’; Fig. 6), which by Eq. (11)
are both determinants of the bias. Note that for the r-ratio, we use r(A., Ng) to adhere more rigorously to the regression
analysis definitions. The interpretation of these ratios is non-trivial. They express the extent to which o4_/on, and r(A., Ng)
are modified by averaging. In the case of 04, /o, this amounts to interpreting a ‘ratio of ratios’. Later we will delve into this
in more detail.

L2 results show a clear dependence of the .S, bias on the o-ratio, and especially large biases when the o-ratio is high (Fig.
5a). These also happen to be points exhibiting high f. (cf. Fig 4a). Also apparent is that the separation of positive and negative
biases is demarcated at a o-ratio of 1. The results suggest a strong correlation between the o-ratio and f.. At high (L, Ny),
the S, bias increases systematically with increasing o-ratio (Fig. 5a) but with decreasing r (L, N4) the strong, and orthogonal
influence of the r-ratio becomes more important (Fig. 6a). Clearly evident in Fig. 6a is the anticipated unstable calculation of
the r-ratio in the vicinity of r (£, Ng) = 0.

The L3 methodology exhibits an even clearer dependence of the S, bias on the o-ratio, except for cloud fields with
r(L£,Ng) =~ —0.2 (Fig. 5b) where the high bias is clearly related to both the o- and r-ratios (Fig. 6b). The aforementioned
vertically oriented green colored points have a o-ratio of about 1 and r-ratio of 2.5, i.e., the bias is driven by the r-ratio.

For the L2y methodology, here too the o-ratio (Fig. 5¢) provides a clearer indication of the magnitude of the bias compared
to either the r-ratio (Fig. 6¢) or f. (Fig. 4).

Based on Eq. (13), the influence of the o- and r-ratios on S, bias is expected. What is more revealing is the influence of
averaging on the components of these ratios. To this end, Fig. 7 examines the effect of averaging on the reduction in 0 4, and
on,. In other words, we ask: to what extent does averaging smooth the A, field relative to the smoothing in the N, field?
Accordingly, axes in Fig. 7 are calculated as normalized reductions in the variables.

L2 analysis shows that at low f. the normalized reductions in o(Ny) tend to be smaller than those in o(A.) but that the
reverse tends to be true for f. > 0.75 (Fig. 7a), i.e. at high f., averaging smooths the N, field more than it smooths the
A, field. We will show below that these high f. scenes, although inherently more homogeneous, often manifest significant
inhomogeneity in N as a result of the NV, retrieval. (See further discussion in section 4.1.4; Examples.)

The clear exception to the trend of averaging smoothing N, more than A, with increasing f. is the group of low f, points
that exists in Fig. 4a at (£, N4) < 0.2. These anomalous points appear below the 1:1 line in Fig. 7a and show up as lower
r-ratio points (reddish points) in a sea of higher r-ratio points (brown colors) in Fig. 8a. Another distinct feature is the group of
vertically oriented high f. (Fig. 7a) and low r-ratio (Fig. 8a) points for which smoothing of V; increasingly exceeds smoothing
in A, as one moves below the 1:1 line. Because these points are characterized by small values of the r-ratio, there appears to
be an offsetting of o-ratio and r-ratio effects.

A closer look shows that these points manifest as a negative S, bias (Fig. 9a); in other words, the reduction in the r-ratio
dominates the increase in the o-ratio. Although these negative bias points tend to be more rare, they can be identified in Fig.
4a at high f. and low r(L, Ny) (< 0.3).
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Analysis of L3 shows some similarities and some differences from L2. First, there is a much more significant scatter in
points, particularly at lower f. (Fig. 7b); second, as in L2, averaging-related smoothing of N4 tends to exceed smoothing in
A, at higher f. (Fig. 7b); third, and different from L2, values of the r-ratio of ~ 1 (Fig. 8b, green colors) are associated with
higher S, biases (Fig. 9b), which must derive from the o-ratio.

Finally, L2y reveals a somewhat richer palette of responses. First the commonalities: (i) the general trend for smoothing
of Ny to exceed smoothing of A, with increasing f. and increasing r-ratio is relatively robust (cf. Fig 7c and Figs 7ab); (ii)
when the r-ratio =~ 1, and smoothing of the fields is similar (Figs. 8a and 8c), the S, bias is capped at about 100% (Figs. 9a
and 9c¢). In fact it is clear from Fig. 9 that S, biases exceeding 100% always occur when averaging-related smoothing has a
stronger effect on Ny than on A., although the magnitude and even sign of these biases vary significantly depending on the
methodology. The richness (lack of monotonicity) in responses under these conditions depends on the relative strength of the
r-ratio, and the extent to which it amplifies or counteracts the o-ratio.

We note one interesting difference between L2 and L2y: for the latter, low f. points reside in conditions under which
averaging-related smoothing is dominated by more as well as less significant smoothing of Ny vs A.. (Fig. 7¢). In very rare
cases the low f. points above, but close to the 1:1 line in Fig. 9c cause negative S, biases (cf. Fig. 6¢). Finally, some very
high positive .S, biases (up to 500 %) do exist for L2y. These can be traced to conditions when the r-ratio is large (Fig. 8c)
and averaging smooths Ny more than A.. In this case the effects of averaging on the r-ratio and the o-ratio work in unison to

amplify the bias.
4.1.3 S, bias vs. £ adjustment bias

The topic of £ adjustments is of great interest given that the term may both enhance or offset the overall albedo susceptibility
(Eq. 1) (e.g. Glassmeier et al., 2021). For example, a value of £, = dinL/dinNy; < —0.4 will change the sign of S, from
positive to negative. Numerous recent articles, based on models and observations, point to £, being positive in precipitating
conditions, following the familiar Albrecht (1989) ‘cloud lifetime’ hypothesis which posits that aerosol perturbations will
suppress collision-coalescence and decrease precipitation, and therefore £ losses, while it is negative in the non-precipitating
regime, as a result of enhanced evaporation-entrainment feedbacks (Wang et al., 2003; Ackerman et al., 2004; Xue et al., 2008;
Christensen and Stephens, 2011; Gryspeerdt et al., 2019). Fig. 10 shows the relationship between spatial averaging-related S,
and L, biases, with points colored by f.. For clarity we show a subsample of 58 of the total 127 simulations to avoid points
clustering and obscuring points below. These 58 samples represent Latin hypercube sampling of the full data set and do not
exhibit any bias relative to the full set.

First, we note a strong positive correlation between the two biases, with £, biases larger than S, biases in L2 and L2y (Fig.
10a, c). The reverse is true for L3 (Fig. 10b). For L2 and L3, two distinct branches appear; the first is a tight relationship for
fe > 0.7, while the second is somewhat less well-defined and associated with lower f.. There is a saturation in the ratio for
fc on the order of 0.3 in L2 (Fig. 10a), while L3 shows a distinctly stronger S, bias at low f. compared to the approximately
linear relationship for high f. (Fig. 10b). Detailed analysis of this flip in the relative slope for high f. vs. low f. for L2 and L3

can be traced to relative differences in the degree of aggregation-related smoothing between A. and £ (see Appendix B).
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The separation of these branches is much less distinct for L2y (Fig. 10c) but in general £, biases are larger than S, biases,
although to a lesser extent than in L2. The absence of a clear separation in the branches is a result of the use of the correct Ny
such that cloud heterogeneities affect the biases to a similar degree. While the strong positive correlation between S, and L,
biases is not surprising given the expected tight relationship between S, and L,, it is clear that using the methodologies applied

here, satellite-based analyses of the £, bias have the potential to be at least as severe as those associated with S, biases.
4.1.4 Examples

While our goal has been to provide a broad assessment of susceptibility biases in terms of cloud field properties, some examples
are helpful to illustrate the issues. We focus on L2 and L2y to isolate the effect of the N, retrieval for individual cases,
chosen randomly based on their visual physical characteristics, but supported by other cases. Figure 11 presents an LES-
generated stratocumulus scene characterized by high f. (= 0.98) and a very realistic closed-cellular structure ( Fig. 11a,c).
Drop concentration fields for the (sub)adiabatically-derived N4 (Eq. 2) and the ‘true’ (LES) N, show the problem very clearly.
The retrieved N4 shows a great deal more fine-scale structure than the true N4, and although in the mean the retrieved IV, is not
highly unrealistic (retrieved Ny = 167 cm™—3; true Ny = 227 cm ™3 — an error of -26 %), the two fields are strongly negatively
correlated, with a fit slope of Ny (retrieved) = 378 - 0.9 x Ny (true). To quantify this further, we consider the correlations
between £ and Ny: Applying the true Ny, (£, Ng) = 0.78 whereas using the retrieved Ny, (£, Ng) = —0.24. This shift from
strong positive r(L£, Ny) to negative (L, N;) has implications for the S, bias (e.g. Fig. 2): The L2-derived S, bias is -2017
% whereas the L2,y bias is +80 %. Here the use of true Ny reduces the S, error very significantly. This example serves to
explain why high S, biases can exist in high f. scenes (e.g. Fig. 4). We emphasize that the significant inhomogeneity in Ny is
a result of the N, retrieval, rather than an inherent property of the cloud field, and that it is this increase in inhomogeneity and
reduction in (L, Ng) that drives up the S, bias.

The second example (Fig. 12) is a low f. case (0.23) exhibiting classic open-cellular structure. Here the mean retrieved Ny =
21 cm~? and the true Ny = 12 cm ™3 — an error of +75 %. The best fit linear regression between the two yields Ny (retrieved)
=20+ 0.075 x Ny (true). Examining the true Ny, we find (£, Ng4) = 0.13 whereas using the retrieved Ny, (£, Ny4) = —0.05
The S, biases are 285 % and 803 % for L2 and L2y respectively, i.e., the true Ny degrades the S, bias. We have identified two
contributing factors to this unexpected result: (i) in the case of L2, the proximity of (L, Ng) to zero generates an unstable
r-ratio and unstable S, bias (Eq. 13); (ii) more generally, unexpected results can occur when the base S, (n =4) is small,
which by Eq. (12), will generate unstable bias calculations. For the current case, S, is small because the open cell walls are
already very bright, i.e., (1 — A.) in Eq. (1) is small.

Note that the results in Fig. 12 may seem counterintuitive at first glance since from a satellite remote sensing perspective, a
negative bias in retrieved N, is generally expected in broken cloud scenes due to a positive bias in 7. and a negative bias in 7
(e.g., Grosvenor et al., 2018). However, the aforementioned bias is a satellite-based measurement bias. In our case, we assume
that 7. and 7 are correct (taken directly from the model). We take the opportunity to emphasize that this work focuses on the
effect of averaging cloud fields characterized by different morphologies, and not with the broken cloud r. and 7 biases. The

latter would need to be considered with a MODIS instrument simulator for a more complete assessment.
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While examination of case studies proves useful, we argue that the broader statistical view is essential to understanding the
error landscape that might be encountered in highly variable natural cloud scenes. In this regard, Figs. 3 — 6, supported by Figs.

7 -9, are essential.
4.2 Temporal Aggregation

Although the focus of the work has been on spatial aggregation, we now briefly consider the effects of temporal aggregation,
which by Eq. (11) will also affect .S,,. Large scale analyses often aggregate data over multiyear timescales (e.g. Chen et al.,
2014), or three month seasonal timescales (Lebsock et al., 2008), extending the range of conditions and changing the variance
and correlation between the fields. The result is that the regression fit to a longterm, temporally aggregated data set will be
different from the short timeframe fits, averaged up to include the same data.

Table 1 summarizes the results for the three methodologies (.2, L3, and L2y), and for spatial averaging of n =4 and n
= 30. To represent the temporally unaggregated approach, first a regression fit to In A. vs InNy is performed to each scene
(the entire domain) to generate a value of \S,; then the individual S, values are averaged (represented by 3.5,). This is done
for all scenes that meet the criteria discussed in Section 3. The temporally aggregated approach (S,) aggregates all scenes
into one large data-set before performing the regression. Because of the large number of individual A.;N; pairs required to
calculate go, calculations are limited to 58 of the 127 simulations, as in Section 4.1.3. The biases are calculated based on Eq.
(12). Of immediate note is that the analysis shows that temporal aggregation results in a reduced S, on the order of 70 — 110 %,
depending on the methodology applied. For L2 and L2y the average of local-in-time cloud albedo susceptibility is larger than
that calculated by temporally aggregating many scenes. This bias is of opposite sign to the typical biases associated with spatial
aggregation (e.g. Fig. 4) and not significantly different in magnitude. This offsetting of errors should be seen as a cautionary
flag when making choices of how to aggregate data, rather than as a fortuitous occurrence, since as we have shown above, the
biases are highly dependent on cloud field properties.

In the case of L3, the temporal aggregation of many different scenes results in an increase in albedo susceptibility and a
change in sign from negative to weakly positive. Here too, the spatial and temporal aggregation has opposite effects (cf. Fig.
3b). (Note that the % differences for L3 in Table 1 are somewhat misleading: because of the change in sign, increases in .S,
due to temporal averaging still show up as negative differences because of the normalization by the negative X.5,,.)

Finally, given the close relationship between the .S, and £, spatial aggregation biases, we surmise that temporal averaging

will have similar effects on £, as on S,,.

5 Discussion and Summary

Satellite-based measurements are our best means of assessing aerosol-cloud-radiation interactions at the global scale and
providing model constraints for one of the most uncertain forcings of the atmospheric system, namely aerosol indirect effects.
Space-based data draw heavily on polar-orbiting satellites carrying passive instruments from which we infer aerosol properties

(e.g., aerosol optical depth), cloud properties (cloud optical depth, cloud-top drop effective radius, liquid water path), and
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radiative fluxes. Typical approaches to quantification of aerosol-cloud-radiation interactions average these inferred properties
spatially and temporally to suppress the ‘noisy’ retrievals inherent to these measurements. The goal of this paper has been
to address the ramifications of spatial and temporal aggregation for standard metrics of indirect effects in the form of cloud
albedo susceptibility S,, which is in turn strongly dependent on the liquid water path adjustment (£,) (Eq. 1). The question
is central to our ability to quantify aerosol indirect effects, and raises fundamental questions of non-linearities in the aerosol-
cloud interaction system, and natural co-variability of the interacting fields. Early work recognized the effects of aggregation
on cloud albedo (A.) — the so-called “albedo bias" (e.g. Cahalan et al., 1994). The current study has assumed no aggregation
error in A, (as in the case of a direct CERES-based retrieval) but has focused instead on derivatives of the form of Eq. (1)
that include highly non-linear satellite-based retrievals of drop concentration (/Ny). In addition, we have derived liquid water
path £ from the product of spectrometer-derived cloud optical depth and drop effective radius (Eq. 3), as is typically done for
MODIS-based retrievals, and have not addressed the question of how this derivation might affect the .S, bias.

To provide context for the problem we start with a theoretical framework based on spatial distributions of the interacting
aerosol and cloud fields, which helps identify key variables that control the S, bias (the variance in the fields and the correlation
between the fields). Then, picking up on earlier work (McComiskey and Feingold, 2012), which analyzed three stratocumulus
cloud scenes with varying degrees of cloud field variance, we extend the analysis to 127 simulations exhibiting a wide variety
of stratocumulus cloud scenes. The LES provides all essential microphysical properties from which standard retrievals can
be performed. The key cloud field properties are cloud-top drop effective radius 7., cloud optical depth 7 (both of which are
taken directly from the LES) and A, (based on LES 7 and Eq. 4). Ny is derived from Eq. (2) and £, from Eq. (3). Within
the framework of standard regression analysis, we quantify the effects of aggregation on the variance in the fields and the
correlation between the fields, and the implications for S, biases.

The assessment of spatial aggregation biases considers three methodologies. The first is standard level 2 (L2) satellite
methodology, which retrieves cloud properties at high resolution (order 1 km) and averages them up to a scale on the order of
100 km. Given the limitations in our LES domain size (40 km), we instead compare S, based on 800 m and 6 km scales. This
forms the basis of our spatial scale averaging. Recognizing that some might choose to use the more compact aggregated data
as a start point, our second approach is level 3 (L3) methodology, which applies microphysical retrievals to spatially averaged
data. Considering that a key and uncertain variable in the .S, calculation is the derived drop concentration (/V;), a third set of
calculations repeats the level 2 analysis but uses the ‘true’ (LES-calculated) N4, which we refer to as the L2y methodology.
All consider perfect cloud albedo retrievals based on LES cloud optical depth (Eq. 4), removing the well-known cloud albedo
averaging bias from the discussion. Furthermore, derived variables r. and 7, which are central to the .S, bias analysis have been
assumed to be free of measurement error. Real-world satellite retrieval errors of these variables, especially in heterogeneous or
broken cloud fields, could amplify or perhaps counter the biases identified here. Therefore, applying the conclusions directly
to satellite studies should be done with caution.

Key results pertaining to spatial aggregation biases are
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1. S, biases are generally positive for all three approaches and, consistent with theory, tend to increase with decreasing
correlation between the fields (Fig. 4). For L2, biases can reach 500 %, whereas they are capped at about 100 % for L2y.

These biases will translate to biases in aerosol-cloud radiative forcing.

2. L3 methodology (falsely) creates negative correlations between the cloud fields, resulting in generally unpredictable .S,
bias behavior (Fig. 4b). Moreover, it generates negative S, values (see Appendix A), exacerbated by increasing degrees

of averaging (Fig. 3b). The positive .S, biases for L3 are therefore misleading (Figs. 3b and 4b).

3. High cloud fraction f,. states are equally or even more prone to S, bias than low f. (high D(L)) states. This is in part due
to the nature of the Ny retrieval, which introduces heterogeneity into the field (see example Fig. 11), but L2y cases also
tend to exhibit this trend. The literature tends to consider high f. states as homogeneous, but this works shows that this is
not necessarily the case since the Ny retrieval generates unrealistic small-scale heterogeneity in relatively homogeneous

conditions.

4. Using regression theory (Eq. 11) we can interpret biases in S, based on the extent to which averaging changes (i) the
ratio of the correlation r,, ,, (r-ratio) and (ii) the ratio of o, /o, (o-ratio) at the 6 km vs. the 800 m scales. Fig. 5 shows
that that the S, bias is strongly dependent on the o-ratio, particularly for L3 and L2y, and for L2 at high »(£, Ny). The

r-ratio has a weaker control over the S, biases (Fig. 6).

5. Since the o-ratio is a ratio-of-ratios, we further expand our analysis of this term to assess the extent to which averaging
changes o 4, relative to o,. We find that while averaging can reduce o 4, as much as o, there is a tendency for larger

reductions in oy, (Fig. 7), particularly for high f,. and low r-ratio L2 cases (Fig. 8) and for low f. L2y cases (Fig. 7).

6. S, biases exceeding 100% always occur when averaging-related smoothing has a stronger effect on N, than on A, (Fig.
9) although the magnitude and even sign of these biases vary significantly depending on the methodology. The lack of
monotonicity in responses under these conditions depends on the relative strength of the r-ratio, and the extent to which
it amplifies or counteracts the o-ratio. This in turn, depends on the cloud fields themselves in ways that are not always

easy to clarify.

7. As anticipated by Eq. (1) the S, bias is a strong function of the £, bias (Fig. 10). In the case of L2, the £, bias is

noticeably smaller than the S, bias at low f., while the reverse is true for L3 (see Appendix B).

Regarding temporal aggregation, we note that if aerosol-cloud interaction metrics such as S, are based on aggregation of
cloud scenes over an extended period of time, bias can be expected as a result of extending the range of conditions beyond the
natural local fluctuations inherent to covarying meteorological and aerosol conditions. To assess the effects of this temporal
aggregation, we consider the difference between the average of S, from individual cloud scenes, and the S, that is derived from
a best-fit to the data from all those scenes, with the former reflecting the average of local-in-time .S, and the latter reflecting the
effect of temporal aggregation. Calculations are performed at both 800 m and 6 km scales (Table 1). Of note is that temporal

averaging, as calculated in this manner, reduces (in % terms) S, at both averaging scales, and for L2, L3, and L2y analysis.
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The negative bias is on the order of 70 — 80 % for L2 and L2y. As noted in section 4.1.1, L3 spatial aggregation methodology
generates negative S,, and temporal aggregation has the beneficial effect of creating small positive, and therefore more realistic
S, (relative to temporally unaggregated) values. (In percentage change terms, however, the bias is negative.)
We emphasize that these offsetting effects of spatial and temporal S, biases are very situationally-dependent and require
440 further investigation. As in the case of the regression analysis (Eq. 11) performed for spatial aggregation, the pertinent question
becomes the extent to which temporal aggregation will affect the - and r-ratios. Further work will need to place this offsetting
effect on firmer footing.
Finally, it is of great importance that similar assessments of S, biases be considered in real-world satellite-based data. This
will allow the community to assess the degree of coherence between the aforementioned studies and the model-based results

445 presented here, and the implications for quantification of aerosol-cloud radiative forcing.
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Table 1. Temporal averaging values and % differences. X5, refers to a simple average of the S, for individual cloudy scenes; S, refers to
the S, regression fit to the temporally aggregated data from all cloudy scenes; the % difference is defined as (S, — ©.5,)/%S,. n =4 and n

= 30 refer to the 800 m and 6 km spatial averaging scales, respectively.

Temporal Averaging Values and % Ditferences

L2 L3 L2n

=S, So % =S, S, % zS, S, %
n=4 0564 0259 -74 -0.652 0.044 -107 1.012 0301 -70
n=30 0966 0298 -69 -0.959 0.073 -108 1.373 0296 -78

Data availability. TEXT

Model output is available on request.

Appendix A

Sorting or aggregation of data can generate unexpected responses. A common example of this is the relationship between
‘success at basketball’ and ‘height’ (Fig. A1). Although the expected positive correlation between these two variables emerges
if one sorts the data by age group, the reverse occurs if one aggregates all the data together (‘first aggregate, then fit’), simply
because older players, while taller, do not typically perform as well as younger players. This apparent contradiction was noted
by Simpson (1951) and is known as Simpson’s Paradox. It is receiving more attention during the COVID-19 pandemic as
it explains apparent contradictions between vaccination rates and hospitalizations when data are not sorted by confounding
factors.

Although hard to prove, the commonality for the current data is that L2 methodology takes the approach of fitting the
un-aggregated data, whereas L3 methodology first averages the data and then performs a fit. In our case the data are not
as clearly separated as in the simple example in Fig. Al but L2 methodology has a much higher chance of retaining the
underlying physical relationship between variables than L3 methodology. Indeed, L2 produces positive S, whereas L3 produces

a counterintuitive negative S,.
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Appendix B

We address the flip in the relative slopes of low and high f. points for L2 and L3 in Fig. 10. Based on Fig. 7 and Eq. (13), our
intuition is that it is likely a function of the change in averaging-smoothing in A, vs. averaging-smoothing in L. To test this,
we repeat Fig. 7 but now also look at smoothing in £ and N.

What is apparent is that for L3, there is much more smoothing in A, than in £ at low f. (the L3 points lie closer to the 1:1
line in Fig. B1b vs. Fig. 7b for low f.). For L2, more low f. points tend to lie below the 1:1 line in Fig. Bla vs. Fig. 7a, but
because of this migration of points from above to below the line, it is more difficult to interpret. For L2y the smoothing in £
and A, look similar, in line with our intuition (cf. Fig. 10 where one sees less of a bias in the relationship for low and high f.
points).

To dig deeper, we look more closely at the o-ratio (Eq. 13) for (i) A., Ny (o-ratio (A, Ng)) and (ii) £, Ny (o-ratio (L, Ny))
for the low f. points. We then fit a linear relation between points for 0.3 < f. < 0.43 (Fig. B2) andf. > 0.85 (not shown) and
obtain the following: For 0.3 < f. < 0.43, L.2: y =0.06 +0.78z, L3: y = —0.25 + 1.03x, L2N: y = —0.22 4+ 1.02z (with = =
the o ratio for £ and Ny, and y, the o-ratio for A, and N,. For f. > 0.85, L2: y = 0.1+ 0.90x, L3: y = 0.04 4+ 0.94x, L2N:
y=0.23+0.81z.

The high f. slopes for L2 and L3 are similar (0.90 vs. 0.94, respectively) but there is a more significant difference in the
low f. slopes (0.78 vs. 1.03 for L2 and L3 respectively), and in the direction consistent with the differences between L2 and
L3 (Fig. 10ab). Note the steepening of the low f. points in L3 and the negative intercept for L3 at low f. (Fig. B2), which is
consistent with Fig. 10b. This points strongly to the differences in degree of aggregation-related smoothing between A, and £
in these low f. scenes being responsible for the flip in the relative sign of .S, vs. £ adjustment slopes between Fig. 10a (L2)
and Fig. 10b (L3).

We note that these differences in smoothing derive from the derivations of A, (Eq. 4) and £ (Eq. 3), with A, a (non-linear)
function of 7 only, and £ a function of the product of 7 and r.. Anticipating how the aggregation biases play out is not intuitive,

and requires, in our experience, analyses of the kind shown here.
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Figure Captions

Figure 1: Theoretical calculations of the albedo susceptibility bias (in %) for a range of relative dispersions in £ and N (D(L)
and D(V), respectively), for three different correlations (r) between £ and N. Note the values of large positive and negative

biases.

Figure 2: As in Fig. 4 but for the S, bias as a function of the spatial correlation between £ and N, for a range of relative
dispersions in £ (D(£)) and fixed D(JV). Of note is that for the conditions shown the biases are large and range from about
-150 % (for positive r and large D(L)) to + 70 % (negative r, large D(L)).

Figure 3: S, aggregated to a 6 km scale (S,) vs. S, aggregated to an 800 m scale (S,) for (a) L2, (b) L3 and (c) L2y
methodology as described in the text. Solid line is the 1:1 line. Dashed lines are drawn at ordinate and abscissa values of zero.
Note the general overestimate in S, with increasing aggregation scale in (a) and (c) and the change of sign in S, associated
with L3 aggregation in (b). Of note is that high cloud fraction/low heterogeneity conditions are often associated with high

biases.

Figure 4: S, bias in % as defined in Eq. (12) as a function of the correlation between liquid water path and drop concentration
r(L, Ng) with points colored by cloud fraction f. for (a) L2, (b) L3 and (c) L2x methodology. In (a) and (c) the .S, bias tends
to increase with decreasing r(L, N,;) and increasing cloud fraction f., with noted exceptions. Use of the true N, in (c) restricts
the .S, bias to about 100%.

Figure 5: As in Fig. 4 but with points colored by the ratio of o 4_/on, at 6 km to o 4_/on, at 800 m (the o-ratio). Note the
clear dependence of the S, bias on the o-ratio and that the bias ~ 0 when the o-ratio ~1 (green colors). Exceptions to the latter

occur for L2 at low r(L, Ny).

Figure 6: As in Fig. 4 but with points colored by the ratio of correlations (L, Ny) at 6 km to (L, Ng) at 800 m (the r-ratio).
Comparison with Fig. 5 shows approximately orthogonal dependence of the o- and r-ratios on the S, bias. In (a) and (b),

calculation of the r-ratio is mathematically unstable at (L, Ng) = 0 as evidenced by saturating colors.

Figure 7: Effects of aggregation on normalized reduction in o (A.) vs. normalized reduction in o(Ny) to shed light on results
in Fig. 5. Points are colored by f.. At high (low) f. averaging tends to more significantly reduce (increase) o (V) relative to

o(A.). Notable exceptions occur in (c) for some low f. conditions. See text for further discussion.
Figure 8: As in Fig. 7 but with points colored by the r-ratio. See text for discussion.

Figure 9: As in Fig. 7 but with points colored by .S, bias. Biases exceeding 100 % always occur when averaging-related

smoothing has a stronger effect on Ny than on A..
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Figure 10: S, bias vs. the £-adjustment bias (dIn£/dIn N, in Eq. 1) for a limited set of model scenes (for clarity). Note a strong
positive correlation between the two biases, as expected from Eq. (1). In (a) and (b), the relative magnitude of these biases

depends on f,, although with opposite trend. In (a) and (c), the L£-adjustment bias tends to be larger than the S, bias.

Figure 11: High resolution (n = 1) 2-D snapshot of (a) ‘true’ Ny, (b) retrieved Ny (Eq. 2); (¢) £, and (d) the relationship
between (b) and (a). Note the different scales between (a) and (b). Although the mean values of N, in (a) and (b) differ by only
-36 %, they exhibit negative correlation over the scene. The retrieved N, introduces significant heterogeneity into the field.

Use of the true N4 reduces the absolute value of the S, error from -2017 % to +80 %.

Figure 12: As in Fig. 11 but for an open-cellular case. Note the different scales between (a) and (b). Mean values of Ny in (a)
and (b) differ by -75 %. Use of the true N4 degrades the .S, bias (285 % for L2 vs. 803 % for L2y).

Figure Al: Demonstration of Simpson’s Paradox (Simpson, 1951) with the often-quoted relationship between ‘success at
basketball’ (y-axis) and ‘height’ (x-axis). If data are separated by age, then the expected positive relationship emerges. If data
are first aggregated — i.e., age is not taken into account — then a negative relationship emerges. The analogy to the current
work is that aggregating blue points and red points separately and then fitting (as in L3 methodology) may explain negative So

values.

Figure B1: Effects of aggregation on normalized reduction in o (L) vs. normalized reduction in o () to shed light on results
in Fig. 10. Points are colored by f.. In Fig. B1b, and at low f., aggregation tends to less significantly reduce o (L) relative to
o(A.) (Fig. 7b). (a) L2, (b) L3, (c) L2x. See Appendix B for further discussion.

Figure B2: Plots of o-ratio (Eq. 13) for A., Ny (o-ratio (A., Ny)) vs. L, Ny (o-ratio (L, Ny)). The solid lines are best fit lines
to the low f. points. The dash-dotted line is the 1:1 line. Note that the log scale distorts the solid-line linear relationships. (a)
L2, (b) L3, (c) L2n. See Appendix B for further discussion.
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