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Abstract. Volcanic ash advisories are produced by specialised forecasters who combine several sources of 9 
observational data and volcanic ash dispersion model outputs based on their subjective expertise. These advisories are 10 
used by the aviation industry to make decisions about where it is safe to fly. However, both observations and dispersion 11 
model simulations are subject to various sources of uncertainties that are not represented in operational forecasts. 12 
Quantification and communication of these uncertainties are fundamental for making more informed decisions. Here, 13 
we develop a data assimilation technique which combines satellite retrievals and volcanic ash transport and dispersion 14 
model (VATDM) output, considering uncertainties in both data sources. The methodology is applied to a case study 15 
of the 2019 Raikoke eruption. To represent uncertainty in the VATDM output, 1000 simulations are performed by 16 
simultaneously perturbing the eruption source parameters, meteorology and internal model parameters (known as the 17 
prior ensemble). The ensemble members are filtered, based on their level of agreement with Himawari satellite 18 
retrievals of ash column loading, to produce a posterior ensemble that is constrained by the satellite data and its 19 
uncertainty. For the Raikoke eruption, filtering the ensemble skews the values of mass eruption rate towards the lower 20 
values within the wider parameters ranges initially used in the prior ensemble (mean reduces from 1 Tg h-1 to 0.1 Tg 21 
h-1). Furthermore, including satellite observations from subsequent times increasingly constrains the posterior 22 
ensemble. These results suggest that the prior ensemble leads to an overestimate of both the magnitude and uncertainty 23 
in ash column loadings. Based on the prior ensemble, flight operations would have been severely disrupted over the 24 
Pacific Ocean. Using the constrained posterior ensemble, the regions where the risk is overestimated are reduced 25 
potentially resulting in fewer flight disruptions. The data assimilation methodology developed in this paper is easily 26 
generalisable to other short duration eruptions and to other VATDMs and retrievals of ash from other satellites. 27 

1 Introduction  28 

Volcanic ash in the atmosphere poses a hazard to aircraft (Casadevall, 1994). It is therefore important to accurately 29 
forecast the evolution of volcanic ash cloud in the atmosphere for the aviation industry. Forecasting the distribution 30 
of volcanic ash in the atmosphere at a given time is typically performed using a volcanic ash transport and dispersion 31 
model (VATDM). VATDMs solve dynamic equations to evolve the system state (volcanic ash cloud) forward in time. 32 
However, such simulated volcanic ash distributions are subject to errors due to inaccurate parametrisations of physical 33 
processes, errors in the driving meteorological fields and errors in the volcanic eruption source parameters. 34 
Observations of volcanic ash distributions may be obtained from ground-based, aircraft or satellite-based instruments. 35 
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These observations can be used to evaluate the accuracy of VATDM simulations (Harvey and Dacre, 2016; Dacre et 36 
al., 2016). Geostationary satellite measurements are of particular interest as they provide information at high temporal 37 
frequency and, thanks to the increasingly growing network of satellites, over large spatial extents. Ash retrievals from 38 
geostationary satellite data use a forward model to transform observations of radiance into vertically integrated 39 
volcanic ash distributions (known as column loadings). However, retrievals of volcanic ash column loading from 40 
satellite data are subject to measurement errors, interference with other atmospheric constituents and to errors in the 41 
forward models (e.g., Krotkov et al., 1999; Francis et al., 2012). This information is often disregarded and only the 42 
mean ash retrievals are used for verification purposes. Therefore, to improve estimates of the volcanic ash cloud in 43 
the atmosphere, VATDM simulations and observations can be combined to create an analysis. Combining satellite-44 
based observations and VATDM simulations allows the modelled volcanic ash cloud to be continuously adjusted and 45 
thus improves the accuracy of volcanic ash forecasts (Fu et al., 2017). 46 

The most straightforward combination of VATDM and satellite observations is data insertion, whereby satellite 47 
observations of volcanic ash column loading are used as initial conditions in a VATDM simulation (Wilkins et al., 48 
2015). More sophisticated combinations of VATDM simulations and satellite observations involve data assimilation 49 
techniques such as variational and sequential methods. In variational data assimilation a cost function is defined to 50 
quantify the difference between a VATDM simulation and a satellite observation of volcanic ash column loading, 51 
weighted by the VATDM and observation uncertainties. The cost function is typically minimised by adjusting one or 52 
more eruption source parameters (e.g., plume height, mass eruption rate, particle size distribution, ash density) to 53 
estimate their optimum value for simultaneously fitting the simulated column loadings to the satellite retrievals and 54 
for fitting to prior estimates of the eruption source parameters at a given time. In the volcanic ash literature this 55 
technique is often referred to as source inversion (Stohl et al., 2011; Kristiansen et al., 2012; Denlinger et al., 2012; 56 
Pelley et al., 2015). Variational data assimilation uses observations from a fixed time window, thus allowing time 57 
evolving eruption source parameters to be estimated, so is suitable for long duration volcanic eruptions which undergo 58 
several eruptive pulses. Alternatively, sequential data assimilation provides an estimation of the system state 59 
sequentially as it evolves forward in time using observations as they become available. Thus, sequential data 60 
assimilation is suitable for short duration single pulse volcanic eruptions (Chai et al., 2017; Zidikheri et al., 2017). 61 

In most cases eruption source parameters (input parameters), physical processes (internal parameters) and the driving 62 
meteorology are uncertain so an ensemble of VATDM simulations can be formed by perturbing the input, 63 
meteorological and internal parameters. This results in a probability density function (pdf) of simulated volcanic ash 64 
distributions. In this case, the data assimilation step involves conditioning the VATDM simulated pdf based on a 65 
comparison with the observed volcanic ash cloud to create a filtered pdf at each time the data assimilation is performed. 66 
In volcanic ash forecasting, ensemble source inversion (Harvey et al., 2020) and ensemble sequential filtering 67 
methods, such as Ensemble Kalman Filters (EnKFs) (Fu et al., 2015; Pardini et al., 2020; Osores et al., 2020) and 68 
Particle Filters (Wang et al., 2017; Zidikheri and Lucas, 2021), have been employed. EnKFs were developed for non-69 
linear systems and so are suitable for dispersion problems.  However, they assume that the parameters to be estimated 70 
have Gaussian prior pdfs, which may not be true. Conversely, no assumptions on the form of the prior pdf of simulator 71 
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states are needed for Particle Filtering techniques meaning that they are more sensitive to the tails of the prior 72 
distribution, although this is at the cost of a lot more simulations. 73 

Bayesian inference is used in particle filtering to derive constraints on the parameters of a simulation from 74 
observations. In this framework, the posterior pdf of the simulation parameters given the observed data is derived 75 
from a prior pdf and from the likelihood of the data given a choice of simulator parameters. Bayesian inference 76 
therefore relies on the ability to compute a formal likelihood function. For volcanic eruption source parameters their 77 
exact likelihood function is unknown or computationally intractable and so direct Bayesian analysis is therefore not 78 
possible. A technique known as Approximate Bayesian Computation uses simulations to bypass the need to evaluate 79 
a likelihood function. Approximate Bayesian Computation systematically explores the prior parameter space and 80 
compares the simulated and observed data sets using a distance metric. By accepting simulations for which this 81 
distance metric is smaller than a given threshold, the method provides an approximation to the Bayesian posterior pdf. 82 
One Approximate Bayesian Computation method frequently used in hydrology forecasting is known as Generalised 83 
Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992). The GLUE methodology is based on the 84 
concept of equifinality, which acknowledges that there exist many combinations of simulation input and internal 85 
parameters that provide equally good simulations of the observed system. 86 

There are several steps in the GLUE methodology: 87 

1. Realistic ranges are defined for the simulator input and internal parameters. These are known as prior pdfs 88 
since they are defined prior to the comparison with observational data. When there is a lack of strong prior 89 
information about the parameter distributions and their interactions uniform pdfs are often used. 90 

2. Rejection criteria are defined to determine the accepted agreement between the simulators and the observed 91 
system state. These can be based on subjectively chosen thresholds limits or as accepted minimum levels of 92 
performance allowing for the expected uncertainties in the observational data. 93 

3. Input and internal parameter sets are sampled from the prior pdfs to generate an ensemble of simulation 94 
predictions of the system for a given analysis time. 95 

4. Simulations that are not in agreement with the observed system, using the selected rejection criteria, are 96 
discarded from the analysis.  The subset of retained simulators with known parameter sets forms the posterior 97 
pdfs for each input and internal parameter.  Thus, the posterior pdfs are the conditional pdfs of each parameter 98 
given the observations. 99 

5. Input and internal parameter values are then sampled from the posterior pdf to generate an ensemble 100 
prediction of the system at a future time. 101 

6. Steps 4–5 can be repeated for subsequent analysis times and the joint posterior distributions compared to the 102 
preceding analysis time. 103 

The main aim of this paper is to contribute to the development of data assimilation methods to improve quantitative 104 
ash dispersion forecasts. To this end we will determine whether satellite retrievals of volcanic ash column loading can 105 
be used to filter an ensemble of volcanic ash simulations using the particle filtering methodology. We determine which 106 
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of the input and internal model parameters are most constrained by the satellite observations and quantify how the 107 
assimilation of satellite data changes the uncertainty estimate of the ensemble. Finally, for communicating the volcanic 108 
ash forecasts, we apply to the ensemble output the risk-matrix approach described in Prata et al. (2019) and applied 109 
retrospectively to the 2011 Grimsvotn eruption by Harvey et al. (2020), where risk is defined as the likelihood of 110 
exceeding ash concentrations considered a potential risk to aircraft. This approach will be demonstrated using 111 
simulations and observations of the Raikoke volcanic eruption which was a short duration eruption lasting less than 112 
24 hours occurring between the 21–22 June 2019. 113 

2 Methods and data 114 

In this study, the Numerical Atmospheric–dispersion Modelling Environment, NAME (Jones et al., 2007), was used 115 
to simulate the dispersion of volcanic ash. It is the VATDM used by the London Volcanic Ash Advisory Centre 116 
(LVAAC) for producing volcanic ash advisories following an eruption. Each simulated ash cloud was quantitively 117 
evaluated using retrievals from Himawari–8. 118 

2.1 Himawari–8  119 

Himawari–8 is a geostationary satellite that came into operation in July 2015 (Bessho et al., 2016). It has 16 spectral 120 
channels and provides observations of high temporal frequency (10 min) and spatial resolution (2 km for the infrared 121 
bands). The high temporal and spatial resolution make these observations ideally suited to evaluate the transport of 122 
volcanic ash following an eruption. The volcanic ash retrievals used in this study are based on the method by Francis 123 
et al. (2012) with slight adaptations for the channels of the AHI instrument aboard the Himawari–8 satellite.  124 

The Met Office volcanic ash retrieval algorithm has two steps. The first step detects which pixels contain volcanic ash 125 
using the channels at 8.6 µm, 10.4 µm and 12.4 µm. The second step runs a one–dimensional variational (1D–Var) 126 
analysis to determine an optimal estimate between the assumed background and the observed radiances in the channels 127 
at 10.4 µm, 12.4 µm, and 13.3 µm for the column loading, ash cloud height and effective radius. The detection is 128 
based on a combination of brightness temperature difference (BTD) tests and beta ratio tests (Pavolonis, 2010). The 129 
beta ratio tests use a derived radiative parameter β, that is the effective absorption optical depth ratio of two channels 130 
and are used to filter pixels marked as ash by the BTD tests. These tests have been improved by fine tuning of the 131 
operational thresholds, to optimise coverage of the June 2019 Raikoke eruption. In addition, several geographical 132 
filters have been added, to reduce false detections at high satellite zenith angle and over arid land surfaces, and further 133 
false detections have been removed by checking the consistency of ash detection in neighbouring pixels. 134 

The retrieval algorithm also provides a measurement of the error on each of the retrieved values. The retrieval relies 135 
on the minimization of a cost function to determine the optimal estimate from the assumed background and the 136 
observed radiances. How well defined the minimum of the cost function is provides an indication of the likely accuracy 137 
of the retrieval, in that the more well defined the minimum of the cost function is, the more accurate the retrieval is 138 
likely to be. By considering the inverse of the second derivative of the cost function with respect to each of the 139 
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variables considered in the retrieval, we can provide an estimate of the error for the retrieved ash plume pressure, ash 140 
column loading and ash effective radius.  141 

Where ash is detected, these pixels are flagged as ash and this algorithm determines the ash column loading. If a pixel 142 
is free from both ash and meteorological cloud, then it is flagged as a clear sky pixel. Pixels that neither have detectable 143 
ash nor are flagged as clear skies are unclassified. As in Harvey et al. (2020), further processing is performed to regrid 144 
the retrieved column loadings on to a grid of 0.375o latitude by 0.5625o longitude (approximately 40 km x 40 km in 145 
mid–latitudes) and averaged over 1 h. This is to match the resolution of the VATDM ash concentration output and to 146 
reduce data volumes. If all classified pixels within a grid box are flagged as clear sky pixels, then the grid box is 147 
deemed to be a clear sky observation. Otherwise, the grid box is deemed to be an ash grid observation with the column 148 
loading in this grid box given by the mean of all the classified pixels (including clear skies). 149 

2.2 VATDM 150 

All the simulations were performed using NAME version 8.1 on the Joint Analysis System Meeting Infrastructure 151 
Needs (JASMIN) super data cluster (Lawrence et al., 2012).  To simulate the dispersion and removal of volcanic ash, 152 
NAME includes parametrization of the effects of turbulence on the transport and dispersion, sedimentation, dry 153 
deposition and wet deposition. In the operational configuration used by the LVAAC (Beckett et al., 2020) aggregation 154 
of ash particles, near source plume rise and processes driven by the eruption dynamics (e.g., Woodhouse et al., 2013) 155 
are not explicitly modelled. The default particle size distribution used is based on data from Hobbs et al. (1991) and 156 
the shape of the particles are assumed to be spherical.  157 

Ensembles of NAME simulations were created by varying nine parameters covering the meteorology, information 158 
about the eruption source and the parameterisation of turbulence in NAME (as in Harvey et al., 2018; Prata et al., 159 
2019). Uniform distributions between the specified ranges were used as prior probability distributions to generate the 160 
initial ensemble (Table 1). Full details of how these parameters are sampled is given in Sect.4.1. 161 

All simulations share the same start and end time, 18:00 UTC on 21 June 2019 and 1200 UTC on 25 June 2019 162 
respectively, for a total run time of 96 hours. The eruption start time matches the simulation start time. Volcanic ash 163 
within the simulations is released along a vertical line, between the lower and upper plume heights (Witham et al., 164 
2019). Ash column loadings (g m-2) and ash concentrations (g m-3) are output onto a global grid of 800 × 600 points, 165 
corresponding to a grid of 0.45° longitude and 0.3° latitude, giving a horizontal resolution of approximately 40 km in 166 
midlatitudes every 6 hours using a 6–hour time average. Ash concentrations are output at 22 Flight Levels (FL000–167 
FL550) with a vertical resolution of 25 FL (“thin layers”) that are then combined to form three “thick” layers (FL000–168 
200, FL200–350, FL350–550) by taking the maximum concentration values from the component thin layers for the 169 
corresponding thick layer value (Witham et al., 2019). 170 

 171 

 172 
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Parameter  Symbol Control value  Initial sampling range 

Plume height (km)1 H 12.45 9–17 

Mass eruption rate factor2 MER F 1 0.33–3 

Ash density (kg m-3) ρ 2300 1350–2500 

Source duration (hr) L 12 9–15 

Distal fine ash fraction (%) DFAF 5 0.5–20 

Horizontal (vertical) Lagrangian timescale 

for free tropospheric turbulence (s) 
τ 300 (100) 100–900 (33.33–300) 

Standard deviation of horizontal (vertical) 

velocity for free tropospheric turbulence (m 

s-1) 

σ 0.25 (0.1) 0.0025–2.5 (0.001–1) 

Standard deviation (σ) of horizontal velocity 

for unresolved mesoscale motions (m s-1) 
mσU 0.8 0.27–1.74 

Meteorological fields MET 
 Met Office Unified Model 

global analysis 

MOGREPS–G 

members 0–17 

 Table 1: Parameters sampled and their control and initial sampling ranges.  173 
1Plume rise height above the summit  174 
2scaling factor applied to the default mass eruption rate value calculated using the equation from Mastin et al. (2009); see Sect. 175 
4.1.1 for details on how mass eruption rate is calculated. 176 

3 Description of the 2019 Raikoke eruption  177 

Raikoke is an uninhabited volcanic Island near the centre of the Kuril Island chain in the Sea of Okhotsk in the 178 
northwest Pacific Ocean located at 48.2°N, 153.3°E.  Its most recent explosive eruption, after 95 years of dormancy, 179 
started at approximately 1800 UTC on 21 June 2019 and is estimated to have an initial eruptive plume height of 10–180 
13 km above sea level (asl) (Global Volcanism Project, 2019). The eruption lasted approximately 12 hours and ended 181 
at approximately 0600 UTC on 22 June 2019. There is evidence from visible satellite imagery to suggest that there 182 
was an umbrella cloud which was quickly advected eastwards towards a large extratropical cyclone which distorted 183 
the dispersed ash cloud (Fig. 1). 184 

The number of satellite grid boxes that are classified as containing ash at each time are the ones available to be used 185 
to refine the prior pdfs. The largest number of boxes are available at 1800 UTC on 22 June. Before 0600 UTC on 22 186 
June the number of grid boxes available is limited by the small time the ash has had to be transported. After 1800 UTC 187 
on 24 June the number of grid boxes is limited due to the presence of meteorological cloud associated with an 188 
extratropical cyclone situated to the east of Raikoke (Fig. 1). 189 
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Figure 1: Hourly mean ash column loadings from the Himawari satellite at (a) 0600 UTC, (b) 1200 UTC, (c) 1800 UTC on 191 
22 June 2019, (d) 0000 UTC, (e) 0600 UTC, (f) 1200 UTC, (g) 1800 UTC on 2300 June 2019, (h) 0000 UTC, (i) 0600 UTC, 192 
(j) 1200 UTC, (k) 1800 UTC on 24 June 2019. Grey shading indicates grid boxes that are classified as clear sky. The red 193 
triangle indicates the location of Raikoke. N indicates the number of gridboxes classified as containing ash.  194 

4 Particle filter construction 195 

Drawing from the GLUE methodology described in Sect. 1, we developed a new particle filter for refining a series of 196 
ensembles moving forward in time based on their level of agreement with Himawari satellite observations. All 197 
ensemble members are evaluated and filtered by comparing the NAME–simulated ash column loadings (g m-2) with 198 
the satellite–detected ash column loadings (g m-2) for a given analysis time. Column loading retrievals from Himawari 199 
cover a time range from 1800 UTC on 21 June 2019 to 0000 UTC on 24 June 2019. However, due to the low number 200 
of grid boxes containing ash before 1800 UTC on 22 June (Fig. 1), for the initial ensemble (ENS01) we chose as first 201 
verification time, T1, the observations at 0600 UTC on 22 June 2019. For this given time, 32 grid boxes containing 202 
ash are available (Fig. 1).  203 

The particle filtering operation is designed such that, once all the members of an ensemble have been evaluated based 204 
on user defined rejection criteria, only those within the limits of acceptability are retained and used to produce posterior 205 
pdfs. A posterior ensemble is created by resampling the perturbed parameters from the posterior pdfs which are then 206 
compared forward in time with a new set of observations, Tn. Therefore, each posterior ensemble represents a new 207 
possible state of our simulated ash cloud at a future time based on the evaluation performance of the prior ensemble 208 
at a previous time. The main steps involved the in the methodology are summarised (Fig. 2): 209 

1. Prior pdfs are created for the 9 perturbed parameters, including eruption source parameters, driving 210 
meteorology, and NAME model internal parameters (Table 1; Fig. 2). We assign an initial range for each 211 
parameter that is then sampled independently from a uniform distribution to create an ensemble of 1000 212 
members, ENS01. Perturbed parameters and their initial ranges are detailed in Sect. 4.1. 213 
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2. We define our rejection criteria, based on the threshold values for our verification metrics: Hit Rate (HR) and 214 
Mean Percentage Difference (MPD). Sect. 4.2 describes how we calculate HR, MPD and how we set the 215 
thresholds (Fig. 2). 216 

3. Each model prediction from ENS01 is compared with the satellite observations at a given time, T1. All 217 
posterior ensembles are verified at a future time using observations every 6 hours (Fig. 2): 218 

ENS01 →T1 = 22/06/19 0600 UTC 219 

ENS02 →T2 = 22/06/19 1200 UTC 220 

… 221 

ENS n →Tn = Tn–1 + 6h 222 

4. Simulations that, based on the rejection criteria, are not in agreement with the satellite observations are 223 
discarded. The retained simulations are used to form the posterior pdfs for each input and internal model 224 
parameter (Sect. 4.3; Fig. 2). 225 

5. Posterior pdfs are generated from the parameter sets of the retained simulations, also considering possible 226 
interaction among them by including effects of covariation between eruption source parameters. Parameters 227 
are resampled from these posterior pdfs for the posterior ensemble (Fig. 2). The newly created posterior 228 
ensemble represents a possible state of our system at a future time (Sect. 4.3). 229 

6. Each model prediction from the posterior ensemble is compared forward in time with a new set of satellite 230 
observations. The ensemble output is also compared with all the previous times, to determine sensitivity for 231 
the resampled parameters of the posterior pdf to the observations used (Fig. 2). 232 

7. The steps 4–6 are repeated until all the available satellite observations are covered. 233 

https://doi.org/10.5194/acp-2021-858
Preprint. Discussion started: 9 November 2021
c© Author(s) 2021. CC BY 4.0 License.



9 
 

234 

Figure 2: Overall workflow of the developed methodology. 235 

4.1 Ensemble creation 236 

Each ensemble of NAME simulations is created by perturbing nine parameters, including eruption source parameters, 237 
driving meteorology, and internal NAME parameters. To generate the ensemble efficiently, we use Latin Hypercube 238 
Sampling (LHS), that covers our entire parametric space maintaining orthogonality among the different perturbed 239 
parameters (Prata et al., 2019). For ENS01, each parameter in the LHS is chosen from prior pdfs which ranges are 240 
defined by a set of minima and maxima (Table 1) and sampled from a uniform distribution assuming that all values 241 
within these ranges are equally likely. For each posterior ensemble the ESPs in the updated LHS designs are chosen 242 
from the posterior pdfs, while NAME internal parameters and members of MOGREPS forecasts continue to be 243 
sampled from uniform distributions (Sect.4.3). 244 
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4.1.1 Eruption Source parameters (ESPs) 245 

To represent an initial uncertainty associated with ESPs for ENS01, we define a minimum and a maximum possible 246 
value for each perturbed parameter. Then, a parameter value is sampled from a uniform distribution across this range.  247 

We selected a total of 5 ESPs to perturb from those that have been shown to have most effect on the simulated ash 248 
cloud (e.g., Dacre et al., 2013, Harvey et al., 2018, Prata et al., 2019): plume height (H), Distal Fine Ash Fraction 249 
(DFAF), Mass Eruption Rate factor (MERF), ash density (ρ) and eruption duration (L). H is used to calculate the Mass 250 
Eruption Rate (MER) for each member using the empirical relationship from Mastin et al. (2009). For each ensemble 251 
member, MER is scaled by the DFAF, representing the percentage of ash transported at long distances, and multiplied 252 
for the MERF, to account for uncertainties associated with the Mastin et al. (2009) relationship. Hence, MER is not 253 
perturbed explicitly. 254 

Plume height 255 

Plume height (H) constrains the lower and upper limits of the ash particles’ release height, therefore significantly 256 
impacts both the vertical and horizontal structure of the simulated ash cloud. Although the Raikoke eruption was 257 
characterized by the formation of an umbrella cloud, in the NAME ash release is defined as a vertical line along which 258 
the ash is uniformly distributed, with the lower and upper bounds representing the volcano summit height (551 m asl) 259 
and the reported plume height respectively. We based our initial H range on information available at that time. The 260 
Kamchatkan Volcanic Eruption Response Team (KVERT) and the Tokyo and Anchorage VAAC reported a large ash 261 
plume extending from 10 to 13 km (asl) within the first few hours of eruption (Crafford et al., 2019), while data from 262 
CALIPSO satellite indicate that the plume may have reached altitudes up to 17 km (asl; Hedelt et al., 2019). For our 263 
initial ensemble, we selected H ranges between 9–17 km (asl) and for the control run we set H = 13 km (asl; Table 1). 264 

Mass Eruption Rate (MER) 265 

Mass eruption rate, MER, is estimated from the plume height using the empirically derived relationship from Mastin 266 
et al. (2009): 267 

𝑀𝑀𝑀𝑀𝑀𝑀 = 50.7 × 107𝐻𝐻2 0.241⁄ 𝑔𝑔ℎ𝑟𝑟−1         (1) 268 

where H represents the plume height in km. By calculating the MER from H, any uncertainty associated with H 269 
propagates in the resulting MER calculation. Furthermore, there is also an uncertainty associated with the nature of 270 
the relationship, being an empirical one and based on a relatively small number of eruptions of variable magnitude 271 
(Mastin et al., 2009). In order to take this into consideration, for all the ensemble members, the MER is perturbed for 272 
a factor between 0.33 and 3, while we use 1 for the control run (Mass Eruption Rate Factor, MERF; Harvey et al., 273 
2018; Prata et al. 2019; Table 1). 274 

Distal Final Ash Fraction (DFAF) 275 
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The MER calculated with the Mastin et al. (2009) relationship (Eq. 1) estimates the total mass released during an 276 
eruption. However, the particle size distribution (PSD) of the erupted particles includes both larger particles (>1 mm) 277 
that are usually removed from the column in the first phases of an eruption and an additional finer fraction that may 278 
leave the column due to aggregation processes. Particles larger than 100 µm are removed rapidly, without travelling 279 
long distances, and as result, only a fraction of fine particles <100 µm is transported at long distances. Details of the 280 
true PSD are often unknown. Here, the default LVAAC PSD is used in each simulation (Table 1 in Witham et al, 281 
2019), and aggregation processes are not modelled in the NAME simulations for this study. To account for this, the 282 
model assumes that most of the ash falls out close to the volcano, with only a small percentage of it reaching the distal 283 
plume. The NAME default value for this percentage (distal fine ash fraction, DFAF, Dacre et al., 2011), used here for 284 
the control run, is 5 %; however, the real value is uncertain and varies with each eruption (Witham et al., 2019). 285 
Consequently, the uncertainty associated with DFAF can be very high (Grant et al., 2012). Recent studies challenged 286 
the 5 % assumption by reaching contrasting conclusions: either 5 % is too high for most of the eruptions (Gouhier et 287 
al., 2019). Or it is too low, severely underestimating mass loadings (Cashman and Rust, 2020). For our prior ensemble, 288 
the range used is 0.5–20 % (Table 1). 289 

Ash density 290 

The default LVAAC value for particle density is 2300 kg m-3 (Witham et al., 2019) and particle shape is assumed to 291 
be spherical in the NAME simulations. At the time of writing, no specific ash density or shape information is available 292 
for the 2019 Raikoke eruption. Density was selected as parameter to perturb as it may help in representing uncertainty 293 
attributed to ash aggregation and particle shape (e.g., Harvey et al., 2018). The range used is 1350–2500 kg m-3, while 294 
we use the default 2300 kg m-3 for the control run (Table 1).  295 

 Source duration 296 

The overall duration of the intense phase of the Raikoke eruption is relatively well constrained, with KVERT reporting 297 
a strong explosive eruption beginning about 1805 UTC on 21 June and a weaker explosive event reported at 0540 298 
UTC on 22 June. However, ash emission continued, possibly until around 0800 UTC on 22 June, when KVERT 299 
reported a gas–steam plume with some ash content (Crafford et al., 2019). As uncertainty in the duration of ash 300 
emission may lead to uncertainty in both the location and timing of the modelled ash cloud (e.g., Prata et al., 2019), 301 
we considered a duration range of 9–15 hours for ENS01 and 12 hours for the control run (Table 1). In the simulations, 302 
eruption source parameters are assumed constant throughout the release duration, although this is unlikely to be true 303 
for the Raikoke eruption. 304 

4.1.2 Driving Meteorology  305 

In this study, NAME was driven by the operational forecasts from the Met Office Global and Regional Ensemble 306 
Prediction System (MOGREPS). The global forecasts have 17 ensemble members plus a control member. The 307 
horizontal resolution is approximately 20 km in the mid–latitudes and there are 70 vertical levels with the lid at 308 
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approximately 80 km. Each forecast is run out for 7 days and they are initialised 4 times per day at 00, 06, 12 and 18 309 
UTC (Bowler et al., 2008). At the time of the Raikoke eruption, MOGREPS–G used an on‐line inflation factor 310 
calculation to calibrate the spread of the ensemble in space and time and a stochastic physics scheme to account for 311 
model uncertainty (Flowerdew and Bowler, 2011; Flowerdew and Bowler, 2013). The MOGREPS–G forecasts used 312 
in this study were initialized at 1200 UTC 21 June 2019. 313 

4.1.3 NAME internal model parameters 314 

Previous studies have demonstrated how the NAME internal model parameters used for representing the free 315 
tropospheric turbulence can significantly impact the model output as they affect the vertical thickness of the simulated 316 
cloud and the overall motion of particles (Dacre et al., 2015; Harvey et al., 2018; Prata et al., 2019). To represent 317 
uncertainty in free tropospheric turbulence, we perturb the standard deviation (σ) and Lagrangian timescales (τ) of the 318 
horizontal and vertical velocity components in NAME, by sampling them from a uniform distribution using the same 319 
ranges specified in Harvey et al. (2018) and Prata et al. (2019), with the horizontal component of σ sampled on a 320 
logarithmic scale. The horizonal and vertical components of these parameters are varied in proportion to each other. 321 
Similarly, σ of the horizontal velocity for unresolved mesoscale motions is also varied using the same range as in 322 
Harvey et al. (2018) and Prata et al. (2019) and sampled from a uniform distribution. For the control run, we use the 323 
default NAME values (Table 1). For both the control run and the ensembles, these values are fixed in time. 324 

4.2 Particle filter verification metrics 325 

Each simulation is either discarded or retained based on its level of agreement with the satellite retrievals. We restrict 326 
the comparison only to the area covered by both NAME simulated ash cloud and by detectable ash in the satellite 327 
observations. The comparison is performed based on two verification metrics: Hit Rate (HR) and Mean Percentage 328 
Difference (MPD). 329 

4.2.1 Step 1: Identifying matching pixels 330 

Most satellite retrievals are unable to detect column loadings less than 0.2 g m-2 (Prata and Prata, 2012). Consequently, 331 
before comparing the Himawari data and NAME output (Fig. 3a and 3b), we apply a minimum threshold of 0.2 g m-2 332 
to the NAME–simulated ash column loading to align with the minimum detection limit of the satellite observations.  333 
The Himawari observations are then regridded over the NAME horizontal grid, to facilitate inter comparisons. Finally, 334 
we identify the grid boxes in which both the NAME output and the satellite retrievals detect ash as ‘matching pixels’ 335 
(Fig. 3c). For each ensemble member, we then calculate the Hit Rate and Mean Percentage Difference based on all 336 
matching pixels. 337 
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338 

Figure 3: Ash column loading at 1800 UTC on 22 June 2019, (a) as detected by the satellite, (b) NAME simulation of one 339 
ensemble member in NAME, and (c) after pixel–matching (grey pixels represent a match between satellite and simulation). 340 
Examples of ensemble members rejected depending on values of Hit Rate and Mean Percentage Difference (red boxes) are 341 
shown in panels (d) and (f). Examples of accepted ensemble members depending on values of Hit Rate and Mean Percentage 342 
Difference (green boxes) are shown in panels (e) and (g). All panels except (c) use the colour scale shown in (b). The red 343 
triangle in each panel shows the location of Raikoke. 344 
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4.2.2 Step 2: Calculating Hit Rate 345 

The Hit Rate, HR, is a widely used categorical metric applied to many meteorological phenomena for forecast 346 
verification, representing the proportion of observed events that are successfully forecast by a simulation. The HR can 347 
be used to discriminate “yes events” and “no events”, often by specifying a threshold to separate “yes” and “no” 348 
(Joliffe and Stephenson, 2012). Similarly, HR has also been used to provide information on how ash forecast model 349 
outputs compare to observations in terms of binary ash yes/ash no events (e.g., Stefanescu et al, 2014; Marti and 350 
Folch, 2018). In such cases, a grid box would represent a hit if both simulation and observation detected ash above a 351 
threshold of >0.2 g m-2. 352 

Here, we calculate the Hit Rate as the percentage of matching pixels for which the simulated value lies within one 353 
standard deviation of the corresponding mean satellite–detected ash column loading. The standard deviation is 354 
provided by the retrieval algorithm as a measurement of the error for the retrieved ash values in each grid box (Sect. 355 
2.1). Hence, we both directly compare the ash column loadings between simulation and observations for each 356 
individual matching pixel, and we complement this by considering the error associated with the satellite observations.  357 

Once we have identified the total number of hits in each member, the HR can be calculated: 358 

𝐻𝐻𝑀𝑀 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

× 100         (2) 359 

At this point, members that have an HR below a specific threshold are discarded (Fig. 3d) and the remaining members 360 
(Fig. 3e) are then verified further by testing against the observations using Mean Percentage Difference. 361 

4.2.3 Step 3: Calculating the Mean Percentage Difference 362 

The final step in the evaluation process determines, for the members retained following the HR verification, how much 363 
the NAME–simulated ash column loading values differ from the satellite–detected ones on a grid box basis. The 364 
percentage difference magnitude (PD) for each matching pixel is the difference between the simulated and observed 365 
column loadings, divided by the mean of the two values and expressed in terms of percentage. 366 

Then, the mean of the PDs over all grid boxes (MPD) for each ensemble member is calculated. Ensemble members 367 
with MPD below a threshold (Fig. 3g) are retained and used to form our posterior. Those above the threshold are 368 
rejected (Fig. 3f). 369 

4.2.4 HR and MPD Thresholds  370 

Both HR and MPD are sensitive to the total number of satellite grid boxes containing detectable ash. Therefore, when 371 
there are only a few satellite grid boxes available, fixed HR and MPD thresholds may retain too few ensemble members 372 
to form posterior pdfs. To avoid this, the acceptability thresholds for HR and MPD are adjusted dynamically during 373 
the verification to ensure that a minimum of 50 ensemble members are retained (i.e., 5 % of total number of ensemble 374 
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members). This dynamic adjustment is carried out by initially setting the HR threshold to 95% and the MPD threshold 375 
to the minimum MPD value. Ensemble members are evaluated against these thresholds, and the thresholds adjusted 376 
(by increasing the MDP value up to the median value, and by decreasing the HR value, in 5 % increments) until at 377 
least 50 members lie within the limits of acceptability. 378 

This dynamic thresholding method, therefore, guarantees that the members within limits of acceptability are always 379 
retained using the “best” threshold available for both HR and MPD, for a given time (Table 2). Only for T1, when 32 380 
grid boxes containing detectable ash are available, were both thresholds varied substantially and fewer than 50 381 
members were retained. Thereafter, a HR of 95% was maintained at each verification cycle. MPD values had to be 382 
varied more to retain at least 50 members but were always within the range 20–50 % of the minimum MPD. 383 

Ensemble Verification Time 
Num. of 

grid boxes 

Posterior 

members WLoA1 

Prior members 

WLoA2 

H.R. 

threshold (%) 

M.P.D. 

threshold (%) 

01 T1: 22/06/19 06:00 32 22 22 64 152 

02 T2: 22/06/19 12:00 107 53 0 95 60 

03 T3: 22/06/19 18:00 138 90 7 95 65 

04 T4: 23/06/19 00:00 65 176 30 95 68 

05 T5: 23/06/19 06:00 71 108 33 95 78 

06 T6: 23/06/19 12:00 55 66 20 95 56 

07 T7: 23/06/19 18:00 41 60 58 95 71 

08 T8: 24/06/19 00:00 70 59 181 95 99 

09 T9: 24/06/19 06:00 66 52 35 95 54 

10 T10: 24/06/19 12:00 31 62 53 95 57 

11 T11: 24/06/19 18:00 18 118 13 95 29 

Table 2: number of members within limits of acceptability (WLoA), and HR and MPD thresholds for each ensemble at each 384 
verification time. 385 
1total number of retained ensemble members for a given time. Parameters for Ensemble 01 (prior ensemble) were 386 
sampled from uniform distributions. Parameters for each subsequent ensemble (posterior ensemble) were sampled 387 
from posterior pdfs obtained from the retained members of the previous ensemble, verified at the previous verification 388 
time.  Threshold values for HR (higher is better) and MPD (lower is better) used at each verification time are shown 389 
in the last two columns. 390 
2 total number of ensemble members that would be retained from the prior ensemble, ENS01, if the verification was 391 
run at each verification time, using the same HR and MPD thresholds for which each posterior ensemble has been 392 
evaluated. 393 

4.3 Posterior resampling 394 

The comparison of the prior and posterior pdfs for each parameter allows us to identify the range of parameters that 395 
represent a good approximation of those generating the observed volcanic ash cloud at the verification time. Fig. 4 396 
shows this comparison for ENS01, ENS02 and ENS04; each ensemble was verified using observations at T1, T2 and 397 
T4 respectively (Table 2). For ENS01 (Fig. 4a), most of the posterior ESP pdfs from the retained simulations are highly 398 
skewed. In particular, this can be seen for H, DFAF and MERF. H is used to calculate the mass eruption rate (shown 399 
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in Fig. 4 but not explicitly perturbed), that is then perturbed further by DFAF and MERF. Therefore, these ESPs 400 
significantly influence both the vertical and horizontal structure of the modelled ash cloud and ash concentrations. 401 
However, ENS02 (Fig. 4c) and ENS04 (Fig. 4d), which use the particle filter described above, show how as more 402 
ensembles are run and evaluated forward in time with new observations, the parameter ranges of each posterior 403 
ensemble gradually reduce. Additionally, the differences between posterior pdfs and the prior pdfs decrease and the 404 
ESPs become increasingly constrained. 405 

Although this evolution is evident for many of the ESPs, the input model parameters (τU, σU and mσU) do not show a 406 
similar behaviour among the different ensembles. This suggests that the Raikoke simulations are not sensitive to these 407 
internal parameters. 408 

409 
Figure 4: Evolution of parameters distributions for (a) members Within Limits of Acceptability (WLoA) for Ensemble 01, 410 
(b) comparison of correlation matrixes between ENS01 ESPs in the members WLoA (lower matrix, red triangle) and ESPs 411 
posterior pdfs for ENS02 (upper matrix, purple triangle), and (c) distributions for members WLoA for Ensemble 02 and 412 
(d) Ensemble 04. ρ, τU, σU and mσU represent density, horizontal Lagrangian timescale for free tropospheric turbulence, 413 
standard deviation of horizontal velocity for free tropospheric turbulence, and Standard deviation of horizontal velocity 414 
for unresolved mesoscale motions. In (a), (c) and (d), Mass eruption rate (MER) is plotted to show its variation, although it 415 
is not explicitly perturbed in any of the ensembles. Each parameter in the box plots is normalized by dividing each individual 416 
value from the ensemble members by the mean of that entire parameter range from the selected ensemble.  417 
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This constraining behaviour is the result of the refinement of each posterior ensemble, achieved by repeatedly refitting 418 
the parameters sets of the retained simulations at each verification time, and resampling posterior ensemble parameters 419 
from the newly fitted posterior pdfs. For the prior ensemble, the LHS is performed independently for each parameter. 420 
However, eruption source parameters are likely to be correlated, especially the plume height, distal fine ash fraction 421 
and mass eruption rate factor, which are used to estimate and perturb the mass eruption rate. Thus, before the 422 
resampling process, the input parameter ranges from the retained members are used to generate both posterior pdfs 423 
reflecting the distribution of each ESP and a correlation matrix for the ESPs (Fig. 4b). Then, using a Cholesky 424 
decomposition of the correlation matrix, a correlation structure is enforced to a new LHS design (Fig. 4b). Finally, 425 
each ESP is sampled from the newly generated posterior pdfs in the updated LHS design, maintaining the dependency 426 
among the parameters. In contrast, model input parameters and driving meteorology are treated independently and 427 
their posterior pdfs are sampled again from uniform pdfs, using the same ranges as for the prior ensemble (Table 1).  428 

For the majority of the ESPs in ENS02, this resampling strategy modifies the ESPs distributions away from the initial 429 
uniform distribution of the prior ensemble to a distribution that is highly skewed towards the lower end of the initial 430 
range (Fig. 5). Then, as the posterior pdfs are refined by moving forward in time with new observations, the pdfs for 431 
several of the ESPs tend toward normal distributions (Fig. 5).  432 

Figure 5: Evolution of ESPs distributions for ENS01 (purple shading), ENS02 (blue shading), ENS03 (orange shading), 434 
ENS04 (green shading), ENS05 (red shading) and ENS06 (dark purple shading). Each panel shows: (a) plume height (H), 435 
(b) distal fine ash fraction (DFAF), (c) mass eruption rate factor (MERF), (d) mass eruption rate (MER), (e) ash density (ρ), 436 
and (f) eruption duration. For ENS01, each parameter is sampled from a uniform distribution. For ENS02–06, each 437 
parameter is sampled from posterior pdfs following a fit of the members WLoA and considering the interaction among the 438 
parameters. Mass eruption rate (MER) is plotted to show its evolution, although it is not explicitly perturbed in any of the 439 
ensembles. Dashed black lines in each plot represent the parameter value used for the control run.  440 

https://doi.org/10.5194/acp-2021-858
Preprint. Discussion started: 9 November 2021
c© Author(s) 2021. CC BY 4.0 License.



18 
 

5 Discussion  441 

The particle filtering data assimilation technique described in Sect.4 demonstrates how a series of ensembles of 442 
volcanic ash simulations can be successfully constrained based on the level of agreement between the simulation 443 
output and satellite retrievals. Each ensemble is verified forward in time with new retrievals. Compared to the 444 
parameter ranges used for the prior ensemble (Table 1), the range of eruption source parameters used to produce 445 
simulated ash clouds that represent a good approximation to the observed volcanic ash cloud reduces as the posterior 446 
ensembles become more constrained by the satellite retrievals. 447 

The effects of the refinement on the posterior ensemble can be observed in probability of exceedance maps, given 448 
here for three different thresholds of ash column loadings, 0.2 g m-2 (Fig. 6b), 2 g m-2 (Fig. 6c) and 4 g m-2 (Fig. 6d). 449 
The satellite retrieval at 1800 UTC 22/06/2019 detects two distinct regions where ash loadings exceed 0.2 g m-2 and 2 450 
g m-2 (Fig. 6a). The posterior ensemble (ENS03 – brown contour) agrees with the control run (black contour) and the 451 
prior ensemble (ENS01 – purple contour) on regions where loadings > 0.2 g m-2 are likely (30–60 %) and very likely 452 
(60–100 %; not plotted in Fig. 6). The simulated ash cloud regions are more extensive than the area of satellite–453 
detected ash. However, this overestimation is greater for both the prior ensemble (purple contour) and the control run 454 
(black contour) than for the posterior ensemble (brown contour) (Fig. 6b) and is largest for column loadings > 2 g m-455 
2 (Fig. 6c) and 4 g m-2 (Fig. 6d). The refined ensemble shows a much–reduced region with a 30–100 % probability of 456 
exceeding these loadings, showing better agreement with the observations especially when considering loadings > 2 457 
g m-2 detected by the satellite (Fig. 6a). Thus, by accounting for uncertainties, a wider region where those loadings are 458 
less likely (up to 30%, dashed blue contour) has been shown instead, for all the considered thresholds (Fig. 6). 459 
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460 

Figure 6: (a) Satellite–detected column loading at T3 (22/06/2019 1800 UTC) shown in filled contours, and probability of 461 
exceedance maps for ENS03 at T3 for column loading thresholds of (b) 0.2 g m-2, (c) 2 g m-2 (d) 4 g m-2 shown with dashed 462 
blue contours (the region within the blue line is a probability region up to 30 %) and brown contour (30 % probability 463 
region – the region within the brown line goes from 30 % up to 100 %). The black contour in panels (b), (c) and (d) show 464 
the relevant column loading threshold for the control run. The purple contours show the 30 % probability region for ENS01 465 
of exceeding the relevant column loading threshold (the region within the purple dashed line goes from 30 % up to 100 %). 466 
For generating the purple contours, members from the prior ensemble were retained by verifying ENS01 with observations 467 
at T3 (a) and using the same HR and MPD thresholds for which ENS03 has been evaluated (Table 2) to ensure a fair 468 
comparison between the prior and posterior ensembles. 469 

By considering mean ash concentrations (mg m-3) at T10 for ENS08, thus at 0000 UTC on 24 June 2019, for the three 470 
“thick” Flight Layers, FL000–200 (Fig. 7a), FL200–350 (Fig. 7b) and FL350–550 (Fig. 7c), the control run seems to 471 
underestimate the areas with concentrations exceeding 0.2 mg m-3 compared to the subset of retained members of both 472 
ENS01 and ENS08. Contrary, ENS01 forecasts concentrations exceeding 0.2 mg m-3 over larger regions compared to 473 
the posterior ensemble. The overestimation increases considerably for FL200–350 but also for FL350–550, even with 474 
the posterior ensemble forecasting an additional plume tail extending to the east of Raikoke (Fig. 7c). Indeed, the areas 475 
forecasted by ENS08 with concentrations > 0.2 mg m-3 for both FL200–350 (Fig. 7b) and FL350–550 (Fig. 7c) are, 476 
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respectively, around 60 % and 30 % less extended than the ones forecasted by ENS01. In general, for all three flight 477 
levels, the area that a posterior ensemble would forecast with high ash concentrations is drastically reduced compared 478 
to the prior ensemble. 479 

480 
Figure 7: Mean ash concentration values (mg m-3) for ENS08 members for (a) FL000–200, (b) FL200–350 and (c) FL350–481 
550 at 0000 UTC 24/06/2019. Each panel shows also the associated 0.2 mg m-3 ash concentration contour for both the control 482 
run (black contour) and ENS01 (red contour).  483 

5.1 Application to aviation operations  484 

The use of either probability exceedance maps (Fig. 6) or concentration maps (Fig. 7) condense the information given 485 
by the ensemble of VATDM simulations. However, multiple charts are still needed to cover all the relevant 486 
information, such as different flight levels, times and ash concentration thresholds. To reduce information overload 487 
from these numerous charts, which could impede fast decision–making during emergency response, they can be 488 
condensed further into a single chart using a risk matrix (Prata et al., 2019). Here we apply this risk–based approach 489 
to international flight routes in the vicinity of Raikoke using both the prior and posterior ensembles outlined in Sect.4. 490 

5.1.1 Flight routes and dosage risk 491 

To simulate potential aircraft encounters with volcanic ash, flight routes with minimised travel time were generated 492 
by solving a time–optimal control problem as described in Wells et al. (2021). Trans–Pacific flights were generated 493 
assuming a constant true airspeed of 240 m s-1 (~864 km hr-1) at a cruise altitude of FL380 (or 200 hPa) and using 494 
horizontal wind speeds extracted from the National Center for Atmospheric Research re–analysis data (Kalnay et al., 495 
1996). Eastbound and westbound time–optimal routes from Sapporo (CTS) to Honolulu (HNL), Los Angeles (LAX) 496 
to Seoul (ICN) and San Francisco (SFO) to Shanghai (PVG) international airports were calculated for each day of the 497 
dispersion model output (i.e., at 24 hr intervals). 498 

As in Prata et al. (2019), the along–flight ash dose, D, was defined as the ash concentration multiplied by the duration 499 
in that concentration (duration of exposure), integrated along an aircraft’s flight path at cruise altitude (assumed to be 500 
FL350–550). This definition means that dose always increases monotonically along the route. All dose calculations 501 
assume that the modelled ash concentration fields at a given time step are fixed (i.e., do not change with time) as the 502 
aircraft flies from the origin to destination at its true airspeed (Prata et al., 2019). 503 

5.1.2 Risk based approach  504 
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The first step in determining the risk is to calculate the fraction of ensemble members that have concentrations above 505 
specified impact thresholds for each of the three flight levels. In line with the current International Civil Aviation 506 
Organisation (ICAO) guidance, the impact concentration thresholds used are 0.2–2 mg m−3, 2–4 mg m−3 and greater 507 
than 4 mg m−3, for low, medium and high impact respectively. The risk of encountering ash is then determined by 508 
combining the likelihood ranges (less likely, 0–10 %; likely, 10–90 %; very likely, 90–100 %) and the impact. The 509 
risk of flying in a specific location and at a flight level is then assigned to be low, medium or high. The overall risk 510 
presented is the maximum risk over the three flight levels. In Prata et al. (2019), each risk level has a set of actions 511 
that may be implemented by the decision maker. These range from checking updated ash forecasts to considering 512 
alternative routes and scheduling extra maintenance. 513 

The risk can be visualised as a 2D map or projected on to flight tracks of interest (Fig. 8). Considering risk based on 514 
ash concentrations at 0000 UTC on 24 June 2019, there are large portions of the flight tracks that encounter low and 515 
mid–level risk, with a small region of high risk to the east of Raikoke when using the prior ensemble (Fig. 8a). Thus, 516 
based on the prior ensemble output, flight operations could be expected to be severely disrupted at this time. However, 517 
determining risk from the posterior ensemble (ENS08) removes the region of highest risk and, overall, the amount of 518 
flight track potentially impacted and therefore requiring action from the flight operator is greatly reduced (Fig. 8b). 519 

To account for the overall exposure of the aircraft to ash, the risk approach can also be applied to dose along a flight 520 
track (Fig. 8). To do this the ash dose impact thresholds used are 4.4–14.4 g s m-3, 14.4–28.8 g s m-3 and greater than 521 
28.8 g s m-3 (Clarkson and Simpson, 2017; Prata et al., 2019). The likelihood ranges used are the same as those used 522 
for the concentration approach. In this scenario the risk is only determined at cruising altitude, which is assumed to 523 
be at FL350–550 (not the maximum over all flight levels). For the prior ensemble, the flight tracks to and from the 524 
West Coast of North America encounter mid–level risk and could potentially require specific actions by the airlines 525 
(e.g., more fuel and engine checks). Using this metric, flights between Honolulu and Sapporo do not reach doses that 526 
reach the lowest level of risk (Fig. 8c). For the posterior ensemble (ENS08), only the route from SFO to PVG and ICN 527 
reach sufficiently high doses to be highlighted by the risk approach. The other routes have very few ensemble members 528 
where doses are above 4.4 g s m-3 and therefore are not highlighted by the risk approach (Fig. 8d). This could greatly 529 
reduce the need for an operator to implement any mitigation strategies. 530 
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Figure 8: Concentration risk along time optimal flight routes at 0000 UTC on 24 June 2019 for (a) prior ensemble (b) 532 
ENS08.  Ash dose risk along the same time optimal flight routes at 0000 UTC on 24 June 2019 for (c) prior ensemble (d) 533 
ENS08. Yellow shading indicates the lowest level of risk, orange shading indicates mid–level risk and red indicates the 534 
highest level of risk. Note that dose risk only considers risk at FL350–550, whereas concentration risk considers at all levels. 535 

6 Conclusions  536 

This study presents a new particle filtering data assimilation methodology that combines VATDM simulations with 537 
satellite retrievals including their uncertainty estimates, to improve forecasts of volcanic ash cloud location and 538 
concentration. A prior ensemble is created by simultaneously varying nine parameters representing the meteorology, 539 
eruption source and internal parameters. Members from the prior ensemble are retained or discarded based on their 540 
level of agreement with the satellite retrievals. The retained simulations are then used to create a posterior ensemble. 541 
Each posterior ensemble is verified and filtered using satellite data at subsequent verification times. 542 

The ESPs ranges in the constrained posterior ensembles are both smaller and skewed towards lower values than those 543 
used in the control run and prior ensemble. Therefore, a single ensemble designed with unconstrained parameters 544 
ranges (i.e., the prior ensemble) seems insufficient for estimating ESPs ranges that may approximate more accurately 545 
the observed volcanic ash cloud. This is not the case for internal model parameters which remain unconstrained by 546 
the data assimilation.   547 

Communicating the risk of volcanic ash to aviation using risk maps and risk trajectories shows that the prior ensemble 548 
forecasts mid–level and highest risk for both ash concentration and dose thresholds for much of a set of representative 549 
flight tracks. Based on this information flight operations could be severely disrupted by the eruption. However, using 550 
the constrained posterior ensemble, the region of highest risk is removed, and the mid–level risk is reduced. Thus, 551 
using the refined posterior ensembles potentially reduces the need for the operator to implement any mitigation 552 
strategies and hence reduces disruption to airline operations.   553 
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This methodology is easily generalisable to other VATDMs and could be used to run a comparison with other models. 554 
Different remote sensing datasets could be used to assess its sensitivity to the observations used. Running multiple 555 
1000–members ensembles requires either a high computational power or can be subject to variable queuing times on 556 
computer clusters such as JASMIN. Future work could include code optimization, to make runtime and ensemble size 557 
more efficient, potentially allowing an operational application. Furthermore, the evaluation method is based on limits 558 
of acceptability; a future improvement could be to define a formal likelihood measure, and weight the behaviour of 559 
each simulation output with the observations for creating the posterior. 560 
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