Site	Longitude	Latitude	Period	Species	Reference	
Taizhou	120.00° E	32.55° N	May 23 – June 15, 2018 N ₂ O ₅		Li et al. (2020)	
Changping	116.23° E	40.22° N	May 13 – June 23, 2016	CINO ₂	Le Breton et al. (2018)	
Beijing	116.36° E	39.97° N	June 11 – 16, 2017	ClNO ₂	Zhou et al. (2018)	
Wangdu	115.20° E	38.66° N	June 20 – July 9, 2014	ClNO ₂ and N ₂ O ₅	Tham et al. (2016)	
Mount Tai	117.10° E	36.25° N	July 24 – August 27, 2014	ClNO ₂ and N ₂ O ₅	Wang et al. (2017)	
Mount TaiMoShan	114.13° E	22.41° N	November 15 – December 6, 2013	ClNO ₂	Wang et al. (2016)	

Table S1. Field measurements of CINO2 and N2O5 from literatures

Table S2. Normalized mean bias (NMB) and correlation coefficients (r) between observed and simulated

aerosol components at different observation sites													
Site	Case -	SO 4 ²⁻		NO ₃ -		$\mathrm{NH_{4^+}}$		Cl-		ОМ			
		NMB	r	NMB	r	NMB	r	NMB	r	NMB	r		
Dongying	Base	-33%	0.89	-41%	0.87	-40%	0.83	-36%	0.68	49%	0.77		
	McDuffie	-40%	0.84	-40%	0.88	-42%	0.88	-35%	0.68	49%	0.77		
	NoEm	-40%	0.84	-40%	0.86	-46%	0.85	-89%	-0.05	49%	0.77		
Guangzhou	Base	-8.2%	0.19	129%	0.18	65%	0.25	39%	0.71	20%	0.28		
	McDuffie	-8.4%	0.18	143%	0.16	71%	0.26	56%	0.71	21%	0.27		
	NoEm	-7.0%	0.16	141%	0.16	64%	0.23	-79%	0.61	22%	0.26		
Gucheng	Base	-43%	0.34	-11%	0.72	-27%	0.67	-4.7%	0.40	-11%	0.60		
	McDuffie	-44%	0.33	-12%	0.73	-27%	0.67	-4.0%	0.39	-12%	0.60		
	NoEm	-43%	0.33	-13%	0.73	-41%	0.66	-96%	0.10	-12%	0.60		

Figure S1. Spatial distribution of annual chlorine emissions released from sea salt aerosol, CH₃Cl, CH₂Cl₂ and CHCl₃.

Figure S2. Spatial distribution of observation sites.

Figure S3. Effects of chlorine chemistry on annual mean surface concentrations of OH, NO₃⁻, NH₄⁺ and SO₄²⁻ in China.

Figure S4. Effects of N₂O₅-ClNO₂ chemistry on annual mean surface concentrations of NO₃⁻, NH₄⁺ and SO₄²⁻ in China.

Figure S5. Impacts of chlorine chemistry other than the N₂O₅-ClNO₂ chemistry on annual surface mean surface concentrations of MDA8 O₃ in China.

Figure S6. Effects of anthropogenic and biomass burning chlorine emissions on annual mean surface concentrations of NH4⁺ and SO4²⁻ in China.

Figure S7. Effects of anthropogenic and biomass burning chlorine emissions without the N₂O₅ – ClNO₂ chemistry on annual mean surface concentrations of Cl atoms and MDA8 O₃ in China.

Figure S8. Effects of the N₂O₅-CINO₂ chemistry without anthropogenic and biomass burning chlorine emissions on annual mean surface concentrations of nighttime max ClNO₂ and MDA8 O₃ in China.

Reference

- Le Breton, M., Hallquist, Å. M., Pathak, R. K., Simpson, D., Wang, Y., Johansson, J., Zheng, J., Yang, Y., Shang, D., Wang, H., Liu, Q., Chan, C., Wang, T., Bannan, T. J., Priestley, M., Percival, C. J., Shallcross, D. E., Lu, K., Guo, S., Hu, M., and Hallquist, M.: Chlorine oxidation of VOCs at a semirural site in Beijing: significant chlorine liberation from ClNO2 and subsequent gas- and particlephase Cl–VOC production, Atmos. Chem. Phys., 18, 13013-13030, 10.5194/acp-18-13013-2018, 2018.
- Li, Z., Xie, P., Hu, R., Wang, D., Jin, H., Chen, H., Lin, C., and Liu, W.: Observations of N2O5 and NO3 at a suburban environment in Yangtze river delta in China: Estimating heterogeneous N2O5 uptake coefficients, J. Environ. Sci., 95, 248-255, https://doi.org/10.1016/j.jes.2020.04.041, 2020.
- Tham, Y. J., Wang, Z., Li, Q., Yun, H., Wang, W., Wang, X., Xue, L., Lu, K., Ma, N., Bohn, B., Li, X., Kecorius, S., Größ, J., Shao, M., Wiedensohler, A., Zhang, Y., and Wang, T.: Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China, Atmos. Chem. Phys., 16, 14959-14977, 10.5194/acp-16-14959-2016, 2016.
- Wang, T., Tham, Y. J., Xue, L., Li, Q., Zha, Q., Wang, Z., Poon, S. C. N., Dubé, W. P., Blake, D. R., Louie, P. K. K., Luk, C. W. Y., Tsui, W., and Brown, S. S.: Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China, J. Geophys. Res.: Atoms., 121, 2476-2489, https://doi.org/10.1002/2015JD024556, 2016.
- Wang, Z., Wang, W., Tham, Y. J., Li, Q., Wang, H., Wen, L., Wang, X., and Wang, T.: Fast heterogeneous N2O5 uptake and ClNO2 production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain, Atmos. Chem. Phys., 17, 12361-12378, 10.5194/acp-17-12361-2017, 2017.
- Zhou, W., Zhao, J., Ouyang, B., Mehra, A., Xu, W., Wang, Y., Bannan, T. J., Worrall, S. D., Priestley, M., Bacak, A., Chen, Q., Xie, C., Wang, Q., Wang, J., Du, W., Zhang, Y., Ge, X., Ye, P., Lee, J. D., Fu, P., Wang, Z., Worsnop, D., Jones, R., Percival, C. J., Coe, H., and Sun, Y.: Production of N2O5 and ClNO2 in summer in urban Beijing, China, Atmos. Chem. Phys., 18, 11581-11597, 10.5194/acp-18-11581-2018, 2018.