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Abstract 17 

A large population in China has been increasingly exposed to both severe ozone (O3) pollution 18 

and extreme heat under global warming. Here, the spatiotemporal characteristics of coupled 19 

extremes in surface O3 and heat (OPCs) over China are investigated using surface observations, a 20 

process-based chemical transport model (GEOS-Chem), and multi-model simulations from Phase 21 

6 of the Coupled Model Intercomparison Project (CMIP6). North China Plain (NCP, 37-41°N; 114-22 

120°E) is identified as a hot spot of OPCs, where more than half of the O3 pollution days are 23 

accompanied by high temperature extremes. OPCs over NCP exceed 40 days during 2014-2019, 24 

exhibiting an increasing trend. Both O3 concentrations and temperatures are elevated during OPCs 25 

compared to O3 pollution days occurring individually (OPIs). Therefore, OPCs impose more severe 26 

health impacts to human than OPIs, but the stronger health effects are mainly driven by the higher 27 

temperatures. GEOS-Chem simulations further reveal that enhanced chemical production resulting 28 

from hot and stable atmospheric condition under anomalous weather pattern primarily contributes 29 

to the exacerbated O3 levels during OPCs. In the future, CMIP6 projections suggest increased 30 

occurrences of OPCs over NCP in the middle of this century, but by the end of this century, OPCs 31 

may decrease or increase depending on the pollutant emission scenarios. However, for all future 32 

scenarios, extreme high temperature will play an increasingly important role in modulating O3 33 

pollution in a warming climate. 34 

 35 

 36 

 37 
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1. Introduction 38 

With the rapid economic development, car ownership and fossil fuel consumption, China has 39 

been struck by severe air pollution in the recent decades (Lu et al., 2018). Research and air quality 40 

controls have been prioritized to tackle the problem of particulate matter (PM2.5, T Wang et al., 41 

2017). Since the implementation of China’s Action Plan on the Prevention and Control of Air 42 

Pollution Plan in 2013, anthropogenic emissions of many air pollutants and their precursor gases, 43 

including sulfur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), black carbon (BC) 44 

and organic carbon (OC), decreased by 21-59% between 2013 and 2017, despite a 11% increase in 45 

anthropogenic emissions of non-methane volatile organic compounds (NMVOCs) (Zheng et al., 46 

2018). Correspondingly, the annual average PM2.5 concentrations decreased from 72 μg/m3 to 47 47 

μg/m3 in 74 major cities in China (Huang et al., 2018). In contrast, ozone (O3) concentrations in 48 

China show an apparent increasing trend during 2013-2017, with the annual average O3 49 

concentrations in 74 key cities increasing from 140 μg/m3 to 160 μg/m3 (Huang et al., 2018). During 50 

the warm season (April-September) of the same period, the daily maximum 8-hour average O3 51 

concentration (MDA8 O3) increased at a rate of 3% per year, far exceeding the rates in many other 52 

countries, such as Japan, Korea, and Europe (Lu et al., 2018). Long-term exposure to high O3 53 

concentrations can seriously damage human health, agriculture, buildings, and ecology (Sharma et 54 

al., 2017, Yue et al., 2017). Therefore, the rising O3 concentration in recent years has caused great 55 

public concerns in China. 56 

With global warming, extreme high temperatures and heat events have become natural hazards 57 

in China in the recent decades, with substantial effect on socioeconomics, ecosystems and human 58 

health (Lau and Nath, 2014, Meehl and Tebaldi, 2004). For instance, southern China was hit by a 59 
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widespread heat wave with a record-breaking maximum temperature of 43.2oC during summer 2003. 60 

The extreme heat event lasted for more than 40 days and caused heightened levels of human 61 

mortality (Tan et al., 2007, P Wang et al., 2017a). Such disastrous high temperatures have become 62 

more frequent in China (W Wang et al., 2016). Mideastern China experienced an excessively long 63 

heat wave over a wide-ranging area from mid-July to mid-August 2018. The local maximum 64 

temperatures exceeded 40℃, and the spatial extent involved 18 provinces, resulting in record-65 

breaking overloaded power grids in many areas (Li et al., 2019; Lu et al., 2020). Recent studies 66 

found that extreme high temperatures and heat events have intensified in the past 60 years and are 67 

expected to become more frequent and severe in the coming decades (P Wang et al., 2019a; 2017b).  68 

Extreme high temperatures are conducive to O3 pollution. Specifically, high temperatures can 69 

increase the production rate of surface O3 in the presence of abundant O3 precursors (Camalier et 70 

al., 2007, Lu et al., 2019a). As O3 concentration increases nonlinearly with temperature, extreme 71 

high temperatures have disproportionate impacts on O3 (Lin et al., 2020). Therefore, O3 pollution 72 

often co-occurs with extreme heat (Schnell and Prather, 2017). Besides the direct impacts of air 73 

temperatures on O3 production, the co-occurrence of extreme heat and O3 pollution arise from their 74 

shared underlying drivers, i.e., persistent high pressure, strong solar radiation, low humidity and 75 

weak wind speeds (P Wang et al., 2017a; 2017b;Perkins, 2015). Hence despite reductions in 76 

anthropogenic emissions of O3 precursors in the U.S., Europe and China, high O3 episodes will 77 

likely continue in the future due to increasing heat waves under climate warming (Zhang et al., 78 

2018).  79 

The coupled extremes in heat and O3 pollution lead to higher mortality rates than O3 pollution 80 

or hot extreme acting alone (Krug et al., 2019). While the impacts of extreme high temperatures on 81 
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O3 pollution have been investigated using case studies in China (Ma et al., 2019; Pu et al., 2017), 82 

there is a gap in understanding the spatiotemporal characteristics and underlying mechanisms of 83 

coupled extremes in high temperatures and O3 pollution due to a lack of systematic analyses. 84 

Although extreme high temperatures are expected to be more frequent and intense in the future with 85 

accelerated warming, surface O3 concentrations are expected to decrease because of curtailment in 86 

O3 precursor emissions. Therefore, considerable uncertainties exist in the future changes of coupled 87 

extremes in heat and O3. 88 

In this study, based on the available surface O3 concentrations and air temperatures 89 

observations during 2014-2019, we investigate the spatiotemporal characteristics of co-occurrences 90 

of extremes in air temperatures and surface O3 in China, highlighting North China Plain (NCP, 91 

defined here as 37-41°N; 114 -120°E, see Fig.1) as a hot spot which has already suffered from the 92 

most severe O3 pollution in recent years (K Li et al., 2019). The underlying mechanisms governing 93 

the coupled extreme are examined using the global chemical transport model GEOS-Chem. The 94 

associated health burden during the coupled extreme days is also discussed. In addition, future 95 

projections of the coupled extremes in the warming climate are explored based on the latest multi-96 

model simulations from Phase 6 of the Coupled Model Intercomparison Project (CMIP6). 97 

2. Data and Method 98 

2.1 Observed O3 concentration and reanalysis data 99 

Hourly O3 concentrations for 2014–2019 are obtained from China National Environmental 100 

Monitoring Centre (CNEMC). The network covered 944 sites in 2014 that grew to about 1600 sites 101 

in 2019. The daily maximum air temperatures (Tmax) for more than 2000 observation sites during 102 

the same period are provided by the National Meteorological Information Center of the China 103 
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Meteorological Administration (CMA). The dataset has been quality-controlled and homogenized 104 

(Q Li et al., 2004) and widely used in previous works (P Wang et al., 2019b). Here in this study, we 105 

focus on the extreme high temperatures and surface O3 of warm season during May to September. 106 

To unify the spatial resolutions of Tmax and O3 concentration, the two observational datasets are 107 

mapped to 1° × 1° grid boxes, and the values in each box represent the averaged observations within 108 

that box. The spatial distributions of averaged daily Tmax and MDA8 O3 over May-September 109 

during 2014-2019 are shown in Figure S1. We have also tested the grid size of 0.5° and found that 110 

the different grid resolutions have negligible influence on the results. 111 

Meteorological conditions during extremes of O3 and high temperatures are calculated using 112 

variables derived from the new Japanese 55-year Reanalysis (JRA-55) at 1.25° × 1.25° resolution 113 

(Ebita et al., 2011), including geopotential height (HGT), winds, relative humidity (RH), 2m air 114 

temperature (T2m), surface soil moisture (SM), downward solar radiation flux (DSR) and sensible 115 

heat flux (SH) at surface. Following Gong and Liao (2019), daily time series of a meteorological 116 

parameter x at a specific model grid cell over the months of May to September in the years 2014–117 

2019 is standardized by 118 

[x!] =
"!#

∑ #!
$
!
$

$
 ,              (1) 119 

where x! indicates the parameter x on day i, n is the total number of days during May to 120 

September for 2014-2019, s indicates the standard deviation of the daily time series and [x!] is the 121 

standardized anomaly for parameter x on day i. The standardized meteorological variables enable a 122 

direct comparison among their magnitudes during extreme O3 and/or high temperatures. 123 

2.2 GEOS-Chem model 124 
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To explore the physical and chemical mechanisms related to the O3 extremes, the 3-D global 125 

chemical transport model (GEOS-Chem, version 12.9.3) is utilized to simulate O3 concentrations 126 

during May-September for 2014-2017, driven by assimilated meteorological data of Version 2 of 127 

Modern Era Retrospective-analysis for Research and Application (MERRA-2) (Gelaro et al., 2017). 128 

The simulations are performed at a horizontal resolution of 2° latitude × 2.5° longitude with 47 129 

vertical levels. By examining the simulations of surface O3 over the U.S. with a regional climate 130 

model and the global GEOS-Chem model, Fiore et al. (2003) indicate that the ability to resolve local 131 

O3 maxima is compromised, but the spatial correlation improves when the model resolution 132 

coarsens. The coarse-resolution global model can successfully capture the synoptic-scale processes 133 

modulating O3 concentrations whereas a finer spatial resolution may improve the representation of 134 

processes occurring on smaller scales. The anthropogenic emissions of O3 precursor gases including 135 

CO, NOx and volatile organic compounds (VOCs) in China are obtained from the MEIC emission 136 

inventory (http://meicmodel.org/), which includes emissions from industry, power, residential and 137 

transportation sectors. Biogenic volatile organic compound (BVOC) emissions also play vital 138 

roles in modulating the formation of ozone and secondary organic aerosols (Ma et al., 2021; Y. 139 

Gao et al., 2021). For biogenic emissions in GEOS-Chem, the Model of Emissions of Gases 140 

and Aerosols from Nature (MEGAN) v2.1 biogenic emissions are applied with updates from 141 

Guenther et al. (2012). Lacking anthropogenic emissions for 2018-2019, simulations are conducted 142 

for 2014-2017 by GEOS-Chem and we use observations during 2014-2017 to validate the model 143 

results.  144 

 145 

2.3 CMIP6 data 146 
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We use O3 and Tmax outputs from future projections of Scenario Model Intercomparison 147 

Project (ScenarioMIP) in the CMIP6 archive to determine how the coupled extremes will change in 148 

a warmer climate. ScenarioMIP is the primary activity within CMIP6 that provides multi-model 149 

climate projections driven by different scenarios of future emissions and land use changes (O'Neill 150 

et al., 2016), produced based on the Shared Socioeconomic Pathways (SSPs) combining 151 

socioeconomic developments and the feedback of global climate changes (Z Li et al., 2020). More 152 

details about the SSP scenarios can be found in O'Neill et al. (2016). 153 

Currently, four SSP scenarios in ScenarioMIP simulations provide hourly O3 concentration 154 

and daily Tmax from the present day to the end of the 21st century (2015 to 2100), i.e., SSP1-2.6, 155 

SSP2-4.5, SSP3-7.0 and SSP5-8.5 (combination of low, intermediate, relatively high and high 156 

societal vulnerabilities and forcing levels, respectively). Among the four SSPs, SSP3-7.0 and SSP2-157 

4.5 have the weakest and medium air pollution controls pathways, respectively, while strong air 158 

pollution controls are assumed in SSP1-2.6 and SSP5-8.5 (Gidden et al., 2019). Five global climate 159 

models (GCMs), MOHC.UKESM1-0-LL, CESM2-WACCM, GFDL-ESM4, MPI-ESM-1-2-HAM 160 

and EC-Earth3-AerChem from ScenarioMIP under CMIP6 that provide both hourly O3 and daily 161 

Tmax are adopted in this work. The horizontal resolutions and institutions of the five GCMs are 162 

listed in Table S1. Note that the numbers of available models vary across different scenarios (see 163 

Table S2 for details). The results from the five GCMs are regridded to the observation boxes using 164 

linear interpolation to facilitate spatial comparison. In this study, 2015-2019 is regarded as the 165 

historical period and the overall performance of the CMIP6 simulations in reproducing the 166 

occurrences of coupled extremes is evaluated against the observations during 2015-2019. For the 167 
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projection of coupled extremes, we focus on two periods of 2046-2050 and 2096-2100 in the mid 168 

and end of the 20th century, respectively, under different SSPs. 169 

2.4 Identification of extremes in O3 and temperature 170 

Following Schnell and Prather (2017), in this study, we use the local-specific thresholds for 171 

each grid to identity the extreme cases of surface air temperatures and O3 concentrations, 172 

specifically, the 90th percentile of daily Tmax and daily MDA8 O3 from May to September for 2014-173 

2019. The local-specific thresholds have been widely used in recent studies of ozone pollution (e.g., 174 

Schnell& Prather, 2017; Lin et al., 2019; Qin et al., 2021). Note that the 90th percentile of MDA8 175 

O3 over NCP, Yangtze River Delta, Sichuan Basin and Pearl River Delta are 97.7 ppb, 84.4 ppb, 176 

73.7 ppb and 76.8 ppb, respectively, close to China’s Grade II air quality standard for MDA8 O3 177 

(around 80 ppb under standard atmospheric conditions). 178 

To characterize the co-occurrences of extremes in high temperatures and surface O3 and 179 

investigate the impacts of extreme high temperatures on O3 pollution, the following extremes are 180 

defined:  181 

• Total O3 pollution days (OPs): All days when daily MDA8 O3 is above its threshold. 182 

• Individual O3 pollution days (OPIs): Days when MDA8 O3 is above its threshold while Tmax 183 

is lower than its threshold.  184 

• Coupled extreme days (OPCs): Days when both daily Tmax and daily MDA8 O3 exceed their 185 

corresponding thresholds. 186 

We use a co-occurrence frequency ratio (CF) in percent to characterize the dependence of extreme 187 

high O3 levels on extreme high temperatures. CF is defined as the ratio of the frequency of OPCs 188 
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(days) to the frequency of OPs (days). Thus, a higher CF value indicates a higher dependence of O3 189 

pollution on extreme high temperatures: 190 

CF= OPCs/OPs×100%,               (2) 191 

2.5 Health impact of coupled extremes 192 

Following Lee et al. (2017), in this study, we apply a ratio index to describe the combined 193 

human health impacts caused by O3 and temperatures during OPCs, which represents the potential 194 

enhancement in mortality rates (referred as to MR hereafter) related to O3 and temperature levels 195 

during OPC than OPIs. And the MR is defined as below: 196 

MR=%&!'(	*+,-&'!-(	./,!01	234$
%&!'(	*+,-&'!(/	./,!01	235$

 197 

=
∑ %%&'&$(,!!

* ∗
∑ %%+(*,(-.+/-(,!!

*
∑ %%&'&$(,00

$ ∗
∑ %%+(*,(-.+/-(,00

$

,           (3) 198 

      MRozone=
∑ %%&'&$(,!!

	*
∑ %%&'&$(,00

$

,             (4) 199 

      MRtemperature=
∑ %%+(*,(-.+/-(,!!

*
∑ %%+(*,(-.+/-(,00

$

,       (5) 200 

				RR+7+089exp:;<(4#42)?,                (6) 201 

RR-8@A8,&-/,89exp(;B(C#C2)),            (7) 202 

Here, RRozone,i (RRozone,j) and RRtemperature,i (RRtemperature,j) are the relative risks due to O3 203 

concentration and temperature exceedance, respectively, on a coupled extreme day i (an individual 204 

O3 pollution day j); m is the total days of coupled extremes and n is the total days of individual O3 205 
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pollution day. MRozone (MRtemperature) is the enhanced mortality rates attributed to O3 concentration 206 

(temperature) changes, while MR is the combined effects from both O3 and temperature changes. 207 

Because China has higher air pollution levels and may also differ in terms of age structure, 208 

population sensitivity to air pollution/heat exposures, and components of air pollution mixture 209 

compared to developed countries (K Chen et al, 2018), we use China-specific concentration and 210 

temperature response functions in the present study, as indicated in the recent nationwide studies 211 

(Yin et al., 2017; Huang et al., 2015). β1 is the concentration response factor corresponding to a 212 

0.24% [95% confidence interval: 0.13%, 0.35%] increase in daily mortality per 10 μg/m3 increase 213 

in MDA8 O3 above C0 (Yin et al., 2017). Following Huang et al. (2018) in calculating RRtemperature 214 

in 66 Chinese communities, β2 indicates a 1.09% (95% confidence interval: 0.72% to 1.46%) excess 215 

mortality per 1°C increase in temperature above T0. Note that the algorithms here to calculate MR, 216 

MRozone and MRtemperature does not consider the possible amplification/inhibition effect of combining 217 

O3 and air temperature in affecting human health. Previous studies have claimed that O3-related 218 

mortality increases with higher temperatures, although several studies presented contrasting results 219 

or inconsistent relationships for different regions (R Chen et al., 2014; Jhun et al., 2014; Ren et al., 220 

2008). By analyzing the total mortality rates associated with short-term O3 exposure over East Asia 221 

among four seasons, R Chen et al (2014) found that the higher temperatures in summer significantly 222 

increased the O3-related mortality rates. 223 

 224 

3. Results 225 

3.1 Spatial and temporal patterns of coupled extremes 226 
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The spatial patterns of OPCs and their ratio to the total O3 pollutions days (CF values) during 227 

May-September for the recent 6 years (2014-2019) highly resemble each other (Figure 1), with the 228 

highest values located over NCP which has suffered the most severe O3 pollution in recent years 229 

(Fig.S1a). The highest OPCs exceed 40 days over NCP and the corresponding CF is more than 56% 230 

(Fig. 1). That means, the coupled extreme days account for more than half of the total O3 pollution 231 

days, indicating a strong dependence of O3 pollution on extreme high temperatures over NCP. It has 232 

been suggested that the dependence of O3 concentration on high temperature increases with the O3 233 

levels (Lin et al., 2020). However, coupled extremes occur much less frequently over the Yangtze 234 

River Delta (YRD, 30-33°N, 118-122°E) compared to NCP, and the regional averaged CF in YRD 235 

is below 20%, even though MDA8 O3 level and temperature in YRD are both as high as those in 236 

NCP (Fig. S1). The distinctive relationships between extreme high temperature and O3 237 

concentration over NCP and YRD are driven by their different climatology during warm season. 238 

Southern China receives substantial monsoon rainfall during summer, accompanied by increased 239 

relative humidity and reduced radiation (Zhou and Yu, 2005), which can suppress surface O3 levels 240 

(Han et al., 2020). Delineating the local daily maximum air temperatures (Tmax) and RH of all O3 241 

pollution days over NCP and YRD (Figure S2), OPCs occur more frequently over NCP than over 242 

YRD, and a higher fraction of the O3 pollution days over NCP co-occur with extreme high 243 

temperatures and low-to-moderate RH (Fig. S2a). Humid environment dampens the occurrence of 244 

O3 pollution over YRD and extreme O3 pollution mostly occurs on days with relatively low RH 245 

when air temperatures are moderate (Fig. S2b), which explains the lower OPCs and CF in YRD 246 

compared to NCP. Therefore, we focus on the coupled extremes over NCP. 247 
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Daily variations of the occurrence of OPIs and OPCs over NCP during 2014-2019 are shown 248 

in Figure 2. O3 pollution days have appeared since 2015 but coupled extremes OPCs have only been 249 

observed since 2017, mostly during May–July (Fig. 2a). The abrupt increase in the occurrence of 250 

coupled extremes in 2017 is consistent with the significant increasing trends of both MDA8 O3 and 251 

Tmax (95% confidence level) over NCP in recent years (Fig. 2b). The strong increasing trend of 252 

MDA8 O3 and temperature. The strong increasing trends of MDA8 O3 and air temperatures are 253 

consistent with previous results (K Li et al., 2019; 2020). As addressed previously (K Li et al., 254 

2020), the temperature trends during 2014-2019 reflect interannual climate variability rather than a 255 

long-term warming trend. Notably, daily MDA8 O3 exhibits increasing sensitivity to Tmax from 256 

2014 to 2019 (Fig. 2c), supporting the increase in OPCs during the same time period. Note that the 257 

linear regression slopes between daily MDA8 O3 and Tmax are not strictly monotonic increasing. 258 

For example, the slopes are 3.96 ppb/oC, 3.43 ppb/oC and 4.56 ppb/oC in 2017, 2018, and 2019 (Fig. 259 

2c). In fact, the yearly occurrences of OPCs are 15, 13, 18 days in 2017, 2018, 2019, consistent with 260 

ozone and temperature relationship. Thus, what we emphasize here is the overall increasing OPCs 261 

during 2014 to 2019 with an abrupt increase of OPCs since 2017. The contrasting MDA8 O3 and 262 

Tmax associated with OPCs and OPIs over NCP are evident in Fig. 3. Both O3 levels and air 263 

temperatures are higher during OPCs than during OPIs over NCP region (Fig.3a&3b), with the 264 

regional mean anomalies of Tmax and MDA8 O3 during OPCs reaching 3.36℃ and 5.49 ppb, 265 

respectively, compared to those during OPIs. A north-south contrast in the MDA8 O3 and Tmax 266 

difference between OPCs and OPIs is evident (Fig. 3b), suggesting that contrasting environments 267 

north and south of the Yangtze River during the summer monsoon may play a key role in the 268 

dependence of O3 pollution on extreme Tmax in China. 269 
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3.2 Weather patterns and ozone processes during coupled extremes  270 

Figure 4 shows the composites of normalized anomalies (see Sec.2) of meteorological fields 271 

during coupled extreme days over NCP for 2014-2019. During OPCs, anomalous high pressure and 272 

anticyclonic circulation dominate NCP and the surrounding region north of the Yangtze River in 273 

the mid-troposphere (500hPa), with anomalous easterlies prevailing over NCP (Fig.4a). Associated 274 

with the anomalous high-pressure system is clear sky with enhanced downward solar radiation 275 

(DSR) at the surface (Fig.4c), leading to hotter near surface temperature (Fig.4b), reduced RH and 276 

soil moisture (Fig. 4d&4e), and enhanced surface sensible heat flux (Fig.4f) that further intensifies 277 

the temperatures (Fig. 4b). These anomalous conditions are all stronger during OPCs than OPIs over 278 

NCP (Fig. S3) and more conducive to O3 pollutions (Lu et al., 2019b). Among the meteorological 279 

factors, the intensification in surface temperatures is the strongest among different meteorological 280 

variables with the highest magnitudes (Fig.S3b), supporting that air temperature is the most 281 

influential meteorological variable of surface O3 over NCP (K Li et al., 2019). 282 

The impacts of weather patterns on surface O3 level can be understood via changes in physical 283 

and chemical processes, both sensitive to meteorology (L Chen et al., 2020). The contributions of 284 

different chemical and physical processes to OPCs over NCP under the anomalous weather pattern 285 

of Fig. 4 are quantified by GEOS-Chem simulations of O3 during May to September of 2014–2017. 286 

GEOS-Chem can reasonably capture the spatial pattern and magnitude of OPCs in observations 287 

during 2014-2017 (Text S1 and Figure S4). Four processes affecting O3 levels are considered, 288 

including net chemical production, horizontal advection, vertical advection, and mixing (diffusion 289 

plus dry deposition) and are listed in Table 1. For both OPIs and OPCs, chemical production 290 

contributes the most to O3 mass within the boundary layer. Compared to OPIs, the higher O3 level 291 
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during OPCs (Fig. 3b) are contributed by stronger chemical production and weakened mixing but 292 

vertical advection and horizontal advection tend to reduce the O3 concentrations, with enhanced 293 

chemical production playing the dominant role. Therefore, we conclude that the hotter near surface 294 

temperature induced by anomalous weather pattern and amplified by land-atmosphere feedbacks 295 

during OPCs (Fig. 4) is the primary cause of the enhanced formation of O3 and eventually a higher 296 

surface O3 level than during OPIs. Besides meteorological effects, the O3 precursor emissions 297 

should partially contribute to the spatiotemporal variations of OPCs over China. It’s reported that 298 

surface O3 pollution levels are strongly correlated with daytime surface temperatures, especially in 299 

highly polluted regions, with strong precursor emissions (Poter and Heald, 2019). NCP has the 300 

highest anthropogenic emissions compared to the other regions in China, which should benefit the 301 

higher correlations between surface O3 and air temperatures, and thus the higher OPCs therein. 302 

Moreover, the increasing trend of OPCs over NCP in recent years may be associated with the 303 

continued anthropogenic increases in O3, as well as the unmitigated emissions of VOCs (Li et al., 304 

2019), emphasizing the need for controlling anthropogenic emissions of VOCs. In addition, Fu et 305 

al. (2015) have indicated that the enhanced biogenic emissions and the accelerated photochemical 306 

reaction rates both act to increase surface ozone over the US during 1988–2011. Thus, the increasing 307 

trend of biogenic emissions due to vegetation biomass variability over China (Gao et al., 2021) may 308 

also have potential impacts on the variations of OPCs. 309 

3.3 Health impacts of coupled extremes  310 

As both surface O3 and air temperatures are amplified during coupled relative to individual O3 311 

pollution days (Fig. 3), we investigate the potential influences of OPCs on human health. The 312 

enhanced mortality rates for OPCs compared to OPIs during May to September for each year of 313 
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2017-2019 are illustrated in Figure 5 and attributed to air temperature and/or O3 concentration 314 

changes (MRtemperature, MRozone and MR, see Sec.2). It should be noted that coupled extreme days 315 

are only observed since 2017. MR, MRozone and MRTemperature are above 1.0 for all three years, 316 

indicating a harsher environment for people to survive during OPCs. Importantly, MRtemperature is 317 

significantly higher than MRozone for all years of 2017-2019, suggesting that extreme high 318 

temperature caused many more mortalities than extreme O3 concentrations over NCP. The averaged 319 

MRozone, MRTemperature, and MR for 2017-2019 are 1.003, 1.037, and 1.040, respectively. Compared 320 

to the individual O3 pollution days OPIs, daily mortality rate in NCP increases by 4.0% during 321 

coupled extremes OPCs, the majority of which is attributed to the temperature increase, with less 322 

than one-tenth contributed by the O3 concentration increase. That is, coupled extremes amplify 323 

health impacts compared to individual O3 pollution days primarily because of the higher mortality 324 

risk associated with elevated air temperatures. Moreover, we estimate that around 100 daily excess 325 

deaths over NCP are attributable to the higher temperatures and O3 level during OPCs than OPIs 326 

(See Text S3). 327 

3.4 Projected coupled extremes in future climate  328 

As O3 precursors (i.e., NOx and NMVOCs) are expected to keep declining due to the continued 329 

emission controls in China while extreme high temperatures will become more frequent and intense 330 

under global warming, uncertainties exist in the projection of the co-occurrences of extremes in 331 

high temperatures and O3 pollution. Here, we investigate the projections of OPCs and CF values 332 

based on CMIP6 simulations under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. OPCs in the 333 

simulations are identified in the same way as for the observations (see Text S2 and Fig S5 for details). 334 

We focus on the historical period of 2015-2019 (referred to as 2019) and the projected periods of 335 
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2046-2050 (referred to as 2050) and 2096-2100 (referred to as 2100) by the mid and end of the 336 

century. Note that OPCs during the projected periods are identified based on the historical 337 

thresholds for extreme O3 level and high temperatures. And the analyses are based on the multi-338 

model ensemble mean of projected OPCs for different scenarios. The multi-model ensemble means 339 

can reasonably capture the observed spatial pattern of coupled extremes and their magnitudes over 340 

NCP during 2015-2019 (Fig. S5). 341 

The averaged OPCs over NCP under each SSP increase from the historical period to the mid-342 

century (Fig. 6a), with a maximum increase under SSP5-8.5 (spatial distribution shown in Fig. S6). 343 

From the mid-century to the end-century, OPCs decrease under SSP1-2.6, SSP2-4.5 and SSP5-8.5, 344 

but OPCs by 2100 obviously surpass that in 2050 under SSP3-7.0, with an average increase from 345 

46 days to 196 days (spatial patterns in Fig.S6e&S6f). Due to the weak air pollution control under 346 

SSP3-7.0 (Turnock et al., 2020), MDA8 O3 in 2100 under this scenario is highest among the four 347 

SSPs (Fig. 7). In contrast, OPCs are substantially reduced to below 5 days by 2100 under SSP1-2.6 348 

and SSP2-4.5, highlighting the benefit of strong actions in mitigating climate and reducing air 349 

pollutant emissions. In the future by 2050 and 2100, NCP will still be the most vulnerable region in 350 

China to the coupled extreme (Figure S6), while most other areas will be much less threatened by 351 

the coupled extremes by the end of the century under SSP1-2.6, SSP2-4.5 and SSP5-8.5 (Fig. S6b, 352 

S6d, and S6h).  353 

Unlike OPCs, CF over NCP obviously increases by the 2050 and 2100 compared to 2019 under 354 

all four SSPs (Fig. 6b). The projected increases of CF over NCP indicate the higher dependence of 355 

O3 pollution on extreme high temperatures in the future, consistent with the increased sensitivity of 356 

MDA8 O3 to Tmax at higher Tmax in historical period (Fig. 2c). Spatially, the NCP region will still 357 
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see the highest CF values in the future, especially under SSP1-2.6, SSP2-4.5 and SSP5-8.5 (Fig. 358 

S7). This means regardless of the economic pathways, extreme high temperature will play an 359 

increasingly important role in modulating O3 pollution in the warming climate. Therefore, besides 360 

the management strategies on pollutants emission, global warming mitigations will undoubtedly 361 

benefit O3 pollution control, especially for regions facing severe air quality issues. Note that for the 362 

future changes of OPCs, the influences of natural variability are less considered, whereas previous 363 

studies have emphasized the significant role of natural variability on altering the robustness of 364 

climate projections and their impacts on air quality (e.g, Garcia‐Menendez et al., 2017). The 365 

detection of the anthropogenic-forced signal demands a lager model ensemble and a longer 366 

simulation length that deserves further explorations. 367 

4. Discussion and conclusions 368 

Climate change can impact local air quality. Higher temperatures associated with climate 369 

change can lead to an increase in surface O3, and high temperatures and surface O3 are highly 370 

temporally correlated over many regions (Porter & Heald, 2019). A large population in China has 371 

been increasingly exposed to both severe O3 pollution and extreme heat under global warming. With 372 

combined surface observations of air temperature and O3 concentration, process-based model 373 

simulations and multi-model projections, this study firstly present a comprehensive analysis of the 374 

co-occurrences of extreme high temperatures and O3 pollution in China. It is highlighted that NCP 375 

is a hot spot in China most threatened by the co-occurrence of extremes in heat and O3 pollution. 376 

The higher co-occurrence over NCP than other regions in China is linked to their distinctive 377 

relations to meteorological variables, as temperature is the top meteorological factor directly leading 378 

to O3 pollution over NCP whereas relative humidity is the most influential variable for O3 pollution 379 
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over southern China (Han et al., 2020). Recently, the compound extreme events (e.g., co-occurrence 380 

of two extreme weather events simultaneously) are raised as a substantial concern to O3 formation. 381 

For example, the co-occurrences of heat wave and air stagnation promote higher O3 concentration 382 

compared to the single extreme events of heat wave or stagnation in the U.S. in the future relative 383 

to the present (Zhang et al., 2018; Y Gao et al., 2020). 384 

The concurrent increasing trends in both surface O3 and temperature over NCP in recent years 385 

account for the increasing coupled extremes in surface O3 and heat in recent years. Besides, it is 386 

previously reported that the increasing trend of temperature is higher over northern China than 387 

southern China (P Wang et al., 2017b; Qian et al., 2006). The increase in air temperature can 388 

accelerate the O3 production. Using a physically based model (GEOS-Chem), we have provided 389 

support for the dominant role of higher temperatures associated with stable atmospheric 390 

condition under favorable weather pattern in amplifying O3 pollution through enhanced 391 

chemical production during coupled extremes, compared to the individual ozone pollution days 392 

not accompanied by extreme temperatures. In addition, the increases in surface O3 over NCP are 393 

much stronger than the other regions in recent years, which is also possibly linked to the stimulation 394 

effect from enhanced hydroperoxyl radicals (HO2) due to a reduction in aerosol sink resulting from 395 

the decrease in PM2.5 during this period (K Li et al., 2019). Thus, the hot spot of co-occurrences of 396 

extremes in heat and O3 over NCP could be attributed to the co-effects of stronger increasing trends 397 

of temperature and surface O3 therein.  398 

It is a prevalent concept that the coupled extremes pose greater health impacts or risks to human 399 

than the simply summed impacts of the single extremes acting alone (Smith et al., 2014). It is 400 

revealed here that both the O3 concentration and air temperatures are elevated during the coupled 401 
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extremes than the individual O3 pollution, leading to an even heavier health burden to human. And 402 

this study underscores the elevated air temperatures during the coupled extremes as the major driver 403 

for increased mortality rates, while the simultaneously elevated O3 concentrations act as an 404 

additional stressor. However, as mentioned above, how the interactions between temperature and 405 

O3 influence human health during coupled extremes is still an open question that deserves future 406 

studies using more health-related data.  407 

Currently, China has the highest emission of greenhouse gases, and the emission rates have 408 

increased significantly since the 21st century (Friedlingstein et al., 2020). To prevent the dangerous 409 

climate change impacts, the Chinese government has declared an ambitious goal by pledging to 410 

peak emissions before 2030 and reaching carbon neutrality before 2060. With global warming, hot 411 

extremes in China are projected to be more frequent, stronger, and longer lasting under global 412 

warming, which may present challenges for O3 pollution control of China. Based on ScenarioMIP 413 

simulations from CMIP6, this study demonstrates that the coupled extremes over NCP are projected 414 

to be more frequent in the middle of this century but their frequency decreases or increases by the 415 

end of the century under strong or weak air pollution control scenarios, respectively. And with 416 

higher sensitivity of O3 concentration to temperatures at higher temperatures, O3 extreme will 417 

increasingly co-occur with extreme high temperatures over NCP as the climate warms, regardless 418 

of the economic pathways. Thus, our results further reinforce the notion that determined actions are 419 

vital to make our communities less vulnerable to climate change impacts already in progress. On 420 

the other hand, tropospheric O3 level are projected to be increasing in the near decades (Turnock et 421 

al., 2020) (also see Fig. 7b). As the third important anthropogenic greenhouse gas after CO2 and 422 

CH4, higher tropospheric O3 level can cause temperature changes by altering the energy balance 423 
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between the atmosphere and the Earth (Dang and Liao, 2019), which may feedback on the air quality. 424 

Thus, potential co-benefits may be gained through O3 pollution control and climate change 425 

managements, in suppressing the occurrences of coupled extremes and tackling their consequences 426 

to air quality, human health, and climate. 427 
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 616 

Table 1 Simulated net changes in O3 mass (Gg O3 d−1) in the boundary layer due to different 617 

processes in North China Plain (37–41°N, 114–120°E) during OPCs and OPIs of 2014-2017, 618 

as well as their differences (OPCs - OPIs). 619 

 

Net chemical  

production 

Horizontal  

advection 

Vertical  

advection 

Diffusion plus dry 

deposition 

OPCs 17.10 -2.65 1.12 -6.95 

OPIs 15.66 -1.38 1.24 -7.10 

Differences 1.44 -1.27 -0.12 0.15 

 620 
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 621 

Figure 1 Spatial patterns of (a) OPCs (days), frequency of coupled extremes in high temperatures 622 

and surface O3 concentration, and (b) the corresponding CF values (%), ratio of OPCs to total O3 623 

pollution days, during May-September of 2014-2019 from observations. The blue box area indicates 624 

the NCP region (37-41°N; 114 -120°E). 625 
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     626 

 627 

Figure 2 (a) Observed daily variations of the occurrence of OPIs (blue) and OPCs (red) in NCP 628 

during 2014-2019. The pink boxes indicate hot days when daily Tmax exceeds its threshold while 629 

MDA8 O3 does not exceed its threshold. (b) Monthly mean MDA8 O3 (blue dashed line) and Tmax 630 
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(magenta dashed line) anomalies during May to September of 2014–2019 for the NCP region. For 631 

each month, anomalies are computed relative to the 2014–2019 means for that month of the year. 632 

The linear trends of the 5-month averaged MDA8 O3 and Tmax anomalies for each year is shown 633 

by the solid lines, with the regression slopes shown near the top of the panel. (c) Scatterplot of daily 634 

MDA8 O3 versus Tmax over NCP for May-September of each year identified by the color in 2014-635 

2019. Linear regression lines and the slope (R) values (unit: ppb/℃) are shown for each year, 636 

indicating a general trend of increasing R from 2014 to 2019.  637 

 638 

 639 

 640 
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 641 

Figure 3 Spatial patterns of the averaged difference in (a) Tmax and (b) MDA8 O3 between OPCs 642 

and OPIs (OPCs minus OPIs). The blue box in each panel indicates the NCP region (37-41°N; 114-643 

120°E). 644 

 645 

 646 

 647 
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 648 

 649 

Figure 4 Composites of normalized anomalous (a) geopotential height (HGT) and winds at 500hPa, 650 

(b) 2m air temperature (T2m), (c) downward solar radiation flux (DSR), (d) relative humidity (RH), 651 

(e) soil moisture content (SM), and (f) sensible heat flux (SH) at the surface during coupled extremes 652 

(OPCs). The blue box in each panel indicates the NCP region.  653 

 654 
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 655 

Figure 5 MRozone, MRtemperature and MR between OPCs and OPCs during May to September for 656 

each year of 2017-2019. The average values for 2017-2019 are given in the left corner. MRozone, 657 

MRtemperature and MR indicate the mortality changes between OPCs and OPIs due to differences 658 

in O3 levels alone, air temperatures alone and both O3 levels and temperatures, respectively. 659 

 660 
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 661 

Figure 6 Averaged (a) OPCs and (b) CF values over NCP based on CMIP6 simulations under 662 

different SSPs for the periods of 2015-2019, 2046-2050, and 2096-2100. The error bar shows the 663 

minimum and maximum values simulated by the CMIP6 models for each SSP. Note that only one 664 

GCM is available for SSP1-2.6.  665 
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 666 

Figure 7 Changes in annual mean (a) Tmax and (b) MDA8 O3 averaged over NCP (37-41oN; 114-667 

120oE) relative to 2015 under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. The colored lines 668 

indicate the multi-model ensemble mean for each SSP and the scattered dots with the same color 669 

denote results across the available CMIP6 models. The three periods of 2015 to 2019, 2046 to 2050 670 

and 2096 to 2100 are marked with gray shading. 671 
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