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Abstract. Biomass burning in southwestern Africa produces smoke plumes that are transported over the Atlantic 11 
Ocean and overlie vast regions of stratocumulus clouds. This aerosol layer contributes to direct and indirect radiative 12 
forcing of the atmosphere in this region, particularly during the months of August, September and October. There was 13 
a multi-year international campaign to study this aerosol and its interactions with clouds. Here we report on the 14 
evolution of aerosol distributions and properties as measured by the airborne high spectral resolution lidar (HSRL-2) 15 
during the ORACLES (Observations of Aerosols above Clouds and their intEractionS) campaign in September 2016. 16 
The NASA Langley HSRL-2 instrument was flown on the NASA ER-2 aircraft for several days in September 2016. 17 
Data were aggregated at two pairs of 2°×2° grid boxes to examine the evolution of the vertical profile of aerosol 18 
properties during transport over the ocean. Results showed that the structure of the profile of aerosol extinction and 19 
microphysical properties is maintained over a one to two-day time scale. In the 3-5 km altitude range, 95% of the 20 
aerosol extinction was contributed by particles in the 0.05-0.50 µm radius size range, with the aerosol in this size 21 
range having an average effective radius of 0.16 µm. This indicates that there is essentially no scavenging or dry 22 
deposition at these altitudes. Moreover, there is very little day to day variation in these properties, such that time 23 
sampling as happens in such campaigns, may be representative of longer periods such as monthly means. Below 3 km 24 
there is considerable mixing with larger aerosol, most likely continental source near land. Furthermore, these 25 
measurements indicated that there was often a distinct gap between the bottom of the aerosol layer and cloud tops at 26 
the selected locations as evidenced by a layer of several hundred meters that contained relatively low aerosol extinction 27 
values above the clouds. 28 

1 Introduction 29 

Aerosols are often considered as the most confounding element in the climate system when simulating parameters of 30 
the Earth’s current climate. Their interaction with clouds makes the problem extremely complicated. The general topic 31 
of aerosol-cloud interaction has been of great interest in the scientific community: to quote the report of the 32 
Intergovernmental Panel on Climate Change (IPCC AR5) “Clouds and aerosols continue to contribute the largest 33 
uncertainty to estimates and interpretations of the Earth’s changing energy budget” (Boucher et al., 2013). 34 
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In the context of these interactions, the interplay of biomass burning (BB) aerosol and the stratocumulus clouds in 35 
the Southeast (SE) Atlantic is unique and crucial to the estimates of the energy budget of the region. This BB aerosol 36 
arises from the seasonal burning (July-October) of agricultural residue in the southwestern African Savannah and 37 
traverses large distances westward over the SE Atlantic Ocean. Unlike the aerosol from industrial activity and biofuels 38 
that intermingle with clouds in many regions (Ramanathan et al., 2001; Mechoso et al., 2013), these optically thick 39 
BB aerosol layers overlay vast stretches of marine stratus cloud in the SE Atlantic (Chand et al., 2009; Wilcox, 2010; 40 
Adebiyi et al., 2015) where they have a direct radiative effect. The BB aerosol can also act as nuclei for cloud droplets 41 
and so cause a potentially significant cloud albedo effect. Observations and modelling studies of such interactions in 42 
the Southeast Atlantic and southern Africa regions include Diamond et al. (2018), Kacarab et al. (2020), Mallet et al. 43 
(2020) and Gupta et al. (2021). There is also some evidence that aerosol can alter the thermodynamics of cloud 44 
formation through semi-direct effects (Sakaeda et al., 2011). Studies using high resolution limited area models have 45 
shown a variety of effects, including stratus to cumulus transition resulting from these interactions (Yamaguchi et al., 46 
2015; Gordon et al., 2018; Lu et al., 2018). The semi-direct effect has also been shown to be important in a limited 47 
time run of a global model (Das et al., 2020). 48 

During the course of its transport over the Atlantic basin, the dense BB aerosol layer affects the underlying clouds 49 
and Earth’s radiative balance in multiple ways. It exerts a direct radiative forcing (DRF) by scattering and absorbing 50 
solar radiation in the atmosphere; when clouds are present, these aerosols absorb incoming solar radiation along with 51 
the radiation reflected by the underlying cloud surface (Chand et al., 2009; Meyer et al., 2013; Zhang et al., 2016). 52 
Simultaneously, depending on the relative vertical location of the aerosol with respect to the cloud deck, the cloud 53 
cover (fraction) or liquid water path may increase or decrease in response to heating of surrounding air masses due to 54 
aerosol absorption and subsequent changes in atmospheric stability, the semi-direct forcing (Sakaeda et al., 2011; 55 
Wilcox, 2012; Das et al., 2020). Observations at Ascension Island show that daytime cloud cover and relative humidity 56 
are lower when there is more smoke in the marine boundary layer (Zhang and Zuidema, 2019). Moreover, as the 57 
marine boundary layer (MBL) deepens farther offshore and north of 5° S, subsiding aerosol particles become entrained 58 
into the MBL and interact with the clouds as cloud condensation nuclei to affect their microphysics (indirect forcing) 59 
(Costantino and Breon, 2013; Painemal et al., 2014). 60 

In the context of simulating the above alluded aerosol radiative effects, it is vital that aerosol-cloud overlap 61 
characteristics are accurately represented within the models. The quantification of these aerosol-cloud overlap 62 
characteristics in the models is necessary for a variety of reasons. For example, previous studies have found that the 63 
sign and magnitude of DRF of absorbing aerosol above clouds (AAC) critically depends upon the reflectance and 64 
coverage of the underlying cloud surfaces along with the optical properties, composition and size distribution of the 65 
overlying aerosols (Keil and Haywood, 2003; Chand et al., 2009). Additionally, the magnitude and sign of the aerosol 66 
semi-direct effects are quite sensitive to the vertical distribution of aerosols, especially with respect to the vertical 67 
location of clouds (Penner et al., 2003; McFarquhar and Wang, 2006; Koch and Del Genio, 2010). 68 

Here we address the evolution of the vertical properties of BB aerosol as it travels in the marine environment after 69 
leaving the African land mass. Section 2 identifies the field campaign and specifies the geographic region selected for 70 
the analysis and rationale for that choice. Section 3 describes the attributes of the instrument and key parameters 71 

Deleted: are in72 

Deleted: on the atmosphere by absorbing the 73 

Deleted:  74 



	 3	

related to the aerosol that can be extracted from the measurements. Section 4 presents the results followed by a 75 
summary and conclusion in section 5. 76 

2 Field Campaigns 77 

The concerns mentioned above were the driving force behind plans for several international multi-year field 78 
campaigns; ORACLES (Observations of Aerosols above Clouds and their intEractionS, Redemann et al., 2021), 79 
CLARIFY-2017 (CLoud-Aerosol-Radiation Interactions and Forcing for Year 2017, Haywood et al., 2021), and 80 
LASIC (Layered Atlantic Smoke Interactions with Clouds, Zuidema et al., 2016, 2018). A key component of the 81 
September 2016 NASA ORACLES Intensive Observation Period (IOP) was the vertical profiling of aerosol properties 82 
measured by an airborne lidar, the NASA Langley High Spectral Resolution Lidar-2, HSRL-2 (Burton et al., 2018), 83 
on-board the NASA ER-2, which was based in Walvis Bay, Namibia, for operations during 2016, the deployment 84 
covered in this study. In the following two years, the instrument was on-board the P-3 flying out of São Tomé. The 85 
siting and flight tracks chosen ensured adequate coverage of the seasonal BB aerosol.  86 

2.1 Meteorology 87 

The September monthly mean meteorological situation is shown in Fig. 1 from MERRA2 reanalysis (Buchard et 88 
al., 2017; Randles et al., 2017) along with locations of relevant sites. A thorough meteorological analysis for all 89 
ORACLES deployments is provided in Ryoo et al. (2021). For the period under consideration here, they found that 90 
the African Easterly Jet-South (AEJ-S), fast moving zonal easterlies centered on 650 hPa around 5-15°S, was active 91 
and corresponded closely to the long-term climatology. Fig. 2 shows 650 hPa winds from MERRA2 reanalysis at the 92 
beginning, at the end, and on two intermediate days during which HSRL-2 measurements were made. ER-2 flight 93 
tracks during the September 2016 IOP are shown in Fig. 3. Note that flights were primarily confined to within roughly 94 
1000 km of the African coast with only the 22 September flight venturing further. Flights such as executed during the 95 
IOP are unable to follow air parcels in a Lagrangian fashion to examine the evolution of smoke plumes. Here we 96 
provide an alternate framework by which to study evolving aerosol properties in an average sense. In order to establish 97 
average characteristics of the BB smoke plume as it travels over the ocean, we have chosen five grid boxes of two-98 
degree latitude and longitude on a side at various distances from the source and aggregated observations. The choice 99 
of grid boxes was based on the availability of data from the flights (Fig. 3) and the general direction of transport of 100 
the smoke as evidenced by the wind fields in Fig. 2. The grid boxes so chosen are marked on Figs. 2 and 3 and the 101 
rationale for the choice is explained below.  102 

Figure 4 shows 48-hour backward trajectory frequency analyses at 3.5 km, roughly the central altitude of the plume, 103 
using NOAA HYSPLIT trajectory calculations (https://www.ready.noaa.gov/HYSPLIT_traj.php) which were carried 104 
out using archived GDAS 0.5-degree meteorology (Stein et al., 2015). The frequency distribution is a 48-hour history 105 
of the paths taken by air parcels arriving at the grid boxes marked A and C at 3500 m altitude. The time period of the 106 
frequency analyses covers the entire period during which HSRL-2 measurements were made, 12-24 September 2016. 107 
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The selected grid box pairs indicate that Box A receives aerosol that has earlier crossed Box B and Box C is downwind 110 
of Box D; boxes B and D receive aerosol directly from BB sources on land. The grid box pairs A/B and C/D can 111 
therefore provide information on the evolution of the microphysics and vertical distribution of BB aerosol plumes 112 
after leaving the continent. This strategy is similar to that used in comparisons of models with observations for this 113 
campaign by Shinozuka et al. (2020), who also showed that observations made on the sampled days were 114 
representative of monthly means. In addition to the four boxes strongly influenced by smoke, a southern box, E, has 115 
been chosen to provide a control contrast to the other areas in that it is influenced primarily by maritime air as seen 116 
from Figs. 1 and 2. 117 

2.2 ORACLES 2016 IOP 118 

The days during the campaign that were included in the averaging procedure are shown in Table 1. Also included 119 
is the typical time of the day when the measurements were made, a function of the flight pattern of the ER-2. The 120 
number of lidar return profiles averaged for each grid box and statistics related to the backward trajectories are also 121 
listed. These grid boxes contained aircraft tracks on multiple days during which trajectory analysis showed near-122 
uniform wind direction between 2.5 and 4.5 km altitude throughout the IOP. With the exception of the grid box 123 
centered at 22° S, 9° E, all indicate flow from the source region of BB aerosol. Table 1 also lists the mean and standard 124 
deviation of time duration in hours spent over water of air parcels arriving at 3500 m altitude at the grid box during 125 
the averaging period. There is no entry for Box E since arriving air had a maritime source and did not originate from 126 
land. It must be stressed that the duration is not calculated from the source region on land, which is distributed over a 127 
large area of central Africa (e.g., Fig. 9 of Redemann et al., 2021) and cannot be uniquely identified with specific 128 
observations made over the ocean. The plume has already been airborne over land for several hours (see Fig. 4) and 129 
aerosol would have undergone transformations that occur at short time scales (Cappa et al., 2020). The duration was 130 
calculated by running HYSPLIT backward trajectories of air parcels arriving every six hours starting at 0600 UTC on 131 
the days of the first flight and ending at 1800 UTC on the days of the last flight of the averaging period and is shown 132 
in some detail in Fig. 5, which essentially reflects the profile of the prevailing wind speeds. The inference is that BB 133 
smoke at 3500 m altitude arrives at A on average about 30 h after passing B and arrives at C 35 h after passing D. The 134 
change in selected aerosol properties as measured by the HSRL-2 during this travel in the marine environment provides 135 
information on the evolution of the plume during this time period.  136 

3 HSRL-2 137 

The NASA LaRC HSRL-2 uses the HSRL technique to independently retrieve aerosol extinction and backscatter 138 
(Shipley et al., 1983; Grund and Eloranta, 1991; She et al., 1992) without a priori assumptions on aerosol type or 139 
extinction-to-backscatter ratio. By using the HSRL technique, HSRL-2, like its predecessor HSRL-1 (Hair et al., 140 
2008), provides accurate backscatter profiles even in situations where the lidar beam is attenuated by overlying cloud 141 
or aerosol as long as it is not completely attenuated. The LaRC HSRL-2 employs the HSRL technique at 355 and 532 142 
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nm and the standard backscatter technique at 1064 nm. It also measures aerosol and cloud depolarization at all three 143 
wavelengths. The HSRL-2 provides vertically resolved measurements of the following extensive and intensive aerosol 144 
parameters below the aircraft (approximate archival horizontal, Δx, and vertical resolutions, Δz, are listed assuming 145 
ER-2 cruise speed).  146 

• Extensive parameters1 – backscatter coefficient, , at 355, 532 and 1064 nm (Δx ~ 2 km, Δz ~ 15 m); extinction 147 

coefficient, , at 355, and 532 nm (Δx ~ 12 km, Δz ~ 300 m); optical depth at 355 and 532 nm (integrating the profile 148 
of extinction). The aerosol optical depth (AOD) is a critical quantity in discussions of the influence of aerosol on 149 
climate (Boucher et al., 2013). 150 

• Intensive parameters – extinction-to-backscatter ratio of aerosol, the Lidar Ratio, , at 355 and 532 nm 151 

(Δx ~ 12 km, Δz ~ 300 m); depolarization, , at 355, 532, and 1064 nm (Δx ~ 2 km, Δz ~ 15 m); and 152 

aerosol backscatter wavelength dependence (i.e., Ångström exponent for aerosol backscatter – directly related to the 153 
backscatter color ratio) for two wavelength pairs (355-532 and 532-1064 nm, Δx ~ 2 km, Δz ~ 15 m). 154 

The overall systematic error associated with the backscatter calibration is estimated to be less than 5 % for the 355 155 
and 532 nm channels and 20 % for 1064 nm (Burton et al., 2015). Under typical conditions, the total systematic error 156 
for extinction is estimated to be less than 0.01 km-1 at 532 nm. The random errors for all aerosol products are typically 157 
less than 10 % for the backscatter and depolarization ratios (Hair et al., 2008). Rogers et al. (2009) validated the HSRL 158 
extinction coefficient profiles and found that the HSRL extinction profiles are within the typical state-of-the-art 159 
systematic error at visible wavelengths (Schmid et al., 2006). Since HSRL-2 includes the capability to measure 160 
backscatter at three wavelengths and extinction at two wavelengths, “3β+2α” microphysical retrieval algorithms 161 
(Müller et al., 1999a, 1999b; Veselovskii et al., 2002) are used to retrieve height-resolved parameters such as aerosol 162 
effective radius and number, surface and volume concentrations (Müller et al., 2014, Sawamura et al., 2016). Here we 163 
restrict ourselves to the effective radius of the particles. 164 

4 Results 165 

In this study of the vertically resolved evolving properties of BB aerosol, we present key lidar measurements and 166 
microphysical results obtained by performing the “3β+2α” retrieval mentioned in Section 3. 167 
 168 
 169 

 
1  By the term extensive, we refer to optical parameters, such as extinction, that are influenced by the amount 
(concentration) and type (size, composition, shape) of aerosol/cloud particles. Intensive properties, on the other hand, 
are those that depend only on the nature of the particles and not on their quantity or concentration, but rather depend 
only on aerosol type (Anderson et al., 2003).  
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4.1 Lidar 170 

Vertical profiles averaged over the times of overflight in 2°×2° latitude/longitude boxes shown in Figure 3 on the 171 
days given in Table 1 are for the following properties. 172 

1. Aerosol Extinction at 532 nm, determined by aerosol number concentration, microphysical 173 

properties and relative humidity 174 
2. Backscatter Ångström exponent between 1064 and 532 nm, an indication of particle size. 175 
3. Aerosol Depolarization at 532 nm, a measure of particle asphericity.		176 
4. Aerosol extinction to backscatter ratio, the Lidar Ratio, at 532 nm, a marker for aerosol composition. 177 

Inspection of the wind field at 650 hPa in Fig. 2 and backward trajectory frequency plots in Fig. 4 suggest that the 178 
grid boxes chosen fit naturally into two pairs of tracks of the widespread BB aerosol field. The northern pair, identified 179 
in Table 1 as A and B, centered around 10° S, are in a faster zonal track, whereas the grid boxes C and D are in a track 180 
centered between 13-15° S that is slightly slower and has a component from the north over a stretch of water (Fig. 2). 181 
The two pairs can then provide information on the evolution of aerosol properties over a time scale of one to two days. 182 
Figures 6-9 show the aerosol extinction, backscatter Ångström exponent, aerosol depolarization and Lidar Ratio for 183 
the two pairs of grid boxes and Box E, which is at the southern edge of the region influenced by the BB aerosol. The 184 
results presented are one-minute averages of independent 10 s vertical profiles for backscatter Ångström exponent 185 
and depolarization and one-minute averages for extinction and lidar ratio profiles. From Table 1, the mean time elapsed 186 
between B and A is 29.4 h and that between D and C is 34.9 h. It should be pointed out that parameter values shown 187 
below the level of mean cloud top are averages of lidar returns through breaks in the stratus deck and are not relevant 188 
for this study. If we use the low cut-off of an extinction coefficient of 15 Mm-1 to indicate an aerosol-free layer 189 
(Shinozuka et al., 2020), then Fig. 6 indicates that the bulk of the smoke layers encountered at these distances from 190 
land were separated from the cloud top, a feature more prevalent during the 2016 IOP than in 2017 and 2018 191 
(Redemann et al., 2021). 192 

The northern plume is a column of aerosol of relatively constant extinction from just above 2.5 km to 5 km while 193 
the southern plume has a profile of extinction that increases nearly linearly with height from a minimum near the cloud 194 
top to a maximum at 5 km (Fig. 6). The vertical structure of the aerosol profiles measured by HSRL-2 was compared 195 
to water vapor profiles represented by the Modern-Era Retrospective analysis for Research and Applications, Version 196 
2 (MERRA2) model. Pistone et al. (2021) explored the relationship between aerosols, CO, water vapor as measured 197 
by ORACLES airborne in situ measurements and represented by models including MERRA2. They found the 198 
MERRA2 water vapor profiles, like the measured water vapor profiles, exhibited a linear relationship with CO and 199 
biomass burning plume strength; they also found that smoky, humid air produced by daytime convection over the 200 
continent advected over the ocean and into the ORACLES study region. MERRA2 water vapor profiles produced at 201 
three hourly increments and 72 pressure levels were interpolated to the times and locations of the HSRL-2 profiles. 202 
Water vapor mixing ratio generally decreased significantly just above the PBL then increased for altitudes around 2 203 
to 3 km before decreasing again. This behavior is generally consistent with the relationship between water vapor and 204 
aerosol scattering reported by Pistone et al. (2021). 205 
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Figure 10 shows the median, 25th and 75th percentile relative humidity (RH) profiles computed by interpolating the 208 
MERRA2 0.5-deg. 3-hourly humidity profiles to the locations and times of the HSRL-2 measurements. The profiles 209 
typically show a more pronounced increase in RH with altitude that more closely follows the HSRL-2 measurements 210 
of aerosol extinction profiles, although the MERRA2 profiles typically begin decreasing above 4 km whereas the 211 
airborne in situ RH measurements and HSRL-2 aerosol extinction profiles begin decreasing above 5 km. Interestingly, 212 
during three of the dates (Sept. 12, 16, 22) considerable portions of the smoke layers correspond to MERRA2 relative 213 
humidity above 60-70%. This increase in RH with altitude could help explain at least some of the increase in aerosol 214 
extinction with height observed in the HSRL-2 profiles of the C/D Box pair. Aerosol humidification often amplified 215 
the increase in aerosol extinction by factors of 1.5 or more (Doherty et al., 2022). 216 

The Ångström exponent (Fig. 7) and depolarization (Fig. 8) indicate the presence of fine spherical particles at the 217 
top of the plume and increasing sizes towards the bottom. The Lidar Ratio (Fig. 9) above 3 km for the two pairs is 218 
between 70 and 80 sr, suggesting strong absorption (Müller et al., 2019) but is considerably less and highly variable 219 
in Box E and in the lower layers of the aerosol plume in Box D, where the smoke plume most likely has components 220 
of continental aerosol such as dust and pollution typical of the nearby Namibian coast (Klopper et al., 2020). The most 221 
striking feature of the results is the very small profile-to-profile variability of the intensive lidar parameters in the 222 
upper two kilometers of the plume over the course of several days as evident from the range of values in the 25-75 223 
percentile shaded grey in Figs. 7-9. This suggests strongly that the particles maintain their size, shape and absorbing 224 
properties over the first few days of transport over the ocean. This result is of some importance for climate studies in 225 
which the radiative properties of BB aerosol are input to the calculation of radiative forcing. Complex chain aggregates 226 
as found near the source of fires (Pósfai et al., 2003, China et al., 2013) are typically not represented in climate models. 227 
However, if the aerosol is already spherical and maintains its size over the time period of radiative interactions being 228 
studied, then core-shell models of varying degrees of complexity could perhaps suffice (Zhang et al., 2020). The lower 229 
portion of the plume containing larger BB aerosol particles is subject to mixing with marine and continental particles 230 
from regions not affected by biomass burning and is highly variable in nature. This would be more difficult to model 231 
but Fig. 6 shows that the aerosol extinction coefficient decreases rapidly at lower levels so errors in representation 232 
may be acceptable. 233 

4.2 Microphysics 234 

The lidar measurements are inverted to obtain information regarding particle size. The inversion is performed on one-235 
minute averages of six independent 10 s backscatter profiles and one-minute average extinction profiles. Details of 236 
the inversion process are in Müller et al. (2019) and references therein. The particle size distribution is represented 237 
using a series of eight triangular basis functions that can represent both monomodal and bimodal size distributions 238 
(ibid). Points to note are that the procedure makes the following assumptions: the particles are spherical and 239 
homogeneous having wavelength-independent complex index of refraction. The low (< 5 %) values of depolarization 240 
through most of the plume, shown in Fig. 8, suggests that the spherical assumption is justified. There is most likely 241 
structure and inhomogeneity in the core of the particles, but current particle optical models are unable to incorporate 242 
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these complexities. Results from this inversion procedure have been compared to coincident airborne in situ particle 243 
measurements. Müller et al. (2014) present results from a campaign off the northeast coast of the US showing that the 244 
inversion results agree with in situ measurements of effective radius and also number, surface area and volume 245 
concentration within error bars. Sawamura et al. (2017) report on campaigns in the wintertime San Joaquin Valley of 246 
California and summertime near Houston, TX. They found high correlation and low bias in surface and volume 247 
concentration in situ measurements relative to HSRL with the best agreement for submicron fine-mode aerosol, which 248 
is most relevant to the current study. Müller et al. (2019) report retrievals and their uncertainty for one day in the 249 
ORACLES campaign, 22 September 2016. Considering only optical data with strong signal-to-noise ratio, they 250 
estimate retrieval errors are 25 % for number concentration. The relative uncertainty in effective radius for parts of 251 
the flight track where particle size was nearly constant was below 20 %. 252 

In order to help separate particles that have BB source from coarser particles of continental or marine origin, we 253 
specify a Submicron Fraction (SMF) as the contribution to the extinction at 532 nm of particles in the radius range 254 
0.05-0.50 µm  (Anderson et al., 2005). Figure 11 shows the profiles of SMF for the five grid boxes and not surprisingly, 255 
the bulk of the smoke plume, especially between 3 and 5 km contains aerosol almost entirely in the submicron range. 256 
Below 3 km, at locations both near and further way from the coast, there is a marked increase in the fraction of larger 257 
particles. The increase in depolarization (Fig. 8) at these lower levels and a decrease in the Lidar Ratio (Fig. 9) suggest 258 
mixing with the aforementioned non-BB aerosol particles. However, the sharp decrease in extinction below 3 km (Fig. 259 
6) indicates that their contribution to direct radiative effects would be minimal. Finally, Fig. 12 shows the vertical 260 
profile of the effective radius of the SMF aerosol population. The effective radius is 0.16 µm with little variation 261 
between 3 and 5 km. Of greater significance is that it remains very similar between the pairs of grid boxes along the 262 
transport trajectory of the smoke. The retrieved effective radius is similar to the results presented by Müller et al. 263 
(2014) for a mixture of urban aerosol and smoke. Their comparison with in situ measurements showed a slight 264 
overestimate but within a standard deviation. The retrieved and in situ results also show that the particle size is uniform 265 
with altitude even when the number concentration drops by a factor of three. Another set of prior comparisons of 266 
HSRL-2 and in situ measurements is provided in Sawamura et al. (2017). Here again, the effective radius of the 267 
submicron fraction of particles, 0.15 µm, is uniform with altitude, and comparable though biased slightly low 268 
compared to in situ observations.  269 

The effective radii of the SMF aerosols, which typically vary between 0.15 to 0.20 µm, are generally consistent 270 
with the sizes reported previously for smoke aerosol in the ORACLES region. Haywood et al. (2021) provide a 271 
composite of the aerosol sizes for biomass burning aerosol off the South African coast. These size distributions, which 272 
were derived from airborne in situ measurements (Haywood et al., 2003; Peers et al., 2019; Wu et al., 2020), typically 273 
correspond to SMF aerosol effective radii between 0.14-0.17 µm and were for the dry aerosol. As discussed in section 274 
4.1, the RH on some days was above 60-70% so that effective radii under ambient conditions could be expected to be 275 
somewhat higher than for the dry aerosol. Using measurements from an airborne Differential Aerosol Sizing and 276 
Hygroscopicity Spectrometer Probe (DASH-SP), Shingler et al. (2016) quantified the size-resolved growth factors for 277 
several aerosol types; they found that at RH~70-80%, particle diameters for biomass burning aerosols were about 15-278 
20% larger than for the dry aerosol. Xu et al. (2021) derived aerosol properties during the 2016 ORACLES mission 279 
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using an inversion algorithm that combined HSRL-2 and Research Scanning Polarimeter (RSP) remote sensing 280 
measurements. These retrieved aerosol properties were then compared with those derived from airborne in situ 281 
measurements. For measurements acquired on Sept. 12, 2016, the SMF aerosol effective radius derived from the 282 
remote sensing measurements were generally between 0.12-0.15 µm and were only slightly (0.012 µm) higher than 283 
the effective radii for the (dry) SMF aerosol derived from the airborne in situ size distribution measurements. This 284 
suggests that some of this difference is associated with differences in RH between the remote sensing retrievals and 285 
the in situ measurements.  286 

5 Conclusions 287 

The results of the aggregated HSRL-2 profiles during the 2016 ORACLES IOP presented here show two main 288 
findings. These are however limited to a brief period in the transport of BB smoke from continental Africa over marine 289 
clouds in the Atlantic Ocean. This is a limitation of the 2016 campaign because the flight tracks remained within 1000 290 
km of the coast. For the period of one to two days after crossing the land-ocean boundary, the fraction of all particles 291 
that are in the submicron range in the main smoke plume between 3 and 5 km is around 95 %. The effective radius of 292 
the submicron particles in this altitude interval is 0.16 µm and essentially constant with altitude. The particle size is 293 
comparable to measured particle sizes in previous campaigns that sampled aerosol that was a mixture of urban haze 294 
and smoke (Müller et al., 2014; Sawamura et al., 2017). Moreover, the shape of the median vertical profile of 295 
extinction does not change during the first two days of transport over water suggesting the absence of dry deposition 296 
and wet scavenging. The low (< 0.05) depolarization ratio of the submicron particles signifies that they are well coated 297 
and the assumption of sphericity in the inversion procedure and models that estimate the radiative effects of aerosol 298 
is justified. The BB aerosol mix with continental and marine aerosol at the base of the plume but during the September 299 
2016 IOP this layer of mixed aerosol tended to have very low extinction coefficients suggesting low abundance and 300 
there was often a distinct gap between the plume and the cloud tops. 301 

The HSRL-2 instrument was also deployed in the 2017 and 2018 ORACLES campaigns but was deployed on the 302 
NASA P-3 which often flew at low altitude to acquire in situ measurements of aerosols and clouds. Consequently, the 303 
HSRL-2 was not able to make continuous measurements of the BB aerosol plumes in a manner similar as when 304 
deployed on the ER-2. However, there are segments of the track that can provide similar information to the data 305 
obtained in the 2016 campaign but for a different time period. Moreover, some flight tracks extended much further 306 
from land (Doherty et al., 2021). Analysis of the later campaigns will provide information on the physical evolution 307 
of aerosol that has aged for a longer period than is covered in this study. 308 

Data Management 309 

HSRL-2 optical data and retrieved inversion data are available at the NASA archive site 310 
https://espoarchive.nasa.gov/archive/browse/oracles/id8/ER2 and are permanently archived at 311 
doi:10.5067/SUBORBITAL/ORACLES/ER2/2016_V1. 312 
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Table 1: Averaging area, flight time periods, the duration over water and number of HYSPLIT backward 528 
trajectories, and number of HSRL-2 profiles in each grid box used in the study. 529 

 530 
Box Averaging Area Averaging 

Days 
Time of Day Duration in Hours Over 

Water at 3.5 km  
Number of 

Profiles 
A 11° S-9° S; 1° W-1° E 9/12,16 11:00 UTC 44.3±7.0 (N = 19) 50 
B 10° S-8° S; 8° E-10° E 9/12,16,18 10:00 UTC 14.9±4.5 (N = 27) 56 
C 16° S-14° S; 4° E-6° E 9/12,16 13:00 UTC 40.4±7.2 (N = 19) 51 
D 14° S-12° S; 10° E-12° E 9/18,24 09:00 UTC 5.5±2.0 (N = 27) 46 
E 23° S-21° S; 8° E-10° E 9/20,22 14:00 UTC - 36 

  531 
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 532 

 533 
Figure 1: MERRA2 monthly mean reanalysis of 900 and 650 hPa streamlines for September 2016. Stations marked 534 
are Ascension Island (ASI), Lubango (LUB), a long-term AERONET site at 2 km elevation, and Walvis Bay (WB), 535 
where ER-2 flights originated from during the September 2016 ORACLES IOP. Flights in August 2017 and 536 
September/October 2018 originated from São Tomé (ST). 537 
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 539 
Figure 2: MERRA2 reanalysis of 650 hPa winds at 1200 UTC on September 12, 16, 20, 24, 2016. Grid boxes in the 540 
study are marked with letters. 541 
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 543 
 544 

 545 
 546 

Figure 3: HSRL-2 science data flight tracks during the September 2016 IOP. Letters refer. to the grid 547 
boxes identified in Fig. 2 548 
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 550 

 551 
 552 

Figure 4: Frequency distribution of 48-hour backward trajectories of air parcels arriving at 553 
3500 m above the centers of grid boxes A and C over the time period of the campaign. Grid 554 
boxes B and D are upstream of grid boxes A and C, respectively. 555 
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 557 

 558 
Figure 5: Duration of time spent over water of air parcels arriving at grid 559 
boxes marked on the figure. Solid lines are median values, and the shaded 560 
portion are the range of the 75th and 25th percentile. The number of 561 
trajectories used for the calculation are in Table 1. Trajectory hours are 562 
shown in reverse to correspond to the map in Fig. 4. 563 
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 567 

 568 
 569 

Figure 6: Average vertical profiles of the aerosol extinction coefficient at 532 nm in grid boxes A (upper left), B 570 
(upper right), C (middle left), D (middle right) and E (lower left). The averaging area, dates of flights and total 571 
number of one-minute profiles are also shown. The dark line represents the median value and grey shades contain 572 
the 25th to 75th percentiles. Dashed line refers to the mean cloud top height. 573 
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 578 
 579 

Figure 7: As in Fig. 6 but for the Wavelength Dependent Backscatter Ångström exponent between 1064 and 532 580 
nm. 581 
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 587 

Figure 8: As in Fig. 6 but for the aerosol depolarization at 532 nm. 588 
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 594 

Figure 9: As in Fig. 6 but for the Lidar Ratio at 532 nm. 595 
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 599 
 600 

 601 
Figure 10: Relative Humidity (%) in grid boxes A (upper left), B (upper right), C (middle left), D (middle right) 602 
and E (lower left) from MERRA2 reanalysis corresponding to the HSRL-2 profiles shown in Figs. 6-9. The dark 603 
line represents the median value and grey shades contain the 25th to 75th percentiles. Dashed line refers to the 604 
mean cloud top height. 605 
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608 

 609 
 610 

Figure 11: Average vertical profiles of the submicron fraction in grid boxes A (upper left), B (upper right), C 611 
(middle left), D (middle right) and E (lower left). The averaging area, dates of flights and total number of one-612 
minute profiles in the average are also shown. The dark line represents the median value and grey shades 613 
contain the 25th to 75th percentiles. 614 
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616 

617 

 618 
 619 

Figure 12: As in Fig. 11 but for the effective radius of the submicron fraction. 620 


