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Abstract.

Considering turbulent clouds containing small inertial particles, we investigate the effect of particle collision, in particular

collision-&-coagulation, on particle clustering and particle relative motion. We perform direct numerical simulation (DNS) of

coagulating particles in isotropic turbulent flow in the regime of small Stokes number (St= 0.001− 0.54) and find that, due

to collision-coagulation, the radial distribution functions (RDF) fall-off dramatically at scales r ∼ d (where d is the particle5

diameter) to small but finite values; while the mean radial-component of particle relative velocities (MRV) increase sharply

in magnitudes. Based on a previously proposed Fokker-Planck (drift-diffusion) framework, we derive a theoretical account of

the relationship among particle collision-coagulation rate, RDF and MRV. The theory includes contribution from turbulent-

fluctuations absent in earlier mean-field theories. We show numerically that the theory accurately account for the DNS results

(i.e. given an accurate RDF, the theory could produce the accurate MRV). Separately, we also propose a phenomenological10

model that could directly predict MRV and find that it is accurate when calibrated using 4th moments of the fluid velocities.

We use the model to derive a general solution of RDF. We uncover a paradox: past empirical success of the differential version

of the theory is theoretically unjustified. We see further shape-preserving reduction of the RDF (and MRV) when gravitational

settling parameter (Sg) is of orderO(1). Our results demonstrate strong coupling between RDF and MRV and imply that earlier

isolated studies on either RDF or MRV have limited relevance for predicting particle collision rate.15

1 Introduction

The motion and interactions of small particles in turbulence have fundamental implications for atmospheric clouds, specifically,

it is relevant to the time-scale of rain formation particularly in warm-clouds (Falkovich et al., 2002; Wilkinson et al., 2006;

Grabowski and Wang, 2013) [a similar problem also applies to planet formation in astrophysics (Johansen et al., 2007)]. It is

also important for engineers who are designing future, greener, combustion engines, as this is a scenario they wish to understand20

and control in order to increase fuel-efficiency (Karnik and Shrimpton, 2012). Cloud particles or droplets, due to their inertia,

are known to be ejected from turbulent vortices and thus form clusters – regions of enhanced particle-density (Wood et al.,
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2005; Bec et al., 2007; Saw et al., 2008; Karpińska et al., 2019); this together with droplet collision is of direct relevance for

the mentioned applications. Due to the technical difficulty of obtaining extensive and systematic experimental or field data on

particle/droplet collision in turbulent cloud, many of the recent studies rely on direct numerical simulation (DNS), examples of25

which could be found in e.g. (Onishi and Seifert, 2016; Wang et al., 2008) and reference therein. Up until now, we do not have

definitive answers to basic questions such as how to calculate particle collision rate from basic turbulence-particle parameters

and what is the exact relation between collision and particle clustering and/or motions, for, as we shall see, our work reveals

that collision-coagulation causes profound changes in particle relative velocity statistics and particle clustering, questioning

earlier understanding of the problem. The difficulty of this problem is in part related to the fact that turbulence is, even by30

itself, virtually intractable theoretically due to its nonlinear and complex nature.

The quest for a theory of particle collision in turbulence started in 1956 when Saffman and Turner (1956) derived a mean-

field formula for collision rate of finite size, inertialess, particles. In another landmark work (Sundaram and Collins, 1997),

a general relation among collision-rate (Rc), particle clustering and mean particle relative radial velocity was presented:

Rc/(n1n2V )=4πd2g(d)〈wr(d) |wr ≤ 0〉∗ , where g(r) is the particles’ radial distribution function (RDF), wr is the radial35

component of relative velocity between two particles, 〈·〉∗ denotes averaging over particle-pairs, 〈wr(d) |wr ≤ 0〉∗ is the mean

radial-component of relative particle velocity (MRV)1, ni’s are global averages of particle number density, V is the spatial

volume of the domain, d the particle diameter. The remarkable simplicity of this finding inspired a "separation paradigm",

which is the idea that one could study the RDF or MRV separately (which are technically easier), the independent results from

the dual may be combined to accurately predicts Rc (an idea that we subsequently challenge). Another work of special interest40

here is the drift-diffusion model by Chun et al. (2005) (hereafter: CK theory) (note: there are other similar theories (Balkovsky

et al., 2001; Zaichik and Alipchenkov, 2003)). The CK theory, derived for non-colliding particles in the limit of vanishing

particle Stokes number St (a quantity that reflects the importance of the particle’s inertia in dictating its motion in turbulence),

correctly predicted the power-law form of the RDF (Reade and Collins, 2000; Saw et al., 2008) and have seen remarkable

successes over the years including the accurate account of the modified RDF of particles interacting electrically (Lu et al.,45

2010) and hydrodynamically (Yavuz et al., 2018).

Here, we first present results on RDF and MRV for particles undergoing collision-coagulation2. The data is obtained via

direct numerical simulation (DNS), which is the gold-standard computational method in terms of accuracy and completeness

for solving the most challenging fluid dynamics problem i.e. turbulent flows. It is worth noting that the focus of our work is on

the fundamental relationship between collision, RDF and MRV, and to highlight differences from the case with non-colliding50

particles (Chun et al., 2005). To that end, we have designed the DNS to have an idealized setup similar to what was done in

(Chun et al., 2005), which would allow us to identify without doubt the effects of particle collision-coagulation. As a result,

this limits the direct applicability to real systems (these limitations are detailed in Sec. 4.5).

1Note: the condition wr ≤ 0 is needed in the calculation of MRV in (Sundaram and Collins, 1997) because they were considering "ghost-particles" that

are non-colliding, since without that condition, MRV is always zero in turbulence. In our work, such conditioning is both unnecessary and incorrect.
2Coagulation is, in a sense, the simplest outcome of collision. In the sequel we shall argue that the major qualitative conclusions of our work also apply to

cases with other collisional outcomes.
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Analysis of the DNS results is followed by a theoretical account of the relations between collision-rate, RDF and MRV that

includes mean-field contributions (Saffman and Turner, 1956; Sundaram and Collins, 1997) and contributions from turbulent55

fluctuations (absent from earlier theories (Saffman and Turner, 1956; Sundaram and Collins, 1997)). The theory is derived

from the Fokker-Planck (drift-diffusion) framework first introduced in the CK theory (Chun et al., 2005). We shall see that the

main effect of collision-coagulation is the enhanced asymmetry in the particle relative velocity distribution3 and that this leads

to nontrivial outcomes.

2 Direct Numerical Simulation (DNS)60

To observe how particle collision-coagulation affects RDF and MRV, we performed direct numerical simulation (DNS) of

steady-state isotropic turbulence embedded with particles of finite but sub-Kolmogorov size. We solve the incompressible

Navier-Stokes Equations (Eq. (1)) using the standard pseudo-spectral method (Rogallo, 1981; Pope, 2000; Mortensen and

Langtangen, 2016) inside a triply periodic cubic-box.
65

∂u

∂t
+u · ∇u =−1

ρ
∇p+ ν∇2u+ f(x,t) ,

∇ ·u = 0 , (1)

where ρ, p, ν, f are the fluid mass-density, pressure, kinematic viscosity, imposed forcing respectively. The velocity field is

discretized on a 2563 grid. Aliasing resulting from Fourier transform of truncated series is removed via a 2/3-dealiasing rule

(Rogallo, 1981). A statistically stationary and isotropic turbulent flow is achieved by continuously applying random forcing70

to the lowest wave-numbers until the flow’s energy spectrum is in steady-state (Eswaran and Pope, 1988). The 2nd-order

Runge-Kutta time stepping was employed. Further details of such a standard turbulence simulator can be found in e.g. (Pope,

2000; Rogallo, 1981; Mortensen and Langtangen, 2016). The accuracy of DNS for turbulent flows have been experimentally

validated for decades (see e.g. the compilation of results in Pope (2000));

Particles in the simulations are advected via a viscous Stokes drag force (Maxey and Riley, 1983):75

dv/dt= (u−v)/τp ,

where u,v are the local fluid and particle velocity respectively, τp is the particle inertia response time, defined as τp =

1
18 (ρp/ρ− 1)(d2/ν), where ρp is the particle mass-density and d is the particle diameter. As mentioned, this work focuses

on the fundamental relationship between collision-coagulation, RDF and MRV, as well as on addressing the validity of the

theory (to be described). It is thus, beneficial to keep the DNS setting idealized (and in the regime relevant for the theory) for80

the sake of clarity when interpreting results. To that end, the DNS does not include inter-particle hydrodynamic interactions

(HDI) and gravitational settling, nor does it consider the effects of temperature-, humidity-variation and phase transitions. Such

practice is not uncommon in studies designed to isolate and address fundamental issues related to particles dynamics in turbu-

lence, examples that are closely related to the current setup and/or problem include (Sundaram and Collins, 1997; Chun et al.,
3In the collision less case, the asymmetry is much weaker and is related to viscous dissipation of energy in turbulence (Pope, 2000).

3



Reλ ν [dm2/s] urms [dm/s] ε [dm2/s3] η [dm] τη [s] Lc [dm] d [dm]

133 0.001 0.613 0.117 0.00962 0.0925 2π d∗ or 2d∗

Table 1. Values of the parameters in the DNS. (Note: dm = decimeter). From the left, we have the Taylor-scale Reynolds number, kinematic

viscosity of the fluid, root-mean-square of fluid velocity, kinetic energy dissipation rate, Kolmogorov length- and time-scale, length of the

simulation cube and particle diameters considered. We have introduced d∗ to represent the specific value: 9.49×10−4dm (more details in

the text). We choose the units of the length (time) scale in the DNS to be in decimeter (second), such that ν is nearly its typical value in the

atmosphere.

2005; Bec et al., 2007; Salazar et al., 2008; Wang et al., 2008; Woittiez et al., 2009; Voßkuhle et al., 2013). However, such an85

approach certainly limits the direct applicability of our results to some realistic problems in the atmosphere, these limitations

will be detailed in Sec. 4.5, where a discussion of the effects of gravity and HDI is also given.

In this context, the particle Stokes number, defined as τp/τη where τη is the Kolmogorov time-scale, could be expressed

as St= 1
18 (ρp/ρ− 1)(d/η)2, where η is the Kolmogorov length-scale. Time-stepping of the particle motion is done using a

2nd-order modified Runge-Kutta method with "exponential integrator" that is accurate even for τp much smaller than the fluid’s90

time-step (Ireland et al., 2013). The particles introduced into the simulation are spherical and are of the same size, the initial

number of particles is 107 and they are randomly distributed in space. Particles collide when their volumes overlap and a new

particle is formed conserving volume and momentum (Bec et al., 2016). We continuously, randomly, inject new particles so

that the system is in a steady-state after some time. Statistical analysis is done at steady-state on monodisperse particles (i.e.

particles with the same St). Experimental validation of the accuracy of such particle simulating scheme in DNS could be found95

in Salazar et al. (2008); Saw et al. (2012b, 2014); Dou et al. (2018).

Values of key parameters of the DNS are given in Table 1. Values of other parameters and further details could be found in

(Supplements).

3 Elements of the Drift-Diffusion Theory100

As described in (Chun et al., 2005), in the limit of St� 1, particle motions are closely tied to the fluid velocity and, to leading

order, completely specified by the particle position and fluid velocity gradients. We consider the Fokker-Planck equation which

is closed and deterministic (see e.g. Appendix J in (Pope, 2000)):

∂P

∂t
+
∂(WiP )

∂ri
= 0 , (2)

where P ≡ P (ri, t |Γij(t)) is the (per volume) probability density (PDF) for a secondary particle to be at vector position ri105

relative to a primary particle at time t, conditioned on a fixed and known history of the velocity gradient tensor along the
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primary particle’s trajectory Γij(t), Wi is the mean velocity of secondary particles relative to the primary, under the same

condition. Note: Wi is a conditional-average, while wi denotes a realization of relative velocity between two particle.

From this, one could derive an equation for 〈P 〉:

∂ 〈P 〉
∂t

+
∂

∂ri
(〈Wi〉〈P 〉+ 〈WiP

′〉) = 0 , (3)110

where 〈.〉 implies ensemble averaging over primary particle histories (note: for example 〈Wr〉 ≡ unconditional mean of wr,

averaged over all particle pairs). This equation, however, is not closed due to the correlation between the fluctuating terms Wi

and P ′ ≡ P −〈P 〉. The correlation 〈WiP
′〉 can be written in terms of a drift flux and diffusive flux (detailed derivation is well

described in (Chun et al., 2005)), such that we have:

∂ 〈P 〉
∂t

+
∂

∂ri

(
qdi + qDi

)
+
∂(〈Wi〉〈P 〉)

∂ri
= 0 , (4)115

where the drift flux is:

qdi =−
t∫

−∞

〈
Wi(r, t)

∂Wl

∂r′l
(r′, t′)

〉
〈P 〉(r′, t′)dt′, (5)

and the diffusive flux is:

qDi =−
t∫

−∞

〈Wi(r, t)Wj(r
′, t′)〉 ∂ 〈P 〉

∂r′j
(r′, t′)dt′, (6)

where r′ satisfies a characteristic equation: ∂r
′
i

∂t′ =Wi(r
′, t′) , with boundary condition: when t′ = t, r′i = ri .120

4 DNS Results, Theory and Discussion

We compute the RDF via g(r)=Npp(r)/[
1
2N(N − 1)δVr/V ], where Npp(r) is the number of particle pairs found to be

separated by distance r, δVr is the volume of a spherical shell of radius r and infinitesimal thickness δr,

Figure 1 shows the RDFs obtained for monodisperse particles of various Stokes numbers and sizes. Two cases (St=0.22

and 0.54) are shown in panel-a and two more (St= 0.054 and 0.001) are shown in panel-b. In this work, we focus on the125

smaller values of St since the theory which we shall consider is also only applicable in the St� 1 regime. However, we have

included the St= 0.54 case to demonstrate that the observations to be described extends also to finite St. In all cases, except

one, the particles are of the same size d= d∗, where d∗ represents the specific value of d∗=9.49×10−4 dm, chosen so that

the particle sizes are about O(0.1) times the Kolmogorov scale (η), thus allowing us to still observe a regime (3d. r . 30η)

of power-law RDFs. To shows the effect of changing particle size, panel-a also includes a case of (St=0.54,d=2d∗) for130

comparison. Looking at panel-a, apart from the apparent power-law behavior of the RDFs at intermediate values of r, the most

striking feature of these RDFs for colliding-coagulating particles is that they fall-off dramatically in the r ∼ d regime. This is

very different from what was seen in earlier studies of non-colliding particles where g(r) are simple power-laws (Chun et al.,
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2005; Saw et al., 2008). We also see that as r approaches d the steepness of the curve (see e.g. the blue-circles) increases as

g(r) drops-off, this and the fact that the abscissa is logarithmic implies that ∂g∂r is increasing exponentially in the process. As135

a consequence, it is difficult to discern from these plots if the limit of g(r) at particle contact (r→ d) is still nonzero. This

is an important question as limr→d [g(r)]=0 implies that the mean-field formula of Sundaram and Collins (1997) has zero

contribution towards Rc, i.e. collision rate is solely due to turbulent-fluctuations. It is only by re-plotting g(r) versus r−d (see

insets in Fig. 1), and using a remarkable resolution that is 103 finer than d, that we see a convincing trend supporting a finite

g(r→ d). Also clear in panel-a is the observation that with changing particle size (d) the location of the sharp fall-off merely140

shifts to where the new value of d is.

The strong effect of particle collision on the RDF (also on MRV as we shall we later) challenges the validity of the "separation

paradigm". We note that similar fall-off of RDF was previously observed (Sundaram and Collins, 1997) but a complete analysis

and theoretical understanding were lacking. Also, a study on multiple collisions (Voßkuhle et al., 2013) had hinted at the

potential problem with the separation paradigm.145

Another observation is that in the power-law regime (3d. r . 30η), the RDFs appear (as expected) as straight-lines with

slopes (i.e. power-law exponents) that increase with St and are numerically consistent with those found for non-colliding

particles (see e.g. (Saw et al., 2012b)).

4.1 Theoretical Account via Drift-Diffusion Theory

To theoretically account for the new findings, we make some derivations that are partially similar to the ones in (Chun et al.,150

2005), but under a new constraint due to coagulations: "At contact (r = d), the radial component of the particle relative ve-

locities can not be positive4, while with increasing r the constraint is gradually relaxed." The first consequence of this is that

the distribution of the radial component of the relative particle velocity (Wr) is highly asymmetric at r ≈ d, i.e. the PDF of

positive Wr’s are very small (this constitutes the "enhanced asymmetry" mentioned earlier). Thus for r ≈ d, the mean of Wr ,

i.e. 〈Wr〉, must be predominantly negative. In Sec. 3, we showed that in the St� 1 limit, one could derive a master equation155

(Eq. 4), reproduced here for clarity:

∂ 〈P 〉
∂t

+
∂

∂ri

(
qdi + qDi

)
+
∂(〈Wi〉〈P 〉)

∂ri
= 0 ,

where qdi is the drift flux (of probability due to turbulent fluctuation) defined in (5) and qDi is the diffusive flux defined in (6).

We then expand Wi, ∂Wl

∂rl
and (consequentially) the fluxes as perturbation series with St as the small parameter (details in

(Supplements) or (Chun et al., 2005)). The coagulation constraint affects the values of the coefficients of these series. For the160

drift flux, the leading order terms (in powers of St) are:

qdi =−〈P 〉(r)rk

t∫
−∞

[
a
(1)
ik St + a

(2)
ki St

2
]
dt′ , (7)

4In other words particles may approach each other (and collide) but they can not be created at contact and then separate.
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Figure 1. RDFs (g(r)) of particles that coagulate upon collision. a) g(r) for various cases of Stokes numbers and particle diameters (d). � :

St=0.22, d=d∗, # : St=0.54, d=d∗, 4 : St=0.54, d=2d∗. All g(r) drop-off exponentially when r→ d (details in text). Inset: g(r)

versus r− d for the # case. It exemplify the fact that limr→d g(r) is nonzero. b) RDFs versus r− d1 (where d1=0.99d) for the case of

St=0.054, d=d∗. 3 : the raw DNS-produced RDF (gDNS(r)). Red-line: power-law fit to gDNS(r) (i.e. the 3-plot) in the large-r regime (the

fit result is 0.890r−0.0535). It is equivalent to gs(r) in the ansatz ga(r) = g0(r)gs(r), i.e. it is the expected RDF for non-colliding particles

under the same conditions. # : the compensated RDF, i.e. gDNS(r)/gs(r) (note: gs(r) is the red-line described earlier), this essentially gives

us g0(r), which may be understood as a ‘modulation’ on the RDF due to collision-coagulation. Cyan-line: two-piece power-law fits to the

compensated RDF (the #-plot) in the small and large r−d1 regimes respectively (fit results: 4.17(r−d1)0.212, 1.00(r−d1)−2×10−4 ), this

is an estimate for g0(r). Black-dashed-line: g0(r)gs(r), (cyan-line × red-line), this shows that the ansatz accurately reproduces gDNS(r).

Inset: RDFs versus r−d. # : compensated g(r) for St=0.054, d=d∗, equivalent to the #-plot in the panel’s main figure; 4 : compensated

RDF for case St=0.001, d=d∗, i.e. finite size, almost zero St particles (in this case, the compensated and raw RDFs are the identical). This

inset suggests that g0(r) has negligible St-dependence.
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with a(1)ik =τη 〈Γik(t)Γlm(t′)Γml(t
′)〉 and a(2)ki =τ2η 〈Γij(t)Γjk(t)Γlm(t′)Γml(t

′)〉, Γij is the ij-th component of the fluid’s

velocity gradient tensor at the particle position (the aik’s are thus related to two-time correlations of moments of velocity

gradients, Chun et al. (2005) shown that a(2)ik ∝ S2−R2, where (S2, R2) are the average fluid (strain rate tensor, rotation165

rate tensor) squared at particle positions). As explained earlier, coagulation-constraint causes the PDF of relative particle

velocities to become highly asymmetric for r ∼ d, thus a(1)ik is nonzero at this scale. This is very different from the case of

non-colliding particles (Chun et al., 2005) where a(1)ik is always zero due to statistical isotropy. Under the constraint, DNS gives∫ t
−∞ a

(1)
ik dt

′ ≈−0.18s−1 and
∫ t
−∞ a

(2)
ki dt

′ ≈ 2.45s−1 (more in (Supplements)). Thus for r ∼ d, the drift flux is negative for

large St but becomes positive5 when St is below the value of ≈ 0.07; and in the limit of St→0, it is dominated by the first170

term in (7).

qDi is a ‘nonlocal’ diffusion caused by fluctuations and can be estimated using a model that assumes the particle relative

motions are due to a series of random uniaxial straining flows (Chun et al., 2005). Chun et al. (2005) showed that, generally,

qDi has an integral form (due to nonlocality), and only in the special case where g(r) is a power-law, may it be cast into a

differential form (similar to a local diffusion). In view of the nontrivial g(r) observed here, we must proceed with the integral175

form:

qDr =cst r
∫
dΩ
∫∞
0
dtfF (tf )

∫∞
d/r

dR0R0
2 〈P 〉(rR0)fI(R0,µ, tf ) ,

where R0 ≡ r0/r with r0 as the initial separation distance of a particle pair before a straining event; F the probability density

function for the duration of each event; fI is determined by relative prevalence of extensional versus compressional strain

events (more details in (Supplements) or (Chun et al., 2005)); Ω is the solid angle for the axis of the straining flow; note: due180

to coagulation, the R0-integration starts from d/r. We differ crucially from the CK theory via the introduction of the (positive)

factor cst, which could be shown to equal |c1|, where c1 is the power law exponent of the RDF the particles would have

assuming they are non-colliding (details in (Supplements)).

By definition, g(r)≡ α〈P 〉. Periodic boundaries in our DNS imply that α= V , (more in (Supplements)). Using this and the

fact that the problem has only radial (r ) dependence, we rewrite (4) as:185

r2
∂g(r, t)

∂t
+

∂

∂r

[
r2α

(
qdi + qDi

)
+ r2 〈Wr〉g(r, t)

]
= 0 , (8)

where the content inside [.] gives the total flux. For a system in steady-state, the first term in (8) is zero, and upon integrating

with limits [d,r], we have:

cst r
3

∫
dΩ

∞∫
0

dtfF (tf )

∞∫
d/r

dR0R
2
0 g(rR0)fI(R0,µ, tf )190

+ g(r)
[
r2 〈Wr〉−Aτr3

]
=−R∗c , (9)

5Here a positive qdr merely reflects a deficit in the inward flux of neighboring particles since we find that qdr + qDr is always negative.
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where we have identified the total flux at contact (r = d) as the negative of the (always positive) normalized collision rate

R∗c ≡Rc/(4π[N(N − 1)/2]/V ), and comparing with (7), we see that:

Aτ ≡ St
t∫

−∞

a
(1)
ik dt

′ + St2
t∫

−∞

a
(2)
ki dt

′ , (10)

with the specific values of the t′-integrals already given above. For clarity, we reiterate that on the left side of Eq. (9), we have195

the diffusive flux (qDr ), mean-field flux (r2g(r)〈Wr〉), drift flux (qdr ); while on the right, the total flux is given in terms of the

normalized collision rate (R∗c ). We note that this equation embodies the full relationship among RDF, MRV and collision rate.

4.2 Ansatz and Accuracy of the Theory

Simple analytical solution to Eq. (9) may be elusive due to its integral nature (a consequence of the non-local diffusive-flux).

However, one could gain insights into it and test its accuracy via numerical solutions. To that end, we begin with a simple ansatz200

for g(r), then we curve-fit the ansatz to the DNS-produced RDF (gDNS(r)). This enables us to, firstly, verify that the ansatz

could accurately represent gDNS(r), and secondly, obtain a "calibrated" ansatz that is a numerically accurate representation

of gDNS(r). We then show that Eq. (9), supplied with the calibrated-ansatz, could numerically predict 〈Wr〉(r) (i.e. MRV)

that agrees well with the DNS-produced MRV. In short, we will show that given a "correct" g(r), (9) produces the "correct"

〈Wr〉(r).205

The ansatz has the form ga(r) = g0(r)gs(r), with gs(r) = c0r
−c1 i.e. the RDF form for non-colliding particles (Chun et al.,

2005) under the same conditions. As a first order analysis, we let g0, which embodies the effects of collision, take the simplest

form that could still capture the main features of the RDFs seen in Fig. 1. Specifically, we let g0(r) = c00(r− d1)c10 , where

c00(r), c10(r) are each piecewise constant quantity that switches from its small-r to its large-r values at a crossover-scale rc

(of the order of d), i.e. g0 is a two-piece power-law of r− d1. (Note: our earlier finding of g(r→ d)> 0 implies that d1 < d.)210

From a given DNS-produced RDF (gDNS(r)), we first obtain a calibrated gs by fitting c0r−c1 to gDNS(r) in the power-law

regime d� r . 10η (see the red-line in Fig. 1b). Next, we compute the DNS estimate of g0 via gDNS
0 = gDNS(r)/gs(r) which

is essentially a compensated RDF (see the #-plot in Fig. 1b). To get a calibrated g0, we then fit the general form for g0 given

above to gDNS
0 (see the cyan-line in Fig. 1b, note: each time, two pieces of power-laws are fitted to one gDNS

0 , rc results naturally

from the intersection of the two). Fig. 1b shows the calibrated ansatz for the case of St=0.054 and verify its accuracy (the215

red-line is gs(r), cyan-line is g0(r); the black-dashed-line (g0 ·gs) accurately reproduces gDNS(r) ). The inset in Fig. 1b shows

that gDNS
0 (r) (= gDNS(r)/gs(r)) is roughly St-independent for St� 1.

Next, we numerically evaluate the integral in the first term of (9). The St� 1 assumption allows us to approximate g(r,St)

inside the integral by its zero-St cousin g(r,St→ 0) (Chun et al., 2005). In practice, we replace g(r,St) with the ansatz fitted

to the DNS result of g(r,St=0.001). Next, we use the DNS data to estimate Aτ , compute R∗c and cst (for this case, DNS gives220

R∗c = 9.69×10−10dm3/s; cst = |c1| as mentioned earlier). Finally we use (9) to predict 〈Wr〉(r).

Comparison of the predicted 〈Wr〉(r) with the ones obtained directly from the DNS is shown in Fig. 2. The prediction shown

was made for the case of St= 0.054, to be compared with its DNS counterpart (the # symbols). (We also show the DNS result

9
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Figure 2. Mean radial component of relative velocity (MRV) for particles of specific Stokes numbers and some theoretic-numerical pre-

dictions. a) Symbols are DNS results with 4 : St=0.001; # : St=0.054; � : St=0.11. The lines are the numerical predictions by the

theories (equation (9) or (13)) using the ansatz (details in text). Orange-line: 〈Wr〉theory
r∼d,St=0.054 , i.e. the numerical prediction via the inte-

gral version of the theory (Eq. (9)) for the small-r regime (r ∼ d); black-line: 〈Wr〉theory
r�d,St=0.054 , same as the previous but for the large-r

regime (r� d); green-line: prediction of the differential version of the theory (Eq. (13)) for the r ∼ d regime. Inset) A repeat of the main

figure in log-log axes. Exception: Cyan-line is the prediction of the differential version of the theory, but for the r� d regime. b) MRV

compared with predictions via the phenomenological model of particle approach angles (Eq. (11) and (12)). DNS results: 4: St=0.001;

# : St=0.054. Dotted lines are model predictions of 〈Wr〉St=0 using (11) and (12) with variance K obtained by matching the model’s and

DNS’s transverse-to-longitudinal ratio of structure functions (TLR) of a certain order (from the top, yellow-line: order 2, green-line: order 4,

cyan-line: order 6).
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for St= 0.001 and 0.11 to highlight an observation that 〈Wr〉(r) is almost St-independent in this small-St regime.) We have

shown earlier that for r ∼ d, Aτ is given by (10). However, as stated earlier, as r increases, the (statistical) asymmetry induced225

by collision-coagulation gradually becomes subdominant to the isotropy of turbulent-fluctuation. Statistical isotropy implies

a
(1)
ik = 0 (Chun et al., 2005), a fact our DNS data confirm. Thus, for r� d, Aτ equals the order St2 term in (10), exactly the

same as the results of (Chun et al., 2005) for non-colliding particles. For this reason, we show two versions of the prediction:

〈Wr〉theory
r∼d and 〈Wr〉theory

r�d , which are respectively obtained by setting Aτ to its small-r and large-r limits (−2.6×10−3s−1,

7.1×10−3s−1) respectively. The agreement between DNS and the predictions is noteworthy, especially for small r. At r ≈ 2d,230

the DNS result shows a weak tendency to first follow the upward trend of 〈Wr〉theory
r∼d and then drops off significantly at r & 2.5d.

The latter is consistent with the fact that 〈Wr〉theory
r�d is below 〈Wr〉theory

r∼d , but the drop is sharper than predicted.

4.3 Phenomenological Model of MRV

Alternatively, (9) may be solved for the correct g(r), if 〈Wr〉 is given. As we are assuming St� 1, particle velocity statistics

may be approximated by their fluid counterparts (Chun et al., 2005), i.e. we may replace 〈Wr〉with 〈Wr〉St=0, the latter being235

the MRV of fluid particles. Hence, if 〈Wr〉St=0 is known, it may be used, together with (9), to predict RDF of any finite

but small St. Fig. 2a shows that 〈Wr〉St>0 from the DNS do not change significantly for St ∈ [0.001,0.1], supporting this

approach6.

Here we provide a simple, first order, model for 〈Wr〉St=0. We limit ourselves to the regime of small particles (d� η)

and anticipate that 〈Wr〉 is non-trivial (nonzero) only for r ∼ d, a fact observable in Fig. 2a. We also assume that the relative240

trajectories of particles are rectilinear at such small scales. The coagulation constraint then implies that: in the rest frame

of a particle (call it P1), a second particle nearby must move in such a way that the angle (θ) between its relative velocity

and relative position (seen by P1) must satisfy: sin−1(d/r) ≤ θ ≤ π , under the convention of sin−1(x) ∈ [−π2 ,
π
2 ], (more in

(Supplements)). We can thus write (by treating negative and positive wr separately, applying the K41-theory (Kolmogorov,

1941) and the bounds on θ, details in (Supplements)), for St� 1, that:245

〈Wr〉 ≡ 〈wr〉∗ = p–〈wr |wr < 0〉∗ + p+〈wr |wr ≥ 0〉∗

≈−p–ξ–r + p+ξ+r

[
1 +

∫ 0

θm
P+
θ (θ′)cos(θ′)dθ′∫ π

2

0
P+
θ (θ′)cos(θ′)dθ′

]
, (11)

where 〈.〉∗ denotes averaging over particle pairs, p+ (p−) is the probability of a realization of wr being positive (negative),250

and P+
θ is a conditional PDF such that P+

θ ≡ P (θ |wr ≥ 0)≡ P
(
θ |θ ∈ [0, π2 ]

)
, θm is the lower bound of θ described above.

For a first order account, we neglect skewness in the distribution of particle relative velocities and set p± = 0.5. Following

(Kolmogorov, 1941), we have set 〈wr |wr < 0〉∗ = ξ–r, where ξ± = Cs
√
ε/(15ν) , (Cs is a Kolmogorov constant, we found

Cs = 0.76 by matching ξ– r to the first-order fluid velocity structure-function from the DNS).

6This is true in the relatively idealized system simulated, but may not apply to the general problem that includes other effects)
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A simple phenomenological model for P (θ) may be constructed using the (statistical) central-limit-theorem by assuming255

that the angle of approach θ at any time is the sum of many random-incremental rotations in the past, thus we write:

P (θ) = N exp[K cos(θ−µθ)] sin(θ) , (12)

where Nexp[...] is the circular normal distribution, i.e. analog of Gaussian distribution for angular data; sin(θ) results from

integration over azimuthal angles (φ). We set µθ = π
2 (neglect skewness in fluid’s relative velocity PDF) and obtain K by

matching the transverse to longitudinal ratio of structure functions (TLR) of the particle relative velocities with the ones via the260

DNS data; N is determined via normalization of P (θ). Fig. 2b shows the 〈wr〉∗ derived via (11) and (12), using K calibrated

with TLR of 2nd, 4th, 6th order structure functions respectively. The results have correct qualitative trend of vanishing values

at large r that increases sharply as r approach d, with the 4th-order’s result giving the best agreement with DNS. Currently

we have not a satisfactory rationale to single out the 4th-order. The TLR of different orders give differing results may imply

that our first-order model may be incomplete, possibly due to over-simplification in (12) or to the inaccuracy of the rectilinear265

assumption (d/η in the DNS may be insufficiently small).

4.4 Differential Version of the Theory, Its Validity and Solution

We now discuss an important but precarious theoretical issue. Chun et al. (2005) clearly showed that the non-local diffusion

(qDr ) may be converted, from its general integral form, into a differential version only when the underlying RDF is a simple

power-law. However, Lu et al. (2010) and Yavuz et al. (2018), working in two very different scenarios, found that their pre-270

dictions using the differential form of the theory agree well with experiments, even when the RDFs involved was clearly not

power-laws. We shall attempt to remedy this apparent paradox in future work. To examine how well this albeit unjustified

method works here, we recast (9) into its differential form (Chun et al., 2005):

−τ−1η Bnl r
4 ∂g

∂r
+ g(r)

[
r2 〈Wr〉−Aτr3

]
=−R∗c , (13)

where Bnl = 0.0397 (this value is computed from our DNS, Bnl is expected to depend on flow characteristics e.g. Rλ and τη275

(more in (Supplements)). Using (13), the same gsg0 ansatz, we make another prediction for 〈Wr〉St=0.054, which is plotted in

Fig. 2a (green dash-line). This prediction is far from the DNS at r ∼ d but perform as well as the integral version at r� d (the

jump in the curve is just an artifact from the kink in the ansatz).

One advantage of (13) is that it admits a general solution, which we now give, assuming 〈Wr〉 is given by (11) & (12):

g(r) =
1

β(r)

[∫
β(r)q(r)dr+C

]
, (14)280

with q(r) =R∗cτη/(Bnlr
4); β(r) = exp

[∫
p(r)dr

]
; p(r) = [Aτr−〈wr〉∗ ]τη/(Bnlr

2), (more in (Supplements)).

4.5 Effects of Gravity and Other Limitations

Thus far, we have not considered the effects of gravity on the particles. Here we provide a glimpse on the role of gravity (a

detailed analysis is beyond the scope of the present study). In keeping with the scope of current work, we restrict ourselves to285
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Figure 3. RDFs of particles (St= 0.54) subject to action of turbulence, collision-coagulation with and without gravity. Circles: Sg = 0

(zero gravity); triangles: Sg = 4.9 (nonzero gravity). The latter shows a reduced slope in the power-law regime, while the shape of the two

curves largely similar in the collision regime (r ∼ d). Inset) MRVs of the same cases as in the main figure. Gravity weakens the MRV of the

particles.

the case of monodisperse particle only. For this, we rerun the DNS cases of St= 0.054 and 0.54 with gravity (to be compared

with the zero-gravity case). The new particle advection equation is: dv/dt= (u−v)/τp+g (all other details of the DNS remain

unchanged). We choose to have the particle settling parameter Sg ≡ τp g/uη (where uη is the Kolmogorov velocity scale) be

in the range O(0.1)−O(1), similar to the typical range of interest in the atmosphere or laboratory (this is achieved by letting

|g|= 10dm/s2). For the case of St= 0.054 (Sg = 0.49), we find no discernible difference for both RDF and MRV between290

the "with gravity" and zero-gravity results (corresponding figures in (Supplements)). For the St= 0.54 (Sg = 4.9) case, Fig. 3

shows the effects of gravity on the RDF and MRV. We see that the slope (exponent of g(r) in the range d� r < 20η ) of the

RDF in the gravitational case is reduced by about 15% compared to the zero-gravity case (Sg = 0). However, the shape of the

RDF in the collision regime (r ∼ d) is approximately preserved, suggesting that a construct of the form gcollision×ggravity may be

a good first order model for the full RDF (close examination of the compensated RDFs gives substantial support for this idea,295

details in (Supplements)). These observations imply that as Sg increase from O(0.1) to O(1), the effects of gravity on RDF

grow from negligible to significant, the main effect is the reduction of the exponent while the collision related "modulation"

(gcollision) remains largely intact. The inset of Fig. 3 shows that the MRV is also weakened by gravity, albeit the statistical noise

limits the strength of this conclusion. Lastly, It is worth noting that in the complimentary DNS by Woittiez et al. (2009) that

included gravity but not actual collisions, much stronger gravitational effect was found on the statistics of bidisperse particles300

relative to the monodisperse case.

As mentioned, the fundamental focus of our work precludes the DNS and theory from considering a number of complexities

relevant to some applications. As a result, this limits the direct quantitative applicability of our results to some realistic problems
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(e.g. in clouds). Besides gravity, another neglected factor is the hydrodynamic inter-particle-force (HDI). Recent works e.g.

(Yavuz et al., 2018) found that HDI also has strong impact on RDF for r ∼ d. For monodisperse particles with small to moderate305

St, HDI is expected to be more important than gravity. While we expect that HDI should not alter the qualitative trend that g(r)

should fall towards a small value at r→ d (the same applies to the observed trend of MRV), it is likely that HDI and collision

would affect RDF and MRV in a coupled manner.

Also neglected is the influence of temperature, humidity and vapor-liquid phase transition which are important in the at-

mospheric clouds. These factors have substantial impact on the polydispersity of small droplets (see e.g. (Kumar et al.,310

2012, 2014)). However, for monodisperse statistics considered here, they are likely to play minor role (they will be more

important when future works consider the full polydisperse problem).

One limitation of the theory stems from the assumption of St� 1 and its corollary that particle velocity statistics in this

regime are St-independent (Chun et al., 2005), which limit the theory’s applicability to real systems. This implies that MRV

should be St-independent in this regime. Our DNS results (spanning two orders of magnitude in St) shown in Fig. 2 give315

some support to the latter. However, unlike the theoretical prediction for MRV of case St= 0.054 (Fig. 2), we have found that

the prediction for St= 0.11 is discernibly below the DNS result (figure in (Supplements)). This is could be due to the finite

St effect not captured by the theory or other reasons (details in (Supplements)). Hence, a finite St extension of the theory is

desirable to improve its applicability to real systems.

5 Conclusions320

To conclude, we observed that collision strongly affects the RDF and MRV and imposes strong coupling between them. This

challenges the efficacy of a "separation paradigm" and suggests that results from any studies that preclude particle collision has

limited relevance for predicting collision statistics7. We have presented a theory for particle collision-coagulation in turbulence

(based on a Fokker-Planck framework) that explains the above observations and verified its accuracy by showing that 〈Wr〉
could be accurately predicted using a sufficiently accurate RDF. The theory account for the full collision-coagulation rate which325

includes contributions from mean-field and fluctuations; and as such, our work complements and completes earlier mean-field

theories (Saffman and Turner, 1956; Sundaram and Collins, 1997). We showed that a simple model of particle approach-angles

could capture the main features of 〈Wr〉 and used it to derive a general solution for RDF from the differential version of the

theory. We uncovered a possible paradox regarding the past empirical successes of the differential drift-diffusion equation (see

Sec. 4.4). Further shape-preserving reduction of the RDF and MRV were observed when gravitational settling parameter (Sg)330

is of orderO(1). Our findings provide new perspectives of particle collision and its relation with clustering and relative motion,

which have implications for atmospheric clouds or generally to systems involving colliding particles in unsteady flows.
7The current statement also holds for other types of collisional outcomes (not only for collision-coagulation), but the specific outcomes should be qualita-

tively different from the current case.
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