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Abstract 18 

The outbreak of COVID-19 promoted strict restrictions to human activities in China, which led to 19 

dramatic decrease in most air pollutant concentrations (e.g., PM2.5, PM10, NOx, SO2, and CO). 20 

However, obvious increase of ozone (O3) concentrations was found during the lockdown period in 21 

most urban areas of China. In this study, we conducted a field measurement targeting ozone and its 22 

key precursors by utilizing a novel proton transfer reaction time-of-flight mass spectrometer (PTR-23 

TOF-MS) in Changzhou, which is representative for the Yangtze River Delta (YRD) city cluster of 24 

China. We further applied the integrated methodology including machine learning, observation-based 25 

model (OBM), and sensitivity analysis to get insights into the reasons causing the obvious increase of 26 
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ozone. Major findings include: (1) By deweathered calculation, we found changes in precursor 27 

emissions contributed 1.46 ppbv to the increase in the observed O3 during the Full-lockdown period in 28 

2020, while meteorology constrained 3.0 ppbv of O3 in the Full-lockdown period of 2019. (2) By 29 

using an OBM model, we found that although significant reduction of O3 precursors was observed 30 

during Full-lockdown period, the photochemical formation of O3 was stronger than that during the 31 

Pre-lockdown period. (3) The NOx/VOCs ratio dropped dramatically from 1.84 during Pre-lockdown 32 

to 0.79 in Full-lockdown period, which switched O3 formation from VOCs-limited regime to the 33 

boundary of NOx- and VOC-limited regime. Additionally, box model results suggested that the 34 

decrease in NOx/VOCs ratio during Full-lockdown period could increase the MeanO3 by 2.4 ppbv. 35 

Results of this study give insights into the relationship between O3 and its precursors in urban area, 36 

and demonstrate reasons causing the obvious increase of O3 in most urban areas of China during the 37 

COVID-19 lock-down period. This study also underlines the necessity of controlling anthropogenic 38 

OVOCs, alkenes, and aromatics in the sustained campaign of reducing O3 pollution in China.  39 

Keywords: Ozone; VOCs; PTR-TOF-MS; COVID-19 40 

1. Introduction 41 

At the end of 2019, a tragic coronavirus (COVID-19) occurred, which has caused over 271 42 

million global infection and over 4.51 million deaths as of this writing (12th Feb 2022). To protect 43 

people’s health, China adopted strict measures to control the spread of this pandemic. Thirty provinces, 44 

autonomous regions and municipalities have launched Full-lockdown response (also known as Level I 45 

response, roughly from 24th Jan to 25th Feb 2020) as early as 24th Jan 2020 (Shen et al., 2021; Li et al., 46 

2020; Huang et al., 2020). With the effective control of COVID-19 in China, the emergency response 47 

level in most provinces (except Hubei province, the hardest-hit region) gradually downgraded to 48 

Partial-lockdown (Level II and Level III response, roughly after 25th Feb 2020) (Li et al., 2020), and 49 

work resumption started. During Full-lockdown period, all the social events that may cause crowds 50 

(excluding transportation and industries that maintained the basic operation of society) were severely 51 

restricted. Affected by the pandemic, many factories were shut down, and the on-road traffic volume 52 
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and construction activities have been reduced significantly (Zheng et al., 2020). During Full-lockdown 53 

period, dramatic decrease of air pollutants (e.g., PM2.5, NO2, BC) were found in China, especially in 54 

urban areas (Fan et al., 2021; Gao et al., 2021; Li et al., 2020; Xu et al., 2020). Surprisingly, marginal 55 

increases of O3 were observed during the lockdown period in YRD region, and this seems to be 56 

contradictory to the decrease of most air pollutants (Li et al., 2020). However, as suggested by 57 

previous studies, the formation of O3 is significantly influenced by NOx/VOCs ratio and 58 

meteorological conditions (temperature, relative humidity and actinic flux) (Zhang et al., 2020a; 59 

Zhang et al., 2020b). Therefore, it is essential to investigate the changes of meteorological and 60 

emissions conditions to figure out reasons causing the  increase of O3 during this pandemic.  61 

Previous studies on the O3 pollution in the YRD region have often focused on the more populated 62 

metropolitan areas, such as Shanghai and Nanjing, which are considerably far away from the 63 

industrial zones that are essentially responsible for the sources of O3 precursors (Li et al., 2019; Zhang 64 

et al., 2020b). Changzhou, located in the center of the Yangtze River Delta (YRD) region, is a typical 65 

city with fast urbanization, heavy industrial structure, huge energy consumption, increasing vehicle 66 

stocks and frequent air pollution. Therefore, it provides a more representative environment to fully 67 

elucidate the mechanism underlying the O3 pollution in the YRD region (Shi et al., 2020). In a 68 

companion paper (Jensen et al., 2021), we also demonstrated that Changzhou is representative for the 69 

region by analyzing both surface observations and satellite data. According to previous studies, the 70 

anthropogenic VOCs emission in Changzhou was around 9~12.6×104 tons/year, among which 71 

industries was the dominant source, accounting for 27~47% of the total VOC emissions (Cheng et al., 72 

2016; Fu et al., 2013). It is notable that industrial sources together contributed over 80% of 73 

anthropogenic VOC emissions (Sun et al., 2019). Apart from industrial sources, vehicle exhaust 74 

accounted for 9%~14% of total VOC emissions (Sun et al., 2019). However, rare observation 75 

regarding VOCs characteristics during COVID-19 in Changzhou has been conducted.  76 

Highly time-resolved measurements of VOCs are generally much sparse and could not be easily 77 

expanded during the lockdowns. This limits our understanding of how VOCs changed and how the 78 

formation of ozone was affected. Here, we used a novel proton transfer reaction time-of-flight mass 79 
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spectrometer (PTR-TOF-MS, Tofwerk, Model Vocus Elf, CHE) to conduct online observation of 80 

VOCs in Changzhou. The characteristics of VOCs and the variations of general air pollutants in each 81 

emergency response period were analyzed. Additionally, ozone formation during each period was 82 

investigated by an OBM model. Although terrifying impact has been caused by the COVID-19, it 83 

provided a rare experiment to analyze the variations of VOCs and NOx due to changes of 84 

anthropogenic activities in a typical city of China. Furthermore, results of this study offer theoretical 85 

support for formulating refined ozone management policy in China.  86 

2. Methodology 87 

2.1 Field measurement  88 

The field campaign was conducted from 8th Jan to 31st Mar 2020 at a sampling site located on the 89 

rooftop of a building at Changzhou Environmental Monitoring Center (CEMC, 31.76° N, 119.96° E), 90 

which was approximately 15 m above ground level. As a typical urban monitoring station, this site is 91 

in the center of Changzhou city, surrounded by residential and commercial area, which is also adjacent 92 

to the main transportation junction in Changzhou (Figure 1). According to local epidemic prevention 93 

policies, we roughly classified the measurement periods into three stages: Pre-lockdown (8th January 94 

to 23rd January 2020), Full-lockdown (25th January to 24th February 2020), Partial-lockdown (25th 95 

February to 28th March 2020) as defined in a study of the Yangtze River Delta (Li Li et al., 2020).  96 
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 97 

Figure 1. Location of the sampling site in Changzhou. 98 

From Jan 8th to Mar 27th, 2020, the concentrations of traditional air pollutants (PM2.5, PM10, NOx, 99 

SO2, CO, O3) as well as meteorological parameters were monitored by a series of analyzers (Table 100 

1Error! Reference source not found.). In particular, 87 VOCs species were quantified, 59 of which 101 

were identified, by a PTR-TOF-MS with time resolution of 1 min. Detailed measurement techniques 102 

and quality assurance and control has been documented in detail in our companion paper (Jensen et al., 103 

2021). Here, we just briefly introduce the measurement. The air samples were directly drawn into a 3 104 

m-long tube connected to the instrument. A priming pump, with flow rate of 4 L/min, was used to 105 

reduce the retention time of the gas sample in the tube. To avoid blocking of inlet tube caused by 106 

particles, a particulate filter was assembled at the front of the inlet tube. The pressure of the ion source 107 

was set as 2 mbar and the temperature of the reaction chamber was set to 90 C during the observation. 108 

VOCs are ionized by reactions with H3O+ ions from a discharge, and the product ions are detected by 109 

a time-of-light mass analyzer (m/Δm FMHW of 950 at m/Q 107). The PTR-TOF-MS can detect most 110 

unsaturated hydrocarbons and VOCs with functional groups but cannot detect species with proton 111 

affinities lower than that of water, namely alkanes and small alkenes. Eighteen standard gases 112 

(including acetonitrile, acetaldehyde, acrolein, acetone, isoprene, butanone, 2-butanone, benzene, 2-113 
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pentanone, ethyl acetate, toluene, methyl isobutyl ketone, styrene, xylene, trimethylbenzene, 114 

naphthalene, a-pinene, and 1,3-dichlorobenzene) with concentrations of 1 ppmv were used for the 115 

calibration of the PTR-TOF-MS. In addition, a built-in calibration system was used to control the zero 116 

and standard gases.  117 

Table 1 Measurements performed during the field campaign. 118 

Species/Parameter Experimental Technique 

T, RH, WS, WD and P 2000WX, Airmax, USA 

O3 400E, API, USA 

NOx (NO and NO2) T200, API, USA 

SO2 T100, API, USA 

CO T300, API, USA 

PM2.5 5030, Thermo Fisher, USA 

PM10 5030, Thermo Fisher, USA 

VOCs Vocus Elf, Tofwerk, CHE 

 119 

2.2 Observation-based model 120 

An OBM model coupled with MCM v3.3.1 was utilized to investigate the atmospheric oxidation 121 

capability and the radical chemistry. Detailed information about the chemistry mechanism is available 122 

on MCM website (http://mcm.leeds.ac.uk/MCM/, last access 8 Jul 2021). More than 5800 chemical 123 

species and 17000 reactions are included in this mechanism. The photolysis frequencies (J values) 124 

were calculated as a function of solar zenith angle, altitude using lookup tables, calculated using the 125 

Tropospheric Ultraviolet and Visible (TUV) model (Wolfe et al., 2016). Dilution mixing within the 126 

boundary layer is considered. However, as a 0-D model, vertical or horizonal transport of airmasses 127 

are not involved. The observed meteorological parameters (T, RH, P), trace gases (NO, NO2, CO, SO2, 128 

and VOCs) were used to constrain the model. Before each simulation, the model was run 3 days as 129 

spin-up to reach a stable state. According to the definition of atmospheric oxidation capability (AOC), 130 

AOC is quantified by Eq (1) (Geyer et al., 2001). 131 

𝐴𝑂𝐶 =∑𝑘𝑌𝑖−𝑋[𝑌𝑖][𝑋]

𝑖=1

 (1) 

http://mcm.leeds.ac.uk/MCM/
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where Yi are the primary pollutants (e.g., VOCs, CH4, and CO); X are atmospheric oxidants (OH, O3, 132 

NO3); kYi are the bimolecular rate constants for the reactions of Yi and X. A high value of AOC 133 

indicates fast scavenge of primary air pollutants. Additionally, OH reactivity (kOH), defined as the 134 

reaction rate coefficients multiplied by the concentrations of the reactants with OH, is also widely 135 

used as an indicator of AOC. The value of kOH depends on both the abundances and compositions of 136 

primary pollutants and can be calculated by Eq (2). 137 

 

𝑘𝑂𝐻 =∑𝑘𝑂𝐻+𝑋𝑖 × [𝑋𝑖]

𝑖

 
(2) 

where kOH+Xi are the reaction rate coefficients of reaction OH+Xi; Xi are the concentrations of 138 

pollutants (VOC, NO2, CO, OVOC etc.) (Zhu et al., 2020). 139 

2.3 Trend Analysis 140 

Mann-Kendall (MK) trend test is a widely used non-parametric test method (Pathakoti et al., 141 

2021; Zhang et al., 2013). It is applicable to all distributions (that is, the data does not need to meet the 142 

assumption of normal distribution), but the data should have no serial correlation. If the data has serial 143 

correlation, it will have an impact on the significance level (p value). In this study, the MK trend 144 

analysis was performed for individual VOC concentrations during Pre-lockdown and Full-lockdown 145 

period. By using the “feast” R package, no obvious serial correlation of individual VOC is found. 146 

Therefore, the observed VOC data is suitable for MK test. Detailed description and the calculation 147 

formula of MK trend test could be found in the study of Pathakoti et al. (2021) and Alhathloul et al. 148 

(2021). A positive z value from the MK test indicates increasing trend of the target compound. On the 149 

contrary, a negative z value suggests the target compound was decreasing. 150 

Sen’s slope, a non-parametric test proposed by Sen (1968), is used in this study to assess the rate 151 

of change in individual VOC concentrations. The Sen’s slope is selected since it is insensitive to 152 

outliers, and does not require a normal distribution of residuals. Sen’s slope (Q) is mathematically 153 

represented by the following equations. 154 

 𝑄 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑆𝑆𝑖𝑗) (3) 



8 

 

 𝑆𝑆𝑖𝑗 =
𝑥𝑗 − 𝑥𝑖

𝑗 − 𝑖
, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 

(4) 

where xj and xi are concentrations of VOC specie x at time j and i (1≤i≤j≤n), respectively. SSij is the 155 

linear slope between time i and j, and Q is the median of SSij. Positive and negative Q values indicate 156 

increasing or decreasing trend of VOC specie x, respectively.  157 

2.4 Deweathered model 158 

The observed concentrations of O3 could be influenced by meteorological conditions, emissions 159 

and/or chemistry. The emissions and chemistry are being treated together and separated from 160 

meteorology by the deweathered approach based on the random forest (RF). Hourly data of Unix date 161 

(number of seconds since 1970-01-01), Julian day, weekday, hour of day, wind speed (WS), wind 162 

direction (WD), temperature (T), relative humidity (RH), and pressure (P), which are available during 163 

the whole observation, were used for the deweathered calculation of O3. The missing data was 164 

replaced by linear interpolation. Training of the models was conducted on 80% of the input data and 165 

the other 20% was withheld from training. To avoid the disadvantage of overfitting during the training 166 

of RF, a process called bagging (or bootstrap aggregation) was adopted. Bagging results in new, 167 

sampled set called out-of-bag (OOB) data. A decision tree is then grown on the OOB data. Therefore, 168 

all the decision trees are grown on different observations and avoid the overfitting (Grange and David 169 

(2019)). To determine the value of number of trees (ntree), number of samples (nsample), and the 170 

minimal node size, a series of random forests were performed under different choices of ntree, 171 

nsample, and minimal node size. The results suggest that the highest coefficient of determination (R2, 172 

0.84) was obtained when ntree, nsample and minimal node size was set as 300, 300, and 5, 173 

respectively (Table S1 and S2). More details of this model could be found in the study of Grange and 174 

David (2019). The uncertainty of the deweather model is obtained by growing 50 random forest 175 

models with the hyperparameters described above, which is the same method as Grange and Carslaw 176 

(2019). The mean and standard error of the predicted O3 concentrations is shown in Figure S1, and 177 

results of the model are stable during the 50 runs. The differences in observed O3 concentrations 178 

(O3,Obs) and deweathered O3 concentrations (O3,Normal) were regarded as the concentrations contributed 179 
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by meteorology (O3,Met), which is consistent with the definition in Li et al. (2021). Correspondingly, 180 

the differences in O3,Normal concentrations in different periods represent the influence of emissions, 181 

since the O3,Normal has already removed the influence of meteorological conditions. 182 

3. Results and discussion 183 

3.1 Overview of the field campaign 184 

Figure 2 shows the meteorological conditions during the observation. During the whole 185 

experiment, the prevailing WD was southeast. The average T and RH was 9.9  5.1℃ and 58.9  186 

17.1%, respectively. Compared to Pre-lockdown period, the concentrations of PM2.5, PM10, SO2, NO, 187 

NO2, TVOC and CO during Full-lockdown period decreased by 48%, 42%, 11%, 65%, 58%, 33% and 188 

39%, respectively. It should be noted that the decreasing ratio of VOC/NOx is around 1.75, suggesting 189 

that the lockdown policy has stronger influence on NOx emissions than VOC emissions. The O3 190 

concentrations during the same period in 2020 and 2019 are summarized in Table 2. Considering the 191 

influence of Chinese New Year, the corresponding period in 2019 was decided according to lunar 192 

calendar. It should be noted that, compared to Full-lockdown period in 2019, the mean O3 193 

concentration in 2020 is obviously higher (5.5 ppbv, Figure 2). Meanwhile, the average O3 194 

concentrations in Full-lockdown period in 2020 was 67% higher than that during Pre-lockdown period 195 

in 2020. To roughly analyze the cause of the obvious increase of O3 during Full-lockdown period in 196 

2020, we summarized the temperature (T) and relative humidity (RH) in Table 2. The T and RH in 197 

Full-lockdown period in 2020 was ~1.6 C higher and 6.1% lower than that in the same period in 2019, 198 

while the P and WS were comparable during the same period in 2020 and 2019 (Table 2). The 199 

relatively higher T was in favor of O3 formation during the Full-lockdown period in 2020. As for RH, 200 

the influence on O3 is nonlinear (Zhang et al., 2020), and based on our sensitivity test, lower RH could 201 

lead to decrease or increase of O3 concentration (Figure S2). Overall, changes in O3 concentrations 202 

could be a result of the joint effect of meteorological conditions and emissions/chemistry, the 203 

following sections would discuss these influences respectively. 204 
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  205 

Figure 2 Time series of meteorological parameters and air pollutants during the whole observation. 206 

Table 2 Comparison of average meteorological conditions during Pre-lockdown, Full-lockdown, and Partial-207 

lockdown in 2020 and the same period in 2019. 208 

 209 

3.2 Mechanism affecting the obvious O3 increase 210 

3.2.1 Meteorological perspective 211 

Deweathered O3 concentrations were calculated based on the model described in Section 2.4. The 212 

difference between O3,Obs and O3,Normal can be regarded as the meteorological influence (O3,Met). In 213 

Periods Date 
P 

(hPa) 

RH 

(%) 

T 

(℃) 

Precipitation 

(mm) 

WS 

(m/s) 

Pre-lockdown (2020.1.8-1.24) 1025.4 84.9 4.8 0.13 1.8 

Same period in 2019 (2019.1.19-2.4) 1025.6 72.7 5.2 0.05 1.9 

Full-lockdown (2020.1.25-2.24) 1025.6 73.0 7.3 0.09 2.1 

Same period in 2019 (2019.2.5-3.7) 1024.1 79.1 5.7 0.15 2.1 

Partial-lockdown (2020.2.25-3.31) 1018.9 69.5 12.1 0.11 2.4 

Same period in 2019 (2019.3.8-4.12) 1017.6 64.0 13.8 0.02 2.0 
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addition, the difference between O3,Normal concentrations in different years could be considered as the 214 

influence of emissions (O3,Emi). Figure 3 exhibited the average O3,Obs, O3,Normal, O3,Met during the same 215 

periods in 2019 and 2020, respectively. It is obvious that the O3,Obs during Pre-lockdown period is 216 

much lower than that during Full-lockdown period in both years, which was partly attributed to 217 

negative influence of meteorological condition during Pre-lockdown period (Figure 3). This is 218 

consistent with the increasing temperature and solar radiation, which could significantly contribute to 219 

the increase in ozone concentration, from Pre-lockdown to Full-lockdown period. It should be noted 220 

that meteorology constrained O3 concentrations by 3.9 ppbv during the Full-lock down period in 2019. 221 

Apart from the influence of meteorological condition, the O3,Normal in Full-lockdown period in 2020 is 222 

still 1.46 ppbv and 0.64 ppb higher than that during Full-lockdown period in 2019 and that during Pre-223 

lockdown period in 2020, indicating that improper decline of precursor emissions was possibly the 224 

key reason for the obvious increase of O3 during Full-lockdown period in 2020.  225 

 226 
Figure 3. Comparison of observed (Obs), weather-normalized (Normal), and meteorological-factors-infected 227 
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(Met) O3 concentrations during the same period in 2019 and 2020. 228 

3.2.2 Ambient VOCs 229 

As mentioned above, the changes in O3 precursor emissions strongly affected the O3,Obs, and the 230 

changes in VOCs and NOx emissions would eventually be reflected by the observed concentrations of 231 

individual VOCs and NOx. Therefore, the concentrations of each VOC group in different periods were 232 

summarized (Figure 4). OVOCs dominated the total VOCs (TVOC) concentrations during the whole 233 

observation, with a daily average concentration of 21.44  10.27 ppbv. During Full-lockdown period, 234 

the TVOC dropped to 22.19 7.9 ppbv from 32.78 ± 13.81 ppbv, which was mainly affected by the 235 

decrease in industrial activities and traffic volume. This is proved by the trend of traffic volume, 236 

VOCs emission and traffic/industrial-derived VOCs (Text S1 and Figure S3). In addition, Jensen et al. 237 

(2021) found the VOC emissions from most industries in Changzhou share the same “U-shape” trend 238 

as our study. The most obvious drop was found in aromatics (~54%), followed by OVOCs (~27%), 239 

alkenes (~26%), nitrogen hydrocarbon (~25%), and other VOCs (~21%). Additionally, the 240 

discrepancy of daytime and nighttime VOCs concentrations during different periods were compared 241 

(Figure 4 (A)). The concentration of each VOCs group exhibited higher values during nighttime, 242 

which was caused by the low atmospheric oxidation condition and the low atmospheric boundary 243 

layer height (Maji et al., 2020; Valach et al., 2015).  244 

 245 

Figure 4. Comparison of daytime and nighttime VOCs concentrations (A), average OFP (B), and contribution 246 

to total OFP (C) during different periods. 247 

Furthermore, the average concentrations of individual VOCs during different periods were 248 
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summarized in Figure 5. Total 42 VOC species exhibited an ‘U’ shape trend during the whole 249 

observation, while formaldehyde (HCHO) and methanol showed an obvious increasing pattern. It 250 

should be noted that the measurement of HCHO could be strongly influenced by humidity. Since 251 

within the drift tube, the back reaction, which converse the protonated HCHO back into HCHO, is 252 

highly humidity dependent (Inomata et al., 2008; Warneke et al., 2011).  253 

To quantitatively evaluate the changes of individual VOC concentrations from Pre-lockdown to 254 

Full-lockdown period, when the variations of each VOCs are obvious, we applied MK trend test and 255 

Sen’s slope analysis based on the hourly average VOCs concentration data (Table S3). Table 3 lists the 256 

top 10 VOCs species with decreasing pattern (with negative Q value) from Pre-lockdown to Full-257 

lockdown period. Toluene, benzene and xylene exhibited the most significant decreasing pattern, with 258 

a slope of 7.73×10-4, 7.36×10-4, and 7.20×10-4 ppbv h-1, respectively. As for NOx and TVOC, the slope 259 

was -1.62 × 10-2 and 5.48 10-3 ppb h-1 (Table S3). This result is consistent with the drastic drop of 260 

industrial activities and traffic volumes, which are key sources of aromatics and NOx, from Pre-261 

lockdown to Full-lockdown period. Other VOCs, such as ethyl-acetate, acetic acid, acetaldehyde, 262 

diethyl sulfide, ethanol, butanol and acrolein are also tightly associated with industrial processes, 263 

thereby showed decreasing trend from Pre-lockdown to Full-lockdown period. Additionally, the 264 

average diurnal variations of acetonitrile, dimethyl formamide (DMF), and styrene, which are tracers 265 

of biomass burning and industrial emission, respectively, exhibited significant reduction during Full-266 

lockdown period (Figure S4), also indicating strong decrease in these emissions. However, 267 

formaldehyde and methanol exhibited increasing trend, with a slope of 12.78×10-4 and 6.35×10-4 ppbv 268 

h-1, respectively. This could be explained by the secondary formation of HCHO and methanol, which 269 

was promoted under better oxidation condition in Full-lockdown period. 270 
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 271 

Figure 5. Concentrations of individual VOC species during different period. 272 

*MEK, DMF, are abbreviation of Methyl ethyl ketone and dimethylformamide, respectively. 273 

 274 

 275 

 276 

 277 

 278 
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Table 3. Top 10 VOCs with decreasing trend from Pre-lockdown to Full-lockdown  279 

VOC Z value Q *10000 (ppbv h-1) VOC Z value Q *10000 (ppbv h-1) 

Toluene -14.02 -7.73 Acetaldehyde -10.31 -3.95 

Benzene -9.65 -7.36 Diethyl sulfide -9.15 -3.16 

xylene -12.38 -7.20 Ethanol -5.48 -3.09 

Ethyl-acetate -18.53 -5.20 Butanol -10.42 -2.83 

Acetic acid -6.79 -4.12 Acrolein -15.48 -2.76 

3.2.3 Chemistry perspective 280 

The reactivities of different VOCs vary significantly, hence, ozone formation potential (OFP) is 281 

used in this study to assess the potential contribution of active VOCs (including alkenes, aromatics 282 

and OVOCs) to O3 formation on the same basis, and it can be calculated by formula (5): 283 

 𝑂𝐹𝑃𝑖 = 𝑀𝐼𝑅𝑖 × [𝑉𝑂𝐶𝑖] (5) 

where MIRi is the ozone formation potential coefficient for a given VOC species i in the maximum 284 

increment reaction of O3, acquired from Carter (2009); [VOCi] is the concentration of VOC species i 285 

(in µg/m3). It should be noted that OFP does not indicate O3 concentration but only serves as a 286 

reference for the potential O3 produced via the degradation of VOCs. The time series of total OFP is 287 

shown in Figure 6. The average OFP in Pre-lockdown, Full-lockdown, and Partial-lockdown period 288 

was 269.4 ± 146.0, 147.2 ± 72.4, 279.3 ± 168.6 µg/m3, respectively. The trend of the total OFP 289 

indicates the drastic decrease of VOCs reactivities from Pre-lockdown to Full-lockdown period. 290 

During Pre-lockdown period, aromatics were the dominant OFP contributor (49%), followed by 291 

OVOCs (38%) and alkenes (13%) (Figure 4). Among VOCs, xylene exhibited the maximum OFP 292 

value (68.6 ± 59.3 μg/m3), followed by acetaldehyde (28.8 ± 6.4 μg/m3), toluene (25.7 ± 20.1 μg/m3) 293 

trimethylbenzene (25.4 ± 15.8 μg/m3), and formaldehyde (22.7 ± 9.1 μg/m3) (Figure S5). Compared to 294 

Pre-lockdown period, the OFP of aromatics decreased dramatically (-91.2 μg/m3) during Full-295 

lockdown period (Figure 4 (B)), which was mainly attributed to the rapid decline of human activities 296 

(e.g., transportation and industry). However, the OFP of alkenes and OVOCs only decreased by 8.9 297 

and 22.5 μg/m3, respectively. During the PTR-TOF-MS observation, the most abundant alkenes and 298 

aromatics are 1-hexene and isoprene, with the kOH of 100 and 57 ×10-12 cm3 molecule-1 s-1, 299 
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respectively (Atkinson and Arey, 2003). The fast degradation of these alkenes could attribute to the 300 

relatively smaller change of OFP from alkenes. As for OVOCs, the secondary formation could 301 

compensate the decrease in primary emissions. The OFP values of aromatics and alkenes during Pre-302 

lockdown and Partial-lockdown period are comparable, but OVOCs exhibited higher OFP 303 

contribution (~46%) in Partial-lockdown period, which could be attributed to the higher AOC, 304 

enhanced solar radiation and temperature during Partial-lockdown period. To compare the average 305 

reactivity of VOCs during different periods, we calculated the mean MIR, derived by dividing the 306 

total OFP by total VOC concentration, in each period. A higher MIR means stronger capability of 307 

VOCs to produce ozone. As shown in Figure 7, the average MIR during Pre-lockdown, Full-lockdown, 308 

and Partial-lockdown period was 3.85, 3.53 and 3.68 (g O3/g VOC), respectively. This result suggests 309 

that VOC species composition in Full-lockdown is more conductive to ozone formation than that in 310 

Pre-lockdown, and Partial-lockdown period. However, the formation of O3 was sensitive to the ratio 311 

of NOx/VOCs and meteorological conditions, which can be significantly different in each period. As 312 

shown in Figure 7, the average NOx/VOCs ratio in the three periods (shown in) was 1.84, 0.79, and 313 

0.84, respectively, suggesting more NOx was reduced than VOCs during Full-lockdown period, which 314 

could further influence the sensitivity of O3 formation.  315 

 316 
Figure 6. Time series of OFP during the whole observation period (dash lines represent the average OFP value 317 

during each period) 318 
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 319 
Figure 7. Plot of 1-hour averaged MIR and NOx vs VOCs during three periods. 320 

To investigate the detailed formation mechanism of O3 in each period, three cases (January 19th, 321 

February 1st, March 14th) with stagnant meteorological conditions were chosen. The index of 322 

agreement (IOA) of O3 is 0.80, indicating that the model can capture the daytime variation of O3. The 323 

simulated daytime OH concentrations exhibited an increasing trend from January 19th to March 14th, 324 

with an average value of 0.36 ± 0.27 × 106, 0.75 ± 0.54 × 106 and 1.18 ± 0.78 × 106 molecules cm-3, 325 

respectively. This could be attributed to the increasing solar radiation and temperature from January to 326 

March. To analyze the atmospheric oxidation, we calculated the AOC according to Eq(1). The average 327 

daytime AOC on Jan 19th, Feb 1st, and Mar 14th was 0.26  0.35, 0.23  0.33, and 0.31  0.38 328 

molecules cm-3 s-1, respectively (Figure 9). Comparatively, these values are much lower than those 329 

simulated for Shanghai and Beijing (Liu et al., 2012; Zhu et al., 2020; Zhang et al., 2021) in summer, 330 

mainly due to the meteorological conditions in winter season. It is notable that the simulated OH on 331 

Jan 19th was significantly lower than that on Feb 1st, but the AOC on Jan 19th was comparable to that 332 

on Feb 1st. This should be ascribed to the abundant primary pollutants, which efficiently react with OH, 333 

during Pre-lockdown period. 334 

 335 
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 336 

Figure 8. Comparison of simulated and observed O3 (a) and simulated daytime OH concentrations (b) in three 337 

cases. 338 

 339 

Figure 9. Diurnal variation of AOC in three cases 340 

The daytime variations of OH reactivity calculated by OBM model are exhibited in Figure 10, 341 

including the contribution from measured pollutants (e.g., VOCs, NOx, and CO) and model-simulated 342 

species (OVOCs). Generally, the kOH assessed at Changzhou was in the range of 9~32 s-1, which was 343 

comparable to that calculated for other cities in China (e.g., Shanghai 4.6~25 s-1, Zhu et al., 2020, 344 

Chongqing 15~25 s-1, Tan et al., 2019 and Beijing 15~25 s-1, Tan et al., 2019). It is obvious that OH 345 

reactivity peaked in the morning, with maximum values of 31.76, 17.98, and 17.30 s-1, respectively. 346 

The OH reactivity from NO2 exhibited obvious daytime variation, especially during the morning rush 347 

hour, which lead to the peak kOH value during morning. The OH reactivity (kOH) on Feb 1st was much 348 

lower than that in the other two cases, which was mainly due to the abundance of emissions during 349 

Pre-lockdown and Partial-lockdown period. Compared to Jan 19th, the kOH from NO2 on Feb 1st and 350 

Mar 14th showed lower levels, with an average value of 2.62 and 3.35 s-1, respectively. This 351 

corresponds with the dramatic drop of traffic volume during lockdown periods. Similarly, compared to 352 

Jan 19th, the kOH from alkenes and aromatics were lower on Feb 1st and Mar 14th. As kOH from OVOC, 353 
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it shared same trend as OVOC concentration, which reached the minimum value (5.56 s-1) during the 354 

Full-lockdown period.  355 

  356 

Figure 10. Daytime variation of OH reactivity in three cases 357 

To investigate the variation of O3 during different periods, the formation and loss pathways of O3 358 

were calculated (Figure 11). The formation of O3 (P(O3)) was dominated by HO2+NO and RO2+NO 359 

pathways. Although the average MIR during Full-lockdown period was the minimum among the three 360 

periods, the P(O3) on Feb 1st was higher than that on Jan 19th. This could be attributed to the higher 361 

AOC and better photochemical conditions during Full-lockdown period. Similarly, much higher P(O3) 362 

was found on March 14th. To avoid the influence of meteorological conditions and test the potential 363 

mean O3 (MeanO3) concentrations under different NOx/VOCs ratios, a series of scenario analyses 364 

were performed based on the average condition during the whole observation, and the isopleths of 365 

MeanO3 concentrations are exhibited in Figure. 12. Note that the value of temperature and photolysis 366 

frequencies (J values) in the scenario analyses could be higher than the actual value during Pre-367 

lockdown period and could further lead to overestimation of simulated MeanO3 during Per-lockdown 368 

period. Additionally, the VOCs concentrations mentioned in this section only represent the VOC 369 

species in the MCM mechanism. By connecting the inflection points in each O3 isopleth, we get the 370 

ridge line, which divides the whole regime into NOx-sensitive and VOCs-sensitive regimes (Figure. 371 

12). During Pre-lockdown period, the O3 formation was in VOC-limited regime (triangles in Figure. 372 

12), with an average NOx/VOC ratio of 1.84. As for Full-lockdown period, significant decrease of 373 

NOx and VOC emissions was observed, and the NOx/VOCs ratio dropped to 0.79, which gradually 374 

switched the O3 formation to the junction of VOCs-limited and NOx-limited regimes, especially on 375 

Feb 16th and Feb 17th (circles in the red rectangle in Figure. 12), when the O3 formation went into 376 
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NOx-limited regime. During Partial-lockdown period, increasing of VOCs and NOx emission again 377 

dragged the formation of O3 back into VOCs-limited regime (triangles in Figure. 12). Interestingly, 378 

although a great deal of NOx and VOCs emissions were diminished during Full-lockdown period, the 379 

average MeanO3 in Full-lockdown was supposed to be 2.4 ppbv higher than that in Pre-lockdown 380 

period. This result is consistent with the trend of the observed MDA8 O3 and the results of the 381 

deweathered calculation. Therefore, expect for the influence of meteorology, the improper NOx/VOCs 382 

reduction ratio and further influence on chemistry was the key reason for the obvious increase of O3 383 

during Full-lockdown period in Changzhou in 2020. 384 

 385 

Figure 11. Daytime variation of P(O3) and L(O3) in three cases 386 

 387 
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Figure. 12 MeanO3 isopleth. The colored circles, triangles, and rectangles represent the daily average 388 

concentrations of NOx and VOCs during Pre lockdown, Full-lockdown, and Partial-lockdown period, 389 

respectively. The white circle, triangle, and rectangle indicates the average NOx and VOCs concentrations 390 

during Pre lockdown, Full-lockdown, and Partial-lockdown period, respectively. 391 

The scenario analyses raise a question: how much O3 would change as a function of reduction of 392 

NOx and VOCs? Therefore, the reduction percentage of O3 (ΔO3/O3) during Pre-lockdown period as a 393 

function of reduction of VOCs and NOx were calculated, and the result could be regarded as a 394 

potential to control O3 pollution. Based on the VOCs species in MCM v3.3.1, we classified the 395 

measured VOCs into four groups: alkenes (n-butene); aromatics (including benzene, toluene, phenol, 396 

xylene, styrene, cresol, and trimethylbenzene); OVOCs (including methanol, ethanol, formaldehyde, 397 

aldehyde, acrolein, methyl vinyl ketone, methyl ethyl ketone, ethyl acetate, methyl isobutyl ketone, 398 

hexanol, and heptanal); and BVOCs (isoprene, pinene, and caryophyllene). The results in Figure 13(a) 399 

indicate that more reduction potential of O3 could be achieved by diminishing aromatics, followed by 400 

BVOCs, OVOCs, and alkenes. It should be noted that many light alkanes and active alkenes, such as 401 

ethene and propene, could not be measured by the PTR-TOF-MS and might further lead to the 402 

underestimation of ozone production from alkanes and alkenes. Additionally, this comparison has a 403 

drawback of being influenced by the concentrations of VOCs. To normalize the influence of 404 

concentrations of VOCs, the descent rate of O3 (ΔO3 (ppbv)/ ΔVOCs (ppbv)) as a function of 405 

reduction percentage of VOCs were calculated (Figure 13 (b)). O3 exhibited the highest dependence 406 

on BVOCs, with an average descent rate of 3.74 ± 0.09 ppbv/ppbv. Differing from the result in Figure 407 

13 (a), diminishing alkenes could lead to decrease of O3 by an average declining rate of 1.69 ± 0.01 408 

ppbv/ppbv. On the contrary, reduction of NOx would lead to increase of O3, with an average rate of 409 

1.29 ± 0.21 ppbv/ppbv (Figure S6). Although the descent rate of O3 turned to decrease and the 410 

sensitivity of O3 formation get into NOx-limited regime when over 70% of NOx were eliminated, it 411 

still causes net increase of O3. 412 

Although diminishing BVOCs seems to the most efficient way to restrain O3 pollution, most of 413 

BVOCs were emitted directly from plants and could not be easily controlled. Besides, huge number of 414 
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OVOCs (such as formaldehyde, aldehyde, methanol, ethanol, methyl vinyl ketone, methyl ethyl 415 

ketone, etc.) could be directly emitted from anthropogenic processes or secondary generated from the 416 

oxidation of precursors (such as alkenes and aromatics), which complicates the control of OVOCs. 417 

Therefore, considering the reduction potential and descent rate of O3, more efforts are needed on the 418 

control of alkenes and aromatics. 419 

 420 

Figure 13. Reduction percentage of O3 as a function of reduction percentage of VOCs (a); descent rate of O3 as a 421 

function of reduction percentage of VOCs (b). 422 

3.3 Uncertainty analysis 423 

Due to limitations in the observations, several issues should be noted in the application of the 424 

OBM model to evaluate the local chemistry in the present study. Firstly, deficiency of the observation 425 

of C2~C5 alkenes and alkanes could lead to underestimation of the simulated O3. We can only obtain 426 

the C2~C5 alkenes and alkanes concentrations from the observation during the autumn of 2018 at the 427 

same site. To analyze the uncertainties from this disadvantage, we have done simulation by including 428 

assumed diurnal variation of ethene, propene, butene, ethane, propane and butane which are key 429 

C2~C5 alkenes and alkanes at this site, in the model. On average, adding 0.5~2 times alkenes or 430 

alkanes could lead to 1.65%~9.49% or 1.37~5.36% increase of simulated O3, respectively (Figure S7 431 

and S8). In addition, the deficiency of C2~C5 has potential to cause uncertainty in O3 formation 432 

potential. To quantify this impact, the EKMA analysis with the hypothetical diurnal variation of 433 

C2~C5 was also performed. Generally, adding C2~C5 alkenes and alkanes in the model would lead to 434 
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slight increase of the simulated O3, and could not obviously change the shape of O3 isopleth (Figure 435 

S9). Therefore, the influence of the deficiency of C2~C5 alkenes and alkanes on the O3 formation 436 

sensitivity is negligible. It should be noted that, this sensitivity analysis is based on the “hypothetical” 437 

diurnal variation of C2~C5 alkenes and alkanes, which would bring in uncertainty. We hope a wider 438 

range of VOCs would be monitored simultaneously in future field campaign and avoid this deficiency. 439 

Secondly, the photolysis frequencies (J values) were calculated as a function of solar zenith angle, 440 

altitude using lookup tables, calculated using the Tropospheric Ultraviolet and Visible (TUV) model, 441 

which could lead to uncertainty in the simulation of O3. Hence, we analysis the influence of J values 442 

by increasing or decreasing the photolysis rates by 10% and 20%. Results showed that the simulated 443 

O3 could decrease or increase by 25.14% or 21.73%, respectively, when photolysis rates were 444 

decreased or increased by 20% (Figure S10). In addition, the J values, which directly or indirectly 445 

influence the recycling of ROx, could lead to uncertainty in the calculation of AOC and kOH. Based on 446 

above sensitivity analysis, we found the relative changes in AOC and kOH by 1% changes in J values 447 

was 1.07% and 0.14%, respectively. Therefore, the J values is recommended to be measured during 448 

future observations.  449 

 4. Conclusions 450 

After the outbreak of COVID-19, strict epidemic prevention measures have been adopted 451 

throughout China, leading to dramatic decrease in traffic volume and industrial activities. Affected by 452 

the decrease of number of vehicles on the road, non-essential industrial productivity, and associated 453 

pollutant emissions, most of the air pollutants (e.g., PM2.5, PM10, NO, NO2, SO2, and VOCs) dropped 454 

to a lower level during lockdown period (especially during Full-lockdown period). However, O3 455 

increased compared to that during the same period in 2019 in many urban areas of China. To figure 456 

out the reasons for this obvious increase of O3, the characteristics of O3 precursors (NOx, VOCs) 457 

during Pre-lockdown, Full-lockdown, and Partial-lockdown periods in Changzhou were analyzed. 458 

Although this study was conducted in single city of China, the representativeness of Changzhou 459 

guaranteed the applicability of the results the YRD region. Results suggested that the decrease of 460 
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human activities during Full-lockdown period significantly suppressed the emissions of NOx and 461 

VOCs, which further lead to dramatic drop in the concentrations of most VOCs, especially aromatics. 462 

As a result, the NOx/VOCs ratios dropped from 1.84 at Pre-lockdown period to 0.79 during Full-463 

lockdown period. By deweathered calculation, we found that meteorology constrained O3 464 

concentration by 3.9 ppbv during Full-lockdown period in 2019, but exhibited negligible influence on 465 

that during the same period in 2020. However, compared to Full-lockdown period in 2019, changes in 466 

precursor emissions led to 1.46 ppbv increase in O3 concentrations during the same period in 2020. To 467 

verify this result, a box model was used to simulate the formation of O3. Results show that the AOC 468 

level during Full-lockdown was comparable to that during Pre-lockdown period, but the formation 469 

rate of O3 was much higher during Full-lockdown period. By scenario analysis, we found the decrease 470 

of NOx and VOCs in Full-lockdown period dragged the formation of O3 from VOC-sensitive regime 471 

to the junction of VOCs- and NOx-limited regime, and the average simulated MeanO3 in Full 472 

lockdown period could be 2.4 ppbv higher than that in Pre-lockdown period. Although the 473 

deweathered model and OBM model shows differences in the emission-derived change of O3, the 474 

results together point out that the improper reduction of NOx and VOCs was the key reason for the 475 

obvious increase of O3 during Full-lockdown period in 2020. Overall, the outbreak of COVID-19 has 476 

caused devastation over the world. However, it provided an extreme experiment to investigate the O3 477 

formation under strict emission control policies and provided insights into the policy formulation for 478 

diminishing O3 pollution in the YRD region. The data indicate that the concentrations of VOCs and 479 

NOx have changed dramatically during the pandemic, a common situation also found in other Chinese 480 

cities, and led to the switch of O3 formation sensitivity. These results have a clear indication that, in 481 

the future, more efforts should be paid on the reduction ratio of anthropogenic VOCs and NOx.  482 
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