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Abstract 17 

We examine past and future changes in both winter haze and clear weather conditions over the 18 

North China Plain (NCP) using a Perturbed Parameter Ensemble (PPE) and elucidate the 19 

influence of model physical parameterizations on these future projections for the first time. We 20 

use a large-scale meteorology-based Haze Weather Index (HWI) with values >1 as a proxy for 21 

haze conducive weather and HWI <-1 for clear weather conditions over the NCP. The PPE 22 

generated using the UK Met Office HadGEM-GC3 model shows that under a high-emission 23 

(RCP8.5) scenario, the frequency of haze conducive weather (HWI>1) is likely to increase 24 

whereas the frequency of clear weather (HWI<-1) is likely to decrease in future, with a growing 25 

influence of climate change over the 21st century. Nevertheless, a change of opposite sign with 26 

lower magnitude in the frequencies, though less likely, is also possible. In future, the frequency 27 

of haze conducive weather for a given winter can be as much as ~3.5 times higher than the 28 

frequency of clear weather over the NCP. More frequent haze conducive weather (HWI>1) 29 

during winter over the NCP is found to be associated with an enhanced warming of the 30 

troposphere and weaker north-westerlies in the mid-troposphere over the NCP. We also 31 

examined the changes in the interannual variability of the haze conducive and clear weather 32 

and find no marked changes in the variability of future periods. We find a clear influence of 33 

model physical parametrizations on climatological mean frequencies for both haze conducive 34 

and clear weather. For mid to late 21st century (2033-2086), parametric effect can explain up 35 

to ~80% variance in climatological mean frequencies of PPE members. This shows that the 36 

different model physical parameterizations lead to a different evolution of model’s mean 37 

climate, particularly towards the end of the 21st century. Therefore, it is desirable to consider 38 

the PPE in addition to the initialized and multimodel ensembles for a more comprehensive 39 

range of plausible future projections.  40 

1. Introduction 41 
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 Over the last decade, a number of severe haze episodes (several days or longer) were 42 

reported over the North China Plain (NCP) during boreal winter (December-January-February, 43 

DJF). In January 2013, unprecedented PM2.5 levels exceeding 450 μg m-3 were observed over 44 

the NCP (Wang et al., 2014a; Wang et al., 2014b; Zhang et al., 2018; Zhang et al., 2013). 45 

Similar events were also observed in November-December 2015 when the PM2.5 concentrations 46 

reached as high as 1000 μg m-3 in Beijing and caused the first-ever ‘red alert’ for severe air 47 

pollution (Liu et al., 2017; Zhang et al., 2017). In December 2016, around 25% of the land area 48 

of China was covered with severe haze for around one week (Yin and Wang, 2017). These 49 

severe haze events adversely impacted public health including mortality, visibility, and 50 

ultimately the economy of the country (Bai et al., 2007; Chen and Wang, 2015; Kan et al., 51 

2012; Kan et al., 2007; Wang et al., 2006; Xu et al., 2013; Hong et al., 2019). 52 

 Previous research has shown that the persistence of severe haze for days during winters 53 

over the NCP occurred due to the combined effect of local and regional high pollutant 54 

emissions and stagnant meteorological conditions (Li et al., 2018; He et al., 2016; Jia et al., 55 

2015; Pei et al., 2018; Zhang et al., 2021). The normal winter meteorological conditions over 56 

the NCP are characterized by northwesterly flow near the surface through to the mid-57 

troposphere associated with the East Asian winter monsoon circulation (Fig. 1a and 1b; also 58 

see An et al., 2019; Chen and Wang, 2015; Li et al., 2016; Renhe et al., 2014; Xu et al., 2006). 59 

The northwesterly winds support the intrusion of relatively clean air from the high latitudes to 60 

the NCP and therefore ventilate this region (Xu et al., 2006). However, during the severe haze 61 

episodes, the lower tropospheric (~850 hPa) northwesterlies appear to be weaker than normal 62 

and the mid-tropospheric trough was reported to be shallower and shifted northwards – 63 

collectively leading to a weaker than normal northwesterly flow and reduced horizontal 64 

transport of air pollutants from the NCP (Fig. 2a-b). In addition to changes in horizontal winds, 65 

the vertical temperature gradient between the lower and upper troposphere over the NCP can 66 
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influence the vertical dispersion of the pollutants. A warmer than normal temperature in the 67 

lower troposphere (~850 hPa), accompanied with colder temperature in the upper troposphere 68 

(~200 hPa), would enhance the thermal stability and reduce the atmospheric mixing leading to 69 

the build-up of the atmospheric pollutants over this region (Fig. 2; also see Hou and Wu, 2016; 70 

Sun et al., 2014; Wang et al., 2014a; Zhang et al., 2018; Cai et al., 2018). The planetary 71 

boundary layer height is also found to be suppressed during extreme haze events leading to 72 

accumulation of pollutants, notably PM2.5 concentrations (Liu et al., 2018; Petäjä et al., 2016), 73 

due to an increase in moisture, reduced vertical mixing and dispersion which aids aerosol 74 

growth during high haze events over the NCP (An et al., 2019; Tie et al., 2017).  75 

 On a daily scale, past studies have examined the changes in haze conducive weather 76 

conditions over China under climate change scenarios using large-scale meteorology-based 77 

indexes. For example, Cai et al. (2017) have used four key variables, i.e. meridional wind at 78 

850 hPa (V850), zonal wind at 500 hPa (U500), temperatures at 850 hPa (T850) and 250 hPa (T250) 79 

pressure levels to calculate a meteorology-based daily Haze Weather Index (HWI). They have 80 

projected a ~50% increase in the frequency of winter haze conducive weather conditions, 81 

similar to the January 2013 event, over Beijing in the future (2050-2099) as compared to the 82 

historical (1950-1999) period under the RCP8.5 scenario using 15 CMIP5 models. Using the 83 

HWI, Liu et al. (2019) projected a 6-9% increase in the winter haze frequency under 1.5° and 84 

2° global warming, respectively based on 20 CMIP5 models whereas Qiu et al. (2020) 85 

projected a relatively high increase of 21% and 18% in severe winter haze episodes under 1.5° 86 

and 2° global warming, respectively using an ensemble of climate simulations from the 87 

Community Earth System Model 1 (CESM1) (Kay et al., 2015). Callahan and Mankin (2020) 88 

also used specific humidity, V850, T850 and temperatures at 1000 hPa to examine the haze 89 

favourable meteorology for Beijing, and found a 10-15% increase in winter haze conducive 90 

weather in CMIP5 multimodel and CESM large ensemble under 3° warming. These authors 91 
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have also emphasized a large influence of internal variability in addition to anthropogenic 92 

forcing on future haze conducive weather over Beijing.  93 

 In addition to the large-scale meteorology based indexes, several other stagnation 94 

indices based on regional or local meteorological variables have also been used to determine 95 

the influence of anthropogenic climate change on haze conducive weather for China as well as 96 

global regions. Using minimum monthly mean wind speeds averaged over northwestern 97 

Europe, Vautard et al. (2018) suggested a potential increase in the frequency of stagnant 98 

conditions conducive to air pollution over northwest Europe; however, their results were 99 

sensitive to models used for the analysis. Horton et al. (2014) have used thresholds for the daily 100 

mean near-surface (10-m) wind speeds, mid-tropospheric (500 hPa) temperatures and 101 

accumulated precipitation to calculate the Air Stagnation Index (ASI) under RCP8.5 scenario 102 

using 15 CMIP5 models. They found an increase in air stagnation occurrence events leading to 103 

poor air quality by up to ~40 days per year over a majority of the tropics and sub-tropics. Han 104 

et al. (2017) examined indicators of haze pollution potential (e.g. horizontal transport, wet-105 

deposition, ventilation conditions) using three regional climate simulations and projected a 106 

higher probability of haze pollution risk over the Beijing-Tianjin-Hebei region under the 107 

RCP4.5 scenario. Garrido-Perez et al. (2021) took a different approach as compared to 108 

analysing probabilistic projections and used the ASI to generate stagnation storylines, i.e. 109 

plausible and physically consistent scenarios of stagnation changes based on the response of 110 

remote drivers under climate change forcing, for Europe and the United States (US). 111 

 While most studies indicate an increase in the haze conducive weather over China, a 112 

few studies also find little impact of climate change on future projections of haze (Shen et al., 113 

2018; Pendergrass et al., 2019), which could partly arise due to the under-sampling of internal 114 

variability associated uncertainty in their projections (Callahan and Mankin, 2020), as well as 115 

model-to-model differences. Hence, there is a large uncertainty as to how haze conducive 116 
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weather conditions may change in the future and these depend on haze metrics or underlying 117 

processes considered for future projections. 118 

 In order to account for the uncertainty in the future projections (e.g. of large-scale 119 

circulation) particularly at the regional scale (Hawkins and Sutton, 2012; Deser et al., 2012; 120 

Deser et al., 2014), it is desirable to use an ensemble of climate change simulations. Whilst a 121 

multimodel ensemble, e.g. CMIP5 or CMIP6, is commonly used for climate change studies, 122 

several other studies have also emphasised the use of an initialised ensemble or Perturbed 123 

Parameter Ensemble (PPE) from a single model to assess the uncertainties and obtain a 124 

comprehensive range of possible future climate realisations for the same emission scenario for 125 

a given model (Knutti et al., 2010). All three methodologies have different advantages. For 126 

instance, using multiple models allows us to sample structural uncertainty in future projections, 127 

which cannot be sampled using a single model. On the other hand, using an initialised ensemble 128 

from a single model allows us to sample a broader range of internal variability, which is often 129 

under-sampled in a multimodel ensemble. The advantage of using the PPE over the initialised 130 

or multimodel ensemble is that it not only accounts for internal variability but also model 131 

uncertainty arising due to the different settings of the physical parameterisations in a single 132 

model. Both multimodel ensemble and initialised ensemble from a single model have been 133 

used to assess the future winter haze conducive conditions over Beijing. In this paper, we use 134 

a PPE generated using the UK’s Met Office HadGEM-GC3 model to assess for the first time 135 

the impact of both model physical parameterisations and anthropogenic climate change on 136 

future daily haze conducive weather conditions.  137 

 In this paper, our focus is on the daily haze conducive and clear weather conditions 138 

over the NCP under a fixed high-emission scenario (RCP8.5). For this purpose, we use the 139 

HWI proposed by Cai et al. (2018) as past research studies have shown a robust correlation 140 

between the HWI, which is a large-scale meteorology based index, and haze conducive weather 141 
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for Beijing in China. Whilst Cai et al. (2018) originally proposed the HWI for Beijing, the 142 

index is based on changes in large-scale meteorology over the NCP and thus offers a good 143 

potential as the indicator of haze conducive weather over the NCP. One potential advantage of 144 

using the HWI for future projections, as opposed to a regional or local air stagnation index, is 145 

that the general circulation models generally simulate large-scale meteorology reasonably well 146 

as compared to local or regional meteorology. Therefore, we expect the future projections of 147 

clear or haze conducive weather provided using the HWI to be less uncertain than projections 148 

provided using regional stagnation indexes.  149 

 The HWI uses four meteorological variables as stated above, but Cai et al. (2018) have 150 

also examined the impact of the inclusion of more weather variables, such as geopotential 151 

height, boundary layer thickness and local stratification instability, in the HWI and did not find 152 

any significant differences in the performance of the HWI. Therefore, we use the same 153 

variables and methodology as Cai et al (2018) to calculate the HWI and provide future 154 

projections of haze conducive and clear weather using the HWI. However, our analysis is based 155 

on an underlying assumption that the large-scale meteorological conditions, which are used as 156 

a basis for the HWI, will have a similar influence on the air quality of the NCP in the future 157 

climate as for present-day climate. 158 

 In this paper, we first examine the application of the HWI as a proxy for haze conducive 159 

and clear weather over NCP for the current climate using a suite of observations (Section 3). 160 

We then provide the projections of the haze conducive (HWI >1) and clear weather (HWI <-161 

1) frequency over NCP for the historical and future period. We assess the impact of model 162 

physical parametrisations and anthropogenic climate change on the frequencies (Section 4). 163 

We also analyse the changes in the interannual variance of the frequency of haze conducive 164 

and clear weather conditions for the future periods as compared to the historical period (Section 165 

5). Finally, we assess the impact of parametric effect and anthropogenic climate change on 166 
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trends in haze conducive and clear weather occurrence over the 21st century (Section 6). Details 167 

of data and methods used in this paper are provided in the next section. 168 

 169 

Figure 1 Average wind speed at (a) 850 hPa and (b) 500 hPa pressure level. The red dot 170 
represents the location of Beijing and black rectangle shows the location of the NCP. This 171 

figure has been repeated for a longer average period, i.e. 1979-2019 (not shown) and the result 172 
is similar. 173 

2. Data & Methods 174 

2.1 Observations, Reanalysis Outputs and PPE Model Simulations 175 

 Hourly PM2.5 concentrations are used from the US embassy site for Beijing for DJF 176 

from 2009-2017. Daily mean PM2.5 concentrations are constructed using hourly data to 177 

evaluate the performance of the HWI as a representative of haze conducive and clear weather 178 

conditions for Beijing (see Section 3). We also used newly released gridded daily PM2.5 179 

concentrations for DJF from Chinese Air Quality Reanalysis Datasets (CAQRA) provided by 180 

China National Environment Monitoring Centre for 2013-2017 (Kong et al., 2021) to test the 181 

performance of the HWI across entire China. The CAQRA data has been produced by 182 

assimilating surface air quality observations from over 1000 monitoring sites in China and is 183 

available at a high spatial resolution of around 15×15 km and hourly temporal resolution over 184 

China. More details on the validation of the CAQRA dataset against the independent station 185 

data is provided in Kong et al. (2021). The visibility data for Beijing (homogenized data for 20 186 
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stations in Beijing) is provided by the National Meteorological Information Center of China, 187 

China Meteorological Administration (CMA), for DJF 1999-2018. 188 

 We used daily ERA-5 reanalysis data of four variables: meridional wind at 850 hPa 189 

pressure level (V850),  zonal wind at 500 hPa pressure level (U500), temperatures at 850 hPa 190 

level (T850) and 250 hPa (T250) to calculate the HWI for DJF 1979-2019. The ERA-5 data used 191 

here is available at 0.25° x 0.25° horizontal resolution and hourly temporal resolution 192 

(Hersbach et al., 2020). 193 

 We used a PPE of climate simulations produced using the recent configuration of the 194 

UK Met Office’s HadGEM3-GC3.05 coupled model (Sexton et al., 2021; Yamazaki et al., 195 

2021). The base model used for PPE, HadGEM3-GC3.05, has a horizontal resolution of ~60 196 

km with 85 vertical levels. A total of 47 model parameters from seven parameterization 197 

schemes were simultaneously perturbed to obtain the PPE (the full list of perturbed parameters 198 

is provided in Table 1 of (Sexton et al., 2021). Here, we used daily outputs of V850, U500, T850 199 

and T250 for DJF for the historical (1969-2005) and future (2006-2089) under the RCP8.5 200 

scenario. In addition, we also assessed internal variability using 200-year control simulations 201 

for each PPE member where 1900 boundary conditions were prescribed. Overall, 16 PPE 202 

members are available for all the control, historical and RCP8.5 simulations 203 

2.2 Calculation of the HWI 204 

The winter HWI is calculated using the methodology given by Cai et al. (2017). We 205 

analyse the composite differences in the U500, V850, T850 and T250 for hazy (PM2.5 concentrations 206 

> 150 μg m-3 for Beijing) and clear (PM2.5 concentrations < 35 μg m-3 for Beijing) days across 207 

China for DJF 2009-2017 (Fig. 2) (see section 3.1 for an explanation on the PM2.5 concentration 208 

cut-offs values used here). We also provide the composite values for these meteorological 209 

variables for hazy and clear days separately in Fig. 2. 210 
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  211 

Figure 2 Winter composites of u-wind at 500 hPa level (U500) over China for all available days 212 
for which data is available from US embassy station for Beijing for DJF 2009-2017 for (a) high 213 

PM2.5 (>150 μgm m-3), (b) low PM2.5 (<35 μgm m-3) concentrations and (c) difference between 214 
the composites in (a) and (b). (d-f) same as (a-c) but for v-wind at 850 hPa level (V850), (g-i) 215 
same as (a-c) but for temperature at 850 hPa level (T850), and (j-l) same as (a-c) but for 216 

temperature at 250 hPa pressure level (T250). Black rectangles (B1-B5) in the last column show 217 
the regions for which spatial means were used for the calculation of the HWI. The blue dot in 218 

these columns shows the location of Beijing.   219 

During the hazy days, the mid-tropospheric westerly flow becomes weaker over the 220 

NCP as compared to the clear days (Fig. 2a-c). The mid-tropospheric trough also moves 221 

northwards as suggested by the dipole pattern in Fig 2c, which shows the differences in the 222 

U500 for hazy and clear days. The northerly flow in the lower troposphere is weaker during hazy 223 

days as compared to clear days (Fig. 2d-f). The lower troposphere is relatively warmer during 224 

hazy days as compared to clear days (Fig. 2g-i) whereas the upper troposphere is cooler over 225 

the NCP (Fig. 2j-l). The changes in these variables are also consistent with the previous studies 226 

(e.g. Cai et al., 2017) that showed similar changes for this time period. Therefore, we use these 227 

four variables for the calculation of the HWI, which is used as a proxy for haze conducive and 228 

clear weather conditions under a future climate.  229 
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For the calculation of observational HWI, we use ERA-5 reanalysis data for the period 230 

1979-2019. We first create a daily DJF time series of each variable for each reanalyses grid 231 

point over China. The daily DJF time series is concatenated for the period 1979-2019. A daily 232 

standardised anomaly time series is created for each meteorological variable by first removing 233 

the daily mean climatology from each day of the time series and then normalising by the 234 

standard deviation. Spatial averages are then obtained over the relevant boxes (B1 to B5) for 235 

each meteorological variable following Cai et al. (2017) (Fig. 1). The HWI time-series is 236 

calculated by using the following equation:  237 

HWI (t) = U500 (t) + V850 (t) + dT(t) 238 

where U500 = U500,B1 (t) - U500,B2 (t), V850 = V850,B3 (t), and dT = T850,B4 (t) – T250,B5 (t). The HWI 239 

(t) time series is then itself normalized by its own standard deviation.  240 

 For the PPE historical and RCP8.5 simulations, the daily HWI time series is calculated 241 

for each ensemble member for DJF for 1969-2089 using the same methodology as used for 242 

ERA-5, with the difference being that the normalisation of the PPE time-series (1969-2089) is 243 

performed using the historical standard deviation (1969-2005), following Cai et al. (2017). 244 

Similarly, the HWI time series is calculated for the PPE pre-industrial control simulations for 245 

170 model years out of 200 model years (the first 30 years are discarded as model spin-up 246 

period). The normalisation of the pre-industrial control time series is performed using the 247 

standard deviation for 170 years. The pre-industrial control simulations used here are initialised 248 

with past forcings corresponding to the year 1900 and therefore are an approximate 249 

representation of the internal variability of the current climate as this does not take into account 250 

any temporal changes in the internal variability from 1900 to the historical and future periods 251 

used here.  252 
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3. Haze Weather Index as an indicator for clear and haze conducive weather conditions 253 

over the NCP 254 

 As the HWI was originally proposed for Beijing by Cai et al. (2018), we first determine 255 

if the HWI can be used as a representative of haze conducive and clear weather conditions for 256 

the present climate for Beijing using (a) PM2.5 concentrations from the US embassy station in 257 

Beijing and (b) PM2.5 concentrations averaged over larger Beijing domain from CAQRA 258 

reanalysis and (c) visibility data from the CMA stations in Beijing. We then determine the 259 

spatial extent of the region for which HWI can be used as an indicator of haze conducive and 260 

clear weather conditions using PM2.5 concentrations for China using CAQRA reanalysis data. 261 

We use the 25th and 75th percentile values of daily mean PM2.5 concentrations to identify the 262 

clear and hazy days, respectively for each dataset. For visibility, we use the opposite criterion, 263 

i.e. 25th percentile as a threshold for hazy days and 75th percentile as a threshold of clear days, 264 

as lower visibility is associated with hazy days and higher visibility with clear days. The days 265 

with daily PM2.5 concentration or visibility lying between the 25th and 75th percentile values 266 

are identified as moderately polluted days.  267 

3.1 PM2.5  concentrations for Beijing versus HWI 268 

 We examine the relationship between the daily HWI and PM2.5 concentrations for the 269 

US embassy station for Beijing. Figure 3 (a) shows that the daily HWI increases linearly with 270 

increasing PM2.5 concentrations for up to ~150 μg m-3 and PM2.5 > 150 μg m-3, the HWI starts 271 

to level-off (note the log scaling in the y-axis). The time-series correlation between the HWI 272 

and PM2.5 concentration is ~0.58, which is significant at the 1% level. Callahan et al. (2019) 273 

have also obtained a correlation coefficient of 0.58 for daily PM2.5 concentrations from the U.S. 274 

embassy in Beijing and the HWI calculated using NCAR R1 reanalysis. 275 
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 The 25th and 75th percentile values of daily mean PM2.5 concentrations for the US 276 

embassy Beijing station for DJF 2009-2017 are ~35 and ~150 μg m-3 respectively. We 277 

determine the percentage of hazy days (with daily mean PM2.5 concentrations >150 μg m-3) and 278 

clear days (with daily mean PM2.5 concentrations < 35 μg m-3) for different HWI ranges (Fig. 279 

3e). Out of all days with HWI >1, 64% have daily mean PM2.5 concentrations > 150 μg m-3 and 280 

98% with PM2.5 concentrations >35 μg m-3. This suggests that for HWI >1, almost all days are 281 

hazy or moderately polluted. Similarly, almost all days with HWI < -1 are clear or moderately 282 

polluted. Using HWI thresholds of ±1 demarcates between the clear and hazy days, i.e. almost 283 

no clear days occur for HWI >1 and almost no hazy days occur for HWI <-1.  284 

 We have also examined the relationship between the individual variables in the HWI 285 

(section 2.2) and PM2.5 concentrations observed at the US embassy in Beijing/CAQRA and 286 

find that the individual components have correlation values that are similar to or less than that 287 

of those used in the combined HWI. Also, physically multiple favourable weather conditions, 288 

as represented by each of these variables, collectively provide a conducive setting for haze. 289 

Hence, we focus on the HWI as a combined index rather than its individual components. 290 

 To examine if the PM2.5 concentrations from the US embassy station are sensitive to 291 

the abrupt changes in the local meteorology, e.g. wind speeds or direction, we also examine 292 

the relationship between the HWI and PM2.5 concentrations averaged over the domain centred 293 

around Beijing (116.15 – 116.65 °E, 39.65 – 40.15 °N) from the CAQRA reanalysis data (Fig. 294 

3b and 3f). The PM2.5 concentrations for region spatially averaged around Beijing from 295 

CAQRA data are in the range 6 μg m-3 – 441 μg m-3 and from the Beijing US embassy station 296 

are 6 μg m-3 – 569 μg m-3 suggesting the values from both data sources are comparable. The 297 

correlation coefficient is ~0.58, which is the same as the correlation obtained using the US 298 

embassy data. The total number of hazy, clear and moderately polluted days for different HWI 299 
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ranges also show similar results for both datasets (Fig. 3e-3f). This implies that the HWI 300 

relationship with PM2.5 concentrations is robust across different data sources and that PM2.5 is 301 

a regional pollutant. 302 

 303 
Figure 3 HWI versus daily mean (a) PM2.5 concentrations for the US embassy Beijing station for DJF 304 
2009-2017 (b) PM2.5 concentrations spatially averaged over the region around Beijing (116.15-116.65 305 
°E, 39.65 - 40.15 °N) from CAQRA reanalysis for DJF 2013-2017 (c) visibility averaged over 20 306 
stations from the CMA for DJF 1999-2018 and (d) PM2.5 concentrations spatially averaged over the 307 
NCP (36-43.5 °N, 107-122 °E) from CAQRA reanalysis. Blue lines show the 25th and 75th percentile 308 
thresholds used to define clear and hazy days for each dataset. Percentage of clear, moderately polluted 309 
and hazy days for different HWI ranges for the (e) US embassy Beijing station for DJF 1999-2018 (f) 310 
larger Beijing domain (116.15-116.65 °E, 39.65 - 40.15 °N) from CAQRA reanalysis for DJF 2013-311 
2017 (g) Beijing for DJF 1999-2018 (h) NCP from the CAQRA reanalysis for DJF 2013-2017. 312 

3.2 Visibility for Beijing versus HWI 313 

 As visibility is an optical representative of haze (Wang et al., 2006) and the data for 314 

visibility is available for a relatively long period (1999-2018) as compared to the PM2.5 315 

concentrations, we also correlate the HWI with the visibility over Beijing. Figure 3 (c) shows 316 

that the HWI is inversely related to the visibility for the Beijing station. The time-series 317 

correlation between the HWI and visibility is -0.63, which is significant at the 1% level. The 318 

days with visibility < 8.5 km are identified as hazy days, days with visibility > 23.8 km are 319 

identified as clear days. For days with HWI > 1, no clear days occur and similarly for days with 320 
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HWI< -1, only 6% of days are hazy (Fig 3g). This further confirms that the correlation between 321 

the HWI and haze is significant for a longer period (1999-2018) using visibility as a metric for 322 

haze (alternative to the PM2.5 concentrations used above). 323 

3.3 PM2.5 concentrations over North China Plain versus HWI 324 

We now determine the spatial extent for which HWI can be used as an indicator of haze 325 

clear or haze conducive conditions using PM2.5 concentrations from CAQRA reanalysis. We 326 

correlate the daily time-series of PM2.5 concentration at each grid point with the HWI for DJF 327 

2013-2017 (Fig. 4). Over the entire NCP (36-43.5 °N, 107-122 °E), the correlation coefficient 328 

between the daily HWI and gridded PM2.5 concentration is ~0.7, significant at the 1% level. 329 

The correlation is considerably lower but still significant over other eastern China regions, e.g. 330 

north easternmost China and the Sichuan Basin (27-32 °N, 102-107 °E).  331 

 332 

Figure 4 Spatial distribution of correlation between winter PM2.5 concentrations and HWI time series 333 
at each grid point. Blue dot shows the Beijing station (39.3 °N, 116.4 °E) and the black rectangle shows 334 
the North China Plain (36-43.5 °N, 107-122 °E). 335 

Considering daily mean PM2.5 concentrations averaged over the NCP, we also find a 336 

linear relationship with the daily HWI (r = 0.66; significant at the 1% level; Fig 2d). We also 337 

calculate the percentage of clear and hazy days for different HWI ranges for the larger domain 338 
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of the NCP using the 25th and 75th percentile values, respectively. The percentage of hazy and 339 

clear days for HWI > 1 and HWI < -1 for NCP in CAQRA reanalyses are very similar to the 340 

values obtained for the US embassy Beijing station (Fig 3h).  341 

Overall, our results confirm that the daily HWI has a robust relationship with daily 342 

PM2.5 concentrations not only for the Beijing station but across the NCP for the given time 343 

periods. Therefore, we use HWI > 1 as a proxy for haze conducive weather and HWI < -1 as a 344 

proxy for clear weather across the NCP region. This threshold is also consistent with several 345 

other studies (e.g., Cai et al., 2017; Callahan and Mankin, 2020; Callahan et al., 2019), that 346 

have used HWI >1, as a cut-off for haze conducive weather for Beijing. We now calculate the 347 

frequency of haze conducive weather (HWI >1) and clear weather (HWI <-1) for the past and 348 

future using ERA-5 reanalysis and PPE members. 349 

4. Historical and future changes in haze conducive and clear weather occurrence 350 

The frequency of haze conducive weather (HWI >1) and clear weather (HWI <-1) from 351 

the ERA-5 reanalyses and the PPE are shown in Fig. 5. For ERA-5, the frequency of haze 352 

conducive weather has increased, whereas the frequency of clear weather (HWI<-1) has 353 

reduced for the period 1979-2018. The mean frequency of haze conducive weather using 16 354 

PPE members shows a relatively larger increase than ERA-5 for the same 1979-2018 time 355 

period (Fig. 5a). In contrast, the mean frequency of clear weather from the PPE for this period 356 

shows a similar reduction to that obtained using the ERA-5 reanalyses (Fig. 5b).  357 

We examine the changes in the frequency of haze conducive weather (HWI>1) and 358 

clear weather (HWI<-1) for the historical (1979-2005) and three future periods, i.e. near (2006-359 

2032), mid (2033-2059) and far (2060-2086) future. The mean frequency for haze conducive 360 

weather is 14.7 days per winter obtained from the ERA-5 reanalysis and 15.0 days per winter 361 

from the PPE mean for the historical period. The corresponding values for clear weather are 362 



 

17 
 

15.0 days and 15.2 days per winter for ERA-5 and PPE, respectively. This shows a good 363 

agreement between the mean frequencies of haze conducive and clear for the ERA-5 data and 364 

the PPE mean for the historical period.  365 

 366 

Figure 5 Frequency of haze conducive weather (HWI>1, pink line) and clear weather (HWI<-1, blue 367 
line) per winter from ERA-5 reanalysis (1979 to 2018). Year 1979 represents period from 1 December 368 
1979 to 28 February 1980 and so on. For each winter (DJF), we calculate the total number of days with 369 
HWI >1 as proxy for haze conducive weather and HWI < -1 as proxy for clear weather conditions. Grey 370 
lines show frequencies from 16 individual PPE members and black line shows the mean of frequency 371 
using all 16 PPE members for 1969-2087 under the RCP8.5 scenario. Linear trend is calculated using 372 
the line of best fit.  373 

 The mean frequency of haze conducive weather for near, mid and far future is 17.9, 374 

18.6 and 19.9, respectively. The mean frequency for the same future periods for clear weather 375 



 

18 
 

is 13.2, 12.2 and 10.8, respectively (Fig. 6a). The mean change in the frequency of haze 376 

conducive weather averaged across all PPE members is 20%, 24% and 33% for the near, mid 377 

and far future respectively as compared to the historical period, suggesting that the frequency 378 

of haze conducive weather will likely increase for all future periods (Fig. 6a). However, there 379 

exists a very large range in the projected change for all three future periods suggesting internal 380 

variability or parametric effect could influence the future projections of haze conducive 381 

weather. For the near and mid future, days with HWI>1 are projected to change by -1% to 41% 382 

and -12% to 65% across the 16 PPE members, respectively, as compared to the frequency for 383 

the historical period. For the far future, the range of projected change is even larger, and an 384 

increase of ~87% in the frequency of haze conducive weather is also possible. It is noted that, 385 

for all three periods, only one of the sixteen ensemble members (E16 shown in Fig. 10) shows 386 

a reduction in the haze conducive weather frequency whereas other ensemble members show 387 

an increase in frequency for all periods. For the historical period, E16 ensemble member has a 388 

mean frequency of 16.3, which reduces to 16.2, 14.4 and 15.2 for near, mid and far future. 389 

While E16 ensemble member shows a consistent reduction in mean frequency in future, the 390 

reduction is specific to only this ensemble member and is not a general feature across PPE 391 

members. 392 

 393 
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Figure 6 (a) Mean frequency of haze conducive weather (HWI>1, pink) and clear weather (HWI<-1, 394 
blue) for the historical period (1979-2005), near (2006-2032), mid (2033-2059) and far (2060-2086) 395 
future under the RCP8.5 scenario. Circles represent PPE members and triangles PPE mean. Grey box 396 
and whiskers show the distribution of 10,000 values of mean frequencies sub-sampled from the control 397 
simulation, (b) same as (a) but shows variance across 16 PPE members for each period. For box and 398 
whiskers, we first randomly sampled 10,000 time series of length 27 years using 2704 years of pre-399 
industrial control simulation and calculated 10,000 values of mean frequency. We then randomly sub-400 
sample 16 mean values (corresponding to the number of ensemble members) from the 10,000 mean 401 
values, calculated their mean for (a) and variance for (b). This is repeated 10,000 to obtain a distribution. 402 
The boxes are at the 25th and 75th percentile and the whiskers at 2.5th and 97.5th percentile of mean and 403 
variance distribution. For panel (a), the box and whiskers are comparable only to the ensemble means 404 
(triangles) and not ensemble members (circles). 405 

 For clear weather (HWI<-1), the mean change in the frequency averaging across all 406 

PPE members is -13%, -20% and -29% for near, mid and far future, respectively (Fig 6a). 407 

Considering the range across the 16 PPE members, the frequency of clear weather for near, 408 

mid and far future is projected to change by -29% to 25%, -36% to 10% and -57% to -9%, 409 

respectively. Overall, most ensemble members show an increase in the frequency of haze 410 

conducive weather and a reduction in the frequency of clear weather for all three future periods. 411 

However, negligible change or even the opposite change, though less likely, but possible for 412 

all periods.  413 

 We also determine the influence of anthropogenic climate change and the parametric 414 

effect on the frequencies of haze conducive weather (HWI>1) and clear weather (HWI<-1) for 415 

the historical as well as the three future periods. As shown in later Section 5, the estimate of 416 

interannual variance from the control is representative of all time periods and shows no 417 

discernible parametric effect. Therefore, we pool the 16 PPE control simulations to sample the 418 

internal variability for box and whiskers shown in Fig. 6 (a) and 6 (b) (see captions for details 419 

on resampling).  420 

 In Fig. 6 (a), we show the mean frequency of haze conducive weather and clear weather 421 

for 16 individual PPE members (circles) and PPE mean (triangles). The grey box and whiskers 422 

represent the range of ensemble mean frequencies that can be explained by the internal 423 
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variability. If the PPE mean (triangles) lies within the whiskers (i.e. 95 percentile of the control 424 

distribution) we conclude no influence of anthropogenic climate change on mean frequency 425 

however if the PPE mean lies outside the whiskers, it would represent a climate change signal 426 

in the mean frequency. Figure 6 (a) suggest that the mean frequencies for haze conducive as 427 

well as clear weather lies within the box-whiskers for the historical but lies outside the whiskers 428 

for the three future periods, thereby showing a clear impact of anthropogenic climate change 429 

on the frequencies of both haze conducive and clear weather conditions. 430 

 We now examine whether the differences in the mean frequency across different PPE 431 

members (shown by circles in Fig. 6a) for a given period can be explained by the internal 432 

variability or if the differences in PPE members partly arise due to the parametric effect. The 433 

triangles in Fig. 6b shows the variance across 16 PPE members, i.e. variance across 16 circles 434 

shown in Fig. 6a, for each time period. The whiskers in Fig. 6b show the 95th confidence 435 

interval from the control simulation and is representative of the internal variability. For any 436 

time period, if the PPE member variance (triangle) lies within the whiskers, we conclude that 437 

the differences in mean frequencies in Fig. 6a can be fully explained by the internal variability 438 

and there is no discernible impact of the parametric effect. However, if the triangles lie outside 439 

the whiskers in Fig. 6b, we conclude an impact of the parametric effect on the mean frequency 440 

for that period. For the points that lie outside the whiskers in Fig. 6b, we also quantify the 441 

percentage of variance that can be explained by the internal variability and parametric effect. 442 

For any time period, the variance in ensemble mean due to the parametric effect is simply 443 

calculated as follow and the remaining variance is attributed to the internal variability. 444 

Total variance in the ensemble mean – Mean variance from the control simulation

Total variance in the ensemble mean
  × 100 445 

 Figure 6b shows that the difference in mean frequencies across PPE members (as shown 446 

by PPE member variance) is small for the historical and near future but increases for mid and 447 
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far future periods. For the historical and near future periods, the PPE member variance lies 448 

within the range sampled by the internal variability for both haze conducive weather (HWI>1) 449 

and clear weather (HWI<-1). This shows that there is no discernible influence of the parametric 450 

effect on the frequency of haze conducive weather or clear weather conditions for the historical 451 

and near future periods. 452 

For mid-future, the PPE member variance for clear weather lies within the whiskers 453 

and therefore no discernible influence of the parametric effect is detected. In contrast, the PPE 454 

member variance for haze conducive weather lies outside the whiskers and the internal 455 

variability can explain ~33% of the variance across PPE members and the remaining ~67% 456 

arises due to the parametric effect. 457 

For the far future, triangles corresponding to both haze conducive and clear weather 458 

lies well outside the whiskers and therefore show a clear influence of parametric effect. Only 459 

~20% of the variance in the frequency of haze conducive weather and ~43% variance in the 460 

frequency of clear weather can be explained by the internal variability and the remaining 80% 461 

and 57% respective variance in the frequencies arise due to the parametric effect. 462 
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 463 

Figure 7 Frequency of haze conducive weather (HWI>1) versus clear weather (HWI<-1) averaged over 464 
the historical period (1979-2005) and the far-future (2060-2086) period under RCP8.5 using all PPE 465 
members. Circles denote individual PPE members whereas triangles denote the mean of the members. 466 
Grey triangle shows mean frequency from ERA-5 reanalysis for the historical period (1979-2005). The 467 
black solid line shows the 1:1 (identity) line. 468 

 In addition to the changes in the frequencies over time, we also investigate the relative 469 

changes in the frequency of haze conducive weather (HWI>1) versus clear weather (HWI<-1). 470 

The average haze conducive and clear weather frequency over the historical period are almost 471 

equal for each PPE member (Fig. 7). All PPE members show a higher frequency for haze 472 

conducive weather than clear weather under the far future (2060-2085), however, there exists 473 

a substantial range in this change. The frequency of winter haze conducive weather can be 474 

similar or up to 3.5 times the frequency of clear weather conditions (Fig. 7). Similar results are 475 

also obtained for the near and mid-future. Averaged across the PPE members, the number of 476 

haze conducive days can increase by ~2 times as compared to the number of clear days in 477 

future. As noted in Fig. 7, the spread in the haze conducive weather frequency amongst 478 

individual ensemble members is also larger for the far future (2060-2086) compared to the 479 
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historical period. This suggests a larger uncertainty and a larger range of possible future 480 

meteorological conditions affecting haze and air quality as compared to the historical period. 481 

Other studies have (e.g., Cai et al., 2017; Callahan and Mankin, 2020) also found similar 482 

increases in the frequency of haze conducive weather for the future. However, the range of 483 

projected change differs substantially across models as well as ensemble members. In our 484 

study, in addition to the frequency of haze conducive weather, we also evaluate the changes in 485 

the frequency of clear weather across different future periods and compared the relative 486 

changes in both the frequencies, which is not examined in the past studies. 487 

 We now investigate changes in the distribution of the HWI as well as individual 488 

constituents of the HWI between the far future (2060-86) and the historical (1979-2005) period. 489 

The probability distribution of the HWI shows a shift in the distribution towards higher 490 

magnitudes for the far future as compared to the historical period (Fig. 8). This implies an 491 

increased frequency of haze conducive weather, as the number of days with HWI >1 increase. 492 

A similar shift is apparent in the zonal-mean wind (U500) and the vertical temperature profiles 493 

(dT), whereas no apparent shift is noted in V850. We also find that the shift in the HWI, as well 494 

as U500 and dT distribution, is not due to the shift in one particular PPE member or time period. 495 

It is consistent across the 16 PPE members and is continual over time from the historical to the 496 

far-future period. Therefore, for the PPE analysed here, the changes in the haze conducive 497 

weather (HWI>1) is largely associated with the changes in the U500 and dT, and V850 appear to 498 

have a less important role. Despite using a multimodel ensemble and a different time period 499 

than used here, a similar result with a relatively larger shift in the PDFs of U500 and dT as 500 

compared to V850 can also be noted in the Cai et al. (2017). 501 
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 502 

Figure 8 Probability Distribution Functions (PDF) for the winter HWI, meridional winds at 503 

850 hPa pressure level (V850), zonal winds at 500 hPa pressure level (U500) and temperature 504 

gradient between the lower and upper troposphere (dT). The PDF for the HWI is created using 505 

the daily DJF time series of all 16 PPE members. PDFs for V850, U500 and dT are created using 506 

the normalized daily DJF time series of each variable calculated for the HWI (see section 2.2 507 

for details) and represents the constituent variables of the HWI. Blues bars show the PDFs for 508 

the historical period and red for the far future under the RCP 8.5 scenario. Blue and red solid 509 

lines show the mean values of the PDF for historical and far future, respectively. 510 

5. Interannual variability in haze conducive and clear weather frequency 511 

Large interannual variability in the frequency of haze conducive (HWI>1) and clear 512 

weather (HWI<-1) is apparent in both individual PPE members and ERA-5 reanalysis (Section 513 

4). Therefore, we examine the changes in the interannual variance of the frequencies for future 514 

periods as compared to the historical period. We also compare the variance in historical and 515 

future time periods with the variance in the control simulation to discern the influence of the 516 

model physical parameterisations, i.e. parametric effect, on the variance. 517 
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  518 

 519 

Figure 9 Interannual variance in frequency of winter (a) haze conducive weather (HWI>1) and (b) 520 
clear weather (HWI<-1) for the control simulation, historical (1979-2005), and near (2006-2032), mid 521 
(2033-2059) and far-future (2060-2086) under RCP8.5 for all 16 PPE members. Coloured circles are 522 
for individual PPE members and triangles for ERA-5 reanalysis. (c-d) are same as (b) but with log10 523 
and square root power transformations. For (c-d), we first calculate the log10 of (1+frequency) and 524 
square-root of the frequency of clear days for the control simulation and each time-period, and then 525 
estimate variance for each respective period. The length of control simulation and all future periods is 526 
the same as historical, i.e. 27 years. The 27 years used for control here are randomly selected from 170-527 
year control simulation for each member. 528 

The interannual variance for ERA-5 data is 27 days2 and 39 days2 for haze conducive 529 

and clear weather, respectively, for the historical period (1979-2005) (triangles in Fig. 9a-b). 530 

The interannual variance in haze conducive weather frequency derived from the PPE members 531 

for the historical period is larger than that for the ERA-5, whereas for the clear weather the 532 

variance for ERA-5 lies within the range of the PPE members. No consistent change in the 533 
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interannual variance of haze conducive weather is noted for any of the PPE members (note the 534 

changes in colour ranking) from the historical to the future periods suggesting little influence 535 

of the parametric effect on the interannual variance of haze conducive weather. 536 

In contrast, the frequency of clear weather for most PPE members show a marked 537 

reduction in the interannual variance from historical to near-future (Fig. 9b). However, as the 538 

frequency of clear weather show a decreasing trend in time (see Fig. 5b), the mean frequency 539 

would be expected to reduce for the three future periods. Also, the reduction in variance could 540 

arise as the frequencies of clear weather approach their lower bound of zero. With count data, 541 

a power transformation is often applied to stabilize the variance across all time periods. We 542 

applied two power transformations, i.e. log10 (1+x) and square-root (x), where x is the count 543 

data (Fig. 9c-d). We find the spread in the variance in the control simulation across the PPE 544 

members is comparable with the historical as well as future periods (Fig. 9c-d). Note that for 545 

control simulation we randomly selected 27 years (length same as historical and future periods) 546 

from 170 years of control simulation from each PPE member, however, we note comparable 547 

variance for the other randomly selected samples. Figure 9 (c-d) also shows that the individual 548 

PPE members show inconsistent changes in the variance (noting changes in the colour ranking) 549 

from control to historical and future periods. Therefore, no robust changes in the interannual 550 

variance of haze conducive and clear weather can be detected from control to historical and 551 

future periods. This means we can use the variance in the control simulation as a representative 552 

estimate of internal variability. This enables us to quantify the influence of the parametric effect 553 

and anthropogenic climate change on the mean frequencies (see previous section) and trends 554 

in frequencies (see next section) across different periods. 555 

6. Influence of the anthropogenic climate change and parametric effect on trends 556 
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 We discern the influence of the anthropogenic climate change and parametric effect on 557 

the future projections of the trends in the frequency of haze conducive weather (HWI >1) and 558 

clear weather (HWI <-1). The time series of the haze conducive and clear weather frequency 559 

from ERA-5 and the 16 PPE members for the historical and future periods is shown in Fig. 11 560 

(a) and 11 (b). The 95th percentile values (blue shaded region) and the range (blue dotted lines) 561 

in the haze conducive and clear weather frequency from the respective control simulation for 562 

each PPE member are also shown.  563 

 For haze conducive weather (HWI>1), the time series for selected PPE members (e.g. 564 

E3, E4) show increasing positive trends. In particular, towards the end of the 21st century (Fig. 565 

10a), the lower half of the control range is seldom sampled and more than the expected number 566 

of values lie above the 97.5th percentile of the control frequencies. In contrast, for other PPE 567 

members (e.g. E8, E10), the full time series sample the control distribution evenly throughout 568 

the full period.  For clear weather (HWI<-1), some members (e.g. E3, E4) show a clear 569 

reduction during the 21st century whilst others (e.g. E16) show no trend and explore the control 570 

distribution evenly (Fig 10b).  571 

 In Section 4, we examined the influence of anthropogenic climate change and 572 

parametric effect on the mean frequencies. The analysis of mean frequencies provides an 573 

estimate of the accumulated influence of climate change on frequencies with respect to the 574 

control simulations whereas analysis of trends would provide a better estimate of changes 575 

within a selected time period. Therefore, we apply the same analysis on the trends in the 576 

frequencies (Fig. 11). 577 

 578 

 579 

 580 
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(a) HWI>1 581 

 582 

(b) HWI<-1 583 

 584 

Figure 10 Frequency of (a) haze conducive weather (HWI>1) and (b) clear weather (HWI<-1) per 585 
winter for individual PPE members (black line) under the historical and RCP8.5 scenarios for 1969-586 
2087 and ERA5 reanalysis (pink line) for 1979-2018. Blue shaded region shows the 95th confidence 587 
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interval and blue dashed line shows the range of the frequency of haze conducive and clear weather for 588 
the pre-industrial control simulation of 170-years.  589 

 We calculate the ensemble mean trend obtained from the 16 individual PPE member 590 

trends to determine the influence of climate change for the historical period (see captions of 591 

Fig. 11 for details). We describe the evolution of the historical trend for three equal-length 592 

future time periods (i.e. near, mid and far future) and examine if the historical trends are 593 

sustained across the 21st century and if the trends are discernible outside the range described 594 

by the internal variability (Fig. 11a-b). The grey whiskers in Fig. 11 (a) and (b) cover the range 595 

of trends that can be explained by internal variability and any trend values lying outside the 596 

grey whiskers represent the influence of anthropogenic climate change. 597 

 The mean trend in the frequency of both haze conducive (HWI>1) and clear weather 598 

(HWI <-1) for the historical period (1979-2005) lie outside the 95% confidence interval of the 599 

control simulations. This suggests that the trends noted for the historical period cannot be 600 

explained by internal variability alone and there is a substantial impact of anthropogenic 601 

climate change on the historical trends. The trends in haze conducive weather lie within the 602 

envelope of internal variability for the three future periods analysed here implying that the 603 

historical trend is not sustained over the 21st century and indistinguishable from the internal 604 

variability for the future. Figure 11 (a) also shows a positive mean trend in haze conducive 605 

weather (HWI>1) for historical, near and mid future, but a weak negative trend for far future. 606 

While the frequency of haze conducive weather increases for all three future periods with 607 

respect to the historical period as shown in Fig. 6a, the trends only show an increment or 608 

reduction for that period as these are not referenced to the historical period. Therefore, trends 609 

could still be negative within any selected period, as in the case of the far future. In contrast, 610 

the mean trends in clear weather frequency for near (2006-2032) and mid future (2033-2059) 611 

lie outside the 95% confidence interval of the control simulation. This shows that for clear 612 
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weather frequency (HWI<-1), the historical trend is sustained over the first half of the 21st 613 

century and then it levels off.  614 

 We now examine the influence of the parametric effect on the trends in the frequency 615 

of haze conducive and clear weather. In Fig. 11 (c) and (d), we show the variance in trends for 616 

the time series resampled using the control simulation (see captions for details on resampling). 617 

The grey box and whiskers show the 95th confidence interval of the control variance used to 618 

represent the internal variability. The variance in PPE trends calculated using 16 PPE members 619 

for selected time periods is overlaid (circles). In Fig. 11 (c-d), if the variance for historical or 620 

future periods lies outside the whiskers, we conclude an impact of the parametric effect on the 621 

trends. However, if the variance across the 16 PPE members lies within the whiskers, we 622 

conclude no impact of the parametric effect on the trend. Note that the variance in trends for 623 

clear weather is in log-transformed space. As can be seen in Fig. 11c and 11d, the variance in 624 

PPE trends for historical and future periods lies within the 95th percentile distribution of the 625 

internal variability for both haze conducive and clear weather. Therefore, we do not find any 626 

discernible influence of the parametric effect on the trends in the frequencies. 627 

  628 
   629 

 630 



 

31 
 

 631 
 632 
  633 
Figure 11 Mean PPE trends for the frequency of (a) haze conducive weather (HWI>1) and (b) 634 
clear weather (HWI<-1) for winter. Circles show the mean trends from 16 PPE members for 635 

the historical (1979-2005) and near (2006-2032), mid (2033-2059) and far (2060-2086) future 636 

under the RCP8.5 scenario. Grey box and whiskers show the distribution of 10,000 values of 637 
trends sub-sampled from the control simulation. (c-d) same as (a-b) but mean is replaced by 638 
variance in trends. For box and whiskers, we first randomly sampled 10,000 time series of 639 

length 27 years using 2704 years of pre-industrial control simulation and calculated 10,000 640 
values of trends. We then randomly sub-sample 16 trends values from the 10,000 trend values 641 

and calculate the variance and mean of 16 trend values. The boxes are at the 25th and 75th 642 
percentile and the whiskers at 2.5th and 97.5th percentile of mean and variance distribution. For 643 
clear days, the frequencies were transformed to log space by applying a power transformation 644 

of log10 (1+ frequency) before calculating trends. 645 

7. Conclusions 646 

 In this study, we elucidate for the first time the influence of model physical 647 

parametrisations, in addition to internal variability and climate change, on the future haze 648 

conducive and clear weather conditions over the North China Plain (NCP) using the Perturbed 649 

Parameter Ensemble (PPE) from the Met Office HadGEM3-GC3.05 model. We examine the 650 

changes in winter (December-February) haze conducive and clear weather conditions for past 651 

and future over the NCP using a large-scale meteorology-based daily Haze Weather Index 652 

(HWI). We first identify the regional extent of the application of the HWI over China. We find 653 

that the HWI >1 can be used as an indicator of haze conducive weather conditions and HWI<-654 
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1 as an indicator of clear weather conditions for the entire NCP due to the spatial coherence of 655 

regional meteorological conditions over this region. 656 

The PPE shows that under the RCP8.5 emission scenario, the mean frequency of haze 657 

conducive weather (HWI>1) can increase by up to ~65% in the near (2006-2032) and mid 658 

(2033-2059) future and by ~87% in far future (2060-2086) as compared to the historical period 659 

(1979-2005). In contrast, the frequency of clear weather (HWI<-1) can reduce by up to ~40% 660 

in the near and mid-future and by ~57% in the far future. However, the opposite change of 661 

relatively lower magnitude or negligible change in frequency of haze conducive and clear 662 

weather, though less likely, is possible. The absolute number of days with haze conducive 663 

weather in the far future can remain the same or up to ~3.5 times higher than the clear weather 664 

over the NCP. There also exist a large interannual variability in the frequency of haze 665 

conducive and clear weather conditions. However, no systematic change in the interannual 666 

variance of the frequencies is noted in future as compared to the historical period. We also find 667 

that enhanced vertical thermal stability due to the warming of the troposphere and weaker 668 

northwesterlies over the NCP in the mid troposphere will collectively lead to more frequent 669 

haze conducive weather over the NCP. We find a consistently growing influence of 670 

anthropogenic climate change and parametric effect on the mean haze conducive and clear 671 

weather frequencies across the 21st century. This suggests that in addition to the internal 672 

variability, the parametric effect adds as an additional source of uncertainty in future 673 

projections of haze conducive and clear weather, particularly towards the end of the 21st 674 

century. We find that the impact of anthropogenic climate change is discernible in trends for 675 

the historical period for haze conducive weather and up to mid of the 21st century for clear 676 

weather. Beyond these periods, the historical trends are not sustained and not distinguishable 677 

from the internal variability. 678 
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This study considers four atmospheric variables to examine the changes in future haze 679 

conducive and clear weather conditions, however, other atmospheric variables (e.g., boundary 680 

layer height) or processes may influence the occurrence of haze. Furthermore, even though our 681 

study shows the potential for an increase in haze conducive weather conditions and a reduction 682 

in clear weather conditions for the future periods, the actual formation of haze will depend on 683 

future emissions of air pollutants and their precursors. If the source emissions are cut-off or 684 

reduced in the future, the risk of haze formation would naturally reduce. Nevertheless, the 685 

projections of changes in the frequency and interannual variance in haze conducive weather 686 

conditions can be very useful for developing successful adaptation and mitigation policies for 687 

the future that consider both emissions and climate change, and therefore can be beneficial for 688 

near and long-term planning and decision-making in relation to improving future PM2.5 air 689 

quality. 690 
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