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Abstract 53 

We examine past and future changes in both winter haze and clear weather conditions over the 54 

North China Plain (NCP) using a Perturbed Parameter Ensemble (PPE) and elucidate the 55 

influence of model physical parameterizations on these future projections for the first time. We 56 

use a large-scale meteorology-based Haze Weather Index (HWI) with values >1 as a proxy for 57 

haze conducive weather and HWI <-1 for clear weather conditions over the NCP. The PPE 58 

generated using the UK Met Office HadGEM-GC3 model shows that under a high-emission 59 

(RCP8.5) scenario, the frequency of haze conducive weather (HWI>1) is likely to increase 60 

whereas the frequency of clear weather (HWI<-1) is likely to decrease in future, with a growing 61 

influence of climate change over the 21st century. HoweverNevertheless, a change of opposite 62 

sign with lower magnitude in the frequencies, though less likely, is also possible. In future, the 63 

frequency of haze conducive weather for a given winter can be as much as ~3.5 times higher 64 

than the frequency of clear weather over the NCP. The future frequenciesMore frequent of haze 65 

conducive weather (HWI>1) during winter over the NCP is found to be are associated with 66 

changes in zonal-mean mid-tropospheric winds and the vertical temperature gradient over the 67 

NCPan enhanced warming of the troposphere and weaker north-westerlies in the mid-68 

troposphere over the NCP. We also examined the changes in the interannual variability of the 69 

haze conducive and clear weather, and find no marked changes in the variability of future 70 

periods. We find a clear influence of model physical parametrizations on climatological mean 71 

frequencies for both haze conducive and clear weather. For mid to late 21st century (2033-72 

2086), parametric effect can explain up to ~80% variance in climatological mean frequencies 73 

of PPE members. Therefore, This shows that the different model physical parameterizations 74 

lead to a different evolution of modelôs mean climate, particularly towards the end of the 21st 75 

century. Therefore, adds uncertainty in the future projections of haze conducive weather it is 76 

desirable to consider the PPE in addition to the initialized and multimodel ensembles for a more 77 
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comprehensive range of plausible future projections. in addition to the internal variability. We 78 

also find a growing influence of anthropogenic climate change on future mean frequencies of 79 

haze conducive and clear weather over the 21st century suggesting climate change can 80 

exacerbate the haze conducive weather and reduce the clear weather conditions in future over 81 

the NCP. 82 

 83 

1. Introduction 84 

 Over the last decade, a number of severe haze episodes (several days or longer) were 85 

reported over the North China Plain (NCP) during boreal winter (December-January-February, 86 

DJF). In January 2013, unprecedented PM2.5 levels exceeding 450 ɛg m-3 were observed over 87 

the NCP (Wang et al., 2014a; Wang et al., 2014b; Zhang et al., 2018; Zhang et al., 2013). 88 

Similar events were also observed in November-December 2015 when the PM2.5 concentrations 89 

reached as high as 1000 ɛg m-3 in Beijing and caused the first-ever óred alertô for severe air 90 

pollution (Liu et al., 2017; Zhang et al., 2017). In December 2016, around 25% of the land area 91 

of China was covered with severe haze for around one week (Yin and Wang, 2017). These 92 

severe haze events adversely impacted public health including mortality, visibility, and 93 

ultimately the economy of the country (Bai et al., 2007; Chen and Wang, 2015; Kan et al., 94 

2012; Kan et al., 2007; Wang et al., 2006; Xu et al., 2013; Hong et al., 2019). 95 

 Previous research has shown that the persistence of severe haze for days during winters 96 

over the NCP occurred due to the combined effect of local and regional high pollutant 97 

emissions and stagnant meteorological conditions (Li et al., 2018; He et al., 2016; Jia et al., 98 

2015; Pei et al., 2018; Zhang et al., 2021). The normal winter meteorological conditions over 99 

the NCP are characterized by northwesterly flow near the surface through to the mid-100 

troposphere associated with the East Asian winter monsoon circulation (Fig. 1a and 1b; also 101 
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see An et al., 2019; Chen and Wang, 2015; Li et al., 2016; Renhe et al., 2014; Xu et al., 2006). 102 

The northwesterly winds support the intrusion of relatively clean air from the high latitudes to 103 

the NCP and therefore ventilate this region (Xu et al., 2006). However, during the severe haze 104 

episodes, the near-surfacelower tropospheric (~850 hPa) northwesterlies appear to be weaker 105 

than normal and the mid-tropospheric trough was reported to be shallower and shifted 106 

northwards ï collectively leading to a weaker than normal northwesterly flow and reduced 107 

horizontal transport of air pollutants from the NCP (Fig. 2a-b). In addition to changes in 108 

horizontal winds, the vertical temperature gradient between the lower and upper troposphere 109 

over the NCP can influence the vertical dispersion of the pollutants. A warmer than normal 110 

temperature near the surfacein the lower troposphere (~850 hPa), accompanied with colder 111 

temperature in the upper troposphere (~200 hPa), would enhance the thermal stability and 112 

reduce the atmospheric mixing leading to the build-up of the atmospheric pollutants over this 113 

region (Fig. 2; also see Hou and Wu, 2016; Sun et al., 2014; Wang et al., 2014a; Zhang et al., 114 

2018; Cai et al., 2018). The planetary boundary layer height is also found to be suppressed 115 

during extreme haze events leading to accumulation of pollutants, notably PM2.5 concentrations 116 

(Liu et al., 2018; Petäjä et al., 2016), due to an increase in moisture, reduced vertical mixing 117 

and dispersion which aids aerosol growth during high haze events over the NCP (An et al., 118 

2019; Tie et al., 2017).  119 

 On a daily scale, past studies have examined the changes in haze conducive weather 120 

conditions over China under climate change scenarios using large-scale meteorology-based 121 

indexes. For example, Cai et al. (2017) have used four key variables, i.e. meridional wind at 122 

850 hPa (V850), zonal wind at 500 hPa (U500), temperatures at 850 hPa (T850) and 250 hPa (T250) 123 

pressure levels to calculate a meteorology-based daily Haze Weather Index (HWI). They have 124 

projected a ~50% increase in the frequency of winter haze conducive weather conditions, 125 

similar to the January 2013 event, over Beijing in the future (2050-2099) as compared to the 126 
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historical (1950-1999) period under the RCP8.5 scenario using 15 CMIP5 models. Using the 127 

HWI, Liu et al. (2019) projected a 6-9% increase in the winter haze frequency under 1.5° and 128 

2° global warming, respectively based on 20 CMIP5 models whereas Qiu et al. (2020) 129 

projected a relatively high increase of 21% and 18% in severe winter haze episodes under 1.5° 130 

and 2° global warming, respectively using an ensemble of climate simulations from the 131 

Community Earth System Model 1 (CESM1) (Kay et al., 2015). Callahan and Mankin (2020) 132 

also used specific humidity, V850, T850 and temperatures at 1000 hPa to examine the haze 133 

favourable meteorology for Beijing, and found a 10-15% increase in winter haze conducive 134 

weather in CMIP5 multimodel and CESM large ensemble under 3° warming. These authors 135 

have also emphasized a large influence of internal variability in addition to anthropogenic 136 

forcing on future haze conducive weather over Beijing.  137 

 In addition to the large-scale meteorology based indexes, several other stagnation 138 

indices based on regional or local meteorological variables have also been used to determine 139 

the influence of anthropogenic climate change on haze conducive weather for China as well as 140 

global regions. Using minimum monthly mean wind speeds averaged over northwestern 141 

Europe, Vautard et al. (2018) suggested a potential increase in the frequency of stagnant 142 

conditions conducive to air pollution over northwest Europe; however, their results were 143 

sensitive to models used for the analysis. Horton et al. (2014) have used thresholds for the daily 144 

mean near-surface (10-m) wind speeds, mid-tropospheric (500 hPa) temperatures and 145 

accumulated precipitation to calculate the Air Stagnation Index (ASI) under RCP8.5 scenario 146 

using 15 CMIP5 models. They found an increase in air stagnation occurrence events leading to 147 

poor air quality by up to ~40 days per year over a majority of the tropics and sub-tropics. Han 148 

et al. (2017) examined indicators of haze pollution potential (e.g. horizontal transport, wet-149 

deposition, ventilation conditions) using three regional climate simulations and projected a 150 

higher probability of haze pollution risk over the Beijing-Tianjin-Hebei region under the 151 
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RCP4.5 scenario. Garrido-Perez et al. (2021) took a different approach as compared to 152 

analysing probabilistic projections and used the ASI to generate stagnation storylines, i.e. 153 

plausible and physically consistent scenarios of stagnation changes based on the response of 154 

remote drivers under climate change forcing, for Europe and the United States (US). 155 

 While most studies indicate an increase in the haze conducive weather over China, a 156 

few studies also find little impact of climate change on future projections of haze (Shen et al., 157 

2018; Pendergrass et al., 2019), which could partly arise due to the under-sampling of internal 158 

variability associated uncertainty in their projections (Callahan and Mankin, 2020), as well as 159 

model-to-model differences. Hence, there is a large uncertainty as to how haze conducive 160 

weather conditions may change in the future and these depend on haze metrics or underlying 161 

processes considered for future projections. 162 

 In order to account for the uncertainty in the future projections (e.g. of large-scale 163 

circulation) particularly at the regional scale (Hawkins and Sutton, 2012; Deser et al., 2012; 164 

Deser et al., 2014), it is desirable to use an ensemble of climate change simulations. Whilst a 165 

multimodel ensemble, e.g. CMIP5 or CMIP6, is commonly used for climate change studies, 166 

several other studies have also emphasised the use of an initialised ensemble or Perturbed 167 

Parameter Ensemble (PPE) from a single model to assess the uncertainties and obtain a 168 

comprehensive range of possible future climate realisations for the same emission scenario for 169 

a given model (Knutti et al., 2010). All three methodologies have different advantages. For 170 

instance, using multiple models allows us to sample structural uncertainty in future projections, 171 

which cannot be sampled using a single model. On the other hand, using an initialised ensemble 172 

from a single model allows us to sample a broader range of internal variability, which is often 173 

under-sampled in a multimodel ensemble. The advantage of using the PPE over the initialised 174 

or multimodel ensemble is that it not only accounts for internal variability but also model 175 

uncertainty arising due to the different settings of the physical parameterisations in a single 176 
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model. Both multimodel ensemble and initialised ensemble from a single model have been 177 

used to assess the future winter haze conducive conditions over Beijing. In this paper, we use 178 

a PPE generated using the UKôs Met Office HadGEM-GC3 model to assess for the first time 179 

the impact of both model physical parameterisations and anthropogenic climate change on 180 

future daily haze conducive weather conditions.  181 

 In this paper, our focus is on the daily haze conducive and clear weather conditions 182 

over the NCP under a fixed high-emission scenario (RCP8.5). For this purpose, we use the 183 

HWI proposed by Cai et al. (2018) as past research studies have shown a robust correlation 184 

between the HWI, which is a large-scale meteorology based index, and haze conducive weather 185 

for Beijing in China. Whilst Cai et al. (2018) originally proposed the HWI for Beijing, the 186 

index is based on changes in large-scale meteorology over the NCP and thus offers a good 187 

potential as the indicator of haze conducive weather over the NCP. One potential advantage of 188 

using the HWI for future projections, as opposed to a regional or local air stagnation index, is 189 

that the general circulation models generally simulate large-scale meteorology reasonably well 190 

as compared to local or regional meteorology. Therefore, we expect the future projections of 191 

clear or haze conducive weather provided using the HWI to be less uncertain than projections 192 

provided using regional stagnation indexes.  193 

 The HWI uses four meteorological variables as stated above, but Cai et al. (2018) have 194 

also examined the impact of the inclusion of more weather variables, such as geopotential 195 

height, boundary layer thickness and local stratification instability, in the HWI and did not find 196 

any significant differences in the performance of the HWI. Therefore, we use the same 197 

variables and methodology as Cai et al (2018) to calculate the HWI and provide future 198 

projections of haze conducive and clear weather using the HWI. However, our analysis is based 199 

on an underlying assumption that the large-scale meteorological conditions, which are used as 200 



 

8 
 

a basis for the HWI, will have a similar influence on the air quality of the NCP in the future 201 

climate as for present-day climate. 202 

 In this paper, we first examine the application of the HWI as a proxy for haze conducive 203 

and clear weather over NCP for the current climate using a suite of observations (Section 3). 204 

We then provide the projections of the haze conducive (HWI >1) and clear weather (HWI <-205 

1) frequency over NCP for the historical and future period. We assess the impact of model 206 

physical parametrisations and anthropogenic climate change on the frequencies (Section 4). 207 

We also analyse the changes in the interannual variance of the frequency of haze conducive 208 

and clear weather conditions for the future periods as compared to the historical period (Section 209 

5). Finally, we assess the impact of parametric effect and anthropogenic climate change on 210 

trends in haze conducive and clear weather occurrence over the 21st century (Section 6). Details 211 

of data and methods used in this paper are provided in the next section. 212 

 213 

Figure 1 Average wind speed at (a) 850 hPa and (b) 500 hPa pressure level. The red dot 214 
represents the location of Beijing and black rectangle shows the location of the NCP. This 215 

figure has been repeated for a longer average period, i.e. 1979-2019 (not shown) and the result 216 
is similar. 217 

2. Data & Methods 218 

2.1 Observations, Reanalysis Outputs and PPE Model Simulations 219 

 Hourly PM2.5 concentrations are used from the US embassy site for Beijing for DJF 220 

from 2009-2017. Daily mean PM2.5 concentrations are constructed using hourly data to 221 
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evaluate the performance of the HWI as a representative of haze conducive and clear weather 222 

conditions for Beijing (see Section 3). We also used newly released gridded daily PM2.5 223 

concentrations for DJF from Chinese Air Quality Reanalysis Datasets (CAQRA) provided by 224 

China National Environment Monitoring Centre for 2013-2017 (Kong et al., 2021) to test the 225 

performance of the HWI across entire China. The CAQRA data has been produced by 226 

assimilating surface air quality observations from over 1000 monitoring sites in China and is 227 

available at a high spatial resolution of around 15×15 km and hourly temporal resolution over 228 

China. More details on the validation of the CAQRA dataset against the independent station 229 

data is provided in Kong et al. (2021). The visibility data for Beijing (homogenized data for 20 230 

stations in Beijing) is provided by the National Meteorological Information Center of China, 231 

China Meteorological Administration (CMA), for DJF 1999-2018. 232 

 We used daily ERA-5 reanalysis data of four variables: meridional wind at 850 hPa 233 

pressure level (V850),  zonal wind at 500 hPa pressure level (U500), temperatures at 850 hPa 234 

level (T850) and 250 hPa (T250) to calculate the HWI for DJF 1979-2019. The ERA-5 data used 235 

here is available at 0.25° x 0.25° horizontal resolution and hourly temporal resolution 236 

(Hersbach et al., 2020). 237 

 We used a PPE of climate simulations produced using the recent configuration of the 238 

UK Met Officeôs HadGEM3-GC3.05 coupled model (Sexton et al., 2021; Yamazaki et al., 239 

2021). The base model used for PPE, HadGEM3-GC3.05, has a horizontal resolution of ~60 240 

km with 85 vertical levels. A total of 47 model parameters from seven parameterization 241 

schemes were simultaneously perturbed to obtain the PPE (the full list of perturbed parameters 242 

is provided in Table 1 of (Sexton et al., 2021). Here, we used daily outputs of V850, U500, T850 243 

and T250 for DJF for the historical (1969-2005) and future (2006-2089) under the RCP8.5 244 

scenario. In addition, we also assessed internal variability using 200-year control simulations 245 
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for each PPE member where 1900 boundary conditions were prescribed. Overall, 16 PPE 246 

members are available for all the control, historical and RCP8.5 simulations 247 

2.2 Calculation of the HWI 248 

The winter HWI is calculated using the methodology given by Cai et al. (2017). We 249 

analyse the composite differences in the U500, V850, T850 and T250 for hazy (PM2.5 concentrations 250 

> 150 ɛg m-3 for Beijing) and clear (PM2.5 concentrations < 35 ɛg m
-3 for Beijing) days across 251 

China for DJF 2009-2017 (Fig. 2) (see section 3.1 for an explanation on the PM2.5 concentration 252 

cut-offs values used here). We also provide the composite values for these meteorological 253 

variables for hazy and clear days separately in Fig. 2. 254 

  255 

Figure 2 Winter composites of u-wind at 500 hPa level (U500) over China for all available days 256 

for which data is available from US embassy station for Beijing for DJF 2009-2017 for (a) high 257 

PM2.5 (>150 ɛgm m
-3), (b) low PM2.5 (<35 ɛgm m

-3) concentrations and (c) difference between 258 
the composites in (a) and (b). (d-f) same as (a-c) but for v-wind at 850 hPa level (V850), (g-i) 259 
same as (a-c) but for temperature at 850 hPa level (T850), and (j -l) same as (a-c) but for 260 
temperature at 250 hPa pressure level (T250). Black rectangles (B1-B5) in the last column show 261 
the regions for which spatial means were used for the calculation of the HWI. The blue dot in 262 
these columns shows the location of Beijing.   263 
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During the hazy days, the mid-tropospheric westerly flow becomes weaker over the 264 

NCP as compared to the clear days (Fig. 2a-c). The mid-tropospheric trough also moves 265 

northwards as suggested by the dipole pattern in Fig 2c, which shows the differences in the 266 

U500 for hazy and clear days. The northerly flow near the surfacein the lower troposphere is 267 

weaker during hazy days as compared to clear days (Fig. 2d-f). The lower troposphere is 268 

relatively warmer during hazy days as compared to clear days (Fig. 2g-i) whereas the upper 269 

troposphere is cooler over the NCP (Fig. 2j-l). The changes in these variables are also consistent 270 

with the previous studies (e.g. Cai et al., 2017) that showed similar changes for this time period. 271 

Therefore, we use these four variables for the calculation of the HWI, which is used as a proxy 272 

for haze conducive and clear weather conditions under a future climate.  273 

For the calculation of observational HWI, we use ERA-5 reanalysis data for the period 274 

1979-2019. We first create a daily DJF time series of each variable for each reanalyses grid 275 

point over China. The daily DJF time series is concatenated for the period 1979-2019. A daily 276 

standardised anomaly time series is created for each meteorological variable by first removing 277 

the daily mean climatology from each day of the time series and then normalising by the 278 

standard deviation. Spatial averages are then obtained over the relevant boxes (B1 to B5) for 279 

each meteorological variable following Cai et al. (2017) (Fig. 1). The HWI time-series is 280 

calculated by using the following equation:  281 

HWI (t) = U500 (t) + V850 (t) + dT(t) 282 

where U500 = U500,B1 (t) - U500,B2 (t), V850 = V850,B3 (t), and dT = T850,B4 (t) ï T250,B5 (t). The HWI 283 

(t) time series is then itself normalized by its own standard deviation.  284 

 For the PPE historical and RCP8.5 simulations, the daily HWI time series is calculated 285 

for each ensemble member for DJF for 1969-2089 using the same methodology as used for 286 

ERA-5, with the difference being that the normalisation of the PPE time-series (1969-2089) is 287 
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performed using the historical standard deviation (1969-2005), following Cai et al. (2017). 288 

Similarly, the HWI time series is calculated for the PPE pre-industrial control simulations for 289 

170 model years out of 200 model years (the first 30 years are discarded as model spin-up 290 

period). The normalisation of the pre-industrial control time series is performed using the 291 

standard deviation for 170 years. The pre-industrial control simulations used here are initialised 292 

with past forcings corresponding to the year 1900 and therefore are an approximate 293 

representation of the internal variability of the current climate as this does not take into account 294 

any temporal changes in the internal variability from 1900 to the historical and future periods 295 

used here.  296 

3. Haze Weather Index as an indicator for  clear and haze conducive weather conditions 297 

over the NCP 298 

 As the HWI was originally proposed for Beijing by Cai et al. (2018), we first determine 299 

if the HWI can be used as a representative of haze conducive and clear weather conditions for 300 

the present climate for Beijing using (a) PM2.5 concentrations from the US embassy station in 301 

Beijing and (b) PM2.5 concentrations averaged over larger Beijing domain from CAQRA 302 

reanalysis and (c) visibility data from the CMA stations in Beijing. We then determine the 303 

spatial extent of the region for which HWI can be used as an indicator of haze conducive and 304 

clear weather conditions using PM2.5 concentrations for China using CAQRA reanalysis data. 305 

We use the 25th and 75th percentile values of daily mean PM2.5 concentrations to identify the 306 

clear and hazy days, respectively for each dataset. For visibility, we use the opposite criterion, 307 

i.e. 25th percentile as a threshold for hazy days and 75th percentile as a threshold of clear days, 308 

as lower visibility is associated with hazy days and higher visibility with clear days. The days 309 

with daily PM2.5 concentration or visibility lying between the 25th and 75th percentile values 310 

are identified as moderately polluted days.  311 



 

13 
 

3.1 PM2.5  concentrations for Beijing versus HWI 312 

 We examine the relationship between the daily HWI and PM2.5 concentrations for the 313 

US embassy station for Beijing. Figure 3 (a) shows that the daily HWI increases linearly with 314 

increasing PM2.5 concentrations for up to ~150 ɛg m
-3 and PM2.5 > 150 ɛg m

-3, the HWI starts 315 

to level-off (note the log scaling in the y-axis). The time-series correlation between the HWI 316 

and PM2.5 concentration is ~0.58, which is significant at the 1% level. Callahan et al. (2019) 317 

have also obtained a correlation coefficient of 0.58 for daily PM2.5 concentrations from the U.S. 318 

embassy in Beijing and the HWI calculated using NCAR R1 reanalysis. 319 

 The 25th and 75th percentile values of daily mean PM2.5 concentrations for the US 320 

embassy Beijing station for DJF 2009-2017 are ~35 and ~150 ɛg m-3 respectively. We 321 

determine the percentage of hazy days (with daily mean PM2.5 concentrations >150 ɛg m
-3) and 322 

clear days (with daily mean PM2.5 concentrations < 35 ɛg m
-3) for different HWI ranges (Fig. 323 

3e). Out of all days with HWI >1, 64% have daily mean PM2.5 concentrations > 150 ɛg m
-3 and 324 

98% with PM2.5 concentrations >35 ɛg m
-3. This suggests that for HWI >1, almost all days are 325 

hazy or moderately polluted. Similarly, almost all days with HWI < -1 are clear or moderately 326 

polluted. Using HWI thresholds of ±1 demarcates between the clear and hazy days, i.e. almost 327 

no clear days occur for HWI >1 and almost no hazy days occur for HWI <-1.  328 

 We have also examined the relationship between the individual variables in the HWI 329 

(section 2.2) and PM2.5 concentrations observed at the US embassy in Beijing/CAQRA and 330 

find that the individual components have correlation values that are similar to or less than that 331 

of those used in the combined HWI. Also, physically multiple favourable weather conditions, 332 

as represented by each of these variables, collectively provide a conducive setting for haze. 333 

Hence, we focus on the HWI as a combined index rather than its individual components. 334 
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 To examine if the PM2.5 concentrations from the US embassy station are sensitive to 335 

the abrupt changes in the local meteorology, e.g. wind speeds or direction, we also examine 336 

the relationship between the HWI and PM2.5 concentrations averaged over the domain centred 337 

around Beijing (116.15 ï 116.65 °E, 39.65 ï 40.15 °N) from the CAQRA reanalysis data (Fig. 338 

3b and 3f). The PM2.5 concentrations for region spatially averaged around Beijing from 339 

CAQRA data are in the range 6 ɛg m-3 ï 441 ɛg m-3 and from the Beijing US embassy station 340 

are 6 ɛg m-3 ï 569 ɛg m-3 suggesting the values from both data sources are comparable. The 341 

correlation coefficient is ~0.58, which is the same as the correlation obtained using the US 342 

embassy data. The total number of hazy, clear and moderately polluted days for different HWI 343 

ranges also show similar results for both datasets (Fig. 3e-3f). This implies that the HWI 344 

relationship with PM2.5 concentrations is robust across different data sources and that PM2.5 is 345 

a regional pollutant. 346 

 347 
Figure 3 HWI versus daily mean (a) PM2.5 concentrations for the US embassy Beijing station for DJF 348 
2009-2017 (b) PM2.5 concentrations spatially averaged over the region around Beijing (116.15-116.65 349 
°E, 39.65 - 40.15 °N) from CAQRA reanalysis for DJF 2013-2017 (c) visibility averaged over 20 350 
stations from the CMA for DJF 1999-2018 and (d) PM2.5 concentrations spatially averaged over the 351 
NCP (36-43.5 °N, 107-122 °E) from CAQRA reanalysis. Blue lines show the 25th and 75th percentile 352 
thresholds used to define clear and hazy days for each dataset. Percentage of clear, moderately polluted 353 
and hazy days for different HWI ranges for the (e) US embassy Beijing station for DJF 1999-2018 (f) 354 
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larger Beijing domain (116.15-116.65 °E, 39.65 - 40.15 °N) from CAQRA reanalysis for DJF 2013-355 
2017 (g) Beijing for DJF 1999-2018 (h) NCP from the CAQRA reanalysis for DJF 2013-2017. 356 

3.2 Visibility for Beijing versus HWI  357 

 As visibility is an optical representative of haze (Wang et al., 2006) and the data for 358 

visibility is available for a relatively long period (1999-2018) as compared to the PM2.5 359 

concentrations, we also correlate the HWI with the visibility over Beijing. Figure 3 (c) shows 360 

that the HWI is inversely related to the visibility for the Beijing station. The time-series 361 

correlation between the HWI and visibility is -0.63, which is significant at the 1% level. The 362 

days with visibility < 8.5 km are identified as hazy days, days with visibility > 23.8 km are 363 

identified as clear days. For days with HWI > 1, no clear days occur and similarly for days with 364 

HWI< -1, only 6% of days are hazy (Fig 3g). This further confirms that the correlation between 365 

the HWI and haze is significant for a longer period (1999-2018) using visibility as a metric for 366 

haze (alternative to the PM2.5 concentrations used above). 367 

3.3 PM2.5 concentrations over North China Plain versus HWI 368 

We now determine the spatial extent for which HWI can be used as an indicator of haze 369 

clear or haze conducive conditions using PM2.5 concentrations from CAQRA reanalysis. We 370 

correlate the daily time-series of PM2.5 concentration at each grid point with the HWI for DJF 371 

2013-2017 (Fig. 4). Over the entire NCP (36-43.5 °N, 107-122 °E), the correlation coefficient 372 

between the daily HWI and gridded PM2.5 concentration is ~0.7, significant at the 1% level. 373 

The correlation is considerably lower but still significant over other eastern China regions, e.g. 374 

north easternmost China and the Sichuan Basin (27-32 °N, 102-107 °E).  375 
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 376 

Figure 4 Spatial distribution of correlation between winter PM2.5 concentrations and HWI time series 377 
at each grid point. Blue dot shows the Beijing station (39.3 °N, 116.4 °E) and the black rectangle shows 378 
the North China Plain (36-43.5 °N, 107-122 °E). 379 

Considering daily mean PM2.5 concentrations averaged over the NCP, we also find a 380 

linear relationship with the daily HWI (r = 0.66; significant at the 1% level; Fig 2d). We also 381 

calculate the percentage of clear and hazy days for different HWI ranges for the larger domain 382 

of the NCP using the 25th and 75th percentile values, respectively. The percentage of hazy and 383 

clear days for HWI > 1 and HWI < -1 for NCP in CAQRA reanalyses are very similar to the 384 

values obtained for the US embassy Beijing station (Fig 3h).  385 

Overall, our results confirm that the daily HWI has a robust relationship with daily 386 

PM2.5 concentrations not only for the Beijing station but across the NCP for the given time 387 

periods. Therefore, we use HWI > 1 as a proxy for haze conducive weather and HWI < -1 as a 388 

proxy for clear weather across the NCP region. This threshold is also consistent with several 389 

other studies (e.g., Cai et al., 2017; Callahan and Mankin, 2020; Callahan et al., 2019), that 390 

have used HWI >1, as a cut-off for haze conducive weather for Beijing. We now calculate the 391 

frequency of haze conducive weather (HWI >1) and clear weather (HWI <-1) for the past and 392 

future using ERA-5 reanalysis and PPE members. 393 



 

17 
 

4. Historical and future changes in haze conducive and clear weather occurrence 394 

The frequency of haze conducive weather (HWI >1) and clear weather (HWI <-1) from 395 

the ERA-5 reanalyses and the PPE are shown in Fig. 5. For ERA-5, the frequency of haze 396 

conducive weather has increased, whereas the frequency of clear weather (HWI<-1) has 397 

reduced for the period 1979-2018. The mean frequency of haze conducive weather using 16 398 

PPE members shows a relatively larger increase than ERA-5 for the same 1979-2018 time 399 

period (Fig. 5a). In contrast, the mean frequency of clear weather from the PPE for this period 400 

shows a similar reduction to that obtained using the ERA-5 reanalyses (Fig. 5b).  401 

We examine the changes in the frequency of haze conducive weather (HWI>1) and 402 

clear weather (HWI<-1) for the historical (1979-2005) and three future periods, i.e. near (2006-403 

2032), mid (2033-2059) and far (2060-2086) future. The mean frequency for haze conducive 404 

weather is 14.7 days per winter obtained from the ERA-5 reanalysis and 15.0 days per winter 405 

from the PPE mean for the historical period. The corresponding values for clear weather are 406 

15.0 days and 15.2 days per winter for ERA-5 and PPE, respectively. This shows a good 407 

agreement between the mean frequencies of haze conducive and clear for the ERA-5 data and 408 

the PPE mean for the historical period.  409 
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 410 

Figure 5 Frequency of haze conducive weather (HWI>1, pink line) and clear weather (HWI<-1, blue 411 
line) per winter from ERA-5 reanalysis (1979 to 2018). Year 1979 represents period from 1 December 412 
1979 to 28 February 1980 and so on. For each winter (DJF), we calculate the total number of days with 413 
HWI >1 as proxy for haze conducive weather and HWI < -1 as proxy for clear weather conditions. Grey 414 
lines show frequencies from 16 individual PPE members and black line shows the mean of frequency 415 
using all 16 PPE members for 1969-2087 under the RCP8.5 scenario. Linear trend is calculated using 416 
the line of best fit.  417 

 The mean frequency of haze conducive weather for near, mid and far future is 17.9, 418 

18.6 and 19.9, respectively. The mean frequency for the same future periods for clear weather 419 

is 13.2, 12.2 and 10.8, respectively (Fig. 6a). The mean change in the frequency of haze 420 

conducive weather averaged across all PPE members is 20%, 24% and 33% for the near, mid 421 

and far future respectively as compared to the historical period, suggesting that the frequency 422 

of haze conducive weather will likely increase for all future periods (Fig. 6a). However, there 423 
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exists a very large range in the projected change for all three future periods suggesting internal 424 

variability or parametric effect could influence the future projections of haze conducive 425 

weather. For the near and mid future, days with HWI>1 are projected to change by -1% to 41% 426 

and -12% to 65% across the 16 PPE members, respectively, as compared to the frequency for 427 

the historical period. For the far future, the range of projected change is even larger, and an 428 

increase of ~87% in the frequency of haze conducive weather is also possible. It is noted that, 429 

for all three periods, only one of the sixteen ensemble members (E16 shown in Fig. 10) shows 430 

a reduction in the haze conducive weather frequency whereas other ensemble members show 431 

an increase in frequency for all periods. For the historical period, E16 ensemble member has a 432 

mean frequency of 16.3, which reduces to 16.2, 14.4 and 15.2 for near, mid and far future. 433 

While E16 ensemble member shows a consistent reduction in mean frequency in future, the 434 

reduction is specific to only this ensemble member and is not a general feature across PPE 435 

members. 436 

 437 

Figure 6 (a) Mean frequency of haze conducive weather (HWI>1, pink) and clear weather (HWI<-1, 438 
blue) for the historical period (1979-2005), near (2006-2032), mid (2033-2059) and far (2060-2086) 439 
future under the RCP8.5 scenario. Circles represent PPE members and triangles PPE mean. Grey box 440 
and whiskers show the distribution of 10,000 values of mean frequencies sub-sampled from the control 441 
simulation, (b) same as (a) but shows variance across 16 PPE members for each period. For box and 442 
whiskers, we first randomly sampled 10,000 time series of length 27 years using 2704 years of pre-443 
industrial control simulation and calculated 10,000 values of mean frequency. We then randomly sub-444 


