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Abstract 16 

We examine past and future changes in both winter haze and clear weather conditions over the 17 

North China Plain (NCP) using a Perturbed Parameter Ensemble (PPE) and elucidate the 18 

influence of model physical parameterizations on these future projections for the first time. We 19 

use a large-scale meteorology-based Haze Weather Index (HWI), which was developed to 20 

examine the ) with values >1 as a proxy for haze conducive weather and HWI <-1 for clear 21 

weather conditions for Beijing. We find that the HWI can be used as an indicator of winter 22 

haze across the entire over the NCP due to the extended spatial coherence of the local 23 

meteorological conditions. The PPE generated using the UK Met Office HadGEM-GC3 model 24 

shows that under a high-emission (RCP8.5) scenario, the frequency of haze conducive weather 25 

(HWI>1) is likely to increase whereas the frequency of clear weather (HWI<-1) is likely to 26 

decrease in future. However, a change of opposite sign with lower magnitude in the 27 

frequencies, though less likely, is also possible. In future, the total number of hazy 28 

daysfrequency of haze conducive weather for a given winter can be as much as ~3.5 times 29 

higher than the numberfrequency of clear daysweather over the NCP. We also examined the 30 

changes in the interannual variability of the frequency of hazy and clear days and find no 31 

marked changes in the variability for future periods.  The future frequencies of haze conducive 32 

weather (HWI>1) during winter hazy and clear days in the PPE are largely driven byassociated 33 

with changes in zonal-mean mid-tropospheric winds and the vertical temperature gradient over 34 

the NCP. We do not also examined the changes in the interannual variability of the haze 35 

conducive and clear weather, and find any discernible no marked changes in the variability of 36 

future periods. We find a clear influence of model physical parametrizations on climatological 37 

mean frequencies for both haze conducive and clear weather. For mid to late 21st century (2033-38 

2086), parametric effect can explain up to ~80% variance in climatological mean frequencies 39 

of PPE members. Therefore, model parameterizations on adds uncertainty in the future 40 
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projections of trendshaze conducive weather in addition to the frequency of hazy or clear 41 

days.internal variability. We also find a clear impactgrowing influence of anthropogenic 42 

climate change on future trends for both hazy and clear days, however, it is only discernible 43 

for specific periods due to the large underlying internal variability in the frequencies of 44 

hazymean frequencies of haze conducive and clear days. 45 
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weather over the 21st century suggesting climate change can exacerbate the haze conducive 46 

weather and reduce the clear weather conditions in future over the NCP. 47 

 48 

1. Introduction 49 

 Over the last decade, a number of severe haze episodes (several days or longer) were 50 

reported over the North China Plain (NCP) during boreal winter (December-January-February, 51 

DJF). In January 2013, unprecedented PM2.5 levels exceeding 450 μg m-3 were observed over 52 

the NCP (Wang et al., 2014a; Wang et al., 2014b; Zhang et al., 2018; Zhang et al., 2013). 53 

Similar events were also observed in November-December 2015 when the PM2.5 concentrations 54 

reached as high as 1000 μg m-3 in Beijing and caused the first-ever ‘red alert’ for severe air 55 

pollution (Liu et al., 2017; Zhang et al., 2017). In December 2016, around 25% of the land area 56 

of China was covered with severe haze for around one week (Yin and Wang, 2017). These 57 

severe haze events adversely impacted public health including mortality, visibility, and 58 

ultimately the economy of the country (Bai et al., 2007; Chen and Wang, 2015; Kan et al., 59 

2012; Kan et al., 2007; Wang et al., 2006; Xu et al., 2013; Hong et al., 2019). 60 

 Previous research has shown that the persistence of severe haze for days during winters 61 

over the NCP occurred due to the combined effect of local and regional high pollutant 62 

emissions and stagnant meteorological conditions (Li et al., 2018; He et al., 2016; Jia et al., 63 

2015; Pei et al., 2018; Zhang et al., 2021). The normal winter meteorological conditions over 64 

the NCP are characterized by northwesterly flow near the surface through to the mid-65 

troposphere associated with the East Asian winter monsoon (circulation (Fig. 1a and 1b; also 66 

see An et al., 2019; Chen and Wang, 2015; Li et al., 2016; Renhe et al., 2014; Li et al., 2016; 67 

Xu et al., 2006). The northwesterly winds support the intrusion of relatively clean air from the 68 

high latitudes to the NCP and therefore ventilate this region (Xu et al., 2006). However, during 69 
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the severe haze episodes, the near-surface northwesterlies appear to be weaker than normal and 70 

the mid-tropospheric trough was reported to be shallower and shifted northwards – collectively 71 

leading to a weaker than normal northwesterly flow and reduced horizontal transport of air 72 

pollutants from the NCP (Chen and Wang, 2015). The weaker northwesterlies near the surface 73 

also reduces the intrusion of cold and clean air from the high-latitudes to the NCP (Xu et al., 74 

2006).Fig. 2a-b). In addition to changes in horizontal winds, the vertical temperature gradient 75 

between the lower and upper troposphere over the NCP enhancescan influence the vertical 76 

dispersion of the pollutants. A warmer than normal temperature near the surface, accompanied 77 

with colder temperature in the upper troposphere, would enhance the thermal stability and 78 

reducesreduce the atmospheric mixing leading to the build-up of the atmospheric pollutants 79 

over this region (Fig. 2; also see Hou and Wu, 2016; Sun et al., 2014; Wang et al., 2014a; 80 

Zhang et al., 2018; Cai et al., 2018). The planetary boundary layer height is also found to be 81 

suppressed during extreme haze events leading to accumulation of pollutants, notably PM2.5 82 

concentrations (Liu et al., 2018; Petäjä et al., 2016), due to an increase in moisture, reduced 83 

vertical mixing and dispersion which aids aerosol growth during high haze events over the 84 

NCP (An et al., 2019; Tie et al., 2017).  85 

 In this paper, our focus is onOn a daily scale, past studies have examined the 86 

meteorological driven changes leading to daily hazy or clearin haze conducive weather 87 

conditions over the NCP. On a daily scale, recent studies suggest an increase in the occurrence 88 

of large-scale meteorological conditions favourable for winter haze over the NCPChina under 89 

climate change. scenarios using large-scale meteorology-based indexes. For example, Cai et 90 

al. (2017) have used four key variables, i.e. meridional wind at 850 hPa (V850), zonal wind at 91 

500 hPa (U500), temperatures at 850 hPa (T850) and 250 hPa (T250) pressure levels to calculate 92 

a meteorology-based daily Haze Weather Index (HWI) and). They have projected a ~50% 93 

increase in the frequency of winter haze conducive weather conditions, similar to the January 94 
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2013 event, over Beijing in the future (2050-2099) as compared to the historical (1950-1999) 95 

period under the RCP8.5 scenario using 15 CMIP5 models. Using the HWI, Liu et al. (2019) 96 

projected a 6-9% increase in the winter haze frequency under 1.5° and 2° global warming, 97 

respectively based on 20 CMIP5 models whereas Qiu et al. (2020) projected a relatively high 98 

increase of 21% and 18% in severe winter haze episodes under 1.5° and 2° global warming, 99 

respectively using an ensemble of climate simulations from the Community Earth System 100 

Model 1 (CESM1) (Kay et al., 2015). RCP8.5 scenario using 15 CMIP5 models. Han et al. 101 

(2017) alsoCallahan and Mankin (2020) also used specific humidity, V850, T850 and 102 

temperatures at 1000 hPa to examine the haze favourable meteorology for Beijing, and found 103 

a 10-15% increase in winter haze conducive weather in CMIP5 multimodel and CESM large 104 

ensemble under 3° warming. These authors have also emphasized a large influence of internal 105 

variability in addition to anthropogenic forcing on future haze conducive weather over Beijing.  106 

 In addition to the large-scale meteorology based indexes, several other stagnation 107 

indices based on regional or local meteorological variables have also been used to determine 108 

the influence of anthropogenic climate change on haze conducive weather for China as well as 109 

global regions. Using minimum monthly mean wind speeds averaged over northwestern 110 

Europe, Vautard et al. (2018) suggested a potential increase in the frequency of stagnant 111 

conditions conducive to air pollution over northwest Europe; however, their results were 112 

sensitive to models used for the analysis. Horton et al. (2014) have used thresholds for the daily 113 

mean near-surface (10-m) wind speeds, mid-tropospheric (500 hPa) temperatures and 114 

accumulated precipitation to calculate the Air Stagnation Index (ASI) under RCP8.5 scenario 115 

using 15 CMIP5 models. They found an increase in air stagnation occurrence events leading to 116 

poor air quality by up to ~40 days per year over a majority of the tropics and sub-tropics. Han 117 

et al. (2017) examined indicators of haze pollution potential (e.g. horizontal transport, wet-118 

deposition, ventilation conditions) using three regional climate simulations and projected a 119 
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higher probability of haze pollution risk over the Beijing-Tianjin-Hebei region under the 120 

RCP4.5 scenario. LiuGarrido-Perez et al. (2019) projected(2021) took a 6-9% increase in the 121 

winter haze frequency under 1.5°different approach as compared to analysing probabilistic 122 

projections and 2° global warming, respectivelyused the ASI to generate stagnation storylines, 123 

i.e. plausible and physically consistent scenarios of stagnation changes based on 20 CMIP5 124 

models. Qiu et al. (2020) also projected an increase of 21% and 18% in severe winter haze 125 

episodes under 1.5° and 2° global warming, respectively using an ensemblethe response of 126 

remote drivers under climate simulations from the Community Earth System Model 1 127 

(CESM1) for a low warming experiment change(Kay et al., 2015). Callahan and Mankin 128 

(2020) found 10-15% increase in winter hazy days in CMIP5 multimodel and CESM large 129 

ensemble under 3° warming and emphasized a large influence of internal variability in addition 130 

to anthropogenic forcing on future , for Europe and the United States (US). 131 

 While most studies indicate an increase in the haze conducive weather over Beijing. 132 

AChina, a few studies also find little impact of climate change on future projections of haze 133 

(Shen et al., 2018; Pendergrass et al., 2019), which could partly arise due to the under-sampling 134 

of internal variability associated uncertainty in their projections (Callahan and Mankin, 2020), 135 

as well as model-to-model differences. Hence, there is a large uncertainty as to how haze 136 

conducive weather conditions may change in the future and these depend on haze metricmetrics 137 

or underlying processes considered for future projections.  138 

 In order to account for the uncertainty in the future projections (e.g. of large-scale 139 

circulation) particularly at the regional scale (Hawkins and Sutton, 2012; Deser et al., 2012; 140 

Deser et al., 2014), it is desirable to use an ensemble of climate change simulations. Whilst a 141 

multimodel ensemble, e.g. CMIP5 or CMIP6, is commonly used for climate change studies, 142 

several other studies have also emphasised the use of an initialised ensemble or Perturbed 143 

Parameter Ensemble (PPE) from a single model to assess the uncertainties and obtain a 144 
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comprehensive range of possible future climate realisations for the same emission scenario for 145 

a given model (Knutti et al., 2010). All three methodologies have different advantages. For 146 

instance, using multiple models allows us to sample structural uncertainty in future projections, 147 

which cannot be sampled using a single model. On the other hand, using an initialised ensemble 148 

from a single model allows us to sample a broader range of internal variability, which is often 149 

under-sampled in a multimodel ensemble. The advantage of using the PPE over the initialised 150 

or multimodel ensemble is that it not only accounts for internal variability but also model 151 

uncertainty arising due to the different settings of the physical parameterisations in a single 152 

model. 153 

  Both multimodel ensemble and initialised ensemble from a single model have been 154 

used to assess the future winter haze conducive conditions over Beijing. In this paper, we use 155 

a PPE generated using the UK’s Met Office HadGEM-GC3 model to assess for the first time 156 

the impact of both model physical parameterisations and anthropogenic climate change on 157 

future daily haze conducive weather conditions using the HWI. We first determine the spatial 158 

extent for which the HWI can be used as an indicator of air quality over China (Section 3). We 159 

examine the changes in the frequency of hazy and clear days for historical and three future 160 

periods, i.e. near (2006-2032), mid (2033-2059) and far (2060-2086) future, over the NCP 161 

(Section 4). We also analyse the changes in the interannual variance of the frequency of hazy 162 

and clear days for the future periods as compared to the historical (Section 5). We investigate 163 

the importance of the different meteorological variables used in the HWI in determining the 164 

future changes in haze conducive conditions in the PPE (Section 6). Finally, we assess the 165 

model physical parametrisations and anthropogenic climate change on the frequency of future 166 

hazy and clear weather conditions over the NCP (Section 7). More details on the data and 167 

methods used in this paper are provided in the next section..  168 
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 In this paper, our focus is on the daily haze conducive and clear weather conditions 169 

over the NCP under a fixed high-emission scenario (RCP8.5). For this purpose, we use the 170 

HWI proposed by Cai et al. (2018) as past research studies have shown a robust correlation 171 

between the HWI, which is a large-scale meteorology based index, and haze conducive weather 172 

for Beijing in China. Whilst Cai et al. (2018) originally proposed the HWI for Beijing, the 173 

index is based on changes in large-scale meteorology over the NCP and thus offers a good 174 

potential as the indicator of haze conducive weather over the NCP. One potential advantage of 175 

using the HWI for future projections, as opposed to a regional or local air stagnation index, is 176 

that the general circulation models generally simulate large-scale meteorology reasonably well 177 

as compared to local or regional meteorology. Therefore, we expect the future projections of 178 

clear or haze conducive weather provided using the HWI to be less uncertain than projections 179 

provided using regional stagnation indexes.  180 

 The HWI uses four meteorological variables as stated above, but Cai et al. (2018) have 181 

also examined the impact of the inclusion of more weather variables, such as geopotential 182 

height, boundary layer thickness and local stratification instability, in the HWI and did not find 183 

any significant differences in the performance of the HWI. Therefore, we use the same 184 

variables and methodology as Cai et al (2018) to calculate the HWI and provide future 185 

projections of haze conducive and clear weather using the HWI. However, our analysis is based 186 

on an underlying assumption that the large-scale meteorological conditions, which are used as 187 

a basis for the HWI, will have a similar influence on the air quality of the NCP in the future 188 

climate as for present-day climate. 189 

 In this paper, we first examine the application of the HWI as a proxy for haze conducive 190 

and clear weather over NCP for the current climate using a suite of observations (Section 3). 191 

We then provide the projections of the haze conducive (HWI >1) and clear weather (HWI <-192 

1) frequency over NCP for the historical and future period. We assess the impact of model 193 
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physical parametrisations and anthropogenic climate change on the frequencies (Section 4). 194 

We also analyse the changes in the interannual variance of the frequency of haze conducive 195 

and clear weather conditions for the future periods as compared to the historical period (Section 196 

5). Finally, we assess the impact of parametric effect and anthropogenic climate change on 197 

trends in haze conducive and clear weather occurrence over the 21st century (Section 6). Details 198 

of data and methods used in this paper are provided in the next section. 199 

 200 

Figure 1 Average wind speed at (a) 850 hPa and (b) 500 hPa pressure level. The red dot 201 
represents the location of Beijing and black rectangle shows the location of the NCP. This 202 
figure has been repeated for a longer average period, i.e. 1979-2019 (not shown) and the result 203 
is similar. 204 

2. Data & Methods 205 

2.1 Observations, Reanalysis Outputs and PPE Model Simulations 206 

 Hourly PM2.5 concentrations are used from the US embassy site for Beijing for DJF 207 

from 2009-2017. Daily mean PM2.5 concentrations are constructed using hourly data to identify 208 

hazy and clear days and evaluate the performance of the HWI as a representative of haze 209 

conducive and clear weather conditions for Beijing (see Section 3). We also used newly 210 

released gridded daily PM2.5 concentrations for DJF from Chinese Air Quality Reanalysis 211 

Datasets (CAQRA) provided by China National Environment Monitoring Centre for 2013-212 

2017 (Kong et al., 2021) to test the performance of the HWI across entire China. The CAQRA 213 

data has been produced by assimilating surface air quality observations from over 1000 214 
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monitoring sites in China and is available at a high spatial resolution of around 15×15 km and 215 

hourly temporal resolution over China. More details on the validation of the CAQRA dataset 216 

against the independent station data is provided in (Kong et al., . (2021). The visibility data for 217 

Beijing (homogenized data for 20 stations in Beijing) is provided by the National 218 

Meteorological Information Center of China, ChineseChina Meteorological 219 

AgencyAdministration (CMA), for DJF 1999-2018. 220 

 We used daily ERA-5 reanalysis data of four variables: meridional wind at 850 hPa 221 

pressure level (V850),  zonal wind at 500 hPa pressure level (U500), temperatures at 850 hPa 222 

level (T850) and 250 hPa (T250) to calculate the HWI for DJF 1979-2019. The ERA-5 data used 223 

here is available at 0.25° x 0.25° horizontal resolution and hourly temporal resolution 224 

(Hersbach et al., 2020). 225 

 We used a PPE of climate simulations produced using the recent configuration of the 226 

UK Met Office’s HadGEM3-GC3.05 coupled model (Sexton et al., 2021; Yamazaki et al., 227 

2021). The base model used for PPE, HadGEM3-GC3.05, has a horizontal resolution of ~60 228 

km with 85 vertical levels. A total of 47 model parameters from seven parameterization 229 

schemes were simultaneously perturbed to obtain the PPE (the full list of perturbed parameters 230 

is provided in Table 1 of (Sexton et al., 2021). Here, we used daily outputs of V850, U500, T850 231 

and T250 for DJF for the historical (1969-2005) and future (2006-2089) under the RCP8.5 232 

scenario. In addition, we also assessed internal variability using 200-year control simulations 233 

for each PPE member where 1900 boundary conditions were prescribed. Overall, 16 PPE 234 

members are available for all the control, historical and RCP8.5 simulations. 235 

2.2 Calculation of the HWI  236 

The winter HWI is calculated using the methodology given by Cai et al. (2017). We 237 

analyse the composite differences in the U500, V850, T850 and T250 for hazy (PM2.5 concentrations 238 
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> 150 μg m-3 for Beijing) and clear (PM2.5 concentrations < 35 μg m-3 for Beijing) days across 239 

China for DJF 2009-2017 (Fig. 12) (see next section 3.1 for an explanation on the PM2.5 240 

concentration cut-offs values used for PM2.5 concentration). here). We also provide the 241 

composite values for these meteorological variables for hazy and clear days separately in Fig. 242 

2. 243 

  244 

Figure 1 shows the 2 Winter composites of u-wind at 500 hPa level (U500) over China for all 245 
available days for which data is available from US embassy station for Beijing for DJF 2009-246 
2017 for (a) high PM2.5 (>150 μgm m-3), (b) low PM2.5 (<35 μgm m-3) concentrations and (c) 247 
difference in the zonal wind speed with a dipole pattern suggesting a northward shift inbetween 248 
the composites in (a) and (b). (d-f) same as (a-c) but for v-wind at 850 hPa level (V850), (g-i) 249 
same as (a-c) but for temperature at 850 hPa level (T850), and (j-l) same as (a-c) but for 250 
temperature at 250 hPa pressure level (T250). Black rectangles (B1-B5) in the last column show 251 
the regions for which spatial means were used for the calculation of the HWI. The blue dot in 252 
these columns shows the location of Beijing.   253 

During the hazy days, the mid-tropospheric trough (Fig. 1a), weakenedwesterly flow 254 

becomes weaker over the NCP as compared to the clear days (Fig. 2a-c). The mid-tropospheric 255 

trough also moves northwards as suggested by the dipole pattern in Fig 2c, which shows the 256 

differences in the U500 for hazy and clear days. The northerly flow (Fig. 1b), higher 257 

temperatures in the near the surface is weaker during hazy days as compared to clear days (Fig. 258 
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2d-f). The lower troposphere and lower temperatures in is relatively warmer during hazy days 259 

as compared to clear days (Fig. 2g-i) whereas the upper troposphere (Fig. 1c-d)is cooler over 260 

the NCP during hazy days as compared to the clear days. These findings(Fig. 2j-l). The changes 261 

in these variables are also consistent with the previous studies (e.g. Cai et al., 2017) that showed 262 

similar changes in these meteorological variables. Cai et al. (2018) have examined the use of 263 

other variables such as geopotential height, boundary layer thickness and local stratification 264 

instability and do not find any significant differences in the performance of HWI by inclusion 265 

of more weather parameters.for this time period. Therefore, we also use only these four 266 

variables for our analysis.the calculation of the HWI, which is used as a proxy for haze 267 

conducive and clear weather conditions under a future climate.  268 

The winter HWI is calculated using the methodology given by Cai et al. (2017). For the 269 

calculation of observational HWI, we use ERA-5 reanalysis data for the period 1979-2019. We 270 

first create a daily DJF time series of each variable for each reanalyses grid point over China. 271 

The daily DJF time series is concatenated for the period 1979-2019. A daily standardised 272 

anomaly time series is created for each meteorological variable by first removing the daily 273 

mean climatology from each day of the time series and then normalising by the standard 274 

deviation. Spatial averages are then obtained over the relevant boxes (B1 to B5) for each 275 

meteorological variable following Cai et al. (2017) (Fig. 1). The HWI time-series is calculated 276 

by using the following equation:  277 

HWI (t) = U500 (t) + V850 (t) + dT(t) 278 

where U500 = U500,B1 (t) - U500,B2 (t), V850 = V850,B3 (t), and dT = T850,B4 (t) – T250,B5 (t). The HWI 279 

(t) time series is then itself normalized by its own standard deviation.  280 

 For the PPE historical and RCP8.5 simulations, the daily HWI time series is calculated 281 

for each ensemble member for DJF for 1969-2089 using the same methodology as used for 282 
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ERA-5, with the difference being that the normalisation of the PPE time-series (1969-2089) is 283 

performed using the historical standard deviation (1969-2005), following Cai et al. (2017). 284 

Similarly, the HWI time series is calculated for the PPE pre-industrial control simulations for 285 

170 model years out of 200 model years (the first 30 years are discarded as model spin-up 286 

period). The normalisation of the pre-industrial control time series is performed using the 287 

standard deviation for 170 years. The pre-industrial control simulations used here are initialised 288 

with past forcings corresponding to the year 1900 and therefore are an approximate 289 

representativerepresentation of the internal variability of the current climate as this does not 290 

take into account any temporal changes in the internal variability from 1900 to the historical 291 

and future periods used here.  292 

3. Relationship between the Haze Weather Index as an indicator for clear and air quality 293 

indicatorshaze conducive weather conditions over the NCP 294 

 We determineAs the relationship between HWI and PM2.5 concentrationwas originally 295 

proposed for Beijing. As visibility is an optical by Cai et al. (2018), we first determine if the 296 

HWI can be used as a representative of haze (Wang et al., 2006)conducive and availableclear 297 

weather conditions for a relatively long period (1999-2018) as compared to the present climate 298 

for Beijing using (a) PM2.5 concentrations, we also correlate the HWI with from the visibility 299 

overUS embassy station in Beijing. We then test the relationship between HWI and (b) PM2.5 300 

concentrations over entire China to averaged over larger Beijing domain from CAQRA 301 

reanalysis and (c) visibility data from the CMA stations in Beijing. We then determine the 302 

spatial extent of the region for which HWI can be used as an indicator of air qualityhaze 303 

conducive and clear weather conditions using PM2.5 concentrations for China using CAQRA 304 

reanalysis data. We use the 25th and 75th percentile values of daily mean PM2.5 concentrations 305 

to identify the clear and hazy days, respectively for each dataset. For visibility, we use the 306 

opposite criterion, i.e. 25th percentile as a threshold for hazy days and 75th percentile as a 307 
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threshold of clear days, as lower visibility is associated with hazy days and higher visibility 308 

with clear days. The days with daily PM2.5 concentration or visibility lying between the 25th 309 

and 75th percentile values are identified as moderately polluted days.  310 

3.1 PM2.5  concentrations for Beijing versus HWI 311 

 Figure 2 We examine the relationship between the daily HWI and PM2.5 312 

concentrations for the US embassy station for Beijing. Figure 3 (a) shows that the daily HWI 313 

increases linearly with increasing PM2.5 concentrations for up to ~150 μg m-3 and for PM2.5 > 314 

150 μg m-3, the HWI starts to level-off (note the log scaling in the y-axis). The time-series 315 

correlation between the HWI and PM2.5 concentration is ~0.58, which is significant at the 1% 316 

level. Callahan et al. (2019) have also obtained a correlation coefficient of 0.58 for daily PM2.5 317 

concentrations from the U.S. embassy in Beijing and the HWI calculated using NCAR R1 318 

reanalysis. 319 

 The 25th and 75th percentile values of daily mean PM2.5 concentrations for the US 320 

embassy Beijing station for DJF 2009-2017 are ~35 and ~150 μg m-3 respectively. We 321 

determine the percentage of hazy days (with daily mean PM2.5 concentrations >150 μg m-3) and 322 

clear days (with daily mean PM2.5 concentrations < 35 μg m-3) for different HWI ranges (Fig. 323 

2b3e). Out of all days with HWI >1, 64% have daily mean PM2.5 concentrations > 150 μg m-3 324 

and 98% with PM2.5 concentrations >35 μg m-3. This suggests that for HWI >1, almost all days 325 

are hazy or moderately polluted. Similarly, almost all days with HWI < -1 are clear or 326 

moderately polluted. Using HWI thresholds of ±1 demarcates between the clear and hazy days, 327 

i.e. almost no clear days occur for HWI >1 and almost no hazy days occur for HWI <-1.  328 

 We have also examined the relationship between the individual variables in the HWI 329 

(section 2.2) and PM2.5 concentrations observed at the US embassy in Beijing/CAQRA and 330 

find that the individual components have correlation values that are similar to or less than that 331 
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of those used in the combined HWI. Also, physically multiple favourable weather conditions, 332 

as represented by each of these variables, collectively provide a conducive setting for haze. 333 

Hence, we focus on the HWI as a combined index rather than its individual components. 334 

 To examine if the PM2.5 concentrations from the US embassy station are sensitive to 335 

the abrupt changes in the local meteorology, e.g. wind speeds or direction, we also examine 336 

the relationship between the HWI and PM2.5 concentrations averaged over the domain centred 337 

around Beijing (116.15 – 116.65 °E, 39.65 – 40.15 °N) from the CAQRA reanalysis data (Fig. 338 

3b and 3f). The PM2.5 concentrations for region spatially averaged around Beijing from 339 

CAQRA data are in the range 6 μg m-3 – 441 μg m-3 and from the Beijing US embassy station 340 

are 6 μg m-3 – 569 μg m-3 suggesting the values from both data sources are comparable. The 341 

correlation coefficient is ~0.58, which is the same as the correlation obtained using the US 342 

embassy data. The total number of hazy, clear and moderately polluted days for different HWI 343 

ranges also show similar results for both datasets (Fig. 3e-3f). This implies that the HWI 344 

relationship with PM2.5 concentrations is robust across different data sources and that PM2.5 is 345 

a regional pollutant. 346 

 347 
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Figure 3 HWI versus daily mean (a) PM2.5 concentrations for the US embassy Beijing station for DJF 348 
2009-2017 (b) PM2.5 concentrations spatially averaged over the region around Beijing (116.15-116.65 349 
°E, 39.65 - 40.15 °N) from CAQRA reanalysis for DJF 2013-2017 (c) visibility averaged over 20 350 
stations from the CMA for DJF 1999-2018 and (d) PM2.5 concentrations spatially averaged over the 351 
NCP (36-43.5 °N, 107-122 °E) from CAQRA reanalysis. Blue lines show the 25th and 75th percentile 352 
thresholds used to define clear and hazy days for each dataset. Percentage of clear, moderately polluted 353 
and hazy days for different HWI ranges for the (e) US embassy Beijing station for DJF 1999-2018 (f) 354 
larger Beijing domain (116.15-116.65 °E, 39.65 - 40.15 °N) from CAQRA reanalysis for DJF 2013-355 
2017 (g) Beijing for DJF 1999-2018 (h) NCP from the CAQRA reanalysis for DJF 2013-2017. 356 

3.2 Visibility for Beijing versus HWI 357 

 As visibility is an optical representative of haze (Wang et al., 2006) and the data for 358 

visibility is available for a relatively long period (1999-2018) as compared to the PM2.5 359 

concentrations, we also correlate the HWI with the visibility over Beijing. Figure 33.2 360 

Visibility for Beijing versus HWI 361 

 Figure 2 (c) shows that the HWI is inversely related to the visibility for the Beijing 362 

station. The time-series correlation between the HWI and visibility is -0.63, which is significant 363 

at the 1% level. The days with visibility < 8.5 km are identified as hazy days, days with 364 

visibility > 23.8 km are identified as clear days. For days with HWI > 1, no clear days occur 365 

and similarly for days with HWI< -1, only 6% of days are hazy (Fig 2d3g). This further 366 

confirms that the correlation between the HWI and haze is significant for a longer period (1999-367 

2018) using visibility as a metric for haze (alternative to the PM2.5 concentrations used above). 368 

3.3 PM2.5 concentrations over North China Plain versus HWI 369 

We now determine the spatial extent for which HWI can be used as an indicator of haze 370 

clear or haze conducive conditions using PM2.5 concentrations using data from CAQRA 371 

reanalysis. We correlate the daily time-series of PM2.5 concentration at each grid point with the 372 

HWI for DJF 2013-2017 (Fig. 34). Over the entire NCP (36-43.5 °N, 107-122 °E), the 373 

correlation coefficient between the daily HWI and gridded PM2.5 concentration is ~0.7, 374 

significant at the 1% level. The correlation is considerably lower but still significant over other 375 
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eastern China regions, e.g. north easternmost China and the Sichuan Basin (27-32 °N, 102-107 376 

°E).  377 

 378 

 379 

Figure 34 Spatial distribution of correlation between winter PM2.5 concentrations and HWI time series 380 
at each grid point. Blue dot shows the Beijing station (39.3 °N, 116.4 °E) and the black rectangle shows 381 
the North China Plain (36-43.5 °N, 107-122 °E). 382 

Considering daily mean PM2.5 concentrations averaged over the NCP, we also find a 383 

linear relationship with the daily HWI (r = 0.66; significant at the 1% level; Fig 2e). The values 384 

of PM2.5 concentrations for NCP are lower as compared to the station values of PM2.5 385 

concentrations at the US Embassy Beijing and the correlation coefficient is higher. This could 386 

be due to the different time periods for the two dataset, i.e. 2009-2017 for the US embassy and 387 

2013-2017 for the CAQRA reanalyses, and spatial averaging of PM2.5 concentrations over the 388 

NCP region.2d). We also calculate the percentage of clear and hazy days for different HWI 389 

ranges for the larger domain of the NCP using the 25th and 75th percentile values, respectively. 390 

The percentage of hazy and clear days for HWI > 1 and HWI < -1 for NCP in CAQRA 391 

reanalyses are very similar to the values obtained for the US embassy Beijing station (Fig 2f3h).  392 

Overall, our results confirm that the daily HWI has a robust relationship with daily 393 

PM2.5 concentrations not only for the Beijing station but across the NCP for the given time 394 
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periods. Therefore, we use HWI > 1 as a thresholdproxy for hazy dayshaze conducive weather 395 

and HWI < -1 as a threshold ofproxy for clear daysweather across the NCP region. This 396 

threshold is also consistent with several other studies (e.g., Cai et al., 2017; Callahan and 397 

Mankin, 2020; Callahan et al., 2019), that have used HWI >1, as a cut-off for hazy dayshaze 398 

conducive weather for Beijing. We now use the HWI to calculate the frequency of hazyhaze 399 

conducive weather (HWI >1) and clear conditionsweather (HWI <-1) for the past and future 400 

using ERA-5 reanalysis and PPE members. 401 

4. Historical and future changes in the frequency of hazyhaze conducive and clear 402 

conditionsweather occurrence 403 

The changes in the number of hazyfrequency of haze conducive weather (HWI >1) and 404 

clear days per winter, as defined by HWI thresholds,weather (HWI <-1) from the ERA-5 405 

reanalyses and the PPE are shown in Fig. 45. For ERA-5, the frequency of hazy dayshaze 406 

conducive weather has increased, whereas the frequency of clear daysweather (HWI<-1) has 407 

reduced for the period 1979-2018. The mean frequency of hazy dayshaze conducive weather 408 

using 16 PPE members shows a relatively larger increase than ERA-5 for the same 1979-2018 409 

time- period (Fig. 4a5a). In contrast, the mean frequency of clear daysweather from the PPE 410 

for this period shows a similar reduction to that obtained using the ERA-5 reanalyses (Fig. 411 

4b5b).  412 

We examine the changes in the frequency of hazyhaze conducive weather (HWI>1) 413 

and clear daysweather (HWI<-1) for the historical (1979-2005) and three future periods, i.e. 414 

near (2006-2032), mid (2033-2059) and far (2060-2086) future. The mean frequency of hazy 415 

daysfor haze conducive weather is 14.7 days per winter obtained from the ERA-5 reanalysis 416 

and 15.0 days per winter from the PPE mean for the historical period. The corresponding values 417 

for clear daysweather are 15.0 days and 15.2 days per winter for ERA-5 and PPE, respectively. 418 
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This shows a good agreement between the mean frequencies of hazyhaze conducive and clear 419 

days for the ERA-5 data and the PPE mean for the historical period.  420 

 421 

Figure 45 Frequency of hazy (haze conducive weather (HWI>1, pink line) and clear days (weather 422 
(HWI<-1, blue line) per winter from ERA-5 reanalysis (1979 to 2018). Year 1979 represents period 423 
from 1 December 1979 to 28 February 1980 and so on. For each winter (DJF), we calculate the total 424 
number of hazy days with HWI >1 as proxy for haze conducive weather and clear days with HWI < -1 425 
as proxy for clear weather conditions. Grey lines show frequencies from 16 individual PPE members 426 
and black line shows the mean of frequency using all 16 PPE members for 1969-2087 under the RCP8.5 427 
scenario. Linear trend is calculated using the line of best fit.  428 

 The mean frequency of haze conducive weather for near, mid and far future is 17.9, 429 

18.6 and 19.9, respectively. The mean frequency for the same future periods for clear weather 430 

is 13.2, 12.2 and 10.8, respectively (Fig. 6a). The mean change in the frequency of hazy days 431 
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averaginghaze conducive weather averaged across all PPE members is 2620%, 24% and 33% 432 

for the near, mid and far future respectively as compared to the historical period, suggesting 433 

that the frequency of hazy dayshaze conducive weather will likely increase for all future 434 

periods (Fig. 5). 6a). However, there exists a very large range in the projected change for all 435 

three future periods suggesting internal variability or parametric effect could influence the 436 

future projections of haze conducive weather. For the near and mid future, hazy days with 437 

HWI>1 are projected to change by -81% to 6541% and -12% to 65% across the 16 PPE 438 

members, respectively, as compared to the frequency for the historical period. For the far 439 

future, the range of projected change is even larger, and an increase of ~87% in the frequency 440 

of hazy dayshaze conducive weather is also possible. It should beis noted that, for all three 441 

periods, only one of the sixteen ensemble members suggests a decrease(E16 shown in daily 442 

haze Fig. 10) shows a reduction in the haze conducive weather frequency.  whereas other 443 

ensemble members show an increase in frequency for all periods. For the historical period, E16 444 

ensemble member has a mean frequency of 16.3, which reduces to 16.2, 14.4 and 15.2 for near, 445 

mid and far future. While E16 ensemble member shows a consistent reduction in mean 446 

frequency in future, the reduction is specific to only this ensemble member and is not a general 447 

feature across PPE members. 448 

 449 
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Figure 6 (a) Mean frequency of haze conducive weather (HWI>1, pink) and clear weather (HWI<-1, 450 
blue) for the historical period (1979-2005), near (2006-2032), mid (2033-2059) and far (2060-2086) 451 
future under the RCP8.5 scenario. Circles represent PPE members and triangles PPE mean. Grey box 452 
and whiskers show the distribution of 10,000 values of mean frequencies sub-sampled from the control 453 
simulation, (b) same as (a) but shows variance across 16 PPE members for each period. For box and 454 
whiskers, we first randomly sampled 10,000 time series of length 27 years using 2704 years of pre-455 
industrial control simulation and calculated 10,000 values of mean frequency. We then randomly sub-456 
sample 16 mean values (corresponding to the number of ensemble members) from the 10,000 mean 457 
values, calculated their mean for (a) and variance for (b). This is repeated 10,000 to obtain a distribution. 458 
The boxes are at the 25th and 75th percentile and the whiskers at 2.5th and 97.5th percentile of mean and 459 
variance distribution. For panel (a), the box and whiskers are comparable only to the ensemble means 460 
(triangles) and not ensemble members (circles). 461 

 For clear weather (HWI<-1), the mean change in the frequency averaging across all 462 

PPE members is -2113%, -20% and -29% for near, mid and far future, respectively (Fig 56a). 463 

Considering the range across the 16 PPE members, the frequency of clear weather for near, 464 

mid and far future is projected to change by -4029% to 925%, -36% to 10% and -57% to -9%, 465 

respectively. Overall, most ensemble members show an increase in the frequency of hazy 466 

dayshaze conducive weather and a reduction in the frequency of clear daysweather for all three 467 

future periods however. However, negligible change or even the opposite change, though less 468 

likely, but possible for all periods.  469 

Figure 6 Frequency of winter hazy days versus clear days We also determine the influence 470 

of anthropogenic climate change and the parametric effect on the frequencies of haze conducive 471 

weather (HWI>1) and clear weather (HWI<-1) for the historical as well as the three future 472 

periods. As shown in later Section 5, the estimate of interannual variance from the control is 473 

representative of all time periods and shows no discernible parametric effect. Therefore, we 474 

pool the 16 PPE control simulations to sample the internal variability for box and whiskers 475 

shown in Fig. 6 (a) and 6 (b) (see captions for details on resampling).  476 

 In Fig. 6 (a), we show the mean frequency of haze conducive weather and clear weather 477 

for 16 individual PPE members (circles) and PPE mean (triangles). The grey box and whiskers 478 

represent the range of ensemble mean frequencies that can be explained by the internal 479 
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variability. If the PPE mean (triangles) lies within the whiskers (i.e. 95 percentile of the control 480 

distribution) we conclude no influence of anthropogenic climate change on mean frequency 481 

however if the PPE mean lies outside the whiskers, it would represent a climate change signal 482 

in the mean frequency. Figure 6 (a) suggest that the mean frequencies for haze conducive as 483 

well as clear weather lies within the box-whiskers for the historical but lies outside the whiskers 484 

for the three future periods, thereby showing a clear impact of anthropogenic climate change 485 

on the frequencies of both haze conducive and clear weather conditions. 486 

 We now examine whether the differences in the mean frequency across different PPE 487 

members (shown by circles in Fig. 6a) for a given period can be explained by the internal 488 

variability or if the differences in PPE members partly arise due to the parametric effect. The 489 

triangles in Fig. 6b shows the variance across 16 PPE members, i.e. variance across 16 circles 490 

shown in Fig. 6a, for each time period. The whiskers in Fig. 6b show the 95th confidence 491 

interval from the control simulation and is representative of the internal variability. For any 492 

time period, if the PPE member variance (triangle) lies within the whiskers, we conclude that 493 

the differences in mean frequencies in Fig. 6a can be fully explained by the internal variability 494 

and there is no discernible impact of the parametric effect. However, if the triangles lie outside 495 

the whiskers in Fig. 6b, we conclude an impact of the parametric effect on the mean frequency 496 

for that period. For the points that lie outside the whiskers in Fig. 6b, we also quantify the 497 

percentage of variance that can be explained by the internal variability and parametric effect. 498 

For any time period, the variance in ensemble mean due to the parametric effect is simply 499 

calculated as follow and the remaining variance is attributed to the internal variability. 500 

୭୲ୟ୪ ୴ୟ୰୧ୟ୬ୡୣ ୧୬ ୲୦ୣ ୣ୬ୱୣ୫ୠ୪ୣ ୫ୣୟ୬ – ୣୟ୬ ୴ୟ୰୧ୟ୬ୡୣ ୰୭୫ ୲୦ୣ ୡ୭୬୲୰୭୪ ୱ୧୫୳୪ୟ୲୧୭୬

୭୲ୟ୪ ୴ୟ୰୧ୟ୬ୡୣ ୧୬ ୲୦ୣ ୣ୬ୱୣ୫ୠ୪ୣ ୫ୣୟ୬
  × 100 501 

 Figure 6b shows that the variance in PPE mean frequency for historical and future 502 

periods lies within the range sampled by the internal variability for both haze conducive 503 
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weather (HWI>1) and clear weather (HWI<-1). For mid-future, the variance in haze conducive 504 

weather lies outside the whiskers and whereas the variance for clear weather lies within the 505 

whiskers. For mid-future and for haze conducive weather, the internal variability can explain 506 

~33% of the variance across PPE members and the remaining ~67% arises due to the parametric 507 

effect. For the far future, triangles corresponding to both haze conducive and clear weather lies 508 

well outside the whiskers and therefore show a clear influence of parametric effect. Only ~20% 509 

of the variance in the frequency of haze conducive weather and ~43% variance in the frequency 510 

of clear weather can be explained by the internal variability and the remaining 80% and 57% 511 

respective variance in the frequencies arise due to the parametric effect. 512 

 513 

Figure 7 Frequency of haze conducive weather (HWI>1) versus clear weather (HWI<-1) averaged over 514 
the historical period (1979-2005) and the far-future (2060-2086) period under RCP8.5 using all PPE 515 
members. Circles denote individual PPE members whereas triangles denote the mean of the members. 516 
Grey triangle shows mean frequency from ERA-5 reanalysis for the historical period (1979-2005). The 517 
black solid line shows the 1:1 (identity) line. 518 

 In addition to the changes in the frequencies over time, we also investigate the relative 519 

changes in the frequency of hazy dayshaze conducive weather (HWI>1) versus clear days for 520 
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a given winter.weather (HWI<-1). The average frequency of hazy dayshaze conducive and 521 

clear days weather frequency over the historical period are almost equal for each PPE member 522 

(Fig 6. 7). All PPE members show a higher frequency of hazy daysfor haze conducive weather 523 

than clear daysweather under the far future (2060-2085), however, there exists a substantial 524 

range in this change. The frequency of winter haze daysconducive weather can be similar or 525 

up to 3.5 times the frequency of clear daysweather conditions (Fig. 67). Similar results are also 526 

obtained for the near and mid-future. Averaged across the PPE members, the number of 527 

hazyhaze conducive days can increase by ~2 times as compared to the number of clear days in 528 

future. As noted in Fig. 67, the spread in the haze conducive weather frequency of hazy days 529 

amongst individual ensemble members is also larger for the far future (2060-2086) compared 530 

to the historical period. This suggests a larger uncertainty and a larger range of possible future 531 

meteorological conditions affecting haze and air quality as compared to the historical period. 532 

Other studies have (e.g., Cai et al., 2017; Callahan and Mankin, 2020) also found similar 533 

increases in the frequency of hazy dayshaze conducive weather for the future. However, the 534 

range of projected change differdiffers substantially across models as well as ensemble 535 

members. In our study, in addition to the frequency of hazy dayshaze conducive weather, we 536 

also evaluate the changes in the frequency of clear daysweather across different future periods 537 

and compared the relative changes in both the frequencies, which is not examined in the past 538 

studies. 539 

5. Role of individual meteorological variables 540 

 We now investigate the role of individual constituent meteorological variables in 541 

driving the changes in the distribution of the HWI as well as individual constituents of the HWI 542 

between the far- future (2060-86) and the historical (1979-2005) period. The probability 543 

distribution of the HWI shows a shift in the distribution towards higher magnitudes for the far- 544 

future as compared to the historical period (Fig. 8). This implies an increased frequency in 545 
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hazyof haze conducive weather, as the number of days, as values with HWI >1 increase. A 546 

similar shift is apparent in the zonal-mean wind (U500) and the vertical temperature profiles 547 

(dT), whereas no apparent shift is noted in V850 suggesting a relatively less important role of 548 

V850 in driving the future changes in the HWI.. We also find that the shift in the HWI, as well 549 

as U500 and dT distribution, is not due to the shift in one particular PPE member or time period. 550 

It is consistent across the 16 PPE members and is continual over time from the historical to the 551 

far-future period. Therefore, for the PPE analysed here, the changes in the haze conducive 552 

weather (HWI>1) is largely associated with the changes in the U500 and dT, and V850 appear to 553 

have a less important role. Despite using a multimodel ensemble and a different time- period 554 

than used here, a similar result with a relatively larger shift in the PDFs of U500 and dT as 555 

compared to V850 can also be noted in the Cai et al. (2017). 556 

 557 

Figure 78 Probability Distribution Functions (PDF) for the winter HWI, meridional winds at 558 
850 hPa pressure level (V850), zonal winds at 500 hPa pressure level (U500) and temperature 559 
gradient between the lower and upper troposphere (dT). The PDF for the HWI is created using 560 
the daily DJF time series of all 16 PPE members. PDFs for V850, U500 and dT are created using 561 
daily DJF valuesthe normalized daily DJF time series of each variable calculated for the HWI 562 
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(see section 2.2 for details) and represents the constituent variables of the HWI. Blues bars 563 
show the PDFs for the historical (blue)period and red for the far- future (red) under the RCP 564 
8.5 by pooling in all 16 PPE members.scenario. Blue and red solid lines show the mean values 565 
of the PDF for historical and far future, respectively. 566 

65. Interannual variability in the frequency of hazyhaze conducive and clear weather 567 

conditionsfrequency 568 

Large interannual variability in the frequency of hazyhaze conducive (HWI>1) and 569 

clear daysweather (HWI<-1) is apparent in both individual PPE members and ERA-5 570 

reanalysis (Section 4). Therefore, we examine the changes in the interannual variance of the 571 

frequencies for future periods as compared to the historical period. We also compare the 572 

variance in historical and future time- periods with the variance in the control simulation to 573 

discern the influence of the model physical parameterisations, i.e. parametric effect, on the 574 

variance. 575 

The interannual variance for ERA-5 data is 27 days2 and 39 days2 for hazy and clear 576 

days, respectively, for the historical period (1979-2005) (triangles in Fig. 8a-b). The 577 

interannual variance in the frequency of hazy days derived from the PPE members for the 578 

historical period is larger than that for the ERA-5, whereas for the clear days the variance for 579 

ERA-5 lies within the range of the PPE members. No consistent change in the interannual 580 

variance of hazy days is noted for any of the PPE members (note the changes in colour ranking) 581 

from the historical to the future periods suggesting little influence of the parametric effect on 582 

the interannual variance of hazy days.  583 
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  584 

 585 

Figure 89 Interannual variance in frequency of winter (a) hazyhaze conducive weather (HWI>1) and 586 
(b) clear daysweather (HWI<-1) for the control simulation, historical (1979-2005), and near (2006-587 
2032), mid (2033-2059) and far-future (2060-2086) under RCP8.5 for all 16 PPE members. Coloured 588 
circles are for individual PPE members and triangles for ERA-5 reanalysis. (c-d) are same as (b) but 589 
with log10 and square root power transformations. For (c-d), we first calculate the log10 of (1+frequency) 590 
and square-root of the frequency of clear days for the control simulation and each time-period, and then 591 
estimate variance for each respective period. The length of control simulation and all future periods is 592 
the same as historical, i.e. 27 years. The 27 years used for control here are randomly selected from 170-593 
year control simulation for each member. 594 

The interannual variance for ERA-5 data is 27 days2 and 39 days2 for haze conducive 595 

and clear weather, respectively, for the historical period (1979-2005) (triangles in Fig. 9a-b). 596 

The interannual variance in haze conducive weather frequency derived from the PPE members 597 

for the historical period is larger than that for the ERA-5, whereas for the clear weather the 598 

variance for ERA-5 lies within the range of the PPE members. No consistent change in the 599 
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interannual variance of haze conducive weather is noted for any of the PPE members (note the 600 

changes in colour ranking) from the historical to the future periods suggesting little influence 601 

of the parametric effect on the interannual variance of haze conducive weather. 602 

In contrast, the frequency of clear daysweather for most PPE members show a marked 603 

reduction in the interannual variance from historical to near-future (Fig. 8b9b). However, as 604 

the frequency of clear daysweather show a decreasing trend in time (see Fig. 4b5b), the mean 605 

frequency would be expected to reduce for the three future periods. Also, the reduction in 606 

variance could arise as the frequencies of clear daysweather approach their lower bound of 607 

zero. With count data, a power transformation is often applied to stabilize the variance across 608 

all time periods. We triedapplied two power transformations, i.e. log10 (1+x) and square-root 609 

(x), where x is the count data (Fig. 8c9c-d). We find the spread in the variance in the control 610 

simulation across the PPE members is comparable with the historical as well as future periods 611 

(Fig. 8c9c-d). Note that for control simulation we randomly selected 27 years (length same as 612 

historical and future periods) from 170 years of control simulation from each PPE member, 613 

however, we note comparable variance for the other randomly selected samples. Figure 89 (c-614 

d) also shows that the individual PPE members show inconsistent changes in the variance 615 

(noting changes in the colour ranking) from control to historical and future periods. Therefore, 616 

no robust changes in the interannual variance of hazy or log10 (1+ frequency ofhaze conducive 617 

and clear days)weather can be detected from control to historical and future periods. This 618 

means we can use the variance in the control simulation as a representative estimate of internal 619 

variability. This enables us to quantify the influence of the parametric effect and anthropogenic 620 

climate change on the mean frequencies (see previous section) and trends in frequencies (see 621 

next section) across the different periods (see next section).. 622 

76. Influence of the parametric effect and anthropogenic climate change and parametric 623 

effect on trends 624 
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 We discern the influence of the parametric effect and anthropogenic climate change and 625 

parametric effect on the future projections of the trends in the frequency of hazyhaze conducive 626 

weather (HWI >1) and clear days. Figure 9 shows the weather (HWI <-1). The time series of 627 

the frequency of winter hazyhaze conducive and clear days weather frequency from ERA-5 628 

and the 16 PPE members for the historical and future periods. is shown in Fig. 11 (a) and 11 629 

(b). The 95th percentile values (blue shaded region) and the range (blue dotted lines) in the 630 

frequency of hazyhaze conducive and clear days weather frequency from the respective control 631 

simulation for each PPE member are also shown.  632 

 For hazy days,haze conducive weather (HWI>1), the time series for selected PPE 633 

members (e.g. E3, E4) show increasing positive trends. In particular, towards the end of the 634 

21st century (Fig. 9a10a), the lower half of the control range is seldom sampled and more than 635 

the expected number of values lie above the 97.5th percentile of the control frequencies. In 636 

contrast, for other PPE members (e.g. E8, E10), the full time series sample the control 637 

distribution evenly throughout the full period.  For clear days,weather (HWI<-1), some 638 

members (e.g. E3, E4) show a clear reduction during the 21st century whilst others (e.g. E16) 639 

show that no trend and explore the control distribution evenly (Fig 9b10b).  640 

 We first examine  In Section 4, we examined the influence of the anthropogenic 641 

climate change and parametric effect on the mean frequencies. The analysis of mean 642 

frequencies provides an estimate of the accumulated influence of climate change on 643 

frequencies with respect to the control simulations whereas analysis of trends would provide a 644 

better estimate of changes within a selected time period. Therefore, we apply the same analysis 645 

on the trends in the frequencies (Fig. 11). 646 
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 647 

 648 

Figure 10 Frequency of (a) haze conducive weather (HWI>1) and (b) clear weather (HWI<-1) per 649 
winter for individual PPE members (black line) under the historical and RCP8.5 scenarios for 1969-650 
2087 and ERA5 reanalysis (pink line) for 1979-2018. Blue shaded region shows the 95th confidence 651 
interval and blue dashed line shows the range of the frequency of hazy and clear days. Ashaze 652 
conducive and clear weather for the pre-industrial control simulation of 170-years.  653 
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 We calculate the ensemble mean trend obtained from the 16 individual PPE member 654 

trends to determine the influence of climate change for the historical period (see captions of 655 

Fig. 11 for details). We describe the evolution of the historical trend for three equal-length 656 

future time periods (i.e. near, mid and far future) and examine if the historical trends are 657 

sustained across the 21st century and if the trends are discernible outside the range described 658 

by the internal variability (Fig. 11a-b). The grey whiskers in Fig. 11 (a) and (b) cover the range 659 

of trends that can be noted in section 6, for hazy days and log10 (1+explained by internal 660 

variability and any trend values lying outside the grey whiskers represent the influence of 661 

anthropogenic climate change. 662 

 The mean trend in the frequency of clear days), the estimate of interannual variance 663 

from the control is representative of all time periods and shows no discernible both haze 664 

conducive (HWI>1) and clear weather (HWI <-1) for the historical period (1979-2005) lie 665 

outside the 95% confidence interval of the control simulations. This suggests that the trends 666 

noted for the historical period cannot be explained by internal variability alone and there is a 667 

substantial impact of anthropogenic climate change on the historical trends. The trends in haze 668 

conducive weather lie within the envelope of internal variability for the three future periods 669 

analysed here implying that the historical trend is not sustained over the 21st century and 670 

indistinguishable from the internal variability for the future. Figure 11 (a) also shows a positive 671 

mean trend in haze conducive weather (HWI>1) for historical, near and mid future, but a weak 672 

negative trend for far future. While the frequency of haze conducive weather increases for all 673 

three future periods with respect to the historical period as shown in Fig. 6a, the trends only 674 

show an increment or reduction for that period as these are not referenced to the historical 675 

period. Therefore, trends could still be negative within any selected period, as in the case of 676 

the far future. In contrast, the mean trends in clear weather frequency for near (2006-2032) and 677 

mid future (2033-2059) lie outside the 95% confidence interval of the control simulation. This 678 
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shows that for clear weather frequency (HWI<-1), the historical trend is sustained over the first 679 

half of the 21st century and then it levels off.  680 

 We now examine the influence of the parametric effect. Therefore, we pool on the 16 681 

PPE control simulations to sampletrends in the internal variability.frequency of haze conducive 682 

and clear weather. In Fig. 10 (a11 (c) and (bd), we show the variance in trends for the time 683 

series resampled using the control simulation (see captions for details on resampling). The grey 684 

box and whiskers show the 95th confidence interval of the control variance used to represent 685 

the internal variability. The variance in PPE trends calculated using 16 PPE members for 686 

selected time periods is overlaid (circles). In Fig. 10 (a-b11 (c-d), if the variance for historical 687 

or future periods lies outside the whiskers, we conclude an impact of the parametric effect on 688 

the trends. However, if the variance across the 16 PPE members lies within the whiskers, we 689 

conclude no impact of the parametric effect on the trend. Note that the variance in trends for 690 

clear daysweather is in log-transformed space. As can be seen in Fig. 10a11c and 10b11d, the 691 

variance in PPE trends for historical and future periods lies within the envelope95th percentile 692 

distribution of the internal variability for both hazyhaze conducive and clear daysweather. 693 

Therefore, we do not find any discernible influence of the parametric effect on the trends in the 694 

frequency of hazy and clear daysfrequencies. 695 

  696 
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 698 
  699 
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 701 
 702 
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  703 
Figure 10 Variance in11 Mean PPE trends for the frequency of winter (a) hazyhaze conducive 704 
weather (HWI>1) and (b) clear days.weather (HWI<-1) for winter. Circles show the variance 705 
inmean trends from 16 PPE members for the historical (1979-2005) and near (2006-2032), mid 706 
(2033-2059) and far (2060-2086) future under the RCP8.5 scenario. Grey box and whiskers 707 
show the distribution of 10,000 values of variance in trends sub-sampled from the control 708 
simulation. (c-d) same as (a-b) but variancemean is replaced by meanvariance in trends. For 709 
box and whiskers, we first randomly sampled 10,000 time series of length 27 years using 2704 710 
years of pre-industrial control simulation and calculated 10,000 values of trends. We then 711 
randomly sub-sample 16 trends values from the 10,000 trend values and calculate the variance 712 
and mean of 16 trend values. The boxes are at the 25th and 75th percentile and the whiskers at 713 
2.5th and 97.5th percentile of mean and variance distribution. For clear days, the frequencies 714 
were transformed to log space by applying a power transformation of log10 (1+ frequency) 715 
before calculating trends. 716 

 We now examine the influence of anthropogenic climate change on the trends in the 717 

frequency of hazy and clear conditions. We calculate the mean trend obtained from the 16 718 

individual PPE member trends (Fig. 10c-d), to determine the influence of climate change across 719 

selected time periods. The grey whiskers in Fig. 10 (c) and (d) cover the range of trends that 720 

can be explained by internal variability and any trend values lying outside the grey whiskers 721 

represent the influence of anthropogenic climate change. 722 

 The mean trend in the frequency of both hazy and clear days for the historical period 723 

(1979-2005) lie outside the 95% confidence interval of the control simulations, suggesting a 724 

substantial impact of anthropogenic climate change on the historical trends in the PPE. 725 

Similarly, the mean trends for clear days for near (2006-2032) and mid future (2033-2059) lie 726 

outside the 95% confidence interval of the control simulation. Thus, we find the impact of the 727 



 

35 
 

climate change on both hazy and clear days. However, it is only discernible for specific periods 728 

due to the underlying large internal variability in the frequency of hazy and clear days. 729 

87. Conclusions 730 

 In this study, we elucidate for the first time the influence of model physical 731 

parametrisations, in addition to internal variability and climate change, on the future hazyhaze 732 

conducive and clear weather conditions over the North China Plain (NCP) using the Perturbed 733 

Parameter Ensemble (PPE) from the Met Office HadGEM3-GC3.05 model. We use a 734 

meteorology-based daily Haze Weather Index (HWI), which has been previously used by a 735 

number of studies to examine the changes in winter (December-February) haze conducive and 736 

clear weather conditions for past and future over Beijing.the NCP using a large-scale 737 

meteorology-based daily Haze Weather Index (HWI). We first identify the regional extent of 738 

the application of the HWI over China. We find that the HWI >1 can be used as an indicator 739 

of hazy andhaze conducive weather conditions and HWI<-1 as an indicator of clear weather 740 

conditions for the entire NCP due to the spatial coherence of regional meteorological conditions 741 

over this region. 742 

The PPE shows that under the RCP8.5 emission scenario, the mean frequency of hazy 743 

dayshaze conducive weather (HWI>1) can increase by up to ~65% in the near (2006-2032) and 744 

mid (2033-2059) future and by ~87% in far- future (2060-2086) as compared to the historical 745 

period (1979-2005). In contrast, the frequency of clear daysweather (HWI<-1) can reduce by 746 

up to ~40% in the near and mid-future and by ~57% in the far- future. However, the opposite 747 

change of relatively lower magnitude or negligible change in frequency of hazyhaze conducive 748 

and clear weather, though less likely, is possible. The absolute number of hazy days forwith 749 

haze conducive weather in the far future can remain the same or up to ~3.5 times higher than 750 

the clear days for any given winter.weather over the NCP. There also exist a large interannual 751 
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variability in the frequency of hazyhaze conducive and clear weather conditions. However, no 752 

systematic change in the interannual variance of the frequency of hazy or clear daysfrequencies 753 

is projectednoted in future as compared to the historical period. We also find that the future 754 

changes in hazy or clearthe haze conducive weather conditions are largely influenced 755 

by(HWI>1) for the future is associated with the changes in the mid-tropospheric zonal wind 756 

component and strong vertical temperature gradient between the lower to upper troposphere 757 

over the North China Plain.NCP. We do not find any discernible a consistently growing 758 

influence of the anthropogenic climate change and parametric effect on the mean haze 759 

conducive and clear weather frequencies across the 21st century. This suggests that in addition 760 

to the internal variability, the parametric effect adds as an additional source of uncertainty in 761 

future projections of trends in the frequency of hazy and clear days. However, wehaze 762 

conducive and clear weather, particularly towards the end of the 21st century. We find that the 763 

impact of anthropogenic climate change on the is discernible in trends for both hazy and clear 764 

days for the historical and specific futureperiod for haze conducive weather and up to mid of 765 

the 21st century for clear weather. Beyond these periods, suggesting climate change can 766 

exacerbate the increase in the number of hazy and the reduction in the number of clear days in 767 

future. the historical trends are not sustained and not distinguishable from the internal 768 

variability. 769 

This study considers four atmospheric variables to examine the changes in future 770 

hazyhaze conducive and clear weather conditions, however, other atmospheric variables (e.g., 771 

boundary layer height) or processes may also influence the hazy or clear weather 772 

conditions.occurrence of haze. Furthermore, even though our study shows the potential for an 773 

increase in hazyhaze conducive weather conditions and a reduction in clear weather conditions 774 

for the future periods examined using, the HWI, theactual formation of haze also dependswill 775 

depend on future emissions of air pollutants and their precursors. If the source emissions are 776 
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cut-off or reduced in the future, the risk of haze formation would naturally reduce. 777 

Nevertheless, the projections of changes in the frequency and interannual variance in haze 778 

conducive weather conditions can be very useful for developing successful adaptation and 779 

mitigation policies for the future that consider both emissions and climate change, and therefore 780 

can be beneficial for near and long-term planning and decision-making in relation to improving 781 

future PM2.5 air quality. 782 
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