Preprints
https://doi.org/10.5194/acp-2021-818
https://doi.org/10.5194/acp-2021-818

  04 Oct 2021

04 Oct 2021

Review status: this preprint is currently under review for the journal ACP.

Observed slump of sea land breeze in Brisbane under the effect of aerosols from remote transport during 2019 Australia mega fire events

Lixing Shen, Chuanfeng Zhao, Xingchuan Yang, Yikun Yang, and Ping Zhou Lixing Shen et al.
  • College of Global Change and Earth System Science, and State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China

Abstract. The 2019 Australia mega fires were unprecedented considering its intensity and consistency. There have been many researches on the environmental and ecological effects of the mega fires, most of which focused on the effect of huge aerosol loadings and the ecological devastation. Sea land breeze (SLB) is a regional thermodynamic circulation closely related to coastal pollution dispersion yet few have looked into how it is influenced by different types of aerosols transported from either nearby or remote areas. Mega fires provide an optimal scenario of large aerosol loadings. Near the coastal site of Brisbane Archerfield during January in 2020 when mega fires were the strongest, reanalysis data from Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) showed that mega fires did release huge amounts of aerosols, making aerosol optical depth (AOD) of total aerosols, Black Carbon (BC) and Organic Carbon (OC) approximately 240 %, 425 %, 630 % of the averages of other non-fire years. Using 20 years’ wind observations of hourly time resolution from global observation network managed by National Oceanic and Atmospheric Administration (NOAA), we found that SLB day number during that month was only four, accounting for 33.3 % of the multi-years’ average. The land wind (LW) speed and sea wind (SW) speed also decreased by 22.3 % and 14.8 % compared with their averages respectively. Surprisingly, fire spot and fire radiative power (FRP) analysis showed that heating effect and aerosol emission of the nearby fire spots were not the main cause of local SLB anomaly while the remote transport of aerosols from the fire center was mainly responsible for the decrease of SW, which was partially offset by the heating effect of nearby fire spots and warming effect of long-range transported BC and CO2. The large scale cooling effect of aerosols on sea surface temperature (SST) and the burst of BC contributed to the slump of LW. The remote transport of total aerosols was mainly caused by free diffusion while large scale wind field played a secondary role at 500 m. Large scale wind field played a more important role in aerosol transport at 3 km than at 500 m, especially for the gathered smoke, but free diffusion remained the major contributor. The decrease of SLB speed boosted the local accumulation of aerosols, thus further made SLB speed decrease, forming a positive feedback mechanism.

Lixing Shen et al.

Status: open (until 15 Nov 2021)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on acp-2021-818', Anonymous Referee #1, 13 Oct 2021 reply
  • RC2: 'Comment on acp-2021-818', Anonymous Referee #2, 19 Oct 2021 reply

Lixing Shen et al.

Lixing Shen et al.

Viewed

Total article views: 240 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
191 41 8 240 2 3
  • HTML: 191
  • PDF: 41
  • XML: 8
  • Total: 240
  • BibTeX: 2
  • EndNote: 3
Views and downloads (calculated since 04 Oct 2021)
Cumulative views and downloads (calculated since 04 Oct 2021)

Viewed (geographical distribution)

Total article views: 215 (including HTML, PDF, and XML) Thereof 215 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 22 Oct 2021
Download
Short summary
Using multi-year data, this study reveals the slump of sea-land breeze (SLB) at Brisbane during mega fires and investigates the impact of fire-induced aerosols on SLB. Different aerosols have different impacts on sea wind (SW) and land wind (LW) respectively. Totally, aerosols cause the decrease of SW, partially offset by the warming effect of black carbon (BC). The large scale cooling effect of aerosols on sea surface temperature (SST) and the burst of BC contribute to the slump of LW.
Altmetrics