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Abstract. We assess how nitrogen oxides (NOx=NO+NO2), carbon monoxide (CO) and formaldehyde (HCHO) can be used as

proxies to determine the combustion contribution to atmospheric carbon dioxide (CO2) using satellite observations. We focus

our analysis on 2018 when there is a full complement of column data from the TROPOspheric Monitoring Instrument (NO2,

CO, and HCHO) and the Orbiting Carbon Observatory-2 (CO2). We use the nested GEOS-Chem atmospheric chemistry model

to relate high-resolution emission inventories over Europe to these atmospheric data, taking into account scene-dependent5

averaging kernels. We find that that NO2 and CO are the better candidates to identify incomplete combustion and fingerprints

of different combustion sectors, but both have their own challenges associated with properly describing their atmospheric

chemistry. The secondary source of HCHO from oxidation of biogenic volatile organic compounds, particularly over southern

European countries, compromises its use as a proxy for combustion emissions. We find a weak positive correlation between

the CO:CO2 inventory ratio and observed column enhancements of ∆CO:∆CO2 (R<0.2), suggesting some consistency and10

linearity in CO chemistry and transport. However, we find a stronger negative correlation between the NOx:CO2 inventory ratio

and observed column enhancements of ∆NO2:∆CO2 (R<0.5), driven by non-linear photochemistry. Both of these observed

ratios are described well by the GEOS-Chem atmospheric chemistry transport model, providing confidence of the quality of the

emission inventory and that the model is a useful tool for interpreting these tracer-tracer ratios. Our results also provide some

confidence in our ability to develop a robust method to infer combustion CO2 emission estimates using satellite observations15

of reactive trace gases that have up until now mostly been used to study surface air quality.

1 Introduction

Mitigating the worst effects of future climate relies on our ability to reduce rapidly increasing atmospheric levels of gases

emitted by human activities that effectively absorb outgoing infra-red radiation, and subsequently influence the warming of

Earth’s surface. Atmospheric carbon dioxide (CO2) is the predominant trace gas that continues to affect Earth’s contemporary20

global climate. Inventories of CO2 that describe human activities, primarily derived from national-scale information about fuel
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combustion and the amount of CO2 released per unit of fuel burned, provide invaluable information the spatial and sectoral

emission distributions. Assumptions embedded in the nationally-reported data and consequently the inventories can sometimes

result in substantial uncertainties in the reported emissions. A complementary and independent approach to estimate CO2

emissions is to use atmospheric CO2 data that reflect the net cumulative result of emissions, atmospheric transport, and surface25

uptake. Quantifying the influence of fresh emissions on atmospheric CO2 is an ongoing and pressing science objective. Here,

we explore the relationships between CO2 and reactive trace gases, co-emitted with CO2 during combustion processes, to help

isolate the combustion CO2 from the biospheric fluxes.

Carbon-based fuels have historically dominated global energy use. Extracting energy from these fuels relies on breaking

apart atomic bonds that form the molecular structure of the fuel, thereby releasing energy. This is achieved by combustion in30

which the fuel, composed primarily of hydrogen-carbon bonds, is oxidized by molecular oxygen (O2). Generally, more energy

can be released during combustion for fuels with a higher H:C ratio. The primary combustion products are CO2 and water

vapour, but as the combustion becomes more inefficient (e.g. insufficient O2 to react completely with the fuel) a wider range

of compounds are released, determined by the composition of the fuel being burned. For many combustion processes, air is

used to provide O2. While molecular nitrogen (N2) in air does not take part in the combustion reaction, the high temperatures35

involved can thermally dissociate N2 to facilitate the production of NO (and to a lesser extent NO2) subject to the availability

of O2. Carbon monoxide (CO) is therefore a proxy for incomplete combustion of carbon-based fuel while the amount of NOx

(NO+NO2) released during combustion is also associated with the combustion temperature.

Recent work has highlighted that biofuel combustion can represent a significant fraction of fuel burned over Europe, typically

10% for cities and power plants over western and southern Europe but up to 50% over Nordic cities that use more biomass for40

domestic heating (Ciais et al., 2020). However, as discussed later, we do not distinguish between combustion of fossil fuel and

biofuel, instead focusing on isolating the combustion contribution to CO2. We also do not attempt to determine emissions from

individual sectors, which is currently limited by the data density of atmospheric CO2 and co-emitted trace gases released by

specific combustion processes.

The impetus for our study is the burgeoning capacity to observe accurately gradients of atmospheric CO2 using satellites45

and to attribute those signals to specific regional fluxes. To separate the combustion emission portion of that signal, a growing

number of studies have used NO2 as a proxy for fossil fuel combustion to help infer CO2 emissions (Reuter et al., 2019;

Liu et al., 2020; Hakkarainen et al., 2021; Ialongo et al., 2021) while others have demonstrated current capabilities to infer

emissions of NOx, e.g., Fortems-Cheiney et al. (2021a, b), that can be used to develop post hoc estimates of CO2 via sector-

based emission factors. The main advantage of using NO2 as a tracer of combustion is its atmospheric e-folding lifetime, which50

ranges from hours to a day in the lower troposphere. Consequently, any major surface emissions will result in an observable

plume close to the point of emission. The other advantage of using NO2 is that it is observed by a range of current satellite

instruments, although independent of current instruments observing CO2. More importantly, CO2 and NO2 will be observed

by the same instruments in the near future, including the Copernicus CO2 Monitoring (CO2M) mission (Kuhlmann et al.,

2021) and the Japanese Greenhouse Gases Observing Satellite Greenhouse gases and Water cycle (GOSAT-GW). The value of55

using satellite column observations of NO2 as a global tracer of anthropogenic CO2 emissions has recently been outlined by
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Finch et al. (2021) who used a deep learning method to identify every NO2 plumes observed by the TROPOspheric Monitoring

Instrument (TROPOMI) over a two-year period. They showed these plumes effectively mapped out most of the expected

hotspots across the world, including large urban centres, oil and gas production, major power plants, and shipping routes.

Researchers have used CO as a proxy for incomplete combustion, e.g. (Kasibhatla et al., 2002; Palmer et al., 2006; Wang60

et al., 2009; Konovalov et al., 2014, 2016), which has similar advantages to using NO2 but has a longer e-folding lifetime

(weeks to months depending on season and latitude) and a large, seasonally varying secondary source from the oxidation of

volatile organic compounds (VOCs). Some of these shortcomings will be overcome as measurements progressively have the

capability to resolve smaller spatial scales that are closer to the scale of the responsible point sources. Formaldehyde (HCHO)

is another proxy for incomplete combustion (e.g., Fu et al. (2007a); Gonzi et al. (2011)) but the secondary source of HCHO65

and its uncertainty from the oxidation of biogenic VOCs, particularly over southern Europe (Curci et al., 2010), is sufficiently

large to compromise this measurement from being used effectively to isolate combustion.

Recent studies have used satellite observations and emission inventories to analyze enhancements of atmospheric CO2 and

co-emitted species (CO and NOx) over individual megacities (Hakkarainen et al., 2019; Berezin et al., 2013; Silva et al., 2013)

and large urban areas (Silva and Arellano, 2017; Labzovskii et al., 2019; Lama et al., 2020; Park et al., 2021) but have not70

critically assessed the efficacy of using these data together to isolate the combustion contribution to CO2, which will eventually

be needed to support more formal Bayesian inference methods. In this study, we explore the agreement between model and

observed ratios of NO2, CO, and HCHO with CO2 by taking advantage of a new, high-resolution self-consistent European

emission inventory for these gases (Super et al., 2020), a high-resolution chemistry transport model centred over Europe, and

co-located satellite column measurements of CO2, NO2, CO, and HCHO. We combine this information to interpret model and75

observed ratios at the model grid-scale resolution and at the national scale over Europe.

In the next section, we describe the nested version of GEOS-Chem that we use to study the relationships between emissions

and corresponding atmospheric ratios of CO2 and NO2 and CO over Europe. We also describe the satellite data we use to

evaluate these model relationships. In Sect. 3 we present our analysis and critically assess the efficacy of these ratios to isolate

the combustion contribution of CO2. We conclude the paper in Sect. 4.80

2 Data and Methods

Here we describe the nested GEOS-Chem atmospheric chemistry transport model and the satellite data we use to explore the

relationships between CO2, NO2, and CO. For the purposes of this study, we focus on contrasting summer (July) and winter

(December) months during 2018 when there are data from all relevant satellite instruments.

2.1 GEOS-Chem atmospheric chemistry transport model85

We use v12.6.1 of the GEOS-Chem 3-D atmospheric chemistry transport model (www.geos-chem.org) to describe the rela-

tionship between surface fluxes and atmospheric concentrations of CO, NO2, and CO2. We drive the GEOS-Chem model with
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Goddard Earth Observing System, forward processing (GEOS-FP) meteorological analyses from the Global Modeling and

Assimilation Office (GMAO) at NASA Goddard Space Flight Center.

For the experiments presented here, we use the nested version of GEOS-Chem to study atmospheric CO, NO2, and CO2 over90

Europe (broadly defined as 15◦ W–40◦ E, 30◦–70◦ N, taking into account a buffer zone that helps to absorb any discontinuities

associated with the coarser lateral boundary conditions), driven by the GEOS-FP meteorological analysis at its native spatial

resolution of 0.25◦ (latitude) × 0.3125◦ (longitude). To provide time-dependent lateral boundary conditions for the nested

model, we use a self-consistent version of GEOS-Chem at a coarser resolution of 4◦ (latitude) × 5◦ (longitude). For both

models we use 47 hybrid-sigma levels from the surface to 0.01 hPa, of which 30 lie below the dynamical troposphere.95

We use a GEOS-Chem simulation that includes HOx-NOx-VOC-ozone-halogen-aerosol tropospheric chemistry, which is

coupled with stratospheric chemistry via the unified tropospheric-stratospheric Chemistry eXtension (Eastham et al., 2014).

For our global run, we use anthropogenic emissions of chemically reactive gases (CO, CH4, NH3, NOx, SO2, non-methane

volative organic compounds (VOCs)), carbonaceous aerosols (including black carbon and organic carbon), and CO2, from the

Community Emission Data System (CEDS) global emission inventory (Hoesly et al., 2018). Offline dust aerosol, lightning and100

soil NOx, biogenic VOCs and sea salt aerosols emissions (Weng et al., 2020) are used in both global and regional simulations.

We use Global Fire Emissions Database version 4 (GFED4, http://globalfiredata.org) to describe pyrogenic emissions. The

GFED inventory provides monthly dry matter emissions based on satellite observations of fire activity and vegetation coverage

from MODIS (Moderate Resolution Imaging Spectroradiometer, van Marle et al. (2017)). The GEOS-Chem model calculates

biomass burning emissions of trace gases and aerosols by applying vegetation-specific emission factors (Akagi et al., 2011) to105

the dry matter burned data.

For our nested European domain, we replace our global inventory anthropogenic emissions of CO, NOx, CO2 with the

TNO-GHGco inventory (Netherlands Organization for Applied Scientific Research (TNO), greenhouse gas and co-emitted

species emission database, Super et al. (2020)). This inventory is based on national emissions submitted to the United Nations

Framework Convention on Climate Change for CO2 and to the European Monitoring and Evaluation Programme/Centre on110

Emission Inventories and Projections for NOx and CO. National totals are distributed across individual countries on a 0.05°

latitude × 0.1° longitude grid by using proxies such as the location of large industrial point sources, industrial area land cover

maps for industrial emissions, and road networks derived from Open street map and Open transport map for road transport

emissions (Super et al., 2020). Annual emissions are distributed in time using temporal emission profiles according to month,

day of the week, and the hour of day for every GNFR (Gridded Nomenclature For Reporting) sector code, based on the sector115

specific emission data reported by each country, and long-term mean activity data and/or socio-economic characteristics. The

TNO-GHGco inventory includes 16 sectors (code - sector): A - Public Power, B - Industry, C - Other Stationary Combustion, D -

Figutives, E - Solvents, F - Road Transport (F1–F4), G - Shipping, H - Aviation, I - Off-road transport, J - Waste, K - Agriculture

Live Stock and L - Agriculture Others. The TNO-GHGco inventory also separates fossil fuel and biofuel emissions of CO2 and

CO. Emissions of NOx are converted to units of kg NO2 m−2 s−1 for both the global (CEDS) and the regional (TNO-GHGco)120

inventories, and used as such in the GEOS-Chem model simulations. Consequently, we report NOx emissions in the same

units. We combine emissions from ten GNFR sectors (public power, industry, other stationary combustion, fugitives, all three
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types of road transport, shipping, aviation and off road transport) that involve the combustion of fossil fuel and biofuel to form

combustion emissions. This step is in recognition that we cannot separate emissions from different sectors or the combustion

of two fuel types, in terms of their contribution to observed atmospheric CO2 and NO2 columns.125

Figure 1 shows the European distribution of TNO-GHGco combustion emission estimates (kg m-2 s-1) of CO2, NOx, and

CO for July and December 2018. Combustion emissions are high over major cities (e.g., London, Paris, Madrid), industrial

areas, and over major land and ocean transportation networks, as expected. Figure 2 shows monthly sector contributions to

national total combustion emissions of CO2, NOx, and CO during July and December 2018 from the six highest emitting

European countries, including the United Kingdom. In general, differences in the spatial distributions of emissions (Fig. 1)130

of these three trace gases and between July and December reflect the relative national importance of individual sectors (Fig.

2) that contribute to our combustion emission. Combustion emissions during December are generally higher than July, due

primarily to a contribution from residential heating (C: Other Stationary Combustion) during the colder month (Fig. 2). We

find that the six top CO2 emitting countries for these three gases are consistently Germany, United Kingdom, France, Italy,

Poland, and Spain. Germany is the largest emitter of NOx, CO, and CO2, except for CO during December 2018. The largest135

contributing sectors for these top CO2 emitting countries for NOx, CO, and CO2 are usually public power, industry, residential

heating and transportation (Fig. A1). In terms of fuel type, the majority of CO2 emissions comes from fossil fuel combustion

in both July and December for the top 14 CO2 emitting countries in the domain (Fig. A2), while for CO more than 50% of the

emissions during December comes from biofuel combustion for France, Italy, Spain, Austria, Sweden and Portugal (Fig. A3).

2.2 Satellite observations of CO2, NO2, and CO140

We use dry-air column CO2 (XCO2) observations retrieved by the NASA Orbiting Carbon Observatory-2 (OCO-2), launched

in July 2014 into a sun-synchronous orbit with a local equatorial crossing time of 13:30 in its ascending node (Eldering et al.,

2017). The dimensions of the ground footprint of XCO2 is nominally 1.25 km across track and'2.4 km along track, determined

by the instrument field of view, the orbital speed of the satellite, and the measurement integration time. OCO-2 includes three

spectrometers that measure two CO2 bands (1.61 and 2.06 µm) and the O2 A-Band (0.765 µm) (Crisp et al., 2004). For this145

study, we use OCO-2 Version 10 "Lite" (v10r) data, which is a bias-corrected and quality filtered Level 2 XCO2 retrievals. First,

the bias correction procedure maps the raw XCO2 retrievals of the OCO-2 Level 2 algorithm to the best available estimate of

XCO2, using multi-model mean and TCCON measurements as training data sets (O’dell et al., 2018). Then, additional outlier

filtering is applied to screen out low quality data based on parameters such as albedo, aerosol optical depth and cloud fraction

(Crisp et al., 2021). On monthly timescales, 7 to 12 % of these measurements are considered clear-sky data (cloud and aerosol150

free) that pass all quality tests, with single measurement random errors between 0.5 and 1 ppm at solar zenith angles smaller

than 70° (Eldering et al., 2017).

We also use satellite column observations of CO, NO2, and HCHO from the TROPOMI, aboard the European Space

Agency’s Sentinel-5 Precursor satellite. TROPOMI satellite was launched in 2017 into a sun-synchronous orbit with a local

equatorial overpass time of 13:30 in its ascending node. TROPOMI is a nadir viewing instrument that contains four spectrom-155

eters that cover UV-Vis-NIR-SWIR wavelengths. With a cross-track swath of 2600 km and a high spatial ground footprint
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resolution of 7×7 km2, TROPOMI has near-daily global coverage, subject to cloud-free scenes (Veefkind et al., 2012). Its

operational level 2 trace gas data products include NO2, CO, CH4, O3, HCHO, and SO2). For the purposes of brevity, we refer

the reader to dedicated studies that describe the retrieval of CO (Vidot et al., 2012; Landgraf et al., 2016), NO2 (Boersma

et al., 2010; Van Geffen et al., 2015; Lorente et al., 2017; Zara et al., 2018; Van Geffen et al., 2020), and HCHO (Platt and160

Stutz, 2008; Smedt et al., 2018). Tropospheric column retrieval biases of CO, NO2, and HCHO are <10%, 25–50%, and 80%,

respectively. We use TROPOMI satellite retrievals that have a quality assurance flag with a value >0.5 for CO, >0.75 for

NO2 and >0.5 for HCHO, which removes cloud-covered scenes, partially snow/ice covered scenes, errors and problematic

retrievals, as recommended by respective technical descriptions (https://sentinels.copernicus.eu/web/sentinel/technical-guides/

sentinel-5p/products-algorithms, last accessed 14th July 2021)165

3 Results

Here we report our analysis of TNO-GHGco emissions estimates of CO, NOx, and CO2 and their ratios, and the corresponding

model atmospheric column concentrations and their ratios, which we compare with observed values calculated from OCO-2

and TROPOMI. We do not consider emission ratios that include HCHO because the direct emission is small compared to the

contribution from methane and non-methane VOCs.170

3.1 Inventory emission ratios of combustion NOx:CO2 and CO:CO2

Figure 3 shows the inventory combustion emission ratios, described as mole fractions, of NOx:CO2 and CO:CO2 during July

and December 2018, corresponding to values shown in Fig. 1. These gridded ratios represent the net combustion efficiency of

total emissions weighted by the influence of individual sectors. Generally, higher values of CO:CO2 and NOx:CO2 denote a

lower combustion efficiency, with higher NOx:CO2 values also associated with higher combustion temperatures. We find that175

the NOx:CO2 ratio is higher in July than December, but CO:CO2 ratio is generally higher in December than July, which is

reflected in the national mean values (Fig. 4). This is due to a larger contribution from residential heating (C: Other Stationary

Combustion) to net emissions during December (Fig. 2) for which NOx:CO2 values (0.49–1.95) are lower and CO:CO2 values

(0.60–4.25) are generally higher than for other sectors (Fig. 4).

Figure 4 shows a heatmap of combustion emission mole ratios from eight major sectors (A: Public Power, B: Industry, C:180

Other Stationary Combustion, F1: Road Transport Gasoline, F2: Road Transport Diesel, F3: Road Transport LPG Gas, G:

Shipping and I: Off Road, two sectors excluded here are D: Fugitives and H: Aviation) in the top 14 CO2 emitting countries

(in descending order). We find NOx:CO2 values are higher in shipping, off-road transport and diesel road transport. CO:CO2

values are generally higher in off-road transport, residential heating and gasoline road transport. These ratios are assumed to

be the same in different months of the year (Super et al., 2020), hence total combustion ratios in July and December only differ185

in the relative contribution from each sector (Fig. 2 and A1). In terms of NOx:CO2, Portugal, Norway and Spain are higher

than neighbouring European countries, with Germany having the lowest value. In terms of CO:CO2, Germany has a lower

values than its neighbouring countries. The differences between countries for the two months reflect the relative importance of
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individual sectors (Fig. 2, 4 and A1), in particular, the relative importance of transport, domestic heating and shipping emission.

Closer inspection of Fig. 1 reveals hotspots of CO2 that correspond to cities, large point sources, and transport network. These190

CO2 hotspots manifest themsleves as low values of the emission ratios (Fig. 3). Emissions in the marine troposphere are mainly

due to ship exhaust, which emits more NOx and less CO than land-based sectors, resulting in the rapid gradient of the ratios

between land and ocean.

Figure 4 also shows the corresponding nationwide mean combustion emission ratios of NOx:CO2 and CO:CO2 during July

and December 2018. Generally, CO:CO2 ratios are higher than NOx:CO2 (note the different scaling factor), reflecting higher195

fossil fuel emission factors for CO than for NOx. We find that national values of NOx:CO2 show a smaller dynamic range

than corresponding values of CO:CO2, particularly during July. This will have implications for using these ratios to determine

combustion CO2 emissions from individual countries, particularly those that are geographical neighbours. Portugal has the

highest NOx:CO2 value in the domain, mostly determined by large industrial sources, shipping and off-road transportation.

Norway has the highest value for CO:CO2, mostly contributed by emissions from large industries, residential heating and200

off-road transportation.

3.2 Comparison of observed and model column variations of CO2, CO, NO2 and HCHO

Figure A4 shows typical column averaging kernels for OCO-2 CO2, and TROPOMI CO, NO2, and HCHO, which describe

the sensitivity of the retrieved columns to changes in these gases as a function of altitude through the atmosphere. Model

output, sampled at the time and location of each observation, is convolved with scene-dependent averaging kernels so it can205

be directly compared with observed columns. These averaging kernels generally show that the retrieved columns of all four

gases are sensitive to varying degrees to changes in the lower troposphere where surface emissions have the largest impact

on. Differences between the vertical sensitivities may result in the misinterpretation of the ratios that we attempt to avoid by

applying the kernels to the model output.

3.2.1 Satellite column observations210

Figure 5a, b and c shows monthly OCO-2 CO2, TROPOMI NO2 and CO columns during July 2018, gridded on the GEOS-

Chem nested model 0.25◦×0.3125◦ grid. We find that NO2 has the largest spatial variability across Europe, mainly reflecting

its much shorter atmospheric lifetimes compared with CO and CO2. Tropospheric NO2 columns are generally elevated over

major cities (e.g., London, Paris, Madrid), conurbations (e.g., Manchester, Liverpool) and industrial areas (e.g., Po Valley,

northern Italy) across Europe (Pope et al., 2018; Griffin et al., 2019; Finch et al., 2021). We do not consider December 2018215

because the distribution of CO2 used below to examine atmospheric trace gases ratios is too sparse due to cloudy scenes (Fig.

A5).

Elevated columns of HCHO (Fig. A6) during July 2018 mainly reflect the oxidation of biogenic VOCs (Curci et al., 2010),

particularly over southern European countries where Mediterranean vegetation are emitters of isoprene, which rapidly produces

HCHO with a large molar yield (Palmer et al., 2006; Surl et al., 2018). There are also small direct emissions and contributions220

from industrial activity via the oxidation of anthropogenic VOCs (e.g., Po Valley). The rate at which HCHO is produced from
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the oxidation of anthropogenic VOCs tends to be much larger than biogenic VOCs so that the resulting HCHO column is

smeared over neighbouring grid boxes (Palmer et al., 2003; Abbot et al., 2003; Fu et al., 2007b). Given the limited use of

HCHO as a tracer of combustion we do not pursue this tracer any further.

In contrast to TROPOMI that has a wide cross-track swath, OCO-2 data are sparse that also reflects much stricter filtering225

criteria. With the exception of large point sources, the large, inhomogeneous and slowly varying background values of CO2

precludes any meaningful attribution of elevated values to individual source regions without the use of an atmospheric transport

model.

3.2.2 Satellite columns of CO2, NO2, and CO simulated by the GEOS-Chem model

We use the GEOS-Chem model (Sect. 2), driven by emission inventories (Sect. 2), to describe TROPOMI CO, NO2, and230

OCO-2 CO2. To compare model columns with observations, we first sample the model at the local time and location of each

observation, map the modeled 3-D concentration field onto the satellite retrieval levels (20 for OCO-2 and 34 for TROPOMI),

and then compute the modeled columns using scene-dependent averaging kernels. The GEOS-Chem model then become an

intermediary that relates the TNO-GHGco emission inventories (Sect. 2) to the satellite observations.

For OCO-2 column CO2, the equivalent model XCOm
2 is calculated using:235

XCO2
m = XCO2

a +
∑

i

ηiai(F (x)−ya,i), (1)

where F (x) denotes the GEOS-Chem model that relates a priori flux estimates x to a scene-dependent CO2 profile and the

log-linear interpolation of those values on the model pressure levels to i pressure levels used by the XCO2 retrieval algorithm,

which uses its own a priori values denoted by ya (corresponding to the the column XCOa
2). The pressure weighting function

ηi includes the pressure intervals assigned to the satellite retrieval levels, and ai denotes the scene-dependent averaging kernel240

that describes the sensitivity of the instrument to CO2 as a function of altitude (e.g., Fig. A4). For TROPOMI columns of CO

and NO2, we use a similar method to translate the model into observation space. For NO2, we consider only the tropospheric

column. A detailed description of the method is given by Van Geffen et al. (2020).

Figure 5 shows OCO-2 and TROPOMI measurements and GEOS-Chem model values for CO2, CO and NO2 during July

2018. The model generally reproduces well the observed monthly spatial variations for CO2 (R=0.67), CO (R=0.28) and NO2245

(R = 0.18) across Europe, but has a relative bias of -0.33%, -14.6% and +50.8%, respectively. In addition to capturing the

major NO2 column hotspots, e.g., southern England, Belgium, Netherlands and northern Italy, Fig. 5 shows that elevated NO2

columns are more widespread in GEOS-Chem than TROPOMI. Higher model values over land likely reflect over-reporting

of NOx emissions from rural areas of France, Germany, Poland and other eastern European countries, i.e., errors in emission

inventory, temporal profile and errors in vertical mixing and lifetime of NOx against chemical oxidation. This positive model250

bias could also be due to the mismatch between emission timing and satellite overpass. Overestimation of NO2 columns over

the Bay of Biscay and the northern Mediterranean Sea reflect errors in the modelling of lightning (influencing the upper

troposphere), vertical mixing over water, NOx lifetime, over-reporting of NO2 shipping emission, and challenges in detecting

surface concentrations of NO2 from shipping (Laughner et al., 2016) (Fig. 1). The lifetime of NOx is of the order of hours and

8

https://doi.org/10.5194/acp-2021-816
Preprint. Discussion started: 1 October 2021
c© Author(s) 2021. CC BY 4.0 License.



changes with the chemical environment, including the NOx concentration itself, e.g. Laughner and Cohen (2019). GEOS-Chem255

fails to capture the highest values in TROPOMI NO2 columns, especially over London, Paris, Madrid, Belgium, Netherlands

and western Germany, which is due to some combination of underestimating emissions from these large urban sources, errors

in the model description of NOx photochemistry, and the low sensitivity of averaging kernels to lower levels of the atmosphere

(Fig. A4).

Figure 5 also shows there is better relative agreement between GEOS-Chem and TROPOMI for CO than for NO2, with260

a mean percentage bias of -14.6% compared with 50.8% for NO2, and a better spatial correlation. This reflects the longer

atmospheric lifetime for CO (weeks during summertime) against oxidation by the hydroxyl radical so that atmospheric distri-

butions are less influenced than NO2 columns by immediate and local surface emissions. Observed variations of CO columns

represent the sum of direct emissions from incomplete combustion and a secondary source from the oxidation of methane and

non-methane VOCs (Duncan et al., 2007). The secondary source is usually assumed to be a diffuse source of CO because of265

the time it typically takes to produce CO. Using GEOS-Chem, we find that the secondary source is typically 10–20% of the

total CO source in winter months but in July can be as much as 75% of the total CO source over Europe. This secondary source

will therefore need to be considered if CO is to be used to isolate combustion CO2.

Large model bias for CO (negative) and NO2 (positive), as reported above, limits our ability to infer directly combustion

CO2 from these data. However, the reasonably high spatial correlation between GEOS-Chem and TROPOMI (R=0.60 for NO2270

and R=0.82 for CO) provide us with some confidence in our ability to use enhancement ratios of column CO and NO2 (∆NO2

and ∆CO). To calculate these enhancements, we first determine latitude-dependent background values of the satellite data and

then subtract those from the data. We calculate these background values (i.e., not directly influenced by urban enhancements)

using monthly mean values over the remote Pacific Ocean (175° W to 165° W) in 10° latitude bins. Mean monthly observed

background levels of XCO2, column NO2 and column CO over the remote Pacific Ocean are 390 ppm, 2.46 µ mol m-2 and275

20578 µ mol m-2, respectively. We compute the corresponding background levels for GEOS-Chem model by adjusting the

satellite observed background levels with the model bias (domain mean) in Fig. 5, assuming that model bias is mostly caused

by the background level (boundary condition simulated by the global full chemistry simulation). We subtract these values from

the observations and the GEOS-Chem model to determine ∆XCO2, ∆XCO and ∆XNO2. In the next section, we explore the

relationship between ∆NO2 and ∆CO and the corresponding value of ∆CO2.280

3.3 Observed and model atmospheric variations of CO2, NO2, and CO columns

Figure 6 shows monthly means and the associated standard deviations of observed and model XCO2, NO2, and CO enhance-

ments over Europe during July 2018 across the top 14 CO2 emitting countries. During July 2018, observed XCO2 enhancements

over our European study domain have a mean enhancement of 14.8±1.86 ppm. Belgium, Spain and Portugal have the highest

XCO2 enhancement values, but differences between countries and variations within each country are relatively small. Within285

our European study domain, observed column NO2 and column CO enhancements have mean values of 52.3±33.6 pptv and

22.0±7.4 ppbv during July 2018, respectively. Countries with the highest column NO2 enhancements are Belgium, Nether-

lands, Germany and UK, while differences in column CO enhancement between countries are relatively small. Model en-
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hancements agree reasonably well with observed enhancements on national spatial scales (R=0.85 for CO2, R=0.78 for NO2,

R=0.96 for CO), except for column NO2 enhancement in Netherlands, Belgium and Ireland (relative bias > 20%).290

Figure 7 shows observed and model ∆XNO2:∆XCO2 and ∆XCO:∆XCO2 ratios during July 2018. We find that observed

monthly mean ∆XNO2:∆XCO2 show higher values over Germany, Netherlands, Belgium, Northern Italy, UK and Poland,

corresponding with the hotspots of NO2 column measurements. The same ratios simulated by GEOS-Chem show high values

over the same countries and France, Serbia, Romania and Bulgaria. We generally find that values of ∆XCO:∆XCO2 show

higher values over Eastern Europe than western European countries, both in observed and model values. These ratios are the295

atmospheric equivalent of the ratios determined by the emission inventory shown in Fig. 3. We find that model fails to capture

∆XNO2:∆XCO2 hotspots such as Madrid and Paris due to failure to capture hotspots in column NO2 concentration in Figure

5. To understand the relationship between the emissions and corresponding atmospheric values, we correlate the two sets of

ratios at grid cell level and at national level for July 2018.

Figure 8a show the relationships between the national emissions ratios of CO:CO2 and NOx:CO2 (Fig. 4) and the corre-300

sponding model and observed atmospheric ratios of ∆XCO:∆XCO2 and ∆XNO2:∆XCO2. We find only a weak positive

correlation (R=0.15) between the emission-based ratios, reflecting the importance of different sectors (with varying emission

factors) within countries across Europe. Figure 8b shows observed and model national mean values for ∆XNO2:∆XCO2 and

∆XCO:∆XCO2 ratios. We find that, on national level, both observed and model ratios are positively correlated, with correla-

tion coefficients of R=0.60 and R=0.66, respectively. This suggests both observed and model columns reproduce the positive305

relationship based on the inventory estimates. The comparatively strong correlations found for the observed and model atmo-

spheric ratios reflect the atmospheric mixing of spatially heterogeneous emissions. Observed and model slopes from the linear

regression of the the two ratios are 5.90 and 2.57 (unitless), respectively. Slope values reflect the co-enhancement of column

NO2 with CO, with the model having a smaller enhancement of NO2 per unit of column CO enhancement. This suggests that

the inventory is in error and that the NOx:CO should be smaller, and/or there is a larger NO2 chemical loss than we describe in310

GEOS-Chem (or a smaller chemical loss of CO).

Figure 9 shows the model and observed relationship between the emission-based ratios of NOx:CO2 and CO:CO2 and the

corresponding atmospheric ratios of ∆XNO2:∆XCO2 and ∆XCO:∆XCO2. Figures A7 and A8. show the grid-cell resolution

analysis for the nine countries with the most amount of data. Figure 9 shows good agreement between model and measurements

in terms of the variation of the atmospheric ratio. The situation for the NO2-based ratio (Fig. 9a) is more encouraging. Model315

and observed ∆XNO2:∆XCO2 ratio are both negatively related to the inventory based NOx:CO2 ratio, with correlations

of -0.69 for GEOS-Chem and -0.50 for the satellite observations. At the grid-scale resolution, the United Kingdom, Italy and

Norway demonstrate the similar negative correlation. These countries do not differ significantly from other countries in terms of

relative contribution from different sectors (Fig. 2 and Fig. A1), or national mean combustion ratios (Fig. 4). Hence, the negative

relationships between the inventory-based and atmospheric-based ratios reflect a strong non-linearity between NOx emissions320

and NO2 concentration. This is most likely due to NOx photochemistry, since other factors are generally similar between our

CO and NO2 based ratios, e.g., meteorology. This strong negative correlation in NO2 based ratios requires further investigation

to understand how to best use this information to interpret combustion CO2. Nevertheless, good (negative) correlations between
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emission-based ratios and the observed and model atmospheric column ratios could indicate the feasibility to infer combustion

CO2 from satellite measurements and GEOS-Chem model using co-emitted CO and NOx.325

For CO (Fig. 9b), there is only a weak correlation between combustion CO:CO2 and ∆XCO:∆XCO2 for both GEOS-Chem

and the satellite observations, at national (Fig. 9) and at grid-cell resolutions (Fig. A8). Generally, we find there is more national

variation between the inventory-based CO:CO2 ratio than the corresponding atmospheric ratio, which is due to atmospheric

mixing of CO that has an e-folding lifetime much longer than the transport time over Europe. Similar to the NO2 based ratios,

GEOS-Chem overestimates the column enhancement ratio (Fig. 7b and d).330

4 Concluding remarks

We assessed how three reactive trace gases, nitrogen dioxide (NO2), carbon monoxide (CO) and formaldehyde (HCHO),

can be used as proxies to determine the combustion contribution to atmospheric CO2 in July and December, two contrasting

months in terms of sector emissions and photochemical environment, in 2018. Our choice to focus on combustion emissions

reflects varying contributions of biofuel combustion to national CO2 emission budgets across Europe. We use satellite column335

measurements of CO2 from the NASA Orbiting Carbon Observatory (OCO-2) and satellite tropospheric column data products

of CO, NO2, and HCHO from the European TROPospheric Ozone-Monitoring Instrument (TROPOMI) aboard Sentinel-5P.

We focus our analysis on 2018 when there is a full year of data from OCO-2 and TROPOMI. We use a nested atmospheric

chemistry transport model (GEOS-Chem) driven by self-consistent combustion emissions of CO2, nitrogen oxides (NOx), CO,

and volatile organic compounds (VOCs) that are precursors to HCHO.340

We found that HCHO as a tracer of incomplete combustion is compromised during the summer by biogenic VOC emissions,

particularly over the Mediterranean, and during the winter when the lifetimes of parent anthropogenic VOCs are too long to

relate elevated HCHO columns to anthropogenic activity. Based on our assessment, we conclude that HCHO is unlikely to play

a substantive role in quantifying the combustion contribution to CO2.

Combustion emission estimates for CO2, CO and NOx in July and December 2018 show different spatial distribution due to345

different dominating emission sectors for these trace gases and also in contrasting months, which resulted in spatial variation

in CO:CO2 and NOx:CO2. Hence, we find that NO2 and CO are the better proxies for combustion, but both have their own

challenges. When using satellite measured ∆XNO2 and ∆XCO as a way to identify characteristic ∆X:∆XCO2 ratios (where

X = NO2 or CO and ∆ denotes elevated values above a regional background value) that correspond to combustion, we find

that photochemistry must be taken into account. In the case of NO2, rapid cycling with NO (the sum of which is known as350

NOx) must be considered, which varies with latitude and season. Similarly, any additional production or loss of NOx reservoir

species, e.g., peroxyacyl nitrate (PAN), could significantly alter the ratio. CO is made up of direct anthropogenic and biomass

burning emissions, in addition to a secondary production source from the oxidation of VOCs and methane that can contribute

up to 75% of the total source in summer months. Neglecting atmospheric chemistry will compromise the ability to use these

tracers to determine combustion CO2.355
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When investigating corresponding ratios in reported emission data, we find a weak positive relationship between CO:CO2

and NOx:CO2 ratios on national levels (R<0.4), which suggests that combustion efficiency in terms of co-emitting CO and

NOx are weakly correlated within a country. We also find a weak positive correlation between emission-based ratio CO:CO2

and satellite observed column enhancement ∆XCO:∆XCO2 (R<0.2), which suggests the consistency and linearity in CO

chemistry and transport. Conversely for NO2, we find a stronger negative correlation between NOx:CO2 and enhancement360

∆XNO2:∆XCO2 (R<0.50), which suggests nonlinearity in NOx photochemistry. Both of these relationships are described

reasonably well (similar R values) by the atmospheric chemistry transport model, providing confidence that the model is a

useful tool for interpreting these tracer-tracer ratios.

Some of the challenges we faced in our study, in particular the coincidence of TROPOMI and OCO-2 data, will be partly

addressed with upcoming missions that measure both NO2 and CO2. These missions currently include the Copernicus CO2365

Monitoring (CO2M) mission (Kuhlmann et al., 2021) and the Japanese Greenhouse Gases Observing Satellite Greenhouse

gases and Water cycle (GOSAT-GW). The proposed CO2M mission is temporally staggered three-satellite constellation, re-

sulting in better spatial coverage of the globe per day than currently provided by OCO-2. Developing virtual constellations,

i.e. integrating measurements from independent missions, is an ongoing key objective but relies on rigorous calibration of data

collected by different sensors. Another current challenge is understanding how to use together CO2 and reactive trace gases370

to infer robust combustion emission estimates of CO2. Our work has shown that even over Europe, where our knowledge

of emissions should be relatively good compared to many parts of the world, we find there are sometimes large differences

between model photochemical calculations and satellite observations. Addressing this issue will need an integrated approach

that draws together the atmospheric chemistry and carbon cycle communities.
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Figure 1. Combustion emissions of (left columns) CO2, (middle columns) NOx, and (right columns) CO (kg m-2 s-1) over our European

study domain from the TNO-GHGco inventory during (top row) July and (bottom row) December, 2018, described on the original 0.05°

latitude × 0.1° longitude horizontal resolution.
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Figure 2. Sector contributions to national total combustion emissions (Tg month-1) of CO2, NOx and CO for the top six CO2 emitting

countries across our European study domain. The two columns reported for each country denote values for (left) December and (right) July,

2018.
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Figure 3. Spatially distribution of combustion emission mole ratios (mole/mole) of (top row) NOx:CO2 and (bottom row) CO:CO2 from

the TNO-GHGco inventory during (left column) July and (right column) December 2018, described on the original 0.05° latitude × 0.1°

longitude horizontal resolution.
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Figure 4. Heatmap of national-scale combustion emission mole ratios (mole/mole) for (a) NOx:CO2 and (b) CO:CO2 from eight major

sectors in the top 14 CO2 emitting countries: A: Public Power; B: Industry; C: Other Stationary Combustion; F1: Road Transport Gasoline;

F2: Road Transport Diesel; F3: Road Transport LPG Gas; G: Shipping; and I: Off Road) and two contrasting months (July and December).

Sector D - Fugitve and H - Aviation are excluded due to relatively smaller contribution to the total combustion emission in the domain.
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Figure 5. Satellite measurements and GEOS-Chem model columns of CO2 (ppm), CO (µmol m−2), NO2 (µmol m−2), described on 0.25°

latitude × 0.3125° longitude resolution. The top row shows observed distributions from OCO-2 and TROPOMI, the middle row shows the

corresponding GEOS-Chem distributions, and the bottom row shows GEOS-Chem minus observed distributions. Domain-mean values and

units are shown in the titles of each panel.
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Figure 6. Observed and GEOS-Chem monthly mean and standard deviation of (a) ∆XCO2 (ppm), and (b) ∆NO2 (ppt) and (c) ∆CO columns

(ppb) during July 2018 for the top 14 CO2 emitting countries, in descending order. Correlation coefficients from linear regression are shown

on sub-panel title.
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Figure 7. Observed and GEOS-Chem monthly mean European distributions of (left) ∆XNO2:∆XCO2 and (right) ∆XCO:∆XCO2 ratios

during July 2018, described on 0.25° latitude × 0.3125° longitude resolution.
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Figure 8. European country relationships of a) emission inventory ratios of CO:CO2 and NOx:CO2 and b) (blue) observed and (red) GEOS-

Chem ratios of ∆XNO2:∆XCO2 during July 2018. Correlation coefficients and slopes from linear regression are shown inset of each panel.
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Figure 9. European country relationships of inventory estimates of combustion NOx:CO2 and CO:CO2 and observed and GEOS-Chem

atmospheric ratios of ∆XNO2:∆XCO2 and ∆XCO:∆XCO2. Correlation coefficients and slopes from linear regression are shown inset of

each panel.

26

https://doi.org/10.5194/acp-2021-816
Preprint. Discussion started: 1 October 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure A1. Sector percentage contribution to national total combustion emission of CO2, NOx and CO in (left) December and (right) July

2018 for six European countries.
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Figure A2. Fuel type contribution to national total combustion emissions (Tg month-1) of CO2 and CO in (left) December and (right) July

2018 for 14 European countries.
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Figure A3. Fuel type percentage contribution to national total combustion emission of CO2 and CO in (left) December and (right) July 2018

for 14 European countries.
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Figure A4. Example averaging kernels of NO2, CO, HCHO from TROPOMI and CO2 from OCO-2, on July 5th, 2018 over London, UK.
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Figure A5. Monthly mean dry air column concentration of CO2 (XCO2) retrieved by OCO-2 during (left) July and (right) December 2018.

Values are gridded on the GEOS-Chem model spatial resolution of 0.25°(latitude) × 0.3125°(longitude).
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Figure A6. Monthly mean column density of CO, NO2 and HCHO observed by TROPOMI in (top row) July and (bottom row) December

2018, only data points with qavalue > 0.75 are selected. Values are gridded on the GEOS-Chem model spatial resolution of 0.25° (latitude) ×
0.3125° (longitude).
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Figure A7. Relationship between combustion emission NOx:CO2 and satellite measured ∆XNO2:∆XCO2 (blue) and GEOS-Chem simulated

∆XNO2:∆XCO2 (red) for nine European countries. Correlation coefficient value of simple linear regression analysis is shown on the sub-

panel figure.
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Figure A8. Relationship between combustion emission CO:CO2 and satellite measured ∆XCO:∆XCO2 (blue) and GEOS-Chem simulated

∆XCO:∆XCO2 (red) for nine European countries. Correlation coefficient value of simple linear regression analysis is shown on the sub-

panel figure.
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