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Abstract. Transportation represents the largest sector of anthropogenic CO2 emissions in urban areas in the United States. 

Timely reductions in urban transportation emissions are critical to reaching climate goals set by international treaties, 

national policies, and local governments. Transportation emissions also remain one of the largest contributors to both poor 

air quality (AQ) and to inequities in AQ exposure. As municipal and regional governments create policy targeted at reducing 

transportation emissions, the ability to evaluate the efficacy of such emission reduction strategies at the spatial and temporal 15 
scales of neighborhoods is increasingly important. However, the current state of the art in emissions monitoring does not 

provide the temporal, sectoral, or spatial resolution necessary to track changes in emissions and provide feedback on the 

efficacy of such policies at a neighborhood scale. The BErkeley Air Quality and CO2 Network (BEACO2N) has previously 

been shown to provide constraints on emissions from the vehicle sector in aggregate over a ~1300 km2 multi-city spatial 

domain. Here, we focus on a 5 km, high volume, stretch of highway in the SF Bay area. We show that inversion of the 20 
BEACO2N measurements can be used to understand two factors that affect fuel efficiency: vehicle speed and fleet 

composition. The CO2 emission rate of the average vehicle (g/vkm) are shown to vary by as much as 27% at different times 

of a typical weekday because of changes in these two factors. The BEACO2N-derived emissions estimates are consistent to 

within ~3% of estimates derived from publicly available measures of vehicle type, number, and speed, providing direct 

observational support for the accuracy of the Emissions FACtor model (EMFAC) of vehicle fuel efficiency.  25 

1 Introduction 

Urban emissions currently account for ~75 % of all anthropogenic CO2 emissions (IPCC, 2014). By 2050, roughly 

two-thirds of the earth’s projected population of 9.3 billion is expected to reside within urban areas (IPCC, 2014), meaning 

that effective greenhouse gas emissions reductions strategies must focus on urban emissions reductions.  
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The transportation sector is responsible for ~23% of global greenhouse gas emissions worldwide (IPCC, 2014) and 30 
represents the greatest sectoral percentage (~25-66%) of emissions from within the boundaries of urban areas in the United 

States (Daw, 2020; Gurney et al., 2021). Although fuel efficiency of new internal combustion engine vehicles has increased 

by ~30% over the last 20 years and electric vehicles (EV) are becoming more prevalent  (e.g. 

https://arb.ca.gov/emfac/emissions-inventory), emissions reductions resulting from fuel efficiency gains in newer vehicles 

are negated by an increasing percentage of heavy-duty vehicles (HDV) (Moua, 2020), speed-related reductions in fuel 35 
efficiency resulting from increases in congestion, and an increase of total vehicle kilometers traveled (vkm). Over the past 20 

years, even in locations with aggressive climate change policy, these factors have resulted in CO2 emissions from vehicles 

that have increased or stayed nearly constant. For example, California Air Resources Board estimates that in the state of 

California, per capita vehicle emissions in 2015 were only 2% lower than in 2000 and per capita vehicle kilometers traveled 

(vkm) increased ~2.5% over that time period (California Air Resources Board, 2018). In addition to GHG emissions, the 40 
transportation sector is responsible for a significant share of PM2.5 and NOx emissions, exacerbating PM2.5 and ozone 

exposure in low-income communities and communities of color already experiencing disproportionate health burdens 

associated with poor air quality (Tessum et al., 2021).   

Municipal and regional governments have increasingly shown interest in tracking and reducing CO2 emissions from 

all sectors, including transportation. For example, Boswell et al. (2019) found that 64% of Californians live in a city with a 45 
climate action plan. For urban and regional governments to plan, monitor, and responsively adjust emissions reduction 

policies, an up-to-date understanding of the spatial and temporal variations in total emissions and in emissions by sector and 

subsector processes is key.  

For transportation, reductions in vkm, congestion mitigation, and rules affecting fleet composition (e.g., limiting 

road access to HDV, incentivizing use of electric vehicles, or buy-backs of older vehicles) are three levers that can be 50 
employed to reduce CO2 and AQ emissions from vehicles, thereby affecting the climate footprint, air quality (AQ), and 

environmental justice (EJ) in a region. However, the current state of the art in emissions monitoring and modelling do not 

provide the temporal, sectoral, or spatial resolution necessary to track changes in urban emissions and provide feedback on 

the efficacy of each lever separately. Furthermore, current estimates of the magnitude and sectoral apportionment, of urban 

CO2 emissions can vary widely. For example, Gurney et al. (2021) show how a consistent approach to total emissions from 55 
cities across the U.S. differs from locally constructed inventories in magnitude and sector by sector. 

Spatial and temporal process-level maps of emissions are needed to improve the scientific basis for emission control 

strategies. The current state of the art involves finding aggregate emissions over large regions (counties, states) using 

economic data and downscaling those totals using proxies such as road length, building type or population density. These 

models meet the need for high spatial resolution (~500 m) and capture emissions from many detailed subsectors (Gately et 60 
al., 2015; Gurney et al., 2012; McDonald et al., 2014). Because fuel sales are well-characterized, these models are also likely 

to produce accurate region-wide CO2 emissions totals from the transportation sector.  
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Yet even the most detailed of these inventories do not presently describe the temporal variability in processes that 

affect emissions, such as the direct response of home heating or air conditioning to ambient temperature or, with one 

exception (Gately et al., 2017b), the variations in emissions per km when comparing free-flowing to stop-and-go traffic. 65 
These models often disagree with one another spatially (Gately et al., 2017a), have been subject to only limited testing 

against observations of the atmosphere, and are not designed to be consistent with separately constructed AQ inventories that 

have been subject to much more extensive testing against observations. 

Mobile monitoring campaigns and high-density measurement networks highlight the importance of characterizing 

and identifying the processes contributing to sharp neighborhood-scale AQ and GHG hotspots and point to the importance of 70 
traffic emissions on neighborhood scales. For example, Apte et al. (2017), showed that concentrations of NOx and Black 

Carbon (BC) can vary by as much as a factor of ~8 on the scale of 10s to 100s of meters. Caubel et al. (2019), showed BC 

concentrations to be ~2.5 times higher on trucking routes than on neighboring streets. Such gradients are not represented in 

inventories based on downscaled economic data.  

Observations of CO2 and other greenhouse gases can play an important role in improving and maintaining the 75 
accuracy of emission models—especially during a time of rapid proposed changes. CO2 measurements paired with Bayesian 

inverse models have been shown to provide a quantitative assessment of emissions (Lauvaux et al., 2016; Lauvaux et al., 

2020; Turner, et al., 2020a). To date, most attempts at quantifying urban CO2 emissions have focused on extracting a 

temporally averaged (often a full year) total of the anthropogenic CO2 across the full extent of city. A few studies have 

attempted to disaggregate emissions by sector or fuel type, or describe large shifts in aggregate emissions (Newman et al., 80 
2016; Nathan et al., 2018; Lauvaux et al., 2020; Turner, et al., 2020a),  but none characterize subsector processes of vehicle 

emissions. 

High spatial density observations offer promise as a means to explore process-level emissions details. The BErkeley 

Air Quality and CO2 Network (BEACO2N) is an observing network deployed in the San Francisco Bay Area and other cities 

with measurement spacing of ~2km (Fig. 1, left). In a prior analysis, Turner et al. (2020a) showed that BEACO2N 85 
measurements can detect variation in CO2 emissions with time of day and day of week in addition to the dramatic changes in 

CO2 emissions due to the COVID-related decrease in driving.  

Here, we analyze hourly, spatially-allocated CO2 emissions derived from the inversion of BEACO2N observations 

(Turner et al., 2020a) to explore how well they constrain the CO2 emissions from a 5km stretch of highway. This stretch 

chosen because of its location upwind of consistently active BEACO2N sites and for completeness of traffic data, and 90 
because emission rates are highly affected by speed (vehicles use more fuel per km at very low and high speeds) and fleet-

composition (HDV emit more CO2 per km than light duty vehicles (LDV)). The variation of the ratio of total fleet CO2 

emission per vehicle km traveled (g CO2 / vkm) is used to explore variations in on-road fuel efficiency and the factors 

responsible for that variation. We show that average fuel efficiency of the vehicle fleet on the road varies by as much as 27% 

over the course of a typical weekday. 95 
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2 Methods and Data 

 

2.1 The Berkeley Air quality and CO2 Network 

We use hourly CO2 observations from the Berkeley Air quality and CO2 Network (BEACO2N) (Shusterman et al., 2016; 100 
Kim et al., 2018; Delaria et al., 2021). The BEACO2N network includes more than 70 locations in the SF Bay Area, spaced 

at ~2 km, and measures CO2 with a network instrument error of 1.6 ppm or less (Delaria et al., 2021). All available data from 

January-June 2018-2020 are included in this analysis. During this time, more than 50 distinct locations had nodes that were 

active for a month or more (including 19 sites within 10 km of our highway stretch of interest). The number of nodes active 

at any given time ranged from 7-41, with a mean of 17. Figure 1 shows sites in operation at some point during analysis 105 
period and Fig. S1 shows a timeseries of the number of nodes available throughout the study period. 

 

2.2 The BEACO2N - STILT Inversion System 

To infer CO2 emissions from within the BEACO2N footprint, we use the Stochastic-Time Inverted Lagrangian Transport 

(STILT) model, coupled with a Bayesian inversion as described in detail in Turner et al. (2020a). Briefly, we use 110 
meteorology from NOAA’s HRRR product at 3 km resolution to calculate footprints from each hour at each site, weighted 

by a priori CO2 emissions. The overall region of influence, the network footprint, as defined by a contour representing 40% 

of the CO2 influence is shown in Fig. S2 (left).  We construct a spatially gridded prior emissions inventory using point 

sources provided by the Bay Area Air Quality Management District (2011), home heating emissions as reported by 

BAAQMD (2011) and distributed spatially according to population density, on-road emissions from the High-resolution 115 
Fuel Inventory for Vehicle Emissions (McDonald et al., 2014) varying by hour of week and scaled by year using fuel sales 

data, and a biogenic inventory derived using Solar Induced Fluorescence (SIF) Satellite data (Turner et al., 2020b). 

To ensure a focus on highway emissions, we subtract prior estimates associated with non-highway sources from 

posterior BEACO2N-STILT fluxes. Non-highway sources are small (~12%) in comparison with highway emissions for the 

pixels corresponding with the highway stretch analyzed in this study (Fig. 2, left). We assume the error in prior estimates of 120 
these sources to be an even smaller fraction of the total. For reference, a diel cycle of sector-specific, weekday prior 

emissions for the pixels analyzed in this study is shown in Fig. S3. 

We estimate the BEACO2N-STILT inversion to be precise to at least 30% for a line source. This estimate is based 

on the results of Turner et al. (2016) who used Observation System Simulation Experiments to demonstrate that with 7 days 

of observations at 30 sites a 45 tC/hr line source could be constrained to 15 t C/hr. However, this paper also demonstrated 125 
that error in the posterior decreased as results were averaged over a longer period of time. Here we are using 18 months, 

rather than 7 days of observations, we expect and observe better precision than 30%.   

 

2.3 PeMS-EMFAC – derived CO2 Emissions Estimates 
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Total hourly vehicle flow, truck (HDV) percent, and speed, were retrieved from http://pems.dot.ca.gov for January 130 
– June 2018-2020.  There are ~1800 traffic counting stations hosted by the Caltrans Performance Measurement System 

(PeMS) in the Bay Area, including more than 400 sites (Fig. S2) within the 2020 footprint of the BEACO2N, as described in 

Turner et al. (2020a). These stations count vehicle flow using magnetic loops imbedded in roadways and estimate HDV 

fraction using calculated vehicle speed and assumptions about vehicle length (Kwon et al., 2003). For hours during which 

fewer than 50% of measurements were reported, we fill in total speed and light duty vehicle (LDV) flow gaps by using linear 135 
fits to nearest neighbor sites and gaps in HDV flow using hour-of-day- and weekend/weekday-specific median ratios 

between neighboring sites. We find that using this imputation method, mean absolute errors in speed are 5-10 km h-1, in 

LDV flow are 500 vehicles h-1, and in HDV flow are 50 vehicles / hour. (See Fig. S4.) 

We calculate both LDV and HDV vkm for each highway segment during each hour, using downloaded flow data at 

each sensor location and segment lengths obtained from the PeMS database. For highway segments within the BEACO2N 140 
footprint, vkm are summed to obtain regional highway HDV and LDV vkm for every hour. Figure S2 (left) shows the extent 

of the PeMS network in comparison to the BEACO2N-STILT footprint, as well as total HDV vkm and LDV vkm.  

Vehicle fuel efficiency is dependent on both fleet composition and vehicle speed.  We calculate an emissions rate at 

each location by combining speed and the HDV percentage with fuel efficiency estimates provided by the California Air 

Resources Board’s Emissions FACtor Model (EMFAC2017). The EMFAC2017 model provides yearly fuel efficiency 145 
estimates for the Bay Area for 41 vehicle classes as a function of speed. We group these 41 vehicle types into the categories 

LDV or HDV. (Table S5) PeMS’s vehicle-type classification system is length based, assuming that LDV have a median 

length of 3.7 m and HDV a median length of 18.3 m (Kwon et al., 2003). As a result, we group most light duty trucks into 

the LDV category. To find speed-dependent emissions rate values for the LDV and HDV groups, we find a vkm-weighted 

mean of emissions rates across all vehicle-classes within a group at a given speed 150 

𝑒𝑟!"##$,&'()" =
∑ +,-!,#$%%&#'!,#$%%&
'
!()
∑ +,-!,!"##$'
!()

, (1) 

where i is a vehicle class. From this, we generate LDV and HDV emissions rates at 8.02 km h-1 (5 mph) intervals. (See Fig. 

S6.) EMFAC does not provide data for several LDV vehicle classes at and above 96.8 km h-1 (60 mph). To fill in this gap, 

we estimate emissions rates for the LDV group by using emissions rate to speed slopes (g CO2 vkm-1 km h-1 ) for high speeds 

(88-145 km h-1), using data from Davis et al. (2021).  155 
We calculate emissions rates (g CO2 / vkm) for each (< 1km) road segment between PeMS sensors at a moment in 

time 

𝑒𝑟(𝑡, 𝑠𝑒𝑔) = +,-*+,(/,!#&)#'*+,(/,!#&)1+,--.+,(/,!#&)#'-.+,(/,!#&)
+,-*+,(/,!#&)1+,-.+,(/,!#&)

, (2) 

where emissions rates for cars and trucks are found via spline fit between reported speed for that segment and time with our 

curves for the emissions rates of each vehicle group. A fit is used rather than an individual bins, because of the sharp 160 
gradients that exist at low speeds for LDV. From the emissions rate for each (~1km) segment, we calculate an emissions rate 

for a stretch of highway including several segments to find total emissions rate (er) along a “stretch” over a period of time: 
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𝑒𝑟(𝑡, 𝑠𝑡𝑟𝑒𝑡𝑐ℎ) =
∑ 2+,-*+,(/,!)#'*+,(/,!)1+,-.+,(/,!#&)#'.+,(/,!)3/00	#%23%'-#

∑ 2+,-*+,(/,!)1+,-.+,(/,!)3/00	#%23%'-#
. (3) 

Total CO2 emissions rates for the highway stretch analyzed in this work are shown in Fig. 2 (right, bottom). 

3 Results 165 

To gain insight into the relative impacts of congestion and fleet composition, we calculate fleet-wide vehicle 

emission rates (gCO2/vkm) using two different methods. For both methods, the Caltrans Performance Measurement System 

(PeMS) provides vehicle counts, speed and categorizes HDV vs. LDV (http://pems.dot.ca.gov). Using this data and estimates 

of fuel per km from the EMissions FACtor 2017 (EMFAC) Model, we calculate the CO2 emissions per km for the average 

vehicle with hourly time resolution as described above. Second, we use the PeMS data in combination with g CO2 per unit 170 
area derived from the BEACO2N-STILT inversion system. We focus on the ~5 km stretch of Interstate-80 just north of the 

San Francisco-Oakland Bay Bridge (Fig. 2).  Interstate 80 is an East-West Highway whose orientation in this stretch is 

mainly North-South, with eastbound lanes traveling north and westbound lanes traveling south. The road has 5 lanes in each 

direction and is often subject to high congestion (vehicles traveling slower than the posted speed).  

PeMS-EMFAC-derived emissions rates give us insight into (1) the expected variation in emissions rates across a 175 
typical day (Fig. 2) and (2) the relative impacts of congestion vs. HDV percentage as factors leading to this variation (Fig. 

S7). For example, while the west-bound segment experiences speeds significantly below free-flow during both morning and 

evening rush hours, the east-bound segment experiences significant congestion only during the evening. Because of a steep 

gradient in LDV emission rates between 20 and 50 km h-1 (Fig. S6), the west-bound congestion in this segment occurs at 

speeds that are more fuel efficient than free-flow. The overall variance in emissions rates over the whole stretch is 180 
significantly smaller than in either of the directions shown individually. 

From PeMS-EMFAC-derived emissions factors, we predict a median diel cycle with emissions per km travelled 

ranging from ~247 to ~314 g CO2 / vkm. For reference, if all vehicles were driving at the speed limit of 104.6 km h-1 (65 

mph) and the fleet mix was 6% HDV and 94% LDV, we calculate an emission rate of 265 g CO2 / vkm. The range of 

predicted emissions are narrower on the weekend (238 to 276 g CO2 / vkm), both because fewer HDV use the road and 185 
because there is a smaller range in speed.  

Figure S7 shows the hourly variation in the relative contributions of LDV speed, HDV percentage, and HDV speed 

to the deviation in g CO2 / vkm from the reference value of 265 g CO2 / vkm. The solid line is the mean and the shaded 

envelope represents the day-to-day variance. In the morning and mid-day, HDV percentage and LDV speed have opposite 

impacts on g CO2 / vkm, leading to small variations in g CO2 / vkm over the day, despite substantial variations in the 190 
separate effects of speed and HDV %. During evening rush hour, low vehicle speeds result in higher emission rates, leading 

to large positive deviations. High day-to-day variance in vehicle speed contributes to high day-to-day variance in emission 

rates. At times near midnight, large, positive deviations are observed, mostly as a consequence of high HDV percentage, but 
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also because traffic flows at rates higher than 104.6 kph, leading to higher emission rates. Night-to-night variance in HDV 

percentage is low, thus variance in nighttime predicted g CO2 / vkm is small. HDV speed has little impact on g CO2 / vkm.  195 
We use CO2 measurements from 50 BEACO2N sites across the Bay Area, combined with the BEACO2N-STILT 

inversion system to assess highway emissions from our stretch of interest. In Fig. 1, we show the location of BEACO2N 

sites, the stretch of interest, and emissions estimates for this stretch. Note that the posterior emissions move substantially 

from prior emissions towards what is estimated from PeMS-EMFAC, particularly during evening rush hour, when the prior 

overestimates emissions by ~20%.  200 
We compare BEACO2N-derived and PeMS-EMFAC-derived emissions rates (CO2 / vkm) and find remarkable 

agreement. The PeMS-EMFAC-derived emissions rates range from 225-300 g CO2 / vkm and include effects of both fleet 

composition and variation in speed. For BEACO2N, we use the total CO2 emissions from the inversion at times 

corresponding to narrow bins of PeMS-EMFAC g CO2 / vkm. Figure 3 (left) shows an example of data selected at times with 

with PeMS-EMFAC-derived fuel efficiency in the range 271.4-279 g CO2 / vkm. There is a range of emissions at each vkm 205 
because of noise in the inversion, variation in speed and variation in fleet composition. The slope of a fit to the data in Fig. 3 

(left) is an estimate of the emissions rate (equation 4), where CO2 emissions is defined as hourly emissions summed over 

BEACO2N pixels corresponding to our highway stretch of interest (Fig. 2) 

𝑒𝑟(	𝑔	𝐶𝑂4/𝑣𝑘𝑚) = 	
564	#-8!!(9!

+,-
.  (4) 

Using 18 months of data for weekdays between 4 am and 10 pm, we compare PeMS-EMFAC-derived and 210 
BEACO2N-derived CO2 / vkm (Fig. 3, right). These hours were chosen, because they represent the hours for which we 

expect traffic emissions to be substantially larger than emissions from other sources in our area of interest (See Fig. S3). 

Fitting to a line forced through the origin, emissions rates found via the BEACO2N inversion are within 3% (0.97 +/- 0.01) 

of those predicted using PeMS-EMFAC traffic counts. A more complete description of this fitting and error calculation 

process can be found in Text S8 and a comparison to results from applying this method to the prior can be found in S9. 215 
Using the definition of limit of detection as three times our uncertainty, we calculate that we would be able to detect an 11% 

change in individual points (representing bins of fuel efficiency from a combination of HDV percent and speed) and a 3% 

change in the slope. Because 18 months of data was required to reach this level of certainty, if we assume the 2.3-3.8% per 

year decrease in emission rate found by Kim, et al. 2021, we should be able to detect a change in overall fuel efficiency with 

three full years of BEACO2N-STILT output. 220 
We also consider how emissions rates compare throughout the day (Fig. 4, top). During the evening, PeMS-

EMFAC-derived and BEACO2N-derived emission rates are in good agreement. The BEACO2N g CO2/vkm increases from 

256 g CO2 / vkm before rush hour (2 pm) to 324 g CO2/ vkm during peak rush hour (5 pm). Likewise, the PeMS-EMFAC-

derived CO2/vkm increases from 256 CO2 / vkm to 320 CO2 / vkm over the same time period. The BEACO2N prior has a 

slightly larger increase in emission rate over this period (256 g CO2/vkm at 2PM to 361 g CO2/vkm at 5PM). In contrast, 225 
during the morning rush hours, we see less agreement between PeMS-EMFAC-derived and BEACO2N-derived emission 
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rate estimates. The BEACO2N inversion is similar to the PeMS-EMFAC estimate at 5 am local time (280 g CO2 / vkm) and 

then the BEACO2N estimate increases over the morning rush hour to 330 g CO2 / vkm at 8 am.  This behavior is different 

than either the BEACO2N prior (175 at 5 am and 275 at 8 am) or the PeMS-EMFAC calculation which decreases over this 

period (275 at 5 am and 250 at 8 am).  230 
The discrepancy in the morning between emissions derived from PeMS-EMFAC and BEACO2N can potentially be 

reconciled by congestion. There is a non-linear relationship between vehicle speed and the rate of emissions.  As such, 

congestion involving non-constant speeds can result in higher emissions than would be estimated using the average vehicle 

speed.  This can be seen from a simple example.  Consider two cases: 1) a LDV travelling at a constant 50 km h-1 for one 

hour and 2) a LDV traveling at 100 km h-1  for 20 minutes and 25 km h-1  for 40 minutes.  Both vehicles travel 50 km in one 235 
hour and therefore have the same average speed.  However, the emissions rate is 461.5 g CO2/vkm at 25 km h-1, 195 g 

CO2/vkm at 50 km h-1, and 221 g CO2/vkm at 100 km h-1.  Using these emission rates, the vehicle in the first case would emit 

9.75 kg CO2 whereas the vehicle with the variable speed in the second case would emit 15 kg CO2. 

Contrasting the speeds (Fig. 4 bottom, right) during these two periods, we see that while both show a bi-modal 

speed distribution, a greater fraction of morning speeds fall into the 40-100 kph range, whereas a greater fraction of evening 240 
speeds are < 40 km h-1 or > 100 km h-1. We show in Fig. S10, emission rate estimates based on hourly averaged speeds 

between 0-40 km h-1 and 100-140 km h-1 (more common in evening rush hour) are likely an upper bound on possible 

emission rates corresponding to those hourly averaged speeds, whereas emission rate estimates based on hourly averaged 

speeds between 40-100 km h-1 (more common in morning rush hour) likely represent a lower bound of emissions. The 

predicted range in emission rate resulting from non-constant speeds, combined with a larger HDV % in the morning (Fig. 4 245 
bottom, right), is large enough to explain the mismatch observed during morning rush hour. 

4 Discussion 

Strategic reduction of emissions from transportation is important to both reducing total GHG emissions and improving AQ. 

To make informed decisions that reduce GHGs and exposure to poor AQ, policy makers need to know (1) how much is 

being emitted, (2) location and timing of emissions, and (3) the relative impact of various sub-sector processes (vkm, fleet 250 
composition, congestion).  

To effectively capture emissions from sub-sector processes, models are also reliant on emissions factor models, 

such as the EMFAC2017 emissions model used in this paper. While our BEACO2N-STILT based estimates largely agree 

with the EMFAC2017 emissions model for CO2, tracking on-road changes in emission factors will be especially important as 

the impacts of congestion and fleet composition evolve rapidly, making timely updates essential to creating spatially 255 
accurate inventories. For example, the EMFAC model predicts an 18% decrease in overall CO2 emission rates by 2030, 

resulting from the improved fuel efficiency of combustion engine vehicles and a transition to hybrid and EV (~6.8% of LDV 

vkm and ~6% of HDV vkm are expected to be traveled by EV by 2030). While the increased share of hybrid and EV should 
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work to decrease the impact of congestion, a projected increase in total congestion and congested-vkm share by HDV (Texas 

A&M Transportation Institute, 2019) is likely to work against that trend, making the overall result difficult to predict.  260 
To our knowledge, this paper represents the first demonstration that a high-density atmospheric observing network 

can both diagnose and quantify relative contributions of sub-sector processes at the neighborhood scale.  We demonstrate 

that the BEACO2N network (~2 km spacing) of low-cost CO2 sensors, can be used to quantify emission rates at a specific 

location (~5 km stretch) and by time of day. We show that on the highway stretch, activity-based emissions estimates that 

account for speed and HDV % match the inference from atmospheric measurements to within 3%. Finally, we demonstrate 265 
that the BEACO2N-STILT system detects daily changes in fuel efficiency that range from 200-300 g CO2 / vkm and this 

system would be capable of detecting fleet-wide changes in fuel efficiency in ~3 years. 

 

5 Outlook 

 270 
In this work, we have demonstrated that the BEACO2N-STILT system was able to infer emission rates from 

vehicles along a specific stretch of highway. To understand the extent to which this method can be applied to other contexts, 

future work should investigate the extent to which various elements of the BEACO2N-STILT system, including 

measurement density, error in meteorology used to calculate STILT trajectories, and the quality of the prior, impact the 

ability of similar systems to estimate emissions.  275 
For example, it is possible that the mismatch we observe during the morning rush hour may be due to a larger 

relative meteorological model error during the morning as compared to the afternoon and early evening in which the 

boundary layer is relatively well mixed. Because a highly mixed boundary layer is important for minimizing discrepancies 

between particle trajectories in the STILT model and real transport (Lin et al., 2003), inversions typically use only 

measurements taken during the afternoon, (Lauvaux et al., 2016; Nathan et al., 2019; Lauvaux et al., 2020) when the 280 
boundary layer is relatively well mixed. However, as discussed by Martin et al. (2019), the impacts of meteorological 

mismatch during the morning may be offset by stronger signal, and future work should explore the extent to which averaging 

results over long time periods or strategic filtering of meteorological mismatches can combat emissions error. 

Beyond further exploration of the elements influencing the sensitivity and precision of the BEACO2N-STILT 

system, because each BEACO2N node measures CO, NOx, and PM2.5 in addition to CO2 (Kim et al., 2018), the method 285 
presented in this paper has the potential to shed light subsector processes impacting emission factors of these co-emitted 

species. This is salient because plume-based emission factor measurements of co-emitted pollutants show various emissions 

factor models systematically underestimate emissions (Bishop, 2021), fail to capture spatial heterogeneity in these factors 

due to fleet composition (age and compliance with control technologies) for PM (Haugen et al., 2018; Park, et al., 2016) and 

Black Carbon (Preble et al., 2018), or fail to capture the impact of temperature on emissions factors. 290 
Applying these methods across a broader spatial area and to other species (PM2.5, NOx, CO) should yield 

information of interest to both scientists and policy makers by:  
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1. Revealing spatial and temporal trends in emission rates and emission factors across an urban area and quantifying the 

contributions of congestion, fleet composition, or other factors to spatial variations. 

2. Identifying and diagnosing the causes of traffic-related AQ hotspots that contribute to exposure inequities.  295 
3. Tracking trends in the above over periods of years to decades. 

 

Author Contributions:  

HLF derived CO2 emissions from traffic data, conceived of project design, wrote manuscript, collected CO2 data. AJT 

created and ran CO2 inversion code. HLF, JK, KC, ERD, CN, PW collected CO2 data. RCC gave feedback on project design, 300 
assisted in writing manuscript. 

 

Competing Interest Statement: We have no competing interests to disclose. 

 

Acknowledgments: HLF was supported by NSF GRFP fellowship and Microsoft Research Internship. Thanks to K. Lauter 305 
and MSR Urban Innovation Group for support in thinking through PeMS data acquisition. AJT was supported as a Miller 

Fellow with the Miller Institute for Basic Research in Science at UC Berkeley. This research was funded by grants from the 

Koret Foundation and University of California, Berkeley. This research used the Savio computational cluster resource 

provided by the Berkeley Research Computing program at the University of California, Berkeley (supported by the UC 

Berkeley Chancellor, Vice Chancellor for Research, and Chief Information Officer). Thanks to HSK for reading through and 310 
offering organizational suggestions on the manuscript. 

Data Availability: The CO2 data used for this study are publicly available at http://beacon.berkeley.edu (Cohen Research, 

2021). Raw data can be given upon request. The traffic data used for this study is publicly available at 

https://pems.dot.ca.gov/. 

References 315 

Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., Marshall, J.D., Portier, C.J., 

Vermeulen, R.C.H., Hamburg, S. P. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting 

Big Data. Environmental Science and Technology, 51(12), 6999–7008. https://doi.org/10.1021/acs.est.7b00891, 2017 

Bishop, G. A. Does California’s EMFAC2017 vehicle emissions model underpredict California light-duty gasoline vehicle 

NOx emissions? Journal of the Air and Waste Management Association, 71(5), 597–606. 320 
https://doi.org/10.1080/10962247.2020.1869121, 2021. 

Boswell, M. R., & Madilyn Jacobson, A. R. 2019 Report on the State of Climate Action Plans in California. 

https://ww2.arb.ca.gov/sites/default/files/2020-03/17RD033.pdf, last accessed: January 12, 2022, 2019. 



11 
 

California Air Resources Board. 2018 PROGRESS REPORT: California’s Sustainable Communities and Climate Protection 

Act, (November), 96. https://ww2.arb.ca.gov/sites/default/files/2018-325 
11/Final2018Report_SB150_112618_02_Report.pdf, last accessed: January 12, 2022 

Caubel, J. J., Cados, T. E., Preble, C. V., & Kirchstetter, T. W. A Distributed Network of 100 Black Carbon Sensors for 100 

Days of Air Quality Monitoring in West Oakland, California. Environmental Science and Technology, 53(13), 7564–

7573. https://doi.org/10.1021/acs.est.9b00282, 2019. 

Davis, S. C., Diegel, S. W., & Boundy, R. G. Transportation Energy Data Book, Edition 29. Energy. 330 
https://tedb.ornl.gov/wp-content/uploads/2021/02/TEDB_Ed_39.pdf, last accessed January 12, 2022 

City of Oakland: Oakland Equitable Climate Action Plan. https://cao-94612.s3.amazonaws.com/documents/Oakland-ECAP-

07-24.pdf, last accessed January 12, 2022. 

Delaria, E.R., Kim, J., Fitzmaurice, H.L., Newman, C., Wooldridge, P.J., Worthington, K. and Cohen, R.C., The Berkeley 

Environmental Air-quality and CO 2 Network: field calibrations of sensor temperature dependence and assessment of 335 
network scale CO 2 accuracy. Atmospheric Measurement Techniques, 14(8), pp.5487-5500. 

https://doi.org/10.5194/amt-14-5487-2021, 2021 

Gately, C. K., & Hutyra, L. R. Large Uncertainties in Urban-Scale Carbon Emissions. Journal of Geophysical Research: 

Atmospheres, 122(20), 11,242-11,260. https://doi.org/10.1002/2017JD027359, 2017a. 

Gately, C. K., Hutyra, L. R., Peterson, S., & Sue Wing, I. Urban emissions hotspots: Quantifying vehicle congestion and air 340 
pollution using mobile phone GPS data. Environmental Pollution, 229, 496–504. 

https://doi.org/10.1016/j.envpol.2017.05.091, 2017b.  

Gately, C. K., Hutyra, L. R., & Wing, I. S. Cities, traffic, and CO2: A multidecadal assessment of trends, drivers, and scaling 

relationships. Proceedings of the National Academy of Sciences of the United States of America, 112(16), 4999–5004. 

https://doi.org/10.1073/pnas.1421723112, 2015. 345 
Gurney, K.R., Liang, J., Roest, G., Song, Y., Mueller, K., & Lauvaux, T.  Under-reporting of greenhouse gas emissions in 

U.S. cities. Nature Communications, 12(1), 1–7. https://doi.org/10.1038/s41467-020-20871-0, 2021. 

Gurney, K. R., Razlivanov, I., Song, Y., Zhou, Y., Benes, B., & Abdul-Massih, M. Quantification of fossil fuel CO2 

emissions on the building/street scale for a large U.S. City. Environmental Science and Technology, 46(21), 12194–

12202. https://doi.org/10.1021/es3011282, 2012. 350 
Haugen, M. J., & Bishop, G. A. Long-Term Fuel-Specific NOx and Particle Emission Trends for In-Use Heavy-Duty 

Vehicles in California. Environmental Science and Technology, 52(10), 6070–6076. research-article. 

https://doi.org/10.1021/acs.est.8b00621, 2018. 

IPCC. (2014). Climate Change 2014 Part A: Global and Sectoral Aspects. Climate Change 2014: Impacts, Adaptation, and 

Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report 355 
of the Intergovernmental Panel on Climate Change.  

Kim, J., Shusterman, A. A., Lieschke, K. J., Newman, C., & Cohen, R. C. The Berkeley Atmospheric CO2 Observation 



12 
 

Network: Field calibration and evaluation of low-cost air quality sensors. Atmospheric Measurement Techniques, 

11(4), 1937–1946. https://doi.org/10.5194/amt-11-1937-2018, 2018. 

Kim, J. Turner, A.J., Fitzmaurice, H.L., Delaria, E.R., Newman, C., Wooldridge, P.J., Cohen, R.C. Observing annual trends 360 
in vehicular CO2 emissions (submitted to Environmental Science and Technology), 2021. 

Kwon, J., Varaiya, P., & Skabardonis, A. Estimation of Truck Traffic Volume from Single Loop Detectors with Lane-to-

Lane Speed Correlation. Transportation Research Record, 684(1856), 106–117. https://doi.org/10.3141/1856-11, 2003. 

Lauvaux, T., Gurney, K. R., Miles, N. L., Davis, K. J., Richardson, S. J., Deng, A., Nathan, B. J., Oda, T. Wang, J. A., 

Hutyra, L., Turnbull, J. Policy-relevant assessment of urban CO2emissions. Environmental Science and Technology, 365 
54(16), 10237–10245. https://doi.org/10.1021/acs.est.0c00343, 2020. 

Lauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O., Davis, K. J., Gaudet, B. Gurney, K. R., Huang, J. 

O'Keefe, D., Song, Y., Karion, A., Oda, T., Patarsuk, R., Razlivanov, I., Sarmiento, D., Shepson, P, Sweeney, C. 

Turnbull, J. Wu, K. High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the 

Indianapolis flux experiment (INFLUX). Journal of Geophysical Research, 121(10), 5213–5236. 370 
https://doi.org/10.1002/2015JD024473, 2016. 

Lian, J., Bréon, F.M., Broquet, G., Lauvaux, T., Zheng, B., Ramonet, M., Xueref-Remy, I., Kotthaus, S., Haeffelin, M. and 

Ciais, P., Sensitivity to the sources of uncertainties in the modeling of atmospheric CO 2 concentration within and in 

the vicinity of Paris. Atmospheric Chemistry and Physics, 21(13), pp.10707-10726. https://doi.org/10.5194/acp-21-

10707-2021, 2021. 375 
Martin, C.R., Zeng, N., Karion, A., Mueller, K., Ghosh, S., Lopez-Coto, I., Gurney, K.R., Oda, T., Prasad, K., Liu, Y. and 

Dickerson, R.R., Investigating sources of variability and error in simulations of carbon dioxide in an urban region. 

Atmospheric environment, 199, pp.55-69. https://doi.org/10.1016/j.atmosenv.2018.11.013, 2019. 

McDonald, B.C., McBride, Z.C., Martin, E.W. and Harley, R.A.,  High‐resolution mapping of motor vehicle carbon dioxide 

emissions. Journal of Geophysical Research: Atmospheres, 119(9), pp.5283-5298. 380 
https://doi.org/10.1002/2013JD021219, 2014.  

Moua, F. (2020). California Annual Fuel Outlet Report Results (CEC-A15), Energy Assessments Division, California 

Energy Comission., https://www.energy.ca.gov/media/3874, last accessed January 13, 2022 

Nathan, B.J., Lauvaux, T., Turnbull, J.C., Richardson, S.J., Miles, N.L. and Gurney, K.R., Source sector attribution of CO2 

emissions using an urban CO/CO2 Bayesian inversion system. Journal of Geophysical Research: Atmospheres, 385 
123(23), pp.13-611. https://doi.org/10.1029/2018JD029231, 2018. 

Newman, S., Xu, X., Gurney, K.R., Hsu, Y.K., Li, K.F., Jiang, X., Keeling, R., Feng, S., O'Keefe, D., Patarasuk, R. and 

Wong, K.W., Toward consistency between trends in bottom-up CO 2 emissions and top-down atmospheric 

measurements in the Los Angeles megacity. Atmospheric Chemistry and Physics, 16(6), pp.3843-3863. 

https://doi.org/10.5194/acp-16-3843-2016,  2016. 390 
Park, S. S., Vijayan, A., Mara, S. L., & Herner, J. D. Investigating the real-world emission characteristics of light-duty 



13 
 

gasoline vehicles and their relationship to local socioeconomic conditions in three communities in Los Angeles, 

California. Journal of the Air and Waste Management Association, 66(10), 1031–1044. 

https://doi.org/10.1080/10962247.2016.1197166, 2016. 

Preble, C. V., Cados, T. E., Harley, R. A., & Kirchstetter, T. W., In-Use Performance and Durability of Particle Filters on 395 
Heavy-Duty Diesel Trucks. Environmental Science and Technology, 52(20), 11913–11921. research-article. 

https://doi.org/10.1021/acs.est.8b02977, 2018. 

Shusterman, A. A., Teige, V. E., Turner, A. J., Newman, C., Kim, J., & Cohen, R. C., The Berkeley Atmospheric CO2 

Observation Network: Initial evaluation. Atmospheric Chemistry and Physics, 16(21), 13449–13463. 

https://doi.org/10.5194/acp-16-13449-2016, 2016. 400 
Tessum, C. W., Paolella, D. A., Chambliss, S. E., Apte, J. S., Hill, J. D., & Marshall, J. D., PM2.5 polluters 

disproportionately and systemically affect people of color in the United States. Science Advances, 7(18), 1–7. 

https://doi.org/10.1126/sciadv.abf4491, 2021. 

Texas A&M Transportation Institute. (2019). Urban Mobility Report 2019, 182. 

https://static.tti.tamu.edu/tti.tamu.edu/documents/umr/archive/mobility-report-2019.pdf, last accessed January 13, 405 
2022. 

Turner, A.J., Kim, J., Fitzmaurice, H., Newman, C., Worthington, K., Chan, K., Wooldridge, P.J., Köehler, P., Frankenberg, 

C. and Cohen, R.C., 2020. Observed impacts of COVID‐19 on urban CO 2 Emissions. Geophysical Research Letters, 

47(22), p.e2020GL090037.Geophysical Research Letters, 47(22), 1–6. https://doi.org/10.1029/2020GL090037, 2020a. 

Turner, A. J., Köhler, P., Magney, T. S., Frankenberg, C., Fung, I., & Cohen, R. C., A double peak in the seasonality of 410 
California’s photosynthesis as observed from space. Biogeosciences, 17(2), 405–422. https://doi.org/10.5194/bg-17-

405-2020, 2020b. 

Turner, A. J., Shusterman, A. A., McDonald, B. C., Teige, V., Harley, R. A., & Cohen, R. C., Network design for 

quantifying urban CO2 emissions: Assessing trade-offs between precision and network density. Atmospheric 

Chemistry and Physics, 16(21), 13465–13475. https://doi.org/10.5194/acp-16-13465-2016, 2016. 415 
 

  



14 
 

Figures and Tables 

 
Figure 1. Left: Map of the BEACO2N Network shows all sites (blue dots) for which there are more than 420 
4 weeks of data during the period analyzed (Jan-June 2018-2020). Red stars indicate location of PeMS 
monitors used in this study. Right (top): CO2 values shown for a ‘typical week’ during time period 
observed. Dark line represents the median value observed across all sites and times. Shaded envelope 
represents 1 sigma variance across the network and over the 2 year period. Right (bottom): CO2 
emissions on all highway pixels in the domain as derived from the inversion of BEACO2N observations 425 
(blue), BEACO2N prior (black), and PeMS-EMFAC-based estimate (red). Shaded envelope shows 
variance in emissions during the 18-month analysis window.   
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Figure 2: Left: ~5km stretch over which we analyze g CO2/ vkm. Points show the location of PeMS 430 
stations. Squares show pixels associated with BEACO2N STILT output which we use for comparison 
for 5km stretch. Right (top): Hourly average speed shown for two opposite (West in red, East in blue) 
PeMS measurement stations for a typical week. Right (middle): PeMS-EMFAC-derived emissions rates 
calculated for two opposite (West in red, East in blue) PeMS measurement stations for a typical week. 
Right (bottom): Aggregate PeMS-EMFAC-derived estimated emissions rates from the two directions of 435 
traffic for a typical week for this highway stretch. 
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Figure 3: Left: BEACO2N-derived emissions vs. vkm for times corresponding to modeled emission 
rates of 271.4-279 g CO2/ vkm. Red points represent binned medians used in fitting. Right: BEACO2N-440 
derived vs. PeMS-EMFAC derived emissions rates with uncertainty estimate. Black line shows fit 
weighted by variance: y = 0.97(.01)x . Grey envelope is 5% deviation from fit. Red line represents 1:1 
line. 
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 445 

 
Figure 4: Top: Emissions rates by time of day on weekdays for PeMS-derived (red), BEACO2N-prior 
(blue), and BEACO2N posterior (green).  Bottom: Probability density functions of truck fraction (left) 
and speed (right) from weekday morning (5-9 am) and evening (4-8 pm) rush hour period on the 
segment of I-80 analyzed in the Results section. Y-axis represents the relative probability of HDV 450 
fraction (left) or averaged hourly speed (right). Speeds are from individual PeMS sensors, while truck 
fraction is aggregated over the whole stretch under consideration (both directions).  
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