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Abstract. Transportation represents the largest sector of anthropogenic CO2 emissions in urban areas in the United States. 

Timely reductions in urban transportation emissions are critical to reaching climate goals set by international treaties, 

national policies, and local governments. Transportation emissions also remain one of the largest contributors to both poor 

air quality (AQ) and to inequities in AQ exposure. As municipal and regional governments create policy targeted at reducing 

transportation emissions, the ability to evaluate the efficacy of such emission reduction strategies at the spatial and temporal 15 
scales of neighborhoods is increasingly important. However, the current state of the art in emissions monitoring does not 

provide the temporal, sectoral, or spatial resolution necessary to track changes in emissions and provide feedback on the 

efficacy of such policies at a neighborhood scale. The BErkeley Air Quality and CO2 Network (BEACO2N) has previously 

been shown to provide constraints on emissions from the vehicle sector in aggregate over a ~1300 km2 multi-city spatial 

domain. Here, we focus on a 5 km, high volume, stretch of highway in the SF Bay area. We show that inversion of the 20 
BEACO2N measurements can be used to understand two factors that affect fuel efficiency: vehicle speed and fleet 

composition. The CO2 emission rate of the average vehicle (g/vkm) are shown to vary by as much as 27% at different times 

of a typical weekday because of changes in these two factors. The BEACO2N-derived emissions estimates are consistent to 

within ~3% of estimates derived from publicly available measures of vehicle type, number, and speed, providing direct 

observational support for the accuracy of the Emissions FACtor model (EMFAC) of vehicle fuel efficiency.  25 

1 Introduction 

Urban emissions currently account for ~75 % of all anthropogenic CO2 emissions (IPCC, 2014). By 2050, roughly 

two-thirds of the earth’s projected population of 9.3 billion is expected to reside within urban areas (IPCC, 2014), meaning 

that effective greenhouse gas emissions reductions strategies must focus on urban emissions reductions.  
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The transportation sector is responsible for ~23% of global greenhouse gas emissions worldwide (IPCC, 2014) and 

represents the greatest sectoral percentage (~25-66%) of emissions from within the boundaries of urban areas in the United 

States (Daw, 2020; Gurney et al., 2021). Although fuel efficiency of new internal combustion engine vehicles has increased 

by ~30% over the last 20 years and electric vehicles (EV) are becoming more prevalent  (e.g. 

https://arb.ca.gov/emfac/emissions-inventory), emissions reductions resulting from fuel efficiency gains in newer vehicles 50 
are negated by an increasing percentage of heavy-duty vehicles (HDV) (Moua, 2020), speed-related reductions in fuel 

efficiency resulting from increases in congestion, and an increase of total vehicle kilometers traveled (vkm). Over the past 20 

years, even in locations with aggressive climate change policy, these factors have resulted in CO2 emissions from vehicles 

that have increased or stayed nearly constant. For example, California Air Resources Board estimates that in the state of 

California, per capita vehicle emissions in 2015 were only 2% lower than in 2000 and per capita vehicle kilometers traveled 55 
(vkm) increased ~2.5% over that time period (California Air Resources Board, 2018). In addition to GHG emissions, the 

transportation sector is responsible for a significant share of PM2.5 and NOx emissions, exacerbating PM2.5 and ozone 

exposure in low-income communities and communities of color already experiencing disproportionate health burdens 

associated with poor air quality (Tessum et al., 2021).   

Municipal and regional governments have increasingly shown interest in tracking and reducing CO2 emissions from 60 
all sectors, including transportation. For example, Boswell et al. (2019) found that 64% of Californians live in a city with a 

climate action plan. For urban and regional governments to plan, monitor, and responsively adjust emissions reduction 

policies, an up-to-date understanding of the spatial and temporal variations in total emissions and in emissions by sector and 

subsector processes is key.  

For transportation, reductions in vkm, congestion mitigation, and rules affecting fleet composition (e.g., limiting 65 
road access to HDV, incentivizing use of electric vehicles, or buy-backs of older vehicles) are three levers that can be 

employed to reduce CO2 and AQ emissions from vehicles, thereby affecting the climate footprint, air quality (AQ), and 

environmental justice (EJ) in a region. However, the current state of the art in emissions monitoring and modelling do not 

provide the temporal, sectoral, or spatial resolution necessary to track changes in urban emissions and provide feedback on 

the efficacy of each lever separately. Furthermore, current estimates of the magnitude and sectoral apportionment, of urban 70 
CO2 emissions can vary widely. For example, Gurney et al. (2021) show how a consistent approach to total emissions from 

cities across the U.S. differs from locally constructed inventories in magnitude and sector by sector. 

Spatial and temporal process-level maps of emissions are needed to improve the scientific basis for emission control 

strategies. The current state of the art involves finding aggregate emissions over large regions (counties, states) using 

economic data and downscaling those totals using proxies such as road length, building type or population density. These 75 
models meet the need for high spatial resolution (~500 m) and capture emissions from many detailed subsectors (Gately et 

al., 2015; Gurney et al., 2012; McDonald et al., 2014). Because fuel sales are well-characterized, these models are also likely 

to produce accurate region-wide CO2 emissions totals from the transportation sector.  
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Yet even the most detailed of these inventories do not presently describe the temporal variability in processes that 

affect emissions, such as the direct response of home heating or air conditioning to ambient temperature or, with one 100 
exception (Gately et al., 2017b), the variations in emissions per km when comparing free-flowing to stop-and-go traffic. 

These models often disagree with one another spatially (Gately et al., 2017a), have been subject to only limited testing 

against observations of the atmosphere, and are not designed to be consistent with separately constructed AQ inventories that 

have been subject to much more extensive testing against observations. 

Mobile monitoring campaigns and high-density measurement networks highlight the importance of characterizing 105 
and identifying the processes contributing to sharp neighborhood-scale AQ and GHG hotspots and point to the importance of 

traffic emissions on neighborhood scales. For example, Apte et al. (2017), showed that concentrations of NOx and Black 

Carbon (BC) can vary by as much as a factor of ~8 on the scale of 10s to 100s of meters. Caubel et al. (2019), showed BC 

concentrations to be ~2.5 times higher on trucking routes than on neighboring streets. Such gradients are not represented in 

inventories based on downscaled economic data.  110 
Observations of CO2 and other greenhouse gases can play an important role in improving and maintaining the 

accuracy of emission models—especially during a time of rapid proposed changes. CO2 measurements paired with Bayesian 

inverse models have been shown to provide a quantitative assessment of emissions (Lauvaux et al., 2016; Lauvaux et al., 

2020; Turner, et al., 2020a). To date, most attempts at quantifying urban CO2 emissions have focused on extracting a 

temporally averaged (often a full year) total of the anthropogenic CO2 across the full extent of city. A few studies have 115 
attempted to disaggregate emissions by sector or fuel type, or describe large shifts in aggregate emissions (Newman et al., 

2016; Nathan et al., 2018; Lauvaux et al., 2020; Turner, et al., 2020a),  but none characterize subsector processes of vehicle 

emissions. 

High spatial density observations offer promise as a means to explore process-level emissions details. The BErkeley 

Air Quality and CO2 Network (BEACO2N) is an observing network deployed in the San Francisco Bay Area and other cities 120 
with measurement spacing of ~2km (Fig. 1, left). In a prior analysis, Turner et al. (2020a) showed that BEACO2N 

measurements can detect variation in CO2 emissions with time of day and day of week in addition to the dramatic changes in 

CO2 emissions due to the COVID-related decrease in driving.  

Here, we analyze hourly, spatially-allocated CO2 emissions derived from the inversion of BEACO2N observations 

(Turner et al., 2020a) to explore how well they constrain the CO2 emissions from a 5km stretch of highway. This stretch 125 
chosen because of its location upwind of consistently active BEACO2N sites and for completeness of traffic data, and 

because emission rates are highly affected by speed (vehicles use more fuel per km at very low and high speeds) and fleet-

composition (HDV emit more CO2 per km than light duty vehicles (LDV)). The variation of the ratio of total fleet CO2 

emission per vehicle km traveled (g CO2 / vkm) is used to explore variations in on-road fuel efficiency and the factors 

responsible for that variation. We show that average fuel efficiency of the vehicle fleet on the road varies by as much as 27% 130 
over the course of a typical weekday. 
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2 Methods and Data 

 

2.1 The Berkeley Air quality and CO2 Network 

We use hourly CO2 observations from the Berkeley Air quality and CO2 Network (BEACO2N) (Shusterman et al., 2016; 170 
Kim et al., 2018; Delaria et al., 2021). The BEACO2N network includes more than 70 locations in the SF Bay Area, spaced 

at ~2 km, and measures CO2 with a network instrument error of 1.6 ppm or less (Delaria et al., 2021). All available data from 

January-June 2018-2020 are included in this analysis. During this time, more than 50 distinct locations had nodes that were 

active for a month or more (including 19 sites within 10 km of our highway stretch of interest). The number of nodes active 

at any given time ranged from 7-41, with a mean of 17. Figure 1 shows sites in operation at some point during analysis 175 
period and Fig. S1 shows a timeseries of the number of nodes available throughout the study period. 

 

2.2 The BEACO2N - STILT Inversion System 

To infer CO2 emissions from within the BEACO2N footprint, we use the Stochastic-Time Inverted Lagrangian Transport 

(STILT) model, coupled with a Bayesian inversion as described in detail in Turner et al. (2020a). Briefly, we use 180 
meteorology from NOAA’s HRRR product at 3 km resolution to calculate footprints from each hour at each site, weighted 

by a priori CO2 emissions. The overall region of influence, the network footprint, as defined by a contour representing 40% 

of the CO2 influence is shown in Fig. S2 (left).  We construct a spatially gridded prior emissions inventory using point 

sources provided by the Bay Area Air Quality Management District (2011), home heating emissions as reported by 

BAAQMD (2011) and distributed spatially according to population density, on-road emissions from the High-resolution 185 
Fuel Inventory for Vehicle Emissions (McDonald et al., 2014) varying by hour of week and scaled by year using fuel sales 

data, and a biogenic inventory derived using Solar Induced Fluorescence (SIF) Satellite data (Turner et al., 2020b). 

To ensure a focus on highway emissions, we subtract prior estimates associated with non-highway sources from 

posterior BEACO2N-STILT fluxes. Non-highway sources are small (~12%) in comparison with highway emissions for the 

pixels corresponding with the highway stretch analyzed in this study (Fig. 2, left). We assume the error in prior estimates of 190 
these sources to be an even smaller fraction of the total. For reference, a diel cycle of sector-specific, weekday prior 

emissions for the pixels analyzed in this study is shown in Fig. S3. 

We estimate the BEACO2N-STILT inversion to be precise to at least 30% for a line source. This estimate is based 

on the results of Turner et al. (2016) who used Observation System Simulation Experiments to demonstrate that with 7 days 

of observations at 30 sites a 45 tC/hr line source could be constrained to 15 t C/hr. However, this paper also demonstrated 195 
that error in the posterior decreased as results were averaged over a longer period of time. Here we are using 18 months, 

rather than 7 days of observations, we expect and observe better precision than 30%.   

 

2.3 PeMS-EMFAC – derived CO2 Emissions Estimates 
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Total hourly vehicle flow, truck (HDV) percent, and speed, were retrieved from http://pems.dot.ca.gov for January 

– June 2018-2020.  There are ~1800 traffic counting stations hosted by the Caltrans Performance Measurement System 

(PeMS) in the Bay Area, including more than 400 sites (Fig. S2) within the 2020 footprint of the BEACO2N, as described in 230 
Turner et al. (2020a). These stations count vehicle flow using magnetic loops imbedded in roadways and estimate HDV 

fraction using calculated vehicle speed and assumptions about vehicle length (Kwon et al., 2003). For hours during which 

fewer than 50% of measurements were reported, we fill in total speed and light duty vehicle (LDV) flow gaps by using linear 

fits to nearest neighbor sites and gaps in HDV flow using hour-of-day- and weekend/weekday-specific median ratios 

between neighboring sites. We find that using this imputation method, mean absolute errors in speed are 5-10 km h-1, in 235 
LDV flow are 500 vehicles h-1, and in HDV flow are 50 vehicles / hour. (See Fig. S4.) 

We calculate both LDV and HDV vkm for each highway segment during each hour, using downloaded flow data at 

each sensor location and segment lengths obtained from the PeMS database. For highway segments within the BEACO2N 

footprint, vkm are summed to obtain regional highway HDV and LDV vkm for every hour. Figure S2 (left) shows the extent 

of the PeMS network in comparison to the BEACO2N-STILT footprint, as well as total HDV vkm and LDV vkm.  240 
Vehicle fuel efficiency is dependent on both fleet composition and vehicle speed.  We calculate an emissions rate at 

each location by combining speed and the HDV percentage with fuel efficiency estimates provided by the California Air 

Resources Board’s Emissions FACtor Model (EMFAC2017). The EMFAC2017 model provides yearly fuel efficiency 

estimates for the Bay Area for 41 vehicle classes as a function of speed. We group these 41 vehicle types into the categories 

LDV or HDV. (Table S5) PeMS’s vehicle-type classification system is length based, assuming that LDV have a median 245 
length of 3.7 m and HDV a median length of 18.3 m (Kwon et al., 2003). As a result, we group most light duty trucks into 

the LDV category. To find speed-dependent emissions rate values for the LDV and HDV groups, we find a vkm-weighted 

mean of emissions rates across all vehicle-classes within a group at a given speed 

𝑒𝑟!"##$,&'()" =
∑ +,-!,#$%%&#'!,#$%%&
'
!()

∑ +,-!,!"##$'
!()

, (1) 

where i is a vehicle class. From this, we generate LDV and HDV emissions rates at 8.02 km h-1 (5 mph) intervals. (See Fig. 250 
S6.) EMFAC does not provide data for several LDV vehicle classes at and above 96.8 km h-1 (60 mph). To fill in this gap, 

we estimate emissions rates for the LDV group by using emissions rate to speed slopes (g CO2 vkm-1 km h-1 ) for high speeds 

(88-145 km h-1), using data from Davis et al. (2021).  

We calculate emissions rates (g CO2 / vkm) for each (< 1km) road segment between PeMS sensors at a moment in 

time 255 

𝑒𝑟(𝑡, 𝑠𝑒𝑔) =
+,-*+,(/,!#&)#'*+,(/,!#&)1+,--.+,(/,!#&)#'-.+,(/,!#&)

+,-*+,(/,!#&)1+,-.+,(/,!#&)
, (2) 

where emissions rates for cars and trucks are found via spline fit between reported speed for that segment and time with our 

curves for the emissions rates of each vehicle group. A fit is used rather than an individual bins, because of the sharp 

gradients that exist at low speeds for LDV. From the emissions rate for each (~1km) segment, we calculate an emissions rate 

for a stretch of highway including several segments to find total emissions rate (er) along a “stretch” over a period of time: 260 
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𝑒𝑟(𝑡, 𝑠𝑡𝑟𝑒𝑡𝑐ℎ) =
∑ 2+,-*+,(/,!)#'*+,(/,!)1+,-.+,(/,!#&)#'.+,(/,!)3/00	#%23%'-#

∑ 2+,-*+,(/,!)1+,-.+,(/,!)3/00	#%23%'-#
. (3) 

Total CO2 emissions rates for the highway stretch analyzed in this work are shown in Fig. 2 (right, bottom). 280 

3 Results 

To gain insight into the relative impacts of congestion and fleet composition, we calculate fleet-wide vehicle 

emission rates (gCO2/vkm) using two different methods. For both methods, the Caltrans Performance Measurement System 

(PeMS) provides vehicle counts, speed and categorizes HDV vs. LDV (http://pems.dot.ca.gov). Using this data and estimates 

of fuel per km from the EMissions FACtor 2017 (EMFAC) Model, we calculate the CO2 emissions per km for the average 285 
vehicle with hourly time resolution as described above. Second, we use the PeMS data in combination with g CO2 per unit 

area derived from the BEACO2N-STILT inversion system. We focus on the ~5 km stretch of Interstate-80 just north of the 

San Francisco-Oakland Bay Bridge (Fig. 2).  Interstate 80 is an East-West Highway whose orientation in this stretch is 

mainly North-South, with eastbound lanes traveling north and westbound lanes traveling south. The road has 5 lanes in each 

direction and is often subject to high congestion (vehicles traveling slower than the posted speed).  290 
PeMS-EMFAC-derived emissions rates give us insight into (1) the expected variation in emissions rates across a 

typical day (Fig. 2) and (2) the relative impacts of congestion vs. HDV percentage as factors leading to this variation (Fig. 

S7). For example, while the west-bound segment experiences speeds significantly below free-flow during both morning and 

evening rush hours, the east-bound segment experiences significant congestion only during the evening. Because of a steep 

gradient in LDV emission rates between 20 and 50 km h-1 (Fig. S6), the west-bound congestion in this segment occurs at 295 
speeds that are more fuel efficient than free-flow. The overall variance in emissions rates over the whole stretch is 

significantly smaller than in either of the directions shown individually. 

From PeMS-EMFAC-derived emissions factors, we predict a median diel cycle with emissions per km travelled 

ranging from ~247 to ~314 g CO2 / vkm. For reference, if all vehicles were driving at the speed limit of 104.6 km h-1 (65 

mph) and the fleet mix was 6% HDV and 94% LDV, we calculate an emission rate of 265 g CO2 / vkm. The range of 300 
predicted emissions are narrower on the weekend (238 to 276 g CO2 / vkm), both because fewer HDV use the road and 

because there is a smaller range in speed.  

Figure S7 shows the hourly variation in the relative contributions of LDV speed, HDV percentage, and HDV speed 

to the deviation in g CO2 / vkm from the reference value of 265 g CO2 / vkm. The solid line is the mean and the shaded 

envelope represents the day-to-day variance. In the morning and mid-day, HDV percentage and LDV speed have opposite 305 
impacts on g CO2 / vkm, leading to small variations in g CO2 / vkm over the day, despite substantial variations in the 

separate effects of speed and HDV %. During evening rush hour, low vehicle speeds result in higher emission rates, leading 

to large positive deviations. High day-to-day variance in vehicle speed contributes to high day-to-day variance in emission 

rates. At times near midnight, large, positive deviations are observed, mostly as a consequence of high HDV percentage, but 
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also because traffic flows at rates higher than 104.6 kph, leading to higher emission rates. Night-to-night variance in HDV 

percentage is low, thus variance in nighttime predicted g CO2 / vkm is small. HDV speed has little impact on g CO2 / vkm.  

We use CO2 measurements from 50 BEACO2N sites across the Bay Area, combined with the BEACO2N-STILT 

inversion system to assess highway emissions from our stretch of interest. In Fig. 1, we show the location of BEACO2N 320 
sites, the stretch of interest, and emissions estimates for this stretch. Note that the posterior emissions move substantially 

from prior emissions towards what is estimated from PeMS-EMFAC, particularly during evening rush hour, when the prior 

overestimates emissions by ~20%.  

We compare BEACO2N-derived and PeMS-EMFAC-derived emissions rates (CO2 / vkm) and find remarkable 

agreement. The PeMS-EMFAC-derived emissions rates range from 225-300 g CO2 / vkm and include effects of both fleet 325 
composition and variation in speed. For BEACO2N, we use the total CO2 emissions from the inversion at times 

corresponding to narrow bins of PeMS-EMFAC g CO2 / vkm. Figure 3 (left) shows an example of data selected at times with 

with PeMS-EMFAC-derived fuel efficiency in the range 271.4-279 g CO2 / vkm. There is a range of emissions at each vkm 

because of noise in the inversion, variation in speed and variation in fleet composition. The slope of a fit to the data in Fig. 3 

(left) is an estimate of the emissions rate (equation 4), where CO2 emissions is defined as hourly emissions summed over 330 
BEACO2N pixels corresponding to our highway stretch of interest (Fig. 2) 

𝑒𝑟(	𝑔	𝐶𝑂4/𝑣𝑘𝑚) = 	
564	#-8!!(9!

+,-
.  (4) 

Using 18 months of data for weekdays between 4 am and 10 pm, we compare PeMS-EMFAC-derived and 

BEACO2N-derived CO2 / vkm (Fig. 3, right). These hours were chosen, because they represent the hours for which we 

expect traffic emissions to be substantially larger than emissions from other sources in our area of interest (See Fig. S3). 335 
Fitting to a line forced through the origin, emissions rates found via the BEACO2N inversion are within 3% (0.97 +/- 0.01) 

of those predicted using PeMS-EMFAC traffic counts. A more complete description of this fitting and error calculation 

process can be found in Text S8 and a comparison to results from applying this method to the prior can be found in S9. 

Using the definition of limit of detection as three times our uncertainty, we calculate that we would be able to detect an 11% 

change in individual points (representing bins of fuel efficiency from a combination of HDV percent and speed) and a 3% 340 
change in the slope. Because 18 months of data was required to reach this level of certainty, if we assume the 2.3-3.8% per 

year decrease in emission rate found by Kim, et al. 2021, we should be able to detect a change in overall fuel efficiency with 

three full years of BEACO2N-STILT output. 

We also consider how emissions rates compare throughout the day (Fig. 4, top). During the evening, PeMS-

EMFAC-derived and BEACO2N-derived emission rates are in good agreement. The BEACO2N g CO2/vkm increases from 345 
256 g CO2 / vkm before rush hour (2 pm) to 324 g CO2/ vkm during peak rush hour (5 pm). Likewise, the PeMS-EMFAC-

derived CO2/vkm increases from 256 CO2 / vkm to 320 CO2 / vkm over the same time period. The BEACO2N prior has a 

slightly larger increase in emission rate over this period (256 g CO2/vkm at 2PM to 361 g CO2/vkm at 5PM). In contrast, 

during the morning rush hours, we see less agreement between PeMS-EMFAC-derived and BEACO2N-derived emission 
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rate estimates. The BEACO2N inversion is similar to the PeMS-EMFAC estimate at 5 am local time (280 g CO2 / vkm) and 395 
then the BEACO2N estimate increases over the morning rush hour to 330 g CO2 / vkm at 8 am.  This behavior is different 

than either the BEACO2N prior (175 at 5 am and 275 at 8 am) or the PeMS-EMFAC calculation which decreases over this 

period (275 at 5 am and 250 at 8 am).  

The discrepancy in the morning between emissions derived from PeMS-EMFAC and BEACO2N can potentially be 

reconciled by congestion. There is a non-linear relationship between vehicle speed and the rate of emissions.  As such, 400 
congestion involving non-constant speeds can result in higher emissions than would be estimated using the average vehicle 

speed.  This can be seen from a simple example.  Consider two cases: 1) a LDV travelling at a constant 50 km h-1 for one 

hour and 2) a LDV traveling at 100 km h-1  for 20 minutes and 25 km h-1  for 40 minutes.  Both vehicles travel 50 km in one 

hour and therefore have the same average speed.  However, the emissions rate is 461.5 g CO2/vkm at 25 km h-1, 195 g 

CO2/vkm at 50 km h-1, and 221 g CO2/vkm at 100 km h-1.  Using these emission rates, the vehicle in the first case would emit 405 
9.75 kg CO2 whereas the vehicle with the variable speed in the second case would emit 15 kg CO2. 

Contrasting the speeds (Fig. 4 bottom, right) during these two periods, we see that while both show a bi-modal 

speed distribution, a greater fraction of morning speeds fall into the 40-100 kph range, whereas a greater fraction of evening 

speeds are < 40 km h-1 or > 100 km h-1. We show in Fig. S10, emission rate estimates based on hourly averaged speeds 

between 0-40 km h-1 and 100-140 km h-1 (more common in evening rush hour) are likely an upper bound on possible 410 
emission rates corresponding to those hourly averaged speeds, whereas emission rate estimates based on hourly averaged 

speeds between 40-100 km h-1 (more common in morning rush hour) likely represent a lower bound of emissions. The 

predicted range in emission rate resulting from non-constant speeds, combined with a larger HDV % in the morning (Fig. 4 

bottom, right), is large enough to explain the mismatch observed during morning rush hour. 

4 Discussion 415 

Strategic reduction of emissions from transportation is important to both reducing total GHG emissions and improving AQ. 

To make informed decisions that reduce GHGs and exposure to poor AQ, policy makers need to know (1) how much is 

being emitted, (2) location and timing of emissions, and (3) the relative impact of various sub-sector processes (vkm, fleet 

composition, congestion).  

To effectively capture emissions from sub-sector processes, models are also reliant on emissions factor models, 420 
such as the EMFAC2017 emissions model used in this paper. While our BEACO2N-STILT based estimates largely agree 

with the EMFAC2017 emissions model for CO2, tracking on-road changes in emission factors will be especially important as 

the impacts of congestion and fleet composition evolve rapidly, making timely updates essential to creating spatially 

accurate inventories. For example, the EMFAC model predicts an 18% decrease in overall CO2 emission rates by 2030, 

resulting from the improved fuel efficiency of combustion engine vehicles and a transition to hybrid and EV (~6.8% of LDV 425 
vkm and ~6% of HDV vkm are expected to be traveled by EV by 2030). While the increased share of hybrid and EV should 
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work to decrease the impact of congestion, a projected increase in total congestion and congested-vkm share by HDV (Texas 

A&M Transportation Institute, 2019) is likely to work against that trend, making the overall result difficult to predict.  

To our knowledge, this paper represents the first demonstration that a high-density atmospheric observing network 450 
can both diagnose and quantify relative contributions of sub-sector processes at the neighborhood scale.  We demonstrate 

that the BEACO2N network (~2 km spacing) of low-cost CO2 sensors, can be used to quantify emission rates at a specific 

location (~5 km stretch) and by time of day. We show that on the highway stretch, activity-based emissions estimates that 

account for speed and HDV % match the inference from atmospheric measurements to within 3%. Finally, we demonstrate 

that the BEACO2N-STILT system detects daily changes in fuel efficiency that range from 200-300 g CO2 / vkm and this 455 
system would be capable of detecting fleet-wide changes in fuel efficiency in ~3 years. 

 

5 Outlook 

 

In this work, we have demonstrated that the BEACO2N-STILT system was able to infer emission rates from 460 
vehicles along a specific stretch of highway. To understand the extent to which this method can be applied to other contexts, 

future work should investigate the extent to which various elements of the BEACO2N-STILT system, including 

measurement density, error in meteorology used to calculate STILT trajectories, and the quality of the prior, impact the 

ability of similar systems to estimate emissions.  

For example, it is possible that the mismatch we observe during the morning rush hour may be due to a larger 465 
relative meteorological model error during the morning as compared to the afternoon and early evening in which the 

boundary layer is relatively well mixed. Because a highly mixed boundary layer is important for minimizing discrepancies 

between particle trajectories in the STILT model and real transport (Lin et al., 2003), inversions typically use only 

measurements taken during the afternoon, (Lauvaux et al., 2016; Nathan et al., 2019; Lauvaux et al., 2020) when the 

boundary layer is relatively well mixed. However, as discussed by Martin et al. (2019), the impacts of meteorological 470 
mismatch during the morning may be offset by stronger signal, and future work should explore the extent to which averaging 

results over long time periods or strategic filtering of meteorological mismatches can combat emissions error. 

Beyond further exploration of the elements influencing the sensitivity and precision of the BEACO2N-STILT 

system, because each BEACO2N node measures CO, NOx, and PM2.5 in addition to CO2 (Kim et al., 2018), the method 

presented in this paper has the potential to shed light subsector processes impacting emission factors of these co-emitted 475 
species. This is salient because plume-based emission factor measurements of co-emitted pollutants show various emissions 

factor models systematically underestimate emissions (Bishop, 2021), fail to capture spatial heterogeneity in these factors 

due to fleet composition (age and compliance with control technologies) for PM (Haugen et al., 2018; Park, et al., 2016) and 

Black Carbon (Preble et al., 2018), or fail to capture the impact of temperature on emissions factors. 

Applying these methods across a broader spatial area and to other species (PM2.5, NOx, CO) should yield 480 
information of interest to both scientists and policy makers by:  
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1. Revealing spatial and temporal trends in emission rates and emission factors across an urban area and quantifying the 

contributions of congestion, fleet composition, or other factors to spatial variations. 

2. Identifying and diagnosing the causes of traffic-related AQ hotspots that contribute to exposure inequities.  

3. Tracking trends in the above over periods of years to decades. 490 
 

Author Contributions:  

HLF derived CO2 emissions from traffic data, conceived of project design, wrote manuscript, collected CO2 data. AJT 

created and ran CO2 inversion code. HLF, JK, KC, ERD, CN, PW collected CO2 data. RCC gave feedback on project design, 

assisted in writing manuscript. 495 
 

Competing Interest Statement: We have no competing interests to disclose. 

 

Acknowledgments: HLF was supported by NSF GRFP fellowship and Microsoft Research Internship. Thanks to K. Lauter 

and MSR Urban Innovation Group for support in thinking through PeMS data acquisition. AJT was supported as a Miller 500 
Fellow with the Miller Institute for Basic Research in Science at UC Berkeley. This research was funded by grants from the 

Koret Foundation and University of California, Berkeley. This research used the Savio computational cluster resource 

provided by the Berkeley Research Computing program at the University of California, Berkeley (supported by the UC 

Berkeley Chancellor, Vice Chancellor for Research, and Chief Information Officer). Thanks to HSK for reading through and 

offering organizational suggestions on the manuscript. 505 

Data Availability: The CO2 data used for this study are publicly available at http://beacon.berkeley.edu (Cohen Research, 

2021). Raw data can be given upon request. The traffic data used for this study is publicly available at 

https://pems.dot.ca.gov/. 

References 

Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., Marshall, J.D., Portier, C.J., 510 
Vermeulen, R.C.H., Hamburg, S. P. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting 

Big Data. Environmental Science and Technology, 51(12), 6999–7008. https://doi.org/10.1021/acs.est.7b00891, 2017 

Bishop, G. A. Does California’s EMFAC2017 vehicle emissions model underpredict California light-duty gasoline vehicle 

NOx emissions? Journal of the Air and Waste Management Association, 71(5), 597–606. 

https://doi.org/10.1080/10962247.2020.1869121, 2021. 515 
Boswell, M. R., & Madilyn Jacobson, A. R. 2019 Report on the State of Climate Action Plans in California. 

https://ww2.arb.ca.gov/sites/default/files/2020-03/17RD033.pdf, last accessed: January 12, 2022, 2019. 

Deleted: CO2 emissions

Deleted: spatially 

Deleted: <#>Characterizing emissions rates and emissions 520 
factors as a function of location, congestion, fleet composition, or 
meteorology. ¶

Formatted: Font: 10 pt

Formatted: Line spacing:  1.5 lines

Deleted: ED

Formatted: Font: 10 pt

Deleted: avail- able

Formatted: Line spacing:  1.5 lines

Formatted: Font: 10 pt

Deleted: …525 
Deleted:  (2017).

Deleted:  (2021).

Deleted: (2019). 

Deleted:  FINAL REPORT Principal Investigator, (17).



 

11 
 

California Air Resources Board. 2018 PROGRESS REPORT: California’s Sustainable Communities and Climate Protection 530 
Act, (November), 96. https://ww2.arb.ca.gov/sites/default/files/2018-

11/Final2018Report_SB150_112618_02_Report.pdf, last accessed: January 12, 2022 

Caubel, J. J., Cados, T. E., Preble, C. V., & Kirchstetter, T. W. A Distributed Network of 100 Black Carbon Sensors for 100 

Days of Air Quality Monitoring in West Oakland, California. Environmental Science and Technology, 53(13), 7564–

7573. https://doi.org/10.1021/acs.est.9b00282, 2019. 535 
Davis, S. C., Diegel, S. W., & Boundy, R. G. Transportation Energy Data Book, Edition 29. Energy. 

https://tedb.ornl.gov/wp-content/uploads/2021/02/TEDB_Ed_39.pdf, last accessed January 12, 2022 

City of Oakland: Oakland Equitable Climate Action Plan. https://cao-94612.s3.amazonaws.com/documents/Oakland-ECAP-

07-24.pdf, last accessed January 12, 2022. 

Delaria, E.R., Kim, J., Fitzmaurice, H.L., Newman, C., Wooldridge, P.J., Worthington, K. and Cohen, R.C., The Berkeley 540 
Environmental Air-quality and CO 2 Network: field calibrations of sensor temperature dependence and assessment of 

network scale CO 2 accuracy. Atmospheric Measurement Techniques, 14(8), pp.5487-5500. 

https://doi.org/10.5194/amt-14-5487-2021, 2021 

Gately, C. K., & Hutyra, L. R. Large Uncertainties in Urban-Scale Carbon Emissions. Journal of Geophysical Research: 

Atmospheres, 122(20), 11,242-11,260. https://doi.org/10.1002/2017JD027359, 2017a. 545 
Gately, C. K., Hutyra, L. R., Peterson, S., & Sue Wing, I. Urban emissions hotspots: Quantifying vehicle congestion and air 

pollution using mobile phone GPS data. Environmental Pollution, 229, 496–504. 

https://doi.org/10.1016/j.envpol.2017.05.091, 2017b.  

Gately, C. K., Hutyra, L. R., & Wing, I. S. Cities, traffic, and CO2: A multidecadal assessment of trends, drivers, and scaling 

relationships. Proceedings of the National Academy of Sciences of the United States of America, 112(16), 4999–5004. 550 
https://doi.org/10.1073/pnas.1421723112, 2015. 

Gurney, K.R., Liang, J., Roest, G., Song, Y., Mueller, K., & Lauvaux, T.  Under-reporting of greenhouse gas emissions in 

U.S. cities. Nature Communications, 12(1), 1–7. https://doi.org/10.1038/s41467-020-20871-0, 2021. 

Gurney, K. R., Razlivanov, I., Song, Y., Zhou, Y., Benes, B., & Abdul-Massih, M. Quantification of fossil fuel CO2 

emissions on the building/street scale for a large U.S. City. Environmental Science and Technology, 46(21), 12194–555 
12202. https://doi.org/10.1021/es3011282, 2012. 

Haugen, M. J., & Bishop, G. A. Long-Term Fuel-Specific NOx and Particle Emission Trends for In-Use Heavy-Duty 

Vehicles in California. Environmental Science and Technology, 52(10), 6070–6076. research-article. 

https://doi.org/10.1021/acs.est.8b00621, 2018. 

IPCC. (2014). Climate Change 2014 Part A: Global and Sectoral Aspects. Climate Change 2014: Impacts, Adaptation, and 560 
Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report 

of the Intergovernmental Panel on Climate Change.  

Kim, J., Shusterman, A. A., Lieschke, K. J., Newman, C., & Cohen, R. C. The Berkeley Atmospheric CO2 Observation 

Deleted:  (2018).

Deleted: Retrieved from 565 
Deleted: legislatively-mandated-reports

Deleted:  (2019).

Deleted: (2021). 

Deleted: Daw, T. (2020). Oakland EQUITABLE CLIMATE 
ACTION PLAN, (July).¶570 

Formatted: Line spacing:  1.5 lines

Deleted:  

Deleted:  

Deleted:  

Deleted: ., &

Deleted:  575 
Deleted: . (2021).

Deleted: Network 

Deleted: , (May), 1–30.

Deleted:  (2017).

Deleted: Conor580 
Deleted:  (2017).

Deleted: Conor

Deleted:  (2015).

Moved (insertion) [1]

Deleted: Kevin

Formatted: Line spacing:  1.5 lines

Deleted:  (2012).585 

Deleted: Gurney, Kevin Robert, Liang, J., Roest, G., Song, Y., 
Mueller, K., & Lauvaux, T. (2021).

Moved up [1]:  Under-reporting of greenhouse gas emissions in 
U.S. cities. Nature Communications, 12(1), 1–7. 
https://doi.org/10.1038/s41467-020-20871-0590 
Deleted: ¶

Deleted:  (2018).

Deleted: Retrieved from papers2://publication/uuid/B8BF5043-
C873-4AFD-97F9-A630782E590D

Deleted:  (2018).595 



 

12 
 

Network: Field calibration and evaluation of low-cost air quality sensors. Atmospheric Measurement Techniques, 

11(4), 1937–1946. https://doi.org/10.5194/amt-11-1937-2018, 2018. 

Kim, J. Turner, A.J., Fitzmaurice, H.L., Delaria, E.R., Newman, C., Wooldridge, P.J., Cohen, R.C. Observing annual trends 

in vehicular CO2 emissions (submitted to Environmental Science and Technology), 2021. 

Kwon, J., Varaiya, P., & Skabardonis, A. Estimation of Truck Traffic Volume from Single Loop Detectors with Lane-to-600 
Lane Speed Correlation. Transportation Research Record, 684(1856), 106–117. https://doi.org/10.3141/1856-11, 2003. 

Lauvaux, T., Gurney, K. R., Miles, N. L., Davis, K. J., Richardson, S. J., Deng, A., Nathan, B. J., Oda, T. Wang, J. A., 

Hutyra, L., Turnbull, J. Policy-relevant assessment of urban CO2emissions. Environmental Science and Technology, 

54(16), 10237–10245. https://doi.org/10.1021/acs.est.0c00343, 2020. 

Lauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O., Davis, K. J., Gaudet, B. Gurney, K. R., Huang, J. 605 
O'Keefe, D., Song, Y., Karion, A., Oda, T., Patarsuk, R., Razlivanov, I., Sarmiento, D., Shepson, P, Sweeney, C. 

Turnbull, J. Wu, K. High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the 

Indianapolis flux experiment (INFLUX). Journal of Geophysical Research, 121(10), 5213–5236. 

https://doi.org/10.1002/2015JD024473, 2016. 

Lian, J., Bréon, F.M., Broquet, G., Lauvaux, T., Zheng, B., Ramonet, M., Xueref-Remy, I., Kotthaus, S., Haeffelin, M. and 610 
Ciais, P., Sensitivity to the sources of uncertainties in the modeling of atmospheric CO 2 concentration within and in 

the vicinity of Paris. Atmospheric Chemistry and Physics, 21(13), pp.10707-10726. https://doi.org/10.5194/acp-21-

10707-2021, 2021. 

Martin, C.R., Zeng, N., Karion, A., Mueller, K., Ghosh, S., Lopez-Coto, I., Gurney, K.R., Oda, T., Prasad, K., Liu, Y. and 

Dickerson, R.R., Investigating sources of variability and error in simulations of carbon dioxide in an urban region. 615 
Atmospheric environment, 199, pp.55-69. https://doi.org/10.1016/j.atmosenv.2018.11.013, 2019. 

McDonald, B.C., McBride, Z.C., Martin, E.W. and Harley, R.A.,  High‐resolution mapping of motor vehicle carbon dioxide 

emissions. Journal of Geophysical Research: Atmospheres, 119(9), pp.5283-5298. 

https://doi.org/10.1002/2013JD021219, 2014.  

Moua, F. (2020). California Annual Fuel Outlet Report Results (CEC-A15), Energy Assessments Division, California 620 
Energy Comission., https://www.energy.ca.gov/media/3874, last accessed January 13, 2022 

Nathan, B.J., Lauvaux, T., Turnbull, J.C., Richardson, S.J., Miles, N.L. and Gurney, K.R., Source sector attribution of CO2 

emissions using an urban CO/CO2 Bayesian inversion system. Journal of Geophysical Research: Atmospheres, 

123(23), pp.13-611. https://doi.org/10.1029/2018JD029231, 2018. 

Newman, S., Xu, X., Gurney, K.R., Hsu, Y.K., Li, K.F., Jiang, X., Keeling, R., Feng, S., O'Keefe, D., Patarasuk, R. and 625 
Wong, K.W., Toward consistency between trends in bottom-up CO 2 emissions and top-down atmospheric 

measurements in the Los Angeles megacity. Atmospheric Chemistry and Physics, 16(6), pp.3843-3863. 

https://doi.org/10.5194/acp-16-3843-2016,  2016. 

Park, S. S., Vijayan, A., Mara, S. L., & Herner, J. D. Investigating the real-world emission characteristics of light-duty 

Formatted: Line spacing:  1.5 lines

Deleted:  (2003).630 

Deleted: …

Deleted:  (2020).

Deleted: …

Deleted:  (2016).

Formatted: Line spacing:  1.5 lines

Deleted:  C. (University of 635 
Deleted: . B

Deleted:  (University of 

Deleted: . B

Deleted:  (University of C. B., &

Deleted:  (University of C. B. (2014). 640 

Deleted: Research 

Deleted:  carbon dioxide emissions. Journal of Geophysical 
Research: Atmospheres, (May), 

Deleted: –

Deleted: .Received645 
Deleted: 2018

Deleted: .

Formatted: Line spacing:  1.5 lines

Deleted:  (2016).



 

13 
 

gasoline vehicles and their relationship to local socioeconomic conditions in three communities in Los Angeles, 

California. Journal of the Air and Waste Management Association, 66(10), 1031–1044. 650 
https://doi.org/10.1080/10962247.2016.1197166, 2016. 

Preble, C. V., Cados, T. E., Harley, R. A., & Kirchstetter, T. W., In-Use Performance and Durability of Particle Filters on 

Heavy-Duty Diesel Trucks. Environmental Science and Technology, 52(20), 11913–11921. research-article. 

https://doi.org/10.1021/acs.est.8b02977, 2018. 

Shusterman, A. A., Teige, V. E., Turner, A. J., Newman, C., Kim, J., & Cohen, R. C., The Berkeley Atmospheric CO2 655 
Observation Network: Initial evaluation. Atmospheric Chemistry and Physics, 16(21), 13449–13463. 

https://doi.org/10.5194/acp-16-13449-2016, 2016. 

Tessum, C. W., Paolella, D. A., Chambliss, S. E., Apte, J. S., Hill, J. D., & Marshall, J. D., PM2.5 polluters 

disproportionately and systemically affect people of color in the United States. Science Advances, 7(18), 1–7. 

https://doi.org/10.1126/sciadv.abf4491, 2021. 660 
Texas A&M Transportation Institute. (2019). Urban Mobility Report 2019, 182. 

https://static.tti.tamu.edu/tti.tamu.edu/documents/umr/archive/mobility-report-2019.pdf, last accessed January 13, 

2022. 

Turner, A.J., Kim, J., Fitzmaurice, H., Newman, C., Worthington, K., Chan, K., Wooldridge, P.J., Köehler, P., Frankenberg, 

C. and Cohen, R.C., 2020. Observed impacts of COVID‐19 on urban CO 2 Emissions. Geophysical Research Letters, 665 
47(22), p.e2020GL090037.Geophysical Research Letters, 47(22), 1–6. https://doi.org/10.1029/2020GL090037, 2020a. 

Turner, A. J., Köhler, P., Magney, T. S., Frankenberg, C., Fung, I., & Cohen, R. C., A double peak in the seasonality of 

California’s photosynthesis as observed from space. Biogeosciences, 17(2), 405–422. https://doi.org/10.5194/bg-17-

405-2020, 2020b. 

Turner, A. J., Shusterman, A. A., McDonald, B. C., Teige, V., Harley, R. A., & Cohen, R. C., Network design for 670 
quantifying urban CO2 emissions: Assessing trade-offs between precision and network density. Atmospheric 

Chemistry and Physics, 16(21), 13465–13475. https://doi.org/10.5194/acp-16-13465-2016, 2016. 

 

  

Deleted: . (2018).675 

Deleted: . (2016).

Deleted: . (2021).

Deleted: Retrieved from http://web.minienm.nl/mob2015

Deleted: Mobiliteitsbeeld_2015

Deleted:  680 
Deleted: …

Deleted:  

Deleted: . (

Deleted: ).

Deleted: Impacts685 
Deleted: -

Deleted: Urban CO2

Deleted: . (2020).

Deleted: . (2016).

Formatted: Font: +Headings (Times New Roman), Bold



 

14 
 

Figures and Tables 690 

 
Figure 1. Left: Map of the BEACO2N Network shows all sites (blue dots) for which there are more than 
4 weeks of data during the period analyzed (Jan-June 2018-2020). Red stars indicate location of PeMS 
monitors used in this study. Right (top): CO2 values shown for a ‘typical week’ during time period 
observed. Dark line represents the median value observed across all sites and times. Shaded envelope 695 
represents 1 sigma variance across the network and over the 2 year period. Right (bottom): CO2 
emissions on all highway pixels in the domain as derived from the inversion of BEACO2N observations 
(blue), BEACO2N prior (black), and PeMS-EMFAC-based estimate (red). Shaded envelope shows 
variance in emissions during the 18-month analysis window.   
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Figure 2: Left: ~5km stretch over which we analyze g CO2/ vkm. Points show the location of PeMS 
stations. Squares show pixels associated with BEACO2N STILT output which we use for comparison 
for 5km stretch. Right (top): Hourly average speed shown for two opposite (West in red, East in blue) 705 
PeMS measurement stations for a typical week. Right (middle): PeMS-EMFAC-derived emissions rates 
calculated for two opposite (West in red, East in blue) PeMS measurement stations for a typical week. 
Right (bottom): Aggregate PeMS-EMFAC-derived estimated emissions rates from the two directions of 
traffic for a typical week for this highway stretch. 
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 715 
Figure 3: Left: BEACO2N-derived emissions vs. vkm for times corresponding to modeled emission 
rates of 271.4-279 g CO2/ vkm. Red points represent binned medians used in fitting. Right: BEACO2N-
derived vs. PeMS-EMFAC derived emissions rates with uncertainty estimate. Black line shows fit 
weighted by variance: y = 0.97(.01)x . Grey envelope is 5% deviation from fit. Red line represents 1:1 
line. 720 
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Figure 4: Top: Emissions rates by time of day on weekdays for PeMS-derived (red), BEACO2N-prior 
(blue), and BEACO2N posterior (green).  Bottom: Probability density functions of truck fraction (left) 725 
and speed (right) from weekday morning (5-9 am) and evening (4-8 pm) rush hour period on the 
segment of I-80 analyzed in the Results section. Y-axis represents the relative probability of HDV 
fraction (left) or averaged hourly speed (right). Speeds are from individual PeMS sensors, while truck 
fraction is aggregated over the whole stretch under consideration (both directions).  
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Contents of this file  
 

Text S1 - S10 
Figures S1 - S4, S6, S7, S9, S10 
Table S5  
 

Introduction  

In S1, we describe the time series of the number of BEACO2N nodes reporting CO2 during the 
from January through June for the years 2018-2020. In S2, we show the locations in the PeMS 
measurement network in the region of the SF Bay Area shown on the map, as well as an 
estimate of LDV and HDV VMT for a typical week in this domain. In S3, we describe the hourly 
BEACO2N-STILT prior for the typical weekday for CO2 emissions in the 1km pixels that encompass 
the highway stretch that is the focus of our analysis. The figure also shows vkm traveled for each 
hour on this stretch of highway. In S4, error analysis for PeMS values for speed, LDV and HDV 
volume is described. In S5, we list EMFAC2017 vehicle classes and indicate whether we have 
classified them as LDV or HDV based on estimated vehicle length. In S6, we show both LDV and 
HDV emissions rates as a function of speed. We also compare a piece-wise linear to a spline fit 
of these two curves. In S7, we show the diel cycle for contribution to total emissions by 
congestion and vehicle type as estimated using PeMS-EMFAC. In S8, we describe the calculation 
of uncertainty in emissions rates derived using the BEACO2N-STILT system. In S9, we derive 
emission rates from the BEACO2N-STILT prior and discuss improvements of the posterior over 
the prior. In S10, we explore how non-constant speed may impact emissions rates for a given 
hourly average speed.  
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Text S1. 
 
Throughout the period examined in this study, the number of BEACO2N sensors reporting data 
varied from due to power or instrument failure. 
 

 
Figure S3. Number of BEACO2N sites reporting CO2 data used in BEACO2N-STILT inversion for 
January-June in 2018 (top) 2019 (middle) and 2020 (bottom) 
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Text S2.  

The Caltrans Performance Measurement System Network consists of thousands of magnetic 
loop monitors imbedded in highways across the state of California (http://pems.dot.ca.gov). 
Each station consists of loop sensors in each lane that report hourly values for total vehicle flow, 
HDV percentage, and average speed. Using station locations, vehicle flow, and HDV percentage, 
hourly vkm can be calculated as outlined in the main text.  

 
Figure S2: Left: Locations of Caltrans PeMS monitoring stations (black and red). The solid blue 
line marks the 40% contour of the BEACO2N cumulative influence function during January – June 
2020. Right: LDV vkm, HDV vkm estimated based on PeMS data.  
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Text S3. 
 
We focus our analysis on the hours 4am – 10pm. During this period, emissions from traffic are 
much larger than all other sources in the pixels used in this analysis. From 11pm – 3am, total 
vkm and therefore emissions from traffic are low.   

 
Figure S3: (top) Diel variation of total vkm (from PEMS observations) for the stretch of roadway 
indicated in Figure 2 for a typical weekday. (bottom) Prior estimates of emissions from biogenic 
sources (orange), vehicle emissions (blue), point sources and area sources (yellow). 
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Text S4. 
 
We apply linear fits (for speed and LDV) and hourly ratios (for HDV) to nearest neighbors, 
second nearest neighbors, and third nearest neighbors to create modeled values for all times for 
which we have observations. Using these modeled values we estimate mean error and spread 
for all PeMS sites over the time period studied, finding that speed accurate to about 5km hr-1, 
LDV/hr to ~300 vehicles and HDV to ~55 vehicles for the east and west directions of flow on I-80.  
Precision is much higher than these values as shown on the right. 

 
Figure S4: Mean average error (left) and distribution of error (right) for modeled speed (top), 
LDV flow (middle), and HDV flow (bottom). 
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Text S5. 

While EMFAC2017 provided speed-dependent emission rate estimates for 41 vehicle classes, 
PeMS characterizes vehicles in two categories based on length. In order to use EMFAC2017 
emission rates in combination with PeMS traffic counts to estimate total emissions, we classify 
EMFAC2017 categories as LDV or HDV based on length. 

 
EMFAC Vehicle Class Grouping for this work 

All Other Buses 0 

LDA 1 

LDT1 1 

LDT2 1 

LHD1 1 

LHD2 1 

MCY 1 

MDV 1 

MH 0 

Motor Coach 0 

OBUS 0 

PTO 0 

SBUS 0 

T6 Ag 0 

T6 CAIRP heavy 0 

T6 CAIRP small 1 

T6 OOS heavy 0 

T6 OOS small 1 

T6 Public 0 

T6 instate 
construction heavy 

0 

T6 instate 
construction small 

1 

T6 instate heavy 0 

T6 instate small 1 

T6 utility 0 

T6TS 0 

T7 Ag 0 

T7 CAIRP 0 

T7 CAIRP construction 0 

T7 NNOOS 0 

T7 NOOS 0 

T7 POAK 0 
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T7 Public 0 

T7 SWCV 0 

T7 Single 0 

T7 other port 0 

T7 single construction 0 

T7 tractor 0 

T7 tractor 
construction 

0 

T7 utility 0 

T7IS 0 

UBUS 0 

 
Table S5. Breakdown of EMFAC vehicle classes we characterize as LDV or HDV based on length. 
“1” denotes LDV and “0” denotes HDV. 
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Text S6. 
 
As described in the main text, emission rates for LDV and HDV on each road segment between 
individual PeMS monitoring stations are computed hourly as a function hourly average speed. 
Here we show emission rates as a function of speed.  
 
We also compare piece-wise linear fits to the spline fits used in this study. With the exception of 
emissions rates for LDV at speeds lower than 20 km h-1, there is little difference between these 
fits. High uncertainty in emission rates at low hourly average speeds because of travel at non-
constant speeds is likely to outweigh any difference between these fits (see Fig S7). 

 
Figure S6: We show emission rates (g CO2 / km) of different vehicle classes as a function of 
speed. (top and middle) Red lines indicate emission rates for individual vehicle classes as 
reported by EMFAC2017. Black lines indicate extrapolation using Oakridge National Lab data. 
Heavy blue lines indicate emission rates for LDV and HDV groups calculated by taking the vkm-
weighted mean of emission rates for all vehicles within a group at a particular speed. (bottom) 
We compare piecewise-linear fits of this data to spline fits. Black lines indicate spline fit. Blue 
lines indicate piecewise-linear fits.  
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Text S7.  

Figure S5 shows the hourly variation in the relative contributions of LDV speed, HDV percentage, 
and HDV speed to the deviation in CO2 / vkm from the reference value of 265 g CO2 / vkm. The 
solid line is the mean, and the shaded envelope represents the day-to-day variance. In the 
morning and mid-day, HDV percentage and LDV speed have opposite impacts on CO2 / vkm, 
leading to smaller variations in CO2  /vkm than the variations in the separate effects of speed and 
HDV %. During evening rush hour, low vehicle speeds result in higher emission rates, leading to 
large positive deviations. High day-to-day variance in vehicle speed contributes to high day-to-
day variance in emission rates, shown as the envelope surrounding the solid line. At times near 
midnight, large, positive deviations are observed, mostly as a consequence of high HDV 
percentage, but also because traffic flows at rates higher than 104.6 kph, leading to higher 
emission rates. Night-to-night variance in HDV percentage is low, thus variance in nighttime 
predicted CO2 / vkm is small. HDV speed has little impact on CO2 / vkm. 

 
Figure S7: (Top) PeMS-EMFAC-derived emissions rate deviations from baseline of 6% of all 
vehicles HDV, and vehicle speed constant at 105 kph resulting from car speed, truck percentage, 
and truck speed for the average day on the week shown in Figure 3. (Bottom) Total deviation in 
emissions rate by hour of day. % Deviation (right axis) shows percent deviation for all curves 
from emissions rate of 6% HDV at 105 kph. For all plots, solid line represents median values and 
shaded area represents variance. 
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Text S8.  

Determination of Uncertainty in Emissions Rate Estimates 

For the set of BEACO2N emissions corresponding in time to the data in each 7.8 g CO2 / vkm bin 
of PeMS-derived emissions rates, we find a BEACO2N-derived emissions rate estimate. To do 
this, we take all BEACO2N traffic emissions occurring simultaneously with the PeMS-derived 
emissions rates and further bin these points based on vkm, as shown in Figure 3. For each vkm 
bin, we then find the median emissions value and the variance of emissions values, s2. We 
assume the error in our estimate of the median emissions for each vkm bin to be  
𝛿𝑒𝑚𝑠 = s

√"
	.  

We then fit median emissions values to the line 
𝑒𝑚𝑠 = 	#$%!

&'(
𝑣𝑘𝑚,  

to find 𝒈𝑪𝑶𝟐
𝒗𝒌𝒎

, using 𝜹𝒆𝒎𝒔 as weights in the MATLAB fitlm function, and take the reported SE in 

slope to be the error in our calculated 𝒈𝑪𝑶𝟐
𝒗𝒌𝒎
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Text S9. 
 
The prior inventory was constructed to reflect vehicle type (LDV v. HDV) dependence on 
emissions, but not speed-dependence in emissions. In order to illustrate improvement of the 
posterior (Figure 3) over the prior, we repeat the analysis described in the main text to show 
emission rates calculated for the prior. Calculated emissions rates for the prior are nearly 
constant over a wide range (237.5 – 262.5 g CO2 / vkm) of PeMS-EMFAC emission rates. Where 
they do vary, they are substantially different than those estimated in the posterior. 

 
 
Figure S9: 
Emission rate estimates calculated for the BEACO2N-STILT prior in the same manner in which 
they were calculated for the posterior vs. PeMS-EMFAC emissions estimates with uncertainty 
estimate. Black line shows fit of to posterior (Fig 3) weighted by variance: y = 0.97(.01)x . Grey 
envelope is 5% deviation from fit. Red line represents 1:1 line. 
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Text S10. 
  
While PeMS reports hourly averaged speeds for each sensing station, non-constant speeds due 
to congestion can result in range of possible emissions rates that can occur for a particular 
hourly averaged speed. 

 
Figure: S10 The dark line indicates the emissions rate corresponding to driving the speed 
indicated on the x axis at a constant velocity. The shaded region represents er distribution 
resulting from vehicle travel at non-constant speeds. For each speed, we calculate all possible 
emissions rates (g CO2 / vkm) that could be generated assuming that the vehicle fleet (here, 8% 
HDV as is common during AM rush hour) drives at 2 different speeds between 8 kph and 130 
kph for the times required to result in the average speed represented on the x axis. The spread 
for each speed represents the 16th-84th percentiles of possible emissions rates.  
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