

1	Seasonal Analysis of Reduced and Oxidized Nitrogen-Containing
2	Organic Compounds at a Coastal Site
3	Jenna C. Ditto ^{1,†} , Jo Machesky ¹ , and Drew R. Gentner ^{1,*}
4	¹ Department of Chemical and Environmental Engineering, Yale University,
5	New Haven, CT, 06511, USA
6	[†] Now at: Department of Chemical Engineering and Applied Chemistry, University of Toronto,
7	Toronto, ON, M5S 3E5, Canada
8	* Correspondence to: <u>drew.gentner@yale.edu</u>
9	
10	Abstract
11	Nitrogen-containing organic compounds, which may be directly emitted to the
12	atmosphere or may form via reactions with prevalent reactive nitrogen species (e.g. NH ₃ , NO _x ,
13	NO ₃), have important but uncertain effects on climate and human health. Using gas and liquid
14	chromatography with soft ionization and high-resolution mass spectrometry, we performed a
15	molecular-level speciation of functionalized organic compounds at a coastal site on the Long
16	Island Sound in summer (during the LISTOS 2018 campaign) and winter. This region often
17	experiences poor air quality due to the emissions of reactive anthropogenic, biogenic, and
18	marine-derived compounds and their chemical transformation products. Indeed, we observed a
19	range of functionalized compounds containing oxygen, nitrogen, and/or sulfur atoms resulting
20	from a mix of direct emissions and chemical transformations, including photochemical
21	processing in summer and aqueous-phase processing in winter. In both summer and winter,
22	nitrogen-containing organic aerosols dominated the observed distribution of functionalized
23	particle-phase species ionized by our analytical techniques, with 85% and 68% of measured

- 24 compound abundance containing a nitrogen atom, respectively. Nitrogen-containing particles 25 included reduced nitrogen functional groups (e.g. amines, imines, azoles) and common NOz 26 contributors (e.g. organonitrates). The prevalence of reduced nitrogen functional groups observed in the particle-phase, while frequently paired with oxygen-containing groups elsewhere 27 28 on the molecule, often rivaled that of oxidized nitrogen groups detected by our methods. 29 Supplemental gas-phase measurements, collected on adsorptive samplers and analyzed with a 30 novel liquid chromatography-based method, suggest that gas-phase reduced nitrogen compounds 31 are possible contributing precursors to the observed nitrogen-containing particles. Altogether, 32 this work highlights the prevalence of reduced nitrogen-containing compounds in the less-33 studied Northeastern U.S., and potentially in other regions with similar anthropogenic, biogenic, 34 and marine source signatures. 35 1. Introduction 36 37 Coastal regions near the Long Island Sound often experience poor air quality due to a 38 combination of biogenic and anthropogenic emissions from upwind metropolitan areas along the 39 East Coast of the U.S. It is well established that these emissions undergo chemical
- 40 transformations to form secondary pollutants during hours to days of over-water transport to
- 41 downwind locations, including the states of Connecticut, Rhode Island, and Massachusetts (e.g.
- 42 Cleveland et al., 1976). Emissions of gas-phase organic compounds (e.g. volatile, intermediate,
- 43 and semi-volatile organic compounds (VOCs, IVOCs, SVOCs)) and primary organic aerosols
- 44 (POA) are oxidized via numerous pathways in the atmosphere to yield ozone (O₃) and secondary
- 45 organic aerosol (SOA) (Hallquist et al., 2009). SOA constitutes a variable but significant fraction
- 46 of particulate matter with a diameter of 2.5 μm or less (i.e. PM_{2.5}). Both O₃ and PM_{2.5} are of

47	particular concern for human health and climate; O3 is known to cause an increase in respiratory-
48	related illnesses (Di et al., 2017; Jerrett et al., 2009), while PM _{2.5} is known to cause adverse
49	cardiovascular, respiratory, and cognitive effects and to impact climate forcings (Di et al., 2017;
50	Hallquist et al., 2009; Kilian and Kitazawa, 2018; Pope and Dockery, 2006). Coupled with local
51	emissions and chemistry, these incoming aged air parcels from coastal metropolitan areas
52	contribute to the Long Island Sound region often entering nonattainment for O3 (United States
53	Environmental Protection Agency, 2020), especially in the summer.
54	The chemistry and composition of organic compound emissions and secondary
55	transformation products in the Long Island Sound area is historically understudied, though some
56	past work has advanced our understanding of important sources and chemical pathways in the
57	region. For example, VOC and sub-micron particulate matter composition were investigated
58	during the 2002 New England Air Quality Study (de Gouw et al., 2005), with further VOC
59	speciation in 2004 during the New England Air Quality Study – Intercontinental Transport and
60	Chemical Transformation campaign (Warneke et al., 2007). More recently, a 2015 aircraft
61	campaign in the Northeast U.S. called WINTER characterized wintertime chemistry in the region
62	and also investigated organic aerosol formation via aerosol mass spectrometry (Schroder et al.,
63	2018). Finally, the LISTOS campaign in 2018 focused on measuring and modeling O_3 mixing
64	ratios over the Sound to investigate the dynamics of O3 formation linked to large metropolitan
65	areas along the coast and associated downwind impacts (Zhang et al., 2020).
66	However, little is known about the molecular-level chemical composition of the gas-
67	phase I/SVOCs and functionalized organic aerosol formed in the Northeastern U.S. This
68	molecular-level speciation is key to understanding the physical/chemical properties of these
69	compounds in the atmosphere and their chemical transformations, especially for classes of

70	compounds containing reduced and oxidized nitrogen functional groups, whose emissions,
71	lifetime, and ultimate impacts are generally poorly understood. For example, nitrogen-containing
72	compounds that serve as reservoir species for nitrogen oxides may increase the overall lifetime
73	of nitrogen oxides in the atmosphere via renoxification mechanisms (e.g. the photolysis of
74	particulate nitrates, which has been studied in the marine boundary layer (Ye et al., 2016)); some
75	may act as light absorbing chromophores (e.g. the brown carbon studied from a methylglyoxal
76	and ammonium sulfate system, which yielded mostly N-containing chromophores (Lin et al.,
77	2015)); and some may have adverse, but uncertain, effects on human health (e.g. impacts on
78	immune response to allergens (Ng et al., 2017)).
79	With the overall goal of examining the composition and contribution of nitrogen-
80	containing organic compounds from mixed anthropogenic, biogenic, and marine sources, we
81	collected measurements of organic gases and aerosols on the coast of the Long Island Sound in
82	Guilford, Connecticut. We note that we used this site as a case study, but our observations of
83	emissions and chemistry at this site are likely informative for other coastal urban and downwind
84	regions due to the ubiquity of nitrogen-containing emissions from varied sources.
85	Samples were collected during the summer and winter, and analyzed via high resolution
86	mass spectrometry to speciate the complex mixture of emissions and chemical transformation
87	products. These samples were taken alongside several targeted pollutant measurements including
88	$O_{3,}$ nitrogen oxides (NO_x), particulate matter with a diameter of \leq 2.5 μm (PM_{2.5}), and black
89	carbon (BC), all to inform our chemically-speciated analyses, and to contribute to a longer-term
90	characterization of this coastal area.
91	The objectives of this study were to: (1) investigate compositional trends and possible
92	chemical pathways contributing to measured summer and winter functionalized organic aerosols

93	at this site; (2) examine the relative contributions of reduced and oxidized nitrogen groups to
94	functionalized organic aerosol; and (3) use a novel sampling and liquid chromatography-based
95	analytical approach to probe the molecular-level composition of functionalized gas-phase
96	organic compounds and investigate possible nitrogen-containing gas-phase precursors to the
97	observed reduced nitrogen-containing particles.
98	
99	2. Materials and Methods
100	We collected measurements at the Yale Coastal Field Station (YCFS) in Guilford,
101	Connecticut (41.26°N, 72.73°W) (Rogers et al., 2020). Inlets were positioned facing the Long
102	Island Sound (i.e. South-Southeast) to capture onshore flow. The YCFS often received aged
103	urban incoming air from East Coast metropolitan areas, similar to known common air parcel
104	trajectories in the region (Figure S1). However, due to extensive mixing in the Northeast corridor
105	and over the Long Island Sound, along with extended collection times for offline gas- and
106	particle-phase samples, we also observed considerable biogenic and anthropogenic influence
107	from other areas of the Northeastern U.S.
108	2.1. Offline Samples of Organic Particles and Gases Analyzed via Liquid and Gas
109	Chromatography with Mass Spectrometry
110	We discuss three types of sampling and quadrupole time-of-flight mass spectrometry-
111	based analyses here: particles collected on Teflon filters and analyzed using liquid
112	chromatography with electrospray ionization, gases collected on packed adsorbent tubes and
113	analyzed using gas chromatography with atmospheric pressure chemical ionization, and
114	functionalized gases collected on cooled polyether ether ketone (PEEK) samplers and analyzed
115	using liquid chromatography with electrospray ionization. Teflon filter and adsorbent tube

116	measurements were collected at the YCFS during the summer as part of the 2018 Long Island
117	Sound Tropospheric Ozone Study (LISTOS), from July 9 to August 29, 2018. Additional filter
118	and adsorbent tube samples were collected during the following winter from February 25 to
119	March 5, 2019. Supplemental wintertime gas-phase samples on PEEK tubing were collected
120	briefly from March 5-6 2020, prior to the COVID-19 shutdown.
121	For filter and adsorbent tube collection, we used a short inlet (0.9 m long, 5/8" OD
122	stainless steel tubing, positioned 2.5 m above the ground) upstream of the sampler to allow the
123	sampling media to be housed in an air-conditioned trailer. A stainless steel mesh screen (84
124	mesh) was used at the opening of the inlet to limit particle size to $\sim PM_{10}$ and to prevent large
125	particles from entering the sampler (Ditto et al., 2018). A custom filter and adsorbent tube
126	housing was connected to the inlet to simultaneously collect particle- and gas-phase organic
127	compounds, respectively (Sheu et al., 2018). The filter was positioned immediately upstream of
128	the adsorbent tube to collect particles for analysis and to prevent particles from reaching the gas-
129	phase sample. The housing was designed to minimize spacing between the filter and adsorbent
130	tube to reduce gas-phase loses to upstream surfaces, and was built out of a modified passivated
131	stainless steel filter holder and an aluminum block with sealed 6.34 mm (1/4") holes for
132	adsorbent tubes (Sheu et al., 2018).
133	Teflon filters (47 mm, 2.0 μ m pores, Tisch Scientific) were used for particle-phase
134	sampling. Filters were collected at 20 L/min for 8 hours, during the day (9:00am-5:00pm) and at
135	night (9:00pm-5:00am). Samples were extracted in methanol and analyzed via liquid
136	chromatography (LC) using an Agilent 1260 Infinity LC and an Agilent Poroshell 120 SB-Aq
137	reverse phase column (2.1 x 50 mm, 2.7 μ m particle size). The LC was coupled to an
138	electrospray ionization (ESI) source and a high-resolution mass spectrometer (Agilent 6550 Q-

139	TOF), and operated following previously described methods (Ditto et al., 2018, 2020). Filter
140	extracts were run with MS (i.e. TOF-only, to identify molecular formulas) and MS/MS (i.e.
141	tandem mass spectrometry, to identify functional groups) data acquisition, using both positive
142	and negative mode electrospray ionization. These methods are hereafter referred to as "LC-ESI-
143	MS" and "LC-ESI-MS/MS", respectively. Acquisition and non-targeted analysis methods,
144	including data QA/QC, are discussed in past work (Ditto et al., 2018, 2020). After stringent
145	QA/QC for peak shape and accurate molecular formula determination, non-targeted compound
146	identification from LC-ESI-MS examined an average of 200±56 and 167±47 compounds per
147	sample analyzed in summer and winter, respectively, across 34 samples in summer and 15 in
148	winter. For MS/MS, we used SIRIUS with CSI:FingerID for functional group identification with
149	a subset of compounds from MS analysis (Dührkop et al., 2015, 2019), as detailed in past work
150	(Ditto et al., 2020). We note that filter ion abundance data is presented as combined positive and
151	negative ionization mode data, showing all compounds as having equal ionization efficiency.
152	While exact ionization efficiency differences between compound types exist, their effects for
153	multifunctional compounds present in a complex mixture are uncertain. Thus, similar to other
154	studies and to our past work, we treat the intercomparison across compounds with equal
155	ionization efficiencies (Ditto et al., 2018).
156	Gas-phase samples were collected on glass adsorbent tubes (6.35 mm OD, 88.9 mm long)
157	packed with quartz wool, glass beads, Tenax TA, and Carbopack X (Sheu et al., 2018). Samples
158	were collected at 200 mL/min for 2 hours, during the day (2:00-4:00pm) and at night (2:00-
159	4:00am). Adsorbent tubes were analyzed using a GERSTEL TD3.5+ thermal desorption unit and
160	an Agilent 7890B gas chromatograph (GC) with a DB5-MS UI column (30 m x 320 μm x 0.25
161	μm). The GC was coupled to an atmospheric pressure chemical ionization (APCI) source and the

162	same Q-TOF as above, operated with MS (i.e. TOF-only) data acquisition and positive ionization
163	mode only. These methods are hereafter called "GC-APCI-MS" and acquisition and analysis
164	methods are discussed in past work (Ditto et al., 2021; Khare et al., 2019). After QA/QC, this
165	non-targeted analysis yielded an average of 388±201 and 612±133 compounds per sample in
166	summer and winter, respectively, across 34 samples in summer and 14 samples in winter.
167	Finally, as a supplemental analysis to probe the composition of functionalized gases that
168	were not GC amenable and thus not measured using the adsorbent tube and thermal desorption-
169	gas chromatography techniques mentioned above, we used PEEK-based sample collectors and
170	liquid chromatography to trap and speciate oxygen-, nitrogen-, and/or sulfur-containing gases
171	without thermal desorption. This method was designed to target functionalized gases, which
172	represent important precursors, intermediates, and by-products in the atmospheric processing of
173	emitted organic compounds but are often challenging to speciate with traditional GC techniques
174	due to their chemical functionality, reactivity, and/or thermal lability. Additionally, in many gas-
175	phase measurement systems, primary emissions (i.e. hydrocarbons) can overwhelm the signal of
176	more functionalized analytes, adding to the challenge of speciating these lower abundance
177	compounds.
178	Thus, to probe the chemical composition of these functionalized gases, we used a

179 sampling approach, desorption method, separation method, and ionization technique that 180 leveraged their relatively lower volatility and higher polarity. This included adsorptive sampling 181 onto cooled PEEK tubing followed by direct inline desorption into the LC mobile phase for LC-182 ESI-MS analysis. ESI was specifically chosen here because it is sensitive to functionalized 183 compounds. Testing was performed in positive and negative ionization mode, but field samples 184 were run in positive mode only. While further details and discussion can be found in Section S1

185	and Tables S1-3, briefly, PEEK tubing was cooled to 2°C and used as an adsorptive collector,
186	with a Teflon filter positioned upstream of the PEEK tubing to remove particles. PEEK was
187	selected due to its inert behavior, thus reducing the possibility for surface-analyte interactions
188	that might inhibit effective inline solvent desorption and dissolution. PEEK is also compatible
189	with the solvents used in the LC system, and is frequently used in LC instruments. Field samples
190	were collected on cooled PEEK tubing during the subsequent winter (March 5-6, 2020), for 2
191	hours each between 8:00am-2:00pm. For these 2 hour (~2.6 L) field samples, functionalized
192	gases in a typical 100-250 g/mol molecular weight range were resolvable at \sim 25-60 ppt in the
193	atmosphere, based on instrument detection limits (Ditto et al., 2018). For analysis, each PEEK
194	collector was installed in the LC system flow path, and analytes were directly desorbed using the
195	LC mobile phase solvents then trapped and focused on the LC column for 20 minutes, before
196	being analyzed using the same LC-ESI-MS system in positive ionization mode (Figure 1). This
197	inline mobile phase desorption step gently mobilized potentially fragile analytes from the PEEK
198	collector and trapped and focused them on the LC column prior to chromatographic separation
199	and mass spectral analysis. Additionally, this preconcentration step allows for the detection and
200	characterization of lower concentration species.
201	We note that there are other existing approaches for offline collection of highly-
202	functionalized organic gases and particles that are compatible with LC analysis such as spray
203	chambers, particle into liquid samplers, coated denuders, PUF sampling, and more. This PEEK

sampling method with inline desorption into the LC mobile phase was pursued to reduce sample

205 preparation steps and thus possibilities for losses (e.g. during solvent extraction or evaporative

- 206 preconcentration), as well as for its direct similarity to the filter-based particle-phase LC-ESI-MS
- 207 analysis.

208	We also note that for all LC analyses, it is possible that some functional groups of interest
209	(e.g. organonitrates) may have undergone hydrolysis in the LC mobile phase, which was
210	primarily water at the beginning of the LC solvent gradient. If so, some of the observed
211	compounds could be byproducts of other functionalized species, though this would require
212	hydrolysis to occur on the order of a few minutes. While we did not observe any of our nitrogen-
213	containing test standards to hydrolyze over these timescales, standards were not available to
214	reflect every functional group observed in these datasets.
215	2.2. Supporting Measurements
216	O ₃ , NO _x , PM _{2.5} , and BC concentrations were recorded concurrently during both summer
217	and winter sampling periods. O3 was measured with a 2B Tech Model 202 Ozone Monitor, NOx
218	with a Thermo Scientific Model 42i-TL Analyzer, PM _{2.5} with a MetOne BAM-1020 instrument,
219	and BC with a Magee Scientific AE33 Aethalometer. O_3 and NO_x inlets were constructed of FEP
220	tubing (1/4" OD), with a Teflon filter housed in a PFA filter holder upstream to remove particles.
221	The PM _{2.5} inlet was made of stainless steel tubing (1 $\frac{1}{4}$ " OD) and the BC inlet was made of
222	copper tubing (3/8" OD). Both particle inlets were outfitted with a $PM_{2.5}$ cyclone to limit particle
223	size to 2.5 µm and below.
224	All inlets were mounted 3 m above the ground. Instrument flow rates were calibrated
225	with an external mass flow controller. O3 and NOx monitors were zeroed with laboratory-
226	generated zero air. The O3 monitor was calibrated against Connecticut Department of Energy and
227	Environmental Protection instrumentation and further confirmed with an O ₃ generator in the lab.
228	The NO _x monitor was calibrated using a NO standard (AirGas, 2 ppm NO in nitrogen, \pm 5%)
229	diluted to 25 ppb with laboratory-generated nitrogen gas. The BC instrument was programmed to
230	conduct an automatic performance check using particle-free air and the $PM_{2.5}$ instrument was

231	zeroed following MetOne protocols with particle-free air. O ₃ and NO _x data were collected at 1-
232	second intervals, BC data were collected at 1-minute intervals, and PM _{2.5} data were collected at
233	1-hour intervals. BC data were saved directly from the instrument, while O_3 , NO_x , and $PM_{2.5}$
234	data were recorded with a LabJack T7 datalogger and custom LabView code. In addition, hourly
235	weather data (temperature, relative humidity, wind speed, wind direction) were collected with a
236	WeatherHawk weather station on top of the 3 m tower.
237	During the summer, we also collected a small number of size-resolved particle samples
238	on quartz filters using an eight-stage cascade impactor (Thermo Scientific). Quartz filters were
239	extracted and analyzed following the same procedure as the Teflon filters discussed above, with
240	the addition of a syringe filtration step to remove insoluble fibers. The cascade impactor was
241	positioned on the roof of the trailer and pulled 28.3 L/min through the inlet for periods of 8 hours
242	during the day and at night (same timing as above) or for 24-hour periods.
243	Finally, we computed 48-hour backward trajectories for every hour during each offline
244	sample collection period with the HYSPLIT Backward Trajectory Model (accessed online at
245	https://www.ready.noaa.gov/HYSPLIT.php), using GDAS1.0 meteorological data, the field site's
246	coordinates as each trajectory's end point, and a final trajectory height of 50 m above the ground.

247 Figure 1. (A) Simplified analytical system setup for functionalized gas-phase compounds, 248 showing (i) desorption from the PEEK collector and trapping on the LC column in order to focus 249 analytes prior to chromatographic separation, and (ii) subsequent chromatographic separation 250 and analysis. Green shading indicates active solvent flow through PEEK collector and/or LC column. A multi-position valve was switched from position "a" (panel (i)) to position "b" (panel 251 252 (ii)) to remove the PEEK collector from the flow path for chromatography and analysis. Table S1 253 describes the flow rates and solvents used in each of these steps. (B) Comparison of select peaks 254 from a typical LC run (solid traces from 10-23 min) to that from a PEEK collector spiked with a 255 standard (bold traces from 30-43 min) demonstrates desorption, trapping/focusing, and similar 256 chromatography. Comparable results from a 2-hour breakthrough test at 2°C with 22 mL/min air 257 flow are also shown (overlayed dotted traces from 30-43 min). Spiked PEEK and breakthrough 258 tests were performed to validate this sampling and analysis methods, and are discussed further in 259 Section S1. Test analytes were used across a range of functionality, with examples shown here and the full list in Table S2. 260

261 **3. Results and Discussion**

262 <u>3.1. Characteristics of the Urban Regional Site</u>

263	Backward trajectories for summertime and wintertime samples showed a strong urban
264	influence. Summertime trajectories ranged from the northwest, west, and especially the
265	southwest (i.e. New York City and other coastal metropolitan areas, similar to well-established
266	and expected air flow patterns near the Long Island Sound). In contrast, trajectories were almost
267	exclusively from the northwest in the winter (Figure S1). These air parcels brought a range of
268	compounds from a mixture of anthropogenic, biogenic, and marine sources to the site, all with
269	differences in gas- and particle-phase source profiles. However, due to the varied backward
270	trajectories, dynamic variations in wind direction over the long duration filter samples (Figure
271	S2), and a high degree of mixing over the Sound, our 8-hour samples are representative of mixed
272	regional conditions in summer and winter, and are thus discussed in this context. Further detailed
273	site characterization can be found in Section S2 and Figures S1-S3.
274	3.2. Seasonal Comparisons of Functionalized Organic Aerosols
275	3.2.1. Summertime composition and the influence of photochemistry and NO_x
276	During this period of active photochemistry, the observed distribution of particle-phase
277	compounds in summertime samples spanned across the intermediate volatility (IVOC) to
278	ultralow volatility organic compound (ULVOC) range, with a predominance of semivolatile
279	(SVOC), low volatility (LVOC), and extremely low volatility organic compounds (ELVOC)
280	(Figure 2A). These compounds existed across a range of functionality. Due to elevated
281	summertime O ₃ mixing ratios at the site (shown in Figure S2, 8-hour maximum mixing ratio in
282	summer: 57 \pm 20 ppb, vs. winter: 46 \pm 5 ppb, p < 0.05, including day and night sampling
283	periods), O3 may have influenced the photochemical processing of emitted volatile species,

284	especially unsaturated biogenic VOCs which readily undergo ozonolysis due to their chemical
285	structure. However, we did not observe a correlation between 8-hour maximum (or 8-hour
286	average) O3 mixing ratios with average particle-phase volatility, carbon number, or O/C (nor did
287	we observe such relationships for gas-phase organic compounds). There were, however, weak
288	relationships between NOx mixing ratios and each of these particle-phase characteristics in the
289	summer. While average NOx mixing ratios were slightly lower during the summer (as shown in
290	Figure S2, 2.3 ± 1.5 ppb in summer vs. 3.7 ± 2.7 ppb in winter, p < 0.05), NO _x mixing ratios
291	trended weakly with particle-phase O/C (r \sim 0.45), volatility (as saturation mass concentration,
292	$log(C_0)$, r ~ 0.49), and inversely with carbon number (r ~ -0.56) in summer.
293	While our correlations and conclusions are somewhat limited by the 8-hour filter
294	sampling duration and the resulting highly regionally-mixed samples, one possible hypothesis is
295	that the presence of NO_x could have promoted more fragmentation reactions in the gas-phase
296	(Loza et al., 2014) that decreased average carbon number, and correspondingly increased
297	volatility and O/C. In fact, we observed highly oxidized C ₃ -C ₆ compounds in the gas-phase (from
298	adsorbent tube measurements with GC-APCI (Section S2)) that were possibly products of these
299	fragmentation reactions of larger compounds. These trends of NO _x mixing ratios with O/C,
300	volatility, and carbon number were not apparent for the observed complex mixture of gas-phase
301	organic compounds. However, these highly oxidized gases may not have persisted in the gas-
302	phase and could have been taken up by the condensed/aqueous phase due to their water
303	solubility, where they would have instead contributed to the observed trends of $\mathrm{NO}_{\boldsymbol{x}}$ with carbon
304	number, volatility, and O/C in the particle-phase. We note that if there was significant uptake of
305	gas-phase NOz to the particle-phase, this may have in part contributed to the particle-phase

306	correlations with NO_x given that the chemiluminescence NO_x analyzer used in this study is
307	known to also respond to gas-phase NO _z (Dunlea et al., 2007).
308	Additionally, NO _x could have been involved in heterogeneous chemistry, promoting
309	oxidation and/or nitrogen addition reactions, such as interaction with NO3 to yield organonitrates
310	(Lim et al., 2016), formation and interaction with HONO to yield nitrophenols (Vidović et al.,
311	2018), or other pathways.
312	3.2.2. Comparison to wintertime composition and the role of aqueous-phase chemistry
313	In the winter, these same relationships between NOx and particle-phase characteristics
314	were not observed. This is possibly due to the decreased role of photochemistry in the winter and
315	the increased role of other competing physical and chemical processes, such as aqueous-phase
316	chemistry. The observed chemical composition of the particle-phase in the winter was indeed
317	indicative of increased aqueous-phase processing, with a shifted compound distribution that
318	included lower molecular weight and higher volatility particle-phase species compared to
319	summer (shown by saturation mass concentration in Figure 2A-B). This is consistent with
320	another past study that suggested that aged fog-water samples contained organic compounds with
321	smaller carbon backbone structures than aged non-aqueous particles, and linked this difference to
322	aqueous-phase fragmentation reactions, the uptake of smaller water-soluble gases to the aqueous-
323	phase, and/or less oligomerization (Brege et al., 2018). In contrast, there was a larger proportion
324	of LVOCs, ELVOCs, and ULVOCs in summer, which decreased the average summertime
325	volatility of the functionalized organic aerosol components. This was likely driven by increased
326	photochemical processing in summer, leading to lower saturation mass concentrations (summer:
327	$log(C_0)$ = -4.1 \pm 5.0 $\mu g/m^3,$ vs. winter: $log(C_0)$ = -1.8 \pm 4.8 $\mu g/m^3,$ p < 0.05) and higher O/C
328	(summer: O/C = 0.5 ± 0.4 vs. winter: O/C = 0.4 ± 0.4 , p < 0.05). To assess the potential

329 contribution of aqueous-phase chemistry, we also estimated aerosol liquid water concentrations

based on available data in Section S2.1.

331 Furthermore, from MS/MS analysis, we observed functional groups that were possible indicators of aqueous-phase processing, including the presence of nitrophenols during the winter, 332 333 which may have formed via dark aqueous-phase reactions with HONO (Vidović et al., 2018), 334 and relatively low contributions from carbonyls across seasons, possibly linked to carbonyl 335 hydrolysis (Ditto et al., 2020). Based on laboratory studies, the presence of azole functional 336 groups and other heterocyclic nitrogen species could also indicate aqueous phase processing, and 337 may be formed from small carbonyl precursors such as glyoxal (DeHaan et al., 2009; Grace et 338 al., 2019) and biacetyl (Grace et al., 2020) reacting with atmospheric ammonia or small amines. 339 Many of the N-only containing azoles observed here had similar substructures to those formed in 340 the aqueous-phase reactions of small carbonyls with ammonia/amines (DeHaan et al., 2009; 341 Grace et al., 2019). In addition, as discussed above, we observed many small gas-phase C_3 - C_6 342 compounds at the site in the summer, which likely included multifunctional isoprene oxidation 343 products (e.g. glycoaldehyde, hydroxyacetone, and isomers); these potential precursors could 344 have reacted with atmospheric ammonia or species containing amino groups to form the 345 observed azole-containing reaction products. We observed more azoles during the summer (Ditto 346 et al., 2020), perhaps due to the increased prevalence of the C_3 - C_6 precursors and overall 347 prominence of aerosol liquid water. 348 Lastly, the role of aqueous-phase chemistry in the region is further supported by prior 349 summertime observations at Brookhaven National Laboratory (on the opposite side of the Long 350 Island Sound), which examined a low-volatility oxygenated organic aerosol factor in the source

351 apportionment of aerosol mass spectrometry measurements, and showed a strong contribution

- 352 from carboxylic acids and other ELVOCs that were attributed to aqueous-phase processing
- 353 (Zhou et al., 2016).

(A) Particle-phase summer volatility distribution (LC-ESI-MS)

354 Figure 2. Chemical composition of particle-phase organic compound mixtures at the YCFS from 355 LC-ESI-MS measurements. (A) and (B) show particle-phase volatility distributions by 356 compound class in the summer (N=34) and winter (N=15), respectively. Compound volatility was estimated and grouped following approaches in the literature (Li et al., 2016; Schervish and 357 358 Donahue, 2020). For direct comparison, volatility bins were defined for the same reference 359 temperature in (A) and (B) (i.e. 300 K, the average summertime sampling period temperature), 360 though wintertime saturation mass concentrations for the observed compounds would shift 361 approximately 2 orders of magnitude lower due to lower temperatures (i.e. 270K). Thus, in the winter, a larger fraction of I/SVOCs would have partitioned to the particle phase, though this 362 363 effect was likely more pronounced for SVOCs than IVOCs (see Table S4).

364 <u>3.2.3. Comparison to other sites</u>

365	The distribution of compound classes observed at the YCFS was significantly different
366	from observations at a range of field sites discussed in past studies (Figure 3), including a remote
367	forested site (i.e. the PROPHET site in Northern Michigan), an urban inland site (i.e. near
368	downtown Atlanta) across two seasons, and in New York City (Ditto et al., 2018, 2019). While a
369	detailed site-to-site comparison is outside the scope of this work, the proximity of the YCFS to
370	the ocean and thus the impact of marine emissions and over-water chemistry likely contributed to
371	the differences between the YCFS and inland locations.
372	In particular, at the YCFS, we observed notably smaller relative contributions from
373	compounds containing carbon, hydrogen, and oxygen (i.e. CHO, 11-16% of observed
374	functionalized compounds here vs. 34-50% at other sites), and the contributions from nitrogen-
375	containing particle-phase compounds at the YCFS were in stark contrast to other sites. Here,
376	85% of compounds in summer and 68% of compounds in winter contained at least one nitrogen
377	atom, compared to 38-51% at the other previously studied sites (Figure 3). These nitrogen-
378	containing species were comprised of compounds with various reduced and oxidized nitrogen-
379	containing functional groups with varying oxygen-to-nitrogen ratios (O/N), which are broadly
380	classified and discussed below as compounds containing carbon, hydrogen, and nitrogen (i.e.
381	CHN), and compounds containing carbon, hydrogen, oxygen, and nitrogen (i.e. CHON (O/N
382	ratio < 3), and CHON (O/N ratio \geq 3)). There were notably greater contributions at the site from
383	nitrogen-containing compounds that also contained at least one oxygen atom, including CHON
384	compounds with O/N < 3 (19-20% here vs. 10-15% at other sites), CHON compounds with O/N
385	\geq 3 (24-44% here vs. 14-19% at other sites), as well as compounds containing oxygen, nitrogen,

and sulfur (i.e. CHONS, 20-21% here vs. 9-10% at other sites) (Ditto et al., 2018). See Section

387 S3 and Figure S4 for discussion of additional compound classes.

388 We note that while these were PM₁₀ measurements, the observations of high nitrogen content were not biased by the inclusion of larger, possibly primary particles. Quartz filter 389 390 samples collected with a cascade impactor at the site during the summer and analyzed with the 391 same LC-ESI-MS methods did not show any statistically significant differences between any of 392 these nitrogen-containing compound classes as a function of particle size across particles ranging 393 from 0.4 to 10 µm. This is consistent with past studies which have demonstrated that amines, as 394 an example of reduced nitrogen, are ubiquitous in size-resolved aerosol samples in urban and 395 rural locations (VandenBoer et al., 2011). 396 The prevalence of nitrogen-containing species at the YCFS is consistent with the study at 397 Brookhaven National Laboratory discussed above, where a dedicated nitrogen-enriched aerosol 398 mass spectrometry factor was identified, and contained prevalent signal from aliphatic amines 399 and amides. However, in the Brookhaven study, the nitrogen-enriched factor was associated with 400 industrial amine emissions that were enhanced during periods of south/southwestern backward 401 trajectory influence, and that had correlations with tracers linked to industrial processes. In our 402 study, there was no correlation between backward trajectory direction and the contribution of 403 nitrogen-containing species. Also, wintertime air parcels arrived predominantly from directions 404 other than south/southwest, suggesting that the nitrogen-containing species observed in our study 405 were the result of mixed anthropogenic, biogenic, and marine precursors and their transformation

406 products.

(B) YCFS winter particle-phase compound classes (LC-ESI-MS)

Figure 3. Enhancements in nitrogen-containing particle-phase compounds compared to other
sites, from LC-ESI-MS measurements. Particle-phase compound class distributions in the
summer (A) and winter (B) at the YCFS, weighted by compound abundance, in contrast with the
average compound class distribution from previously studied forested, urban inland, and urban
coastal sites (C). Nitrogen-containing compound class contributions are outlined in black.

412

413 <u>3.3. Speciating Particle-Phase Multifunctional Nitrogen-Containing Compounds</u>

414 The observed particle-phase species were highly functionalized, often multi-functional,

415 and contained combinations of oxygen, nitrogen, and/or sulfur heteroatoms. Here, we discuss the

416 functional groups present, broken up by the nitrogen-containing compound classes shown in

417 Figures 2-3, with additional discussion of other relevant compound classes in Section S3.

418 <u>3.3.1. CHN compounds</u>

419	While nitrogen-containing compounds in general were very prominent at the site (Figure
420	3A-B), CHN compounds were relatively less abundant in these samples of functionalized
421	organic aerosol. Particle-phase CHN compounds represented just 1% and 3% of observed
422	functionalized organic aerosol abundance in summer and winter, respectively, which was similar
423	to observations at other ambient sites (~5% CHN) (Ditto et al., 2018).
424	In the summertime LC-ESI-MS/MS measurements, CHN particle-phase compounds were
425	comprised primarily of amines (72% of CHN species contained an amine group) and nitriles
426	(28% of CHN species contained a nitrile group), as shown in Figure 4. In the winter, these
427	compounds were nearly exclusively amines (present in 99% of CHN species). Amines have
428	many primary land-based sources (e.g. biogenic emissions (Kieloaho et al., 2013), agricultural
429	activity (Ge et al., 2011), emissions from decomposing organic matter (Ge et al., 2011;
430	Sintermann and Neftel, 2015), biomass burning (Ge et al., 2011), emissions from port activity
431	(Gaston et al., 2013), chemical products (Khare and Gentner, 2018), and vehicle exhaust
432	(Sodeman et al., 2005)), but their presence on the coast could also indicate marine contributions.
433	Amines have been detected both in bulk ocean water, the surface microlayer, and in sea spray
434	aerosol, and their emissions and chemical transformations in the marine environment have been
435	the topic of many recent studies (e.g. Brean et al., 2021; Dall'Osto et al., 2019; Decesari et al.,
436	2020; Di Lorenzo et al., 2018; van Pinxteren et al., 2012, 2019; Quinn et al., 2015; Wu et al.,
437	2020).
438	Recent studies have also evaluated amine phase partitioning or formation in cloud/flog

water (e.g. Chen et al., 2018; Youn et al., 2015), as well as condensed-phase or aqueous-phase
pathways that may transform emitted amines (e.g. Ge et al., 2016; Lim et al., 2019; Tao et al.,

441	2021). Interestingly, the observed amines at this site, as well as other reduced nitrogen groups
442	like nitriles, imines, and enamines, were not present exclusively in CHN species and thus were a
443	mix of both direct emissions and chemically processed compounds. Reduced nitrogen groups
444	were often paired with hydroxyl groups, carboxylic acids, carbonyls, ethers, and esters as part of
445	nitrogen and oxygen containing compounds with a range of O/N ratios. As such, we discuss
446	CHON species as a function of O/N ratio to focus on differences between less-oxygenated (O/N
447	< 3) and more-oxygenated (O/N \ge 3, e.g. organonitrates) species, using a ratio of 3 to distinguish
448	between the two as informed by the O/N ratio of the organonitrate functional group.
449	<u>3.3.2. CHON (O/N < 3) compounds</u>
450	CHON (O/N < 3) compounds were notably more important at this site than other sites,
451	representing 20% and 19% of observed functionalized organic aerosol abundance in summer and
452	winter, respectively (Figure 3A-B), compared to $\sim 13\%$ at other sites (from predominantly
453	summer measurements). These CHON compounds included some functional groups that
454	contained both oxygen and nitrogen, such as amide groups (12% of this compound class's
455	nitrogen content in summer, vs. 1% in winter, Figure 4) and nitro groups (15% of this nitrogen
456	content in summer, vs. 6% in winter, Figure 4). However, most CHON (O/N < 3) compounds
457	were comprised of a combination of nitrogen- or oxygen-containing groups, rather than a
458	functional group containing both nitrogen and oxygen. This included large contributions from
459	hydroxyls and ethers across both seasons, as well as important contributions from amines,
460	isocyanates, and heterocyclic nitrogen (Ditto et al., 2020). The presence of these functional
461	groups in the winter could be indicative of wood burning emissions in the region, which has been
462	observed in the wintertime in past ambient sampling in the Northeast U.S. (Sullivan et al., 2019).
463	Isocyanates contributed notably to this compound class during the winter, which could similarly

464	be linked to burning wood, other biomass, building materials (Leslie et al., 2019; Priestley et al.,
465	2018; Roberts et al., 2014), or could be photochemically produced via the oxidation of amines
466	and amides (Borduas et al., 2015; Leslie et al., 2019). Importantly, levoglucosan, a common
467	biomass burning tracer, was observed across nearly all daytime and nighttime winter particle-
468	phase samples (verified with an authentic standard), supporting the influence of biomass burning
469	compounds at the site. Together, the overall high prevalence of reduced nitrogen at this site
470	could be influenced by the mixing of aged biomass burning plumes with marine air, which is
471	consistent with past observations of very high alkylamine concentrations in biomass burning
472	particles that mixed with marine air prior to sampling (Di Lorenzo et al., 2018).
473	<u>3.3.3. CHON ($O/N \ge 3$) compounds</u>
474	CHON (O/N \geq 3) compounds were the dominant compound class in the observed
475	summertime distribution and played an important role in the wintertime distribution as well,
476	comprising 44% of observed functionalized organic aerosol abundance in summer vs. 24% in
477	winter (Figure 3A-B). These contributions were far greater than the contributions of CHON (O/N
478	\geq 3) species at other sites, which typically ranged from 14-19% (predominantly from
479	summertime measurement, Figure 3C).
480	Similar to CHON (O/N < 3), we observed some CHON (O/N \ge 3) compounds with
481	functional groups containing 3 oxygen atoms and 1 nitrogen atom, e.g. nitrophenols and
482	organonitrates (Figure 4), but also contributions from nitrogen-only functional groups paired
483	with oxygen-containing groups. Notably, in the summer, there were important contributions from
484	amines (47% of this compound class's nitrogen content), imines (19%), organonitrates (10%),
485	and azoles (16%) (Figure 4). In contrast, in the winter, nitrogen content in the CHON (O/N \ge 3)

- 486 compound class was dominated by I/SVOC nitrophenols, comprising 64% of the CHON (O/N \geq
- 487 3) ion abundance.

488	NO_x mixing ratios were typically low in both summer and winter (2.3 ± 1.5 ppb in
489	summer vs. 3.7 ± 2.7 ppb in winter), but were slightly higher during winter. In the winter, CHON
490	(O/N \ge 3) compounds showed a weak positive relationship with NO _x mixing ratios (r ~ 0.58) and
491	a stronger correlation with NO mixing ratios (r \sim 0.81). This relationship between CHON (O/N \geq
492	3) and NO (and NO_x) suggests that many of these oxidized nitrogen species were products of
493	NO _x -related chemistry (i.e. NO _z compounds). The enhancements in nitrophenols serves as one
494	example of this, as NO mixing ratios also correlated with the contribution of nitrophenols in the
495	winter (r ~ 0.69).

496 In past work, we discussed nitrophenol nighttime enhancements during winter, and noted 497 their reported aqueous formation pathways mentioned in prior laboratory studies (Ditto et al., 498 2020). Here, we demonstrate that nitrophenols were important contributors to the CHON ($O/N \ge$ 499 3) compound class, and highlight their role as examples of NO_z due to their possible formation 500 via dark aqueous-phase nitration pathways of oxygenated aromatics with ambient nitrous acid 501 (HONO) (Vidović et al., 2018). While nitrophenols may have other sources (e.g. diesel exhaust), 502 our observations of a clear nighttime enhancement during the winter suggest that these functional 503 groups were most likely formed by secondary chemistry related to NO_x oxidation, as this field 504 site was removed from major roadways. Our wintertime observations suggest that HONO could 505 have been derived from local wood burning, and could have reacted away as the smoke plume 506 aged to form stable products like nitrophenols, similar to HONO transformation chemistry into 507 other forms of oxidized nitrogen (e.g. particulate nitrates, PANs, organic nitrates) that has 508 recently been observed in wildfire smoke (Juncosa Calahorrano et al., 2021).

509	Furthermore, the correlation between NO and CHON ($O/N \ge 3$) could also be influenced
510	by the daytime formation of organonitrates via reaction with OH $^{\bullet}$ and NO (i.e. RO _{2$^{\bullet}$} + NO)
511	(Liebmann et al., 2019; Ng et al., 2017; Perring et al., 2013; Takeuchi and Ng, 2018), though
512	organonitrates contributed to a smaller fraction of CHON (O/N \ge 3) species (i.e. 10% of this
513	compound class's nitrogen content across seasons).
514	3.3.4. Overall contributions of reduced and oxidized nitrogen groups
515	In the summer and winter, contributions from reduced nitrogen groups (e.g. groups
516	shown in black/grey in Figure 4) rivaled that of oxidized nitrogen groups in CHON compounds
517	across a range of O/N ratios. In the summer, reduced nitrogen groups contributed to 50% of all
518	detected CHON (O/N < 3) compounds by ion abundance, while in the winter they contributed
519	47% (Figure 4). For CHON compounds with O/N \ge 3, reduced nitrogen groups contributed to
520	68% of compound ion abundance in the summer, while in the winter they contributed just 13%.
521	Interestingly, 90% of the dominant reduced nitrogen functional groups observed (amines and
522	imines) were present in acyclic rather than cyclic structures, which may have been the result of
523	either direct emissions or formation via reactions with ammonia or other small amines.
524	In contrast, possible NO _z products (e.g. groups shown in blue in Figure 4) were present in
525	18% and 7% of CHON (O/N < 3) compounds in the summer and winter, respectively. For
526	CHON (O/N \geq 3) compounds, they were present in 18% and 86% in the summer and winter,
527	respectively, with the latter wintertime increase in oxidized N-groups largely driven by the
528	presence of nitrophenols at night (Ditto et al., 2020). The remaining fraction of nitrogen-
529	containing groups also contained oxygen, but with a reduced nitrogen atom (e.g. amide,
530	isocyanate, nitrogen/oxygen-containing azole, shown in brown in Figure 4). We note that

531	CHONS compounds also represented a sizable fraction of observed organic nitrogen (Figure 3),
532	and contained a mix of reduced and oxidized functional groups (Section S3 and Figure S4).
533	The importance of reduced nitrogen functional groups in CHON compounds highlights
534	that not all oxygen- and nitrogen-containing species in the CHON (O/N \geq 3) compound class
535	were NO _z , despite their apparent molecular formulas and the observed correlation observed
536	between CHON (O/N \ge 3) species with NO and NO _x mixing ratios. For instance, many of the
537	observed reduced nitrogen-containing functional groups co-occurred with several oxygen-
538	containing groups like hydroxyls, carboxylic acids, esters, ethers, and carbonyls, and thus had
539	molecular formulas with $O/N \ge 3$, which could incorrectly be assumed to be an organonitrate or
540	similar structure based on molecular formula alone.
541	We note that the relative distribution of reduced and oxidized nitrogen-containing groups
541 542	We note that the relative distribution of reduced and oxidized nitrogen-containing groups shown here is subject to sampling and ionization conditions. While the electrospray ionization
541 542 543	We note that the relative distribution of reduced and oxidized nitrogen-containing groups shown here is subject to sampling and ionization conditions. While the electrospray ionization source used for the particle-phase analysis discussed here effectively ionized these nitrogen-
541542543544	We note that the relative distribution of reduced and oxidized nitrogen-containing groups shown here is subject to sampling and ionization conditions. While the electrospray ionization source used for the particle-phase analysis discussed here effectively ionized these nitrogen- containing groups, their relative sensitivity may differ because many of these functional groups
 541 542 543 544 545 	We note that the relative distribution of reduced and oxidized nitrogen-containing groups shown here is subject to sampling and ionization conditions. While the electrospray ionization source used for the particle-phase analysis discussed here effectively ionized these nitrogen- containing groups, their relative sensitivity may differ because many of these functional groups were present in multifunctional compounds whose other features may also contribute to
 541 542 543 544 545 546 	We note that the relative distribution of reduced and oxidized nitrogen-containing groups shown here is subject to sampling and ionization conditions. While the electrospray ionization source used for the particle-phase analysis discussed here effectively ionized these nitrogen- containing groups, their relative sensitivity may differ because many of these functional groups were present in multifunctional compounds whose other features may also contribute to ionization behavior. Also, other aspects of the sample collection and extraction process could
 541 542 543 544 545 546 547 	We note that the relative distribution of reduced and oxidized nitrogen-containing groups shown here is subject to sampling and ionization conditions. While the electrospray ionization source used for the particle-phase analysis discussed here effectively ionized these nitrogen- containing groups, their relative sensitivity may differ because many of these functional groups were present in multifunctional compounds whose other features may also contribute to ionization behavior. Also, other aspects of the sample collection and extraction process could cause variability in observed signal (e.g. PM size cut, organonitrate stability over long duration
 541 542 543 544 545 546 547 548 	We note that the relative distribution of reduced and oxidized nitrogen-containing groups shown here is subject to sampling and ionization conditions. While the electrospray ionization source used for the particle-phase analysis discussed here effectively ionized these nitrogen- containing groups, their relative sensitivity may differ because many of these functional groups were present in multifunctional compounds whose other features may also contribute to ionization behavior. Also, other aspects of the sample collection and extraction process could cause variability in observed signal (e.g. PM size cut, organonitrate stability over long duration samples). Thus, we emphasize that the observed relative abundances here are valuable because
 541 542 543 544 545 546 547 548 549 	We note that the relative distribution of reduced and oxidized nitrogen-containing groups shown here is subject to sampling and ionization conditions. While the electrospray ionization source used for the particle-phase analysis discussed here effectively ionized these nitrogen- containing groups, their relative sensitivity may differ because many of these functional groups were present in multifunctional compounds whose other features may also contribute to ionization behavior. Also, other aspects of the sample collection and extraction process could cause variability in observed signal (e.g. PM size cut, organonitrate stability over long duration samples). Thus, we emphasize that the observed relative abundances here are valuable because they suggest that fully reduced nitrogen-containing groups are important contributors to

Figure 4. The distribution of functional groups in particle-phase nitrogen-containing compounds measured via LC-ESI-MS/MS. The breakdown of CHN, CHON (O/N < 3), and CHON ($O/N \ge$ 3) compounds is shown as a function of contributions of each functional group to ion abundance, with possible NO_z species shown in blue shades, fully-reduced nitrogen-containing groups shown in black/grey shades, and groups containing both oxygen and nitrogen where the nitrogen

- 556 atom itself is not oxidized shown in brown shades.
- 557 <u>3.4. Probing Possible Nitrogen-Containing Gas-Phase Precursors to Observed Nitrogen-</u>
- 558 Containing Particles with Adsorptive Sampling and LC-ESI-MS
- 559 The particle-phase volatility distribution in the winter consisted of 18% IVOCs and 41%
- 560 SVOCs (Figure 2B). Of the observed compounds in winter, 68% contained nitrogen; these likely
- 561 included contributions from functionalized gas-phase precursors and likely were influenced by
- the active multiphase partitioning of these precursors, and their gas- or particle-phase reaction
- 563 products, with changes in organic aerosol loading, atmospheric liquid water concentrations, and

585

564	temperature (Donahue et al., 2011; Ervens et al., 2011). This emphasizes the need to measure a
565	broader range of these functionalized gas-phase compounds, which have known limitations with
566	GC transmission, but represent uncertain and important-to-measure SOA precursors.
567	However, despite evidence of substantial contributions from particle-phase I/SVOCs with
568	diverse nitrogen-containing functionalities that could dynamically partition between phases
569	(Figure 2A-B), the observed compound class distribution from gas-phase adsorbent tube
570	measurements analyzed via GC-APCI-MS was dominated by hydrocarbons (i.e. CH, 24% of
571	detected ion abundance in summer vs. 18% in winter) and oxygenates (i.e. CHO, 66% in summer
572	vs. 69% in winter) (Figure S5). These gas-phase species appeared to be lightly functionalized
573	oxygenates (average O/C: 0.12 ± 0.13), showing minimal contributions from nitrogen (or sulfur)
574	heteroatoms; only 9% of detected ion abundance from gas-phase adsorbent tubes in summer and
575	11% in winter contained a nitrogen heteroatom. This is likely due to measurement limitations;
576	while GC-APCI techniques are extremely well-suited for the analysis of less functionalized
577	organic compounds from both instrument transmission and ionization efficiency perspectives,
578	these techniques are not as effective for more polar, more functionalized, more thermally-labile,
579	or otherwise less-GC-amenable species. Thus, to examine a broader range of functionalized gas-
580	phase compounds, we used an offline adsorptive sampling method on cooled PEEK tubing
581	collectors and inline mobile phase desorption for LC-ESI-MS analysis (Figure 1). CH and CHS
582	compound classes were excluded from this gas-phase LC-ESI-MS analysis due to their poor ESI
583	ionization efficiency.
584	Due to variations in trapping and desorption effectiveness (Section S1), this method was

586 assessment of the distribution of nitrogen-containing gas-phase organic compounds. The

not intended to be used as a quantitative measurement of concentration, but rather a relative

587	variation between analytes in breakthrough testing does not influence our conclusions about the
588	overall prevalence of observed gas-phase organic nitrogen. In laboratory tests, gas-phase sample
589	collection, inline desorption to the mobile phase, trapping on the LC column, and
590	chromatographic separation performed well. We observed limited breakthrough for most
591	analytes during sampling, effective focusing prior to LC analysis, and similar separations for
592	spiked collectors and breakthrough tests compared to standard LC runs (Figure 1B).
593	Results from the application of this new method at the YCFS revealed a wide range of
594	compounds with oxygen-, nitrogen-, and/or sulfur-containing functionality (Figure 5) that existed
595	at a lower average saturation mass concentration than the adsorbent tube methods during winter,
596	with a log(C_0) of 3.8 \pm 2.6 $\mu g/m^3$ for adsorbent tubes analyzed with GC-APCI-MS compared to
597	$0.6\pm2.2~\mu\text{g}/\text{m}^3$ for functionalized gases observed via LC-ESI-MS (p $<$ 0.05). This decrease in
598	volatility corresponded to an increase in the average O/C ratio of these functionalized gases to
599	0.2 ± 0.2 , which can partly be attributed to LC-ESI's poor ionization of CH compounds and to
600	the collection system's design (targeting heteroatom-containing species and not higher volatility
601	hydrocarbons). This may be a lower limit of O/C among functionalized compounds, as during
602	testing with a mixture of standards, we often observed poor retention of high O/C sugars like
603	xylitol and mannose on the LC analytical column (Table S2).
604	The gas-phase LC-ESI-MS data provide a valuable comparison to the wintertime
605	particle-phase samples analyzed using the same instrument. These particle-phase samples had
606	major contributions from CHO, CHON (O/N < 3 and O/N \geq 3), CHONS, and CHOS compound
607	classes (Figure 3B). While not collected concurrently, the functionalized gas-phase samples in
608	winter had similar contributions from CHO (20%) and CHON (O/N \geq 3) compounds (16%),
609	relatively more CHN (11%) and CHON (O/N < 3) (46%) compounds, and fewer CHONS (2.7%)

610	and CHOS (4.4%) compounds (Figure 5A). The prevalence of gas-phase CHN, CHON (O/N \leq
611	3), and CHON (O/N \ge 3) is of particular interest given the abundance of CHON compounds
612	observed in the particle phase, and the potential of these gases to partition to the particle-phase
613	and/or act as reactive precursors to other oxidized nitrogen-containing species.
614	The presence of these nitrogen-containing compounds in the gas-phase also suggests that
615	these compound classes observed in the particle-phase at least partly originated in the gas-phase
616	and partitioned, rather than formed exclusively as a result of particle-phase chemistry. These
617	species could have also formed in the particle-phase and partitioned to the gas-phase with or
618	without condensed-phase fragmentation (discussed above). In either scenario, these nitrogen-
619	containing compounds likely actively partitioned between phases due to their volatility (e.g.
620	I/SVOCs shown in Figure 5A). Also, their polarity and high Henry's Law coefficients (relative
621	to non-functionalized hydrocarbons (Sander, 2015)) suggests that these compounds could have
622	been readily taken up by the aqueous phase. To check that these compounds were indeed gas-
623	phase species under ambient conditions, we predicted the saturation mass concentration for
624	individual compounds using individual ion formulas and estimated their gas-particle partitioning
625	to a pre-existing condensed phase. While the range of compounds in Figure 5A can be expected
626	to dynamically partition, the results confirm that the overall suite of observed compounds would
627	have predominately existed as gases, with on average ~80% of observed ion abundance predicted
628	to equilibrate to the gas-phase across compound classes (Figure S6).
629	Of all the gas-phase species observed with at least one nitrogen atom (i.e. CHN, CHON,
630	CHONS, CHNS), we note that 78% of these compounds had an O/N ratio of less than 3 (Figure
631	5B), indicating that most of these gas-phase species were not organonitrates, nitrophenols, or

632 other similar structures. This is similar to our particle-phase results, which showed important

633	contributions from reduced nitrogen-containing groups paired with oxygen-containing groups in
634	CHON (O/N \leq 3) compounds. Notably, we observed an 11% contribution of gas-phase CHN
635	species with this gas-phase LC-ESI-MS method (Figure 5A), in contrast to 2% CHN in the
636	wintertime particle-phase samples (Figure 3). In the winter particle-phase samples, most CHN
637	compounds contained amines (discussed above), and thus we postulate that these functionalized
638	gas-phase CHN species were possibly also amines that acted as precursors to observed nitrogen-
639	containing particle-phase compounds following oxidation and partitioning (or vice versa).
640	The substantial contribution from CHON with $O/N < 3$ (46%) to the functionalized gas-
641	phase samples could be linked to less photochemical processing of CHON compounds relative to
642	the particle phase and/or the emissions/oxidation of CHN or CHON compounds. Moreover, in
643	the particle-phase, we observed a weak negative relationship between CHN contribution and
644	hydroxyl group prevalence in summertime measurements (r \sim -0.57), which may support the
645	transformation of CHN to CHON compounds via the formation of hydroxyl-containing species.

646Figure 5. Observations of gas-phase nitrogen-containing compounds. (A) The distribution of647functionalized gases observed via sampling on PEEK collectors (N = 6) and inline mobile phase648desorption with non-targeted LC-ESI-MS analysis contained a diversity of oxygen-, nitrogen-,649and/or sulfur-containing compounds in the IVOC-LVOC range (volatility assignment and650grouping was the same as discussed in Figure 2). While we cannot rule out gas-phase LVOC651contributions from evaporation off of the upstream particle filter, LVOC contributions were

- 652 limited (~12%). (B) Oxygen-to-nitrogen (O/N) ratio distribution of observed gas-phase nitrogen-
- 653 containing species where O/N ratios < 3 are colored grey and O/N ratios ≥ 3 are white (blue text
- above each percentage signifies the O/N ratio).

655 4. Conclusions and Opportunities for Future Research

656 Together, these results suggest that a mix of direct emissions and chemical processes 657 during summer and winter in the Long Island Sound region resulted in a diverse mixture of 658 multifunctional gases and particles, where more than two-thirds of observed particle-phase 659 compounds contained at least one nitrogen atom. 660 The observed nitrogen-containing functional groups existed across a range of fully 661 reduced (e.g. amines, imines) and oxidized (e.g. nitro, organonitrate) structures. These fully 662 reduced nitrogen functional groups were prevalent across all nitrogen-containing compound 663 classes, including CHON species, and we highlight their importance as contributors to these 664 multifunctional compounds beyond typical NO_z-type compounds that are commonly studied 665 using online mass spectrometers and share similar CHON molecular formulas. For instance, 666 these gas- and particle-phase measurements of nitrogen-containing compounds are 667 complementary to the measurements of these species made by chemical ionization mass 668 spectrometers (CIMS) or by proton transfer reaction mass spectrometers (PTR-MS), whose 669 ionization mechanisms can be tuned for sensitivity towards functionalized compounds of interest 670 (Riva et al., 2019). While online mass spectrometers excel at high time resolution measurements 671 that capture dynamic chemical processes in the atmosphere, their mass resolution is typically 672 lower and they normally do not utilize separations, so they largely depend on parent ion mass-to-673 charge ratios to assign molecular formulas without structural attribution. The offline methods 674 used here cannot match the time resolution of online techniques. However, the use of 675 chromatography to separate isomers, longer sampling times to increase sensitivity toward a 676 greater range of compounds, and the use of higher resolution mass spectrometers with MS/MS 677 capabilities allow for improved compound identification and determination of functional group

678	distribution at the molecular level. This enables us to distinguish between true NOz species and
679	those that contain combinations of nitrogen and oxygen but are not NO _x oxidation products.
680	Thus, both these online and offline methods should be employed together to differentiate a wider
681	range of nitrogen-containing species and to achieve both temporal and chemical resolution.
682	As discussed throughout this work, the Long Island Sound region is affected by a mixture
683	of anthropogenic, biogenic, and marine sources, all of which contain known emitters of organic
684	nitrogen. Understanding the combined effect of these individual sources and their chemical
685	transformations will be important in regions like the Long Island Sound, where a significant
686	degree of mixing occurs over the Sound before air parcels arrive inland. For example, past work
687	has noted extremely high contributions from alkylamines in biomass burning-influenced air
688	mixed with marine air (Di Lorenzo et al., 2018). Similar enhancements could be expected when
689	mixing other prominent sources of amines with marine air, such as in the aging urban outflow
690	from the Central Atlantic and Northeast U.S., which may be transported up the coast and impact
691	states in the surrounding region.
692	As with any ambient site, these mixed emissions are chemically processed in the
693	atmosphere via a multitude of pathways. Here, we observed evidence of photochemical and
694	aqueous processes occurring in both seasons, but in the winter we observed various mixture-wide
695	trends that suggested an enhanced role for aqueous-phase processing. These observations
696	included higher overall particle-phase volatility and smaller carbon backbone sizes, which may
697	indicate a more important role for aqueous-phase fragmentation reactions or aqueous uptake of
698	water soluble gases (Brege et al., 2018). We also observed key marker functional groups that
699	may be formed via aqueous phase chemistry (e.g. nitrophenols, azoles). The role of aqueous-

700 phase chemistry and aqueous-phase uptake of gases is increasingly studied in laboratory and

ambient contexts (Herrmann et al., 2015), and such chemistry should further examined especially

702 in coastal and other humid regions.

703 For example, the aqueous-phase processing of atmospherically relevant nitrogen-704 containing species is particularly important to understand in ambient air due to the potential of 705 brown carbon formation, which has significant impacts on climate forcing (Laskin et al., 2015). 706 The role of ammonia and amines reacting with carbonyls is of interest for this type of chemistry 707 (e.g. DeHaan et al., 2009; Grace et al., 2020; McNeill, 2015; Sareen et al., 2010) and should 708 continue to be explored, particularly in coastal settings where concentrations of small gas-phase 709 amines may be high due to their marine sources. As discussed above, our ambient observations 710 of azoles could be indicative of such chemistry, and should be explored in future comparisons of 711 ambient and laboratory-generated species. Also, we observed a significant contribution from 712 nitrophenols at our site, and while they are not formed by this same chemistry, they represent 713 another important form of light absorbing nitrogen-containing organic mass in the atmosphere 714 (Hems and Abbatt, 2018). Finally, many of the nitrogen-containing functional groups observed 715 in this work may be susceptible to hydrolysis, so the balance between hydrolysis and other 716 aqueous pathways is important to consider and understand for appropriate representation of 717 nitrogen-containing compounds in models for both aqueous aerosol and in-cloud/fog chemistry. 718 As another example, the greater prevalence of I/SVOCs observed in the winter particle-719 phase samples suggested possible dynamic partitioning or aqueous uptake of lighter gas-phase 720 compounds; to explore the composition of these lighter gas-phase compounds that could exist as 721 I/SVOCs and thus participate in phase partitioning, we supplemented our particle-phase analyses 722 with a novel approach for investigating functionalized gases with LC-ESI-MS. Further 723 investigation of these nitrogen-containing gases will facilitate new understanding of their gas-

724	particle partitioning in the presence of aerosol liquid water and organic condensed species, and
725	measurements across dynamic conditions will help elucidate the relative importance of both
726	processes. For these types of measurements, further design iterations of the PEEK sampling
727	system for functionalized gases and additional functionalized gas-phase samples for LC-ESI-MS
728	analysis could be pursued. Concurrent high volume filter samples could be collected for direct
729	comparison to the particle-phase, which was not possible in this study due to insufficient mass
730	loading on the upstream filter during the short duration functionalized gas sample (i.e. 2 hours).
731	Concurrent PEEK samples could also be collected for MS/MS analysis.
732	In all, combinations of online and offline mass spectrometry to obtain temporal and
733	chemical detail, further ambient observations of major organic nitrogen sources, a better
734	understanding of the aqueous processing of nitrogen-containing compounds, and improved
735	characterization of their gas-particle partitioning in the presence of aerosol liquid water will
736	together allow for a more accurate representation of nitrogen-containing organic compounds in
737	emission inventories and models, and enhance our ability to predict their impacts on atmospheric
738	composition, human health, and climate.
739	
740	Author contributions: J.C.D. and D.R.G. planned the field sampling and study. J.C.D. collected
741	and analyzed field samples, and performed PEEK sampling and inline LC method development.
742	J.M. performed inline LC method development. J.C.D. and D.R.G. wrote the manuscript with
743	contributions from all co-authors.

744

745 Data availability: Data are available upon request to Drew R. Gentner

- 746 (drew.gentner@yale.edu).
- 747

- 748 **Competing interests:** The authors declare that they have no substantive conflicts of interest but
- acknowledge that D.R.G. is an associate editor with Atmospheric Chemistry and Physics.
- 750
- 751 Acknowledgements: We acknowledge support from the National Science Foundation
- 752 (AGS1764126) and the Yale Natural Lands Program. We also acknowledge GERSTEL for their
- collaboration with the thermal desorption unit used here. We thank David Wheeler at the New
- 754 York Department of Environmental Conservation, Pete Babich and Adam Augustine at the
- 755 Connecticut Department of Energy and Environmental Protection, Luke Valin at the
- 756 Environmental Protection Agency, and Jordan Peccia at Yale for use of sampling equipment, as
- 757 well as Paul Miller (NESCAUM) for organizing the LISTOS project. We also thank Richard
- 758 Boardman and the Yale Peabody Museum for enabling us to set up and collect samples at the
- 759 YCFS site, and acknowledge the help of Yale Peabody Museum EVOLUTIONS interns: Amir
- 760 Bond, Ethan Weed, Paula Mock, and Aurea Orencia. We thank Trevor VandenBoer and Barbara
- 761 Ervens for helpful feedback on the draft manuscript. Finally, we acknowledge the NOAA Air
- 762 Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model.
- 763

764 **References**

765

Borduas, N., Da Silva, G., Murphy, J. G. and Abbatt, J. P. D.: Experimental and theoretical understanding of the gas
phase oxidation of atmospheric amides with OH radicals: Kinetics, products, and mechanisms, J. Phys. Chem. A,
119(19), 4298–4308, doi:10.1021/jp503759f, 2015.

- Brean, J., Dall'Osto, M., Simó, R., Shi, Z., Beddows, D. C. S. and Harrison, R. M.: Open ocean and coastal new particle formation from sulfuric acid and amines around the Antarctic Peninsula, Nat. Geosci., 14(6), 383–388, doi:10.1038/s41561-021-00751-y, 2021.
- 773 774
- Brege, M., Paglione, M., Gilardoni, S., Decesari, S., Facchini, M. C. and Mazzoleni, L. R.: Molecular insights on aging and aqueous-phase processing from ambient biomass burning emissions-influenced Po Valley fog and aerosol, Atmos. Chem. Phys., 18(17), 13197–13214, doi:10.5194/acp-18-13197-2018, 2018.
- 778 Chen, C. L., Chen, S., Russell, L. M., Liu, J., Price, D. J., Betha, R., Sanchez, K. J., Lee, A. K. Y., Williams, L.,
- 779 Collier, S. C., Zhang, Q., Kumar, A., Kleeman, M. J., Zhang, X. and Cappa, C. D.: Organic Aerosol Particle
- 780 Chemical Properties Associated With Residential Burning and Fog in Wintertime San Joaquin Valley (Fresno) and

- 781 With Vehicle and Firework Emissions in Summertime South Coast Air Basin (Fontana), J. Geophys. Res. Atmos.,
- 782 123(18), 10707–10731, doi:10.1029/2018JD028374, 2018.
- 783
- 784 Cleveland, W. S., Kleiner, B., McRae, J. E. and Warner, J. L.: Photochemical air pollution: Transport from the New
- York City area into Connecticut and Massachusetts, Science., 191(4223), 179–181, doi:10.1126/science.1246603, 1976.
- 787
- 788 Dall'Osto, M., Airs, R. L., Beale, R., Cree, C., Fitzsimons, M. F., Beddows, D., Harrison, R. M., Ceburnis, D.,
- 789 O'Dowd, C., Rinaldi, M., Paglione, M., Nenes, A., Decesari, S. and Simó, R.: Simultaneous Detection of
- Alkylamines in the Surface Ocean and Atmosphere of the Antarctic Sympagic Environment, ACS Earth Sp. Chem.,
 3(5), 854–862, doi:10.1021/acsearthspacechem.9b00028, 2019.
- 791 5(5), 854–862, doi:10.1021/acseartiispacecher
- 793 Decesari, S., Paglione, M., Rinaldi, M., Dall'osto, M., Simó, R., Zanca, N., Volpi, F., Cristina Facchini, M.,
- 794 Hoffmann, T., Götz, S., Johannes Kampf, C., O'Dowd, C., Ceburnis, D., Ovadnevaite, J. and Tagliavini, E.:
- Shipborne measurements of Antarctic submicron organic aerosols: An NMR perspective linking multiple sources
 and bioregions, Atmos. Chem. Phys., 20(7), 4193–4207, doi:10.5194/acp-20-4193-2020, 2020.
- 797
- DeHaan, D. O., Corrigan, A. L., Smith, K. W., Stroik, D. R., Turley, J. J., Lee, F. E., Tolbert, M. A., Jimenez, J. L.,
- Cordova, K. E., Ferrell, G. R., Haan, D. O. De, Corrigan, A. L., Smith, K. W., Stroik, D. R., Turley, J. J., Lee, F. E.,
 Tolbert, M. A., Jimenez, J. L., Cordova, K. E. and Ferrell, G. R.: Secondary organic aerosol-forming reactions of
- 801 glyoxal with amino acids, Environ. Sci. Technol., 43(8), 2818–2824, doi:10.1021/es803534f, 2009.
- 802
- Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., Dominici, F. and Schwartz, J. D.: Air
 pollution and mortality in the medicare population, N. Engl. J. Med., 376(26), 2513–2522,
- 805 doi:10.1056/NEJMoa1702747, 2017.
- 806
- Bitto, J. C., Barnes, E. B., Khare, P., Takeuchi, M., Joo, T., Bui, A. A. T., Lee-Taylor, J., Eris, G., Chen, Y.,
 Aumont, B., Jimenez, J. L., Ng, N. L., Griffin, R. J. and Gentner, D. R.: An omnipresent diversity and variability in
 the chemical composition of atmospheric functionalized organic aerosol, Commun. Chem., 1(1), 75,
 doi:10.1038/s42004-018-0074-3, 2018.
- 811

Bitto, J. C., Joo, T., Khare, P., Sheu, R., Takeuchi, M., Chen, Y., Xu, W., Bui, A. A. T., Sun, Y., Ng, N. L. and
Gentner, D. R.: Effects of Molecular-Level Compositional Variability in Organic Aerosol on Phase State and
Thermodynamic Mixing Behavior, Environ. Sci. Technol., 53(22), 13009–13018, doi:10.1021/acs.est.9b02664,
2019.

- 816
- Bitto, J. C., Joo, T., Slade, J. H., Shepson, P. B., Ng, N. L. and Gentner, D. R.: Nontargeted Tandem Mass
 Spectrometry Analysis Reveals Diversity and Variability in Aerosol Functional Groups across Multiple Sites,
 Seasons, and Times of Day, Environ. Sci. Technol. Lett., 7(2), 60–69, doi:10.1021/acs.estlett.9b00702, 2020.
- 820
- Bitto, J. C., He, M., Hass-Mitchell, T. N., Moussa, S. G., Hayden, K., Li, S.-M., Liggio, J., Leithead, A., Lee, P.,
 Wheeler, M. J., Wentzell, J. J. B. and Gentner, D. R.: Atmospheric Evolution of Emissions from a Boreal Forest
 Fire: The Formation of Highly-Functionalized Oxygen-, Nitrogen-, and Sulfur-Containing Compounds, Atmos.
 Chem. Phys., 21, 255–267, 2021.
- 825
- Donahue, N. M., Epstein, S. A., Pandis, S. N. and Robinson, A. L.: A two-dimensional volatility basis set: 1.
 organic-aerosol mixing thermodynamics, Atmos. Chem. Phys., 11(7), 3303–3318, doi:10.5194/acp-11-3303-2011,
 2011.
- 829
- Bührkop, K., Shen, H., Meusel, M., Rousu, J. and Böcker, S.: Searching molecular structure databases with tandem
 mass spectra using CSI:FingerID, Proc. Natl. Acad. Sci., 112(41), 12580–12585, doi:10.1073/pnas.1509788112,
- 832 2015.
- 833
- Dührkop, K., Fleischauer, M., Ludwig, M., Aksenov, A. A., Melnik, A. V., Meusel, M., Dorrestein, P. C., Rousu, J.
- and Böcker, S.: SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information, Nat.
 Methods, 16(4), 299–302, doi:10.1038/s41592-019-0344-8, 2019.

Dunlea, E. J., Herndon, S. C., Nelson, D. D., Volkamer, R. M., San Martini, F., Sheehy, P. M., Zahniser, M. S.,

- 839 Shorter, J. H., Wormhoudt, J. C., Lamb, B. K., Allwine, E. J., Gaffney, J. S., Marley, N. A., Grutter, M., Marquez,
- 840 C., Blanco, S., Cardenas, B., Retama, A., Ramos Villegas, C. R., Kolb, C. E., Molina, L. T. and Molina, M. J.:
- Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment, Atmos. Chem. Phys.,
 7(10), 2691–2704, doi:10.5194/acp-7-2691-2007, 2007.
- 843

837

Ervens, B., Turpin, B. J. and Weber, R. J.: Secondary organic aerosol formation in cloud droplets and aqueous
particles (aqSOA): A review of laboratory, field and model studies, Atmos. Chem. Phys., 11(21), 11069–11102,
doi:10.5194/acp-11-11069-2011, 2011.

- 847
- Gaston, C. J., Quinn, P. K., Bates, T. S., Gilman, J. B., Bon, D. M., Kuster, W. C. and Prather, K. A.: The impact of
- shipping, agricultural, and urban emissions on single particle chemistry observed aboard the R/V Atlantis during
 CalNex, J. Geophys. Res. Atmos., 118(10), 5003–5017, doi:10.1002/jgrd.50427, 2013.
- Ge, X., Wexler, A. S. and Clegg, S. L.: Atmospheric amines Part I. A review, Atmos. Environ., 45(3), 524–546,
 doi:10.1016/j.atmosenv.2010.10.012, 2011.
- Ge, Y., Liu, Y., Chu, B., He, H., Chen, T., Wang, S., Wei, W. and Cheng, S.: Ozonolysis of Trimethylamine
 Exchanged with Typical Ammonium Salts in the Particle Phase, Environ. Sci. Technol., 50(20), 11076–11084,
 doi:10.1021/acs.est.6b04375, 2016.
- 858

de Gouw, J. A., Middlebrook, A. M., Warneke, C., Goldan, P. D., Kuster, W. C., Roberts, J. M., Fehsenfeld, F. C.,
Worsnop, D. R., Canagaratna, M. R., Pszenny, A. A. P., Keene, W. C., Marchewka, M., Bertman, S. B. and Bates,
T. S.: Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002,
J. Geophys. Res. D Atmos., 110(16), 1–22, doi:10.1029/2004JD005623, 2005.

863

Grace, D. N., Sharp, J. R., Holappa, R. E., Lugos, E. N., Sebold, M. B., Griffith, D. R., Hendrickson, H. P. and
Galloway, M. M.: Heterocyclic Product Formation in Aqueous Brown Carbon Systems, ACS Earth Sp. Chem.,
3(11), 2472–2481, doi:10.1021/acsearthspacechem.9b00235, 2019.

Grace, D. N., Lugos, E. N., Ma, S., Griffith, D. R., Hendrickson, H. P., Woo, J. L. and Galloway, M. M.: Brown
Carbon Formation Potential of the Biacetyl-Ammonium Sulfate Reaction System, ACS Earth Sp. Chem., 4(7),
1104–1113, doi:10.1021/acsearthspacechem.0c00096, 2020.

871

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M.,
George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E.,
Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T. F., Monod, A., Prevot, A. S. H.,
Seinfeld, J. H., Surratt, J. D., Szmigielski, R. and Wildt, J.: The formation, properties and impact of secondary
organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9(14), 5155–5236, doi:10.5194/acp-9-51552009, 2009.

- 877 878
- 879 Hems, R. F. and Abbatt, J. P. D.: Aqueous Phase Photo-oxidation of Brown Carbon Nitrophenols: Reaction
- 880 Kinetics, Mechanism, and Evolution of Light Absorption, ACS Earth Sp. Chem., 2(3), 225–234,
- 881 doi:10.1021/acsearthspacechem.7b00123, 2018.
- 882

Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich, M. and Otto, T.: Tropospheric AqueousPhase Chemistry: Kinetics, Mechanisms, and Its Coupling to a Changing Gas Phase, Chem. Rev., 115(10), 4259–
4334, doi:10.1021/cr500447k, 2015.

- 886
- Jerrett, M., Burnett, R. T., Pope, C. A., Ito, K., Thurston, G., Krewski, D., Shi, Y., Calle, E. and Thun, M.: Long-term ozone exposure and mortality, N. Engl. J. Med., 360(11), 1085–1095, doi:10.1056/NEJMoa0803894, 2009.
- Juncosa Calahorrano, J. F., Lindaas, J., O'Dell, K., Palm, B. B., Peng, Q., Flocke, F., Pollack, I. B., Garofalo, L. A.,
- Farmer, D. K., Pierce, J. R., Collett, J. L., Weinheimer, A., Campos, T., Hornbrook, R. S., Hall, S. R., Ullmann, K.,
- 892 Pothier, M. A., Apel, E. C., Permar, W., Hu, L., Hills, A. J., Montzka, D., Tyndall, G., Thornton, J. A. and Fischer,

- E. V.: Daytime Oxidized Reactive Nitrogen Partitioning in Western U.S. Wildfire Smoke Plumes, J. Geophys. Res.
 Atmos., 126(4), 1–22, doi:10.1029/2020JD033484, 2021.
- 895
- 896 Khare, P. and Gentner, D. R.: Considering the future of anthropogenic gas-phase organic compound emissions and
- the increasing influence of non-combustion sources on urban air quality, Atmos. Chem. Phys., 18(8), 5391–5413,
 doi:10.5194/acp-18-5391-2018, 2018.
- 899
- Khare, P., Marcotte, A., Sheu, R., Walsh, A. N., Ditto, J. C. and Gentner, D. R.: Advances in offline approaches for
 trace measurements of complex organic compound mixtures via soft ionization and high-resolution tandem mass
 spectrometry, J. Chromatogr. A, 1598, 163–174, doi:10.1016/j.chroma.2019.03.037, 2019.
- 903
- 904 Kieloaho, A. J., Hellén, H., Hakola, H., Manninen, H. E., Nieminen, T., Kulmala, M. and Pihlatie, M.: Gas-phase
- alkylamines in a boreal Scots pine forest air, Atmos. Environ., 80, 369–377, doi:10.1016/j.atmosenv.2013.08.019,
 2013.
- 907
- Kilian, J. and Kitazawa, M.: The emerging risk of exposure to air pollution on cognitive decline and Alzheimer's disease Evidence from epidemiological and animal studies, Biomed. J., 41(3), 141–162,
- 910 doi:10.1016/j.bj.2018.06.001, 2018.
- 911
- Laskin, A., Laskin, J. and Nizkorodov, S. A.: Chemistry of Atmospheric Brown Carbon, Chem. Rev., 115(10),
 4335–4382, doi:10.1021/cr5006167, 2015.
- 914
- Leslie, M. D., Ridoli, M., Murphy, J. G. and Borduas-Dedekind, N.: Isocyanic acid (HNCO) and its fate in the
 atmosphere: A review, Environ. Sci. Process. Impacts, 21(5), 793–808, doi:10.1039/c9em00003h, 2019.
- Li, Y., Pöschl, U. and Shiraiwa, M.: Molecular corridors and parameterizations of volatility in the chemical
 evolution of organic aerosols, Atmos. Chem. Phys., 16(5), 3327–3344, doi:10.5194/acp-16-3327-2016, 2016.
- Liebmann, J., Sobanski, N., Schuladen, J., Karu, E., Hellén, H., Hakola, H., Zha, Q., Ehn, M., Riva, M., Heikkinen,
 L., Williams, J., Fischer, H., Lelieveld, J. and Crowley, J. N.: Alkyl nitrates in the boreal forest: formation via the
- NO3-, OH- and O3-induced oxidation of biogenic volatile organic compounds and ambient lifetimes, Atmos. Chem.
 Phys., 19, 10391–10403, doi:10.5194/acp-2019-463, 2019.
- 925
- Lim, S., McArdell, C. S. and von Gunten, U.: Reactions of aliphatic amines with ozone: Kinetics and mechanisms,
 Water Res., 157, 514–528, doi:10.1016/j.watres.2019.03.089, 2019.
- 928
- Lim, Y. Bin, Kim, H., Kim, J. Y. and Turpin, B. J.: Photochemical organonitrate formation in wet aerosols, Atmos.
 Chem. Phys., 16(19), 12631–12647, doi:10.5194/acp-16-12631-2016, 2016.
- 932 Lin, P., Laskin, J., Nizkorodov, S. A. and Laskin, A.: Revealing Brown Carbon Chromophores Produced in
- 933 Reactions of Methylglyoxal with Ammonium Sulfate, Environ. Sci. Technol., 49(24), 14257–14266,
- 934 doi:10.1021/acs.est.5b03608, 2015.
- 935
- Di Lorenzo, R. A., Place, B. K., VandenBoer, T. C. and Young, C. J.: Composition of Size-Resolved Aged Boreal
 Fire Aerosols: Brown Carbon, Biomass Burning Tracers, and Reduced Nitrogen, ACS Earth Sp. Chem., 2(3), 278–
 285, doi:10.1021/acsearthspacechem.7b00137, 2018.
- 939
- Loza, C. L., Craven, J. S., Yee, L. D., Coggon, M. M., Schwantes, R. H., Shiraiwa, M., Zhang, X., Schilling, K. A.,
 Ng, N. L., Canagaratna, M. R., Ziemann, P. J., Flagan, R. C. and Seinfeld, J. H.: Secondary organic aerosol yields of
- 942 12-carbon alkanes, Atmos. Chem. Phys., 14(3), 1423–1439, doi:10.5194/acp-14-1423-2014, 2014. 943
- McNeill, V. F.: Aqueous organic chemistry in the atmosphere: Sources and chemical processing of organic aerosols,
 Environ. Sci. Technol., 49(3), 1237–1244, doi:10.1021/es5043707, 2015.
- 946
- Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A., Donahue, N. M., Fry,
 J. L., Fuchs, H., Griffin, R. J., Guzman, M. I., Herrmann, H., Hodzic, A., Iinuma, Y., Kiendler-Scharr, A., Lee, B.

- 949 H., Luecken, D. J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H. D., Ouyang, B., Picquet-Varrault, B., Platt, U., 950
- Pye, H. O. T., Rudich, Y., Schwantes, R. H., Shiraiwa, M., Stutz, J., Thornton, J. A., Tilgner, A., Williams, B. J. and 951 Zaveri, R. A.: Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic
- 952 aerosol, Atmos. Chem. Phys., 17(3), 2103-2162, doi:10.5194/acp-17-2103-2017, 2017.
- 953
- 954 Perring, A. E., Pusede, S. E. and Cohen, R. C.: An Observational Perspective on the Atmospheric Impacts of Alkyl 955 and Multifunctional Nitrates on Ozone and Secondary Organic Aerosol, Chem. Rev., 113(8), 5848-5870, 956 doi:10.1021/cr300520x, 2013.
- 957
- 958 van Pinxteren, M., Müller, C., Iinuma, Y., Stolle, C. and Herrmann, H.: Chemical Characterization of Dissolved
- 959 Organic Compounds from Coastal Sea Surface Microlayers (Baltic Sea, Germany), Environ. Sci. Technol., 46(19), 960 10455-10462, doi:10.1021/es204492b, 2012.
- 961
- 962 van Pinxteren, M., Fomba, K. W., van Pinxteren, D., Triesch, N., Hoffmann, E. H., Cree, C. H. L., Fitzsimons, M.
- 963 F., von Tümpling, W. and Herrmann, H.: Aliphatic amines at the Cape Verde Atmospheric Observatory: Abundance, origins and sea-air fluxes, Atmos. Environ., 203, 183-195, doi:10.1016/j.atmosenv.2019.02.011, 2019.
- 964 965
- 966 Pope, C. A. and Dockery, D. D.: Health Effects of Fine Particulate Air Pollution: Lines that Connect, J. Air Waste 967 Manage. Assoc., 56, 709-742, doi:10.1080/10473289.2006.10464485, 2006.
- 968
- 969 Priestley, M., Le Breton, M., Bannan, T. J., Leather, K. E., Bacak, A., Reyes-Villegas, E., De Vocht, F., Shallcross,
- 970 B. M. A., Brazier, T., Khan, M. A., Allan, J., Shallcross, D. E., Coe, H. and Percival, C. J.: Observations of 971 Isocyanate, Amide, Nitrate, and Nitro Compounds From an Anthropogenic Biomass Burning Event Using a ToF-
- 972 CIMS, J. Geophys. Res. Atmos., 123, 7687–7704, doi:10.1002/2017JD027316, 2018.
- 973
- 974 Ouinn, P. K., Collins, D. B., Grassian, V. H., Prather, K. A. and Bates, T. S.: Chemistry and Related Properties of 975 Freshly Emitted Sea Spray Aerosol, Chem. Rev., 115(10), 4383–4399, doi:10.1021/cr500713g, 2015. 976
- 977 Riva, M., Rantala, P., Krechmer, J. E., Peräkylä, O., Zhang, Y., Heikkinen, L., Garmash, O., Yan, C., Kulmala, M., 978 Worsnop, D. and Ehn, M.: Evaluating the performance of five different chemical ionization techniques for detecting 979 gaseous oxygenated organic species, Atmos. Meas. Tech., 12, 2403-2421, doi:https://doi.org/10.5194/amt-12-2403-980 2019, 2019.
- 981
- 982 Roberts, J. M., Veres, P. R., VandenBoer, T. C., Warneke, C., Graus, M., Williams, E. J., Lefer, B., Brock, C. A., 983 Bahreini, R., Ozturk, F., Middlebrook, A. M., Wagner, N. L., Dube, W. P. and DeGouw, J. A.: New insights into
- 984 atmospheric sources and sinksof isocyanic acid, HNCO, from recent urbanand regional observations, J. Geophys.
- 985 Res. Atmos., 119, 1060-1072, doi:10.1002/2013JD019931, 2014.
- 986
- 987 Rogers, H. M., Ditto, J. C. and Gentner, D. R.: Evidence for impacts on surface-level air quality in the northeastern 988 US from long-distance transport of smoke from North American fires during the Long Island Sound Tropospheric 989 Ozone Study (LISTOS) 2018, Atmos. Chem. Phys., 20(2), 671-682, doi:10.5194/acp-20-671-2020, 2020.
- 990
- 991 Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15(8), 992 4399-4981, doi:10.5194/acp-15-4399-2015, 2015.
- 993
- 994 Sareen, N., Schwier, A. N., Shapiro, E. L., Mitroo, D. and Mcneill, V. F.: Secondary organic material formed by 995 methylglyoxal in aqueous aerosol mimics, Atmos. Chem. Phys., 10, 997-1016, doi:10.5194/acpd-9-15567-2009, 996 2010.
- 997
- 998 Schervish, M. and Donahue, N. M.: Peroxy radical chemistry and the volatility basis set, Atmos. Chem. Phys., 999 20(2), 1183-1199, doi:10.5194/acp-20-1183-2020, 2020.
- 1000
- 1001 Schroder, J. C., Campuzano-Jost, P., Day, D. A., Shah, V., Larson, K., Sommers, J. M., Sullivan, A. P., Campos, T.,
- 1002 Reeves, J. M., Hills, A., Hornbrook, R. S., Blake, N. J., Scheuer, E., Guo, H., Fibiger, D. L., McDuffie, E. E., Hayes,
- 1003 P. L., Weber, R. J., Dibb, J. E., Apel, E. C., Jaeglé, L., Brown, S. S., Thornton, J. A. and Jimenez, J. L.: Sources and
- 1004 Secondary Production of Organic Aerosols in the Northeastern United States during WINTER, J. Geophys. Res.

1005

1006 1007

1008 chemically speciated measurements of trace gas-phase organic compounds via adsorbent tubes in an integrated 1009 sampling-to-analysis system, J. Chromatogr. A, 1575, 80-90, doi:10.1016/j.chroma.2018.09.014, 2018. 1010 Sintermann, J. and Neftel, A.: Ideas and perspectives: On the emission of amines from terrestrial vegetation in the 1011 context of new atmospheric particle formation, Biogeosciences, 12(11), 3225-3240, doi:10.5194/bg-12-3225-2015, 1012 2015. 1013 1014 Sodeman, D. A., Toner, S. M. and Prather, K. A.: Determination of Single Particle Mass Spectral Signatures from 1015 Light-Duty Vehicle Emissions, Environ. Sci. Technol., 39(12), 4569–4580, doi:10.1016/j.atmosenv.2007.01.025, 1016 2005. 1017 1018 Sullivan, A. P., Guo, H., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., Campos, T., Shah, V., Jaeglé, L., Lee, 1019 B. H., Lopez-Hilfiker, F. D., Thornton, J. A., Brown, S. S. and Weber, R. J.: Biomass Burning Markers and 1020 Residential Burning in the WINTER Aircraft Campaign, J. Geophys. Res. Atmos., 124(3), 1846–1861, 1021 doi:10.1029/2017JD028153, 2019. 1022 1023 Takeuchi, M. and Ng, N. L.: Organic nitrates and secondary organic aerosol (SOA) formation from oxidation of

Atmos., 123(14), 7771-7796, doi:10.1029/2018JD028475, 2018.

biogenic volatile organic compounds, ACS Symp. Ser. Multiph. Environ. Chem. Atmos., 1299, 105–125,
doi:10.1021/bk-2018-1299.ch006, 2018.

Sheu, R., Marcotte, A., Khare, P., Charan, S., Ditto, J. C. and Gentner, D. R.: Advances in offline approaches for

Tao, Y., Liu, T., Yang, X. and Murphy, J. G.: Kinetics and Products of the Aqueous Phase Oxidation of
 Triethylamine by OH, ACS Earth Sp. Chem., 5(8), 1889–1895, doi:10.1021/acsearthspacechem.1c00162, 2021.

1030 United States Environmental Protection Agency: Historical Exceedance Days in New England, Reg. 1 EPA New
 1031 Engl. [online] Available from: https://www3.epa.gov/region1/airquality/standard.html (Accessed 14 August 2021),
 2020.

VandenBoer, T. C., Petroff, A., Markovic, M. Z. and Murphy, J. G.: Size distribution of alkyl amines in continental
particulate matter and their online detection in the gas and particle phase, Atmos. Chem. Phys., 11(9), 4319–4332,
doi:10.5194/acp-11-4319-2011, 2011.

1038 Vidović, K., Lašič Jurković, D., Šala, M., Kroflič, A. and Grgić, I.: Nighttime Aqueous-Phase Formation of
1039 Nitrocatechols in the Atmospheric Condensed Phase, Environ. Sci. Technol., 52(17), 9722–9730,
1040 doi:10.1021/acs.est.8b01161, 2018.

1040

Warneke, C., McKeen, S. A., de Gouw, J. A., Goldan, P. D., Kuster, W. C., Holloway, J. S., Williams, E. J., Lerner,
B. M., Parrish, D. D., Trainer, M., Fehsenfeld, F. C., Kato, S., Atlas, E. L., Baker, A. and Blake, D. R.:

Determination of urban volatile organic compound emission ratios and comparison with an emissions database, J.
 Geophys. Res. Atmos., 112(10), 1–13, doi:10.1029/2006JD007930, 2007.

1046

Wu, C., Wen, Y., Hua, L., Jiang, J., Xie, Y., Cao, Y., Chai, S., Hou, K. and Li, H.: Rapid and highly sensitive
measurement of trimethylamine in seawater using dynamic purge-release and dopant-assisted atmospheric pressure
photoionization mass spectrometry, Anal. Chim. Acta, 1137, 56–63, doi:10.1016/j.aca.2020.08.060, 2020.

Ye, C., Zhou, X., Pu, D., Stutz, J., Festa, J., Spolaor, M., Tsai, C., Cantrell, C., Mauldin, R. L., Campos, T.,
Weinheimer, A., Hornbrook, R. S., Apel, E. C., Guenther, A., Kaser, L., Yuan, B., Karl, T., Haggerty, J., Hall, S.,
Ullmann, K., Smith, J. N., Ortega, J. and Knote, C.: Rapid cycling of reactive nitrogen in the marine boundary layer,
Nature, 532, 489–491, doi:10.1038/nature17195, 2016.

1055

1056 Youn, J. S., Crosbie, E., Maudlin, L. C., Wang, Z. and Sorooshian, A.: Dimethylamine as a major alkyl amine

species in particles and cloud water: Observations in semi-arid and coastal regions, Atmos. Environ., 122, 250–258, doi:10.1016/j.atmosenv.2015.09.061, 2015.

1059

1060 Zhang, J., Ninneman, M., Joseph, E., Schwab, M. J., Shrestha, B. and Schwab, J. J.: Mobile Laboratory

- 1061 Measurements of High Surface Ozone Levels and Spatial Heterogeneity During LISTOS 2018: Evidence for Sea
- 1062 Breeze Influence, J. Geophys. Res. Atmos., 125(11), 1–12, doi:10.1029/2019JD031961, 2020.
- 1063
- Zhou, S., Collier, S., Xu, J., Mei, F., Wang, J., Lee, Y.-N., Sedlacek, A. J., Springston, S. R., Sun, Y. and Zhang, Q.:
- 1065 Influences of upwind emission sources and atmospheric processing on aerosol chemistry and properties at a rural
- 1066 location in the Northeastern U.S., J. Geophys. Res. Atmos., 121(10), 6049–6065, doi:10.1002/2015JD024568, 2016. 1067