

Analysis of Reduced and Oxidized Nitrogen-Containing

Deleted: Seasonal

Organic Compounds at a Coastal Site in Summer and Winter

Jenna C. Ditto^{1,†}, Jo Machesky¹, and Drew R. Gentner^{1,*}

5 New Haven, CT, 06511, USA

* Correspondence to: drew.gentner@yale.edu

10 Abstract

Nitrogen-containing organic compounds, which may be directly emitted to the atmosphere or may form via reactions with prevalent reactive nitrogen species (e.g., NH₃, NO_x, NO₃), have important but uncertain effects on climate and human health. Using gas and liquid chromatography with soft ionization and high-resolution mass spectrometry, we performed a molecular-level speciation of functionalized organic compounds at a coastal site on the Long Island Sound in summer (during the LISTOS 2018 campaign) and winter. This region often experiences poor air quality due to the emissions of reactive anthropogenic, biogenic, and marine-derived compounds and their chemical transformation products. We observed a range of functionalized compounds containing oxygen, nitrogen, and/or sulfur atoms resulting from these direct emissions and chemical transformations, including photochemical and aqueous-phase processing that were more pronounced in summer and winter, respectively. In both summer and winter, nitrogen-containing organic aerosols dominated the observed distribution of functionalized particle-phase species ionized by our analytical techniques, with 85% and 68% of

Deleted: Indeed,

Deleted: w

Deleted: a mix of

Deleted: processing in summer

Deleted: in winter

30 total measured ion abundance containing a nitrogen atom, respectively. Nitrogen-containing
31 particles included reduced nitrogen functional groups (e.g., amines, imines, azoles) and common
32 NO₂ contributors (e.g., organonitrates). The prevalence of reduced nitrogen functional groups
33 observed in the particle-phase, while frequently paired with oxygen-containing groups elsewhere
34 on the molecule, often rivaled that of oxidized nitrogen groups detected by our methods.
35 Supplemental gas-phase measurements, collected on adsorptive samplers and analyzed with a
36 novel liquid chromatography-based method, suggest that gas-phase reduced nitrogen compounds
37 are possible contributing precursors to the observed nitrogen-containing particles. Altogether,
38 this work highlights the prevalence of reduced nitrogen-containing compounds in the less-
39 studied Northeastern U.S., and potentially in other regions with similar anthropogenic, biogenic,
40 and marine source signatures.

41

42 1. Introduction

43 Coastal regions near the Long Island Sound often experience poor air quality due to a
44 combination of biogenic and anthropogenic emissions from upwind metropolitan areas along the
45 East Coast of the U.S. It is well established that these emissions undergo chemical
46 transformations to form secondary pollutants during hours to days of over-water transport to
47 downwind locations, including the states of Connecticut, Rhode Island, and Massachusetts (e.g.,
48 Cleveland et al., 1976). Emissions of gas-phase organic compounds (e.g., volatile, intermediate,
49 and semi-volatile organic compounds (VOCs, IVOCs, SVOCs)) and primary organic aerosols
50 (POA) are oxidized via numerous pathways in the atmosphere to yield ozone (O₃) and secondary
51 organic aerosol (SOA) (Hallquist et al., 2009). SOA constitutes a variable but significant fraction
52 of particulate matter with a diameter of 2.5 μm or less (i.e., PM_{2.5}). Both O₃ and PM_{2.5} are of

Deleted: compound

54 particular concern for human health and climate; O₃ is known to cause an increase in respiratory-
55 related illnesses (Di et al., 2017; Jerrett et al., 2009), while PM_{2.5} is known to cause adverse
56 cardiovascular, respiratory, and cognitive effects and to impact climate forcings (Di et al., 2017;
57 Hallquist et al., 2009; Kilian and Kitazawa, 2018; Pope and Dockery, 2006). Coupled with local
58 emissions and chemistry, these incoming aged air parcels from coastal metropolitan areas
59 contribute to the Long Island Sound region often entering nonattainment for O₃ (United States
60 Environmental Protection Agency, 2020), especially in the summer.

61 The chemistry and composition of organic compound emissions and secondary
62 transformation products in the Long Island Sound area is historically understudied, though some
63 past work has advanced our understanding of important sources and chemical pathways in the
64 region. For example, VOC and sub-micron particulate matter composition were investigated
65 during the 2002 New England Air Quality Study (de Gouw et al., 2005), with further VOC
66 speciation in 2004 during the New England Air Quality Study – Intercontinental Transport and
67 Chemical Transformation campaign (Warneke et al., 2007). More recently, a 2015 aircraft
68 campaign in the Northeast U.S. called WINTER characterized wintertime chemistry in the region
69 and also investigated organic aerosol formation via aerosol mass spectrometry (Schroder et al.,
70 2018). Finally, the LISTOS campaign in 2018 focused on measuring and modeling O₃ mixing
71 ratios over the Sound to investigate the dynamics of O₃ formation linked to large metropolitan
72 areas along the coast and associated downwind impacts (Zhang et al., 2020).

73 However, little is known about the molecular-level chemical composition of the gas-
74 phase I/SVOCs and functionalized organic aerosol formed in the Northeastern U.S. This
75 molecular-level speciation is key to understanding the physical/chemical properties of these
76 compounds in the atmosphere and their chemical transformations, especially for classes of

77 compounds containing reduced and oxidized nitrogen functional groups, whose emissions,
78 lifetime, and ultimate impacts are generally poorly understood. For example, nitrogen-containing
79 compounds that serve as reservoir species for nitrogen oxides may increase the overall lifetime
80 of nitrogen oxides in the atmosphere via renoxification mechanisms (e.g., the photolysis of
81 particulate nitrates, which has been studied in the marine boundary layer (Ye et al., 2016)); some
82 may act as light absorbing chromophores (e.g., the brown carbon studied from a methylglyoxal
83 and ammonium sulfate system, which yielded mostly N-containing chromophores (Lin et al.,
84 2015)); and some may have adverse, but uncertain, effects on human health (e.g., impacts on
85 immune response to allergens (Ng et al., 2017)).

86 There have been a wide range of measurements of organic nitrogen in the atmosphere,
87 and many past studies have emphasized enhancements in the contribution of this organic
88 nitrogen in various forms of water in the atmosphere such as cloud water, fog water, rain water,
89 and aerosol liquid water. For example, in cloud water, observations of important contributions
90 from nitrogen- and oxygen-containing organic compounds have been made using Fourier-
91 transform ion cyclotron resonance mass spectrometry (FT ICR-MS) (Zhao et al., 2013). Across
92 all the oxygenates (i.e., CHO), oxygen- and nitrogen-containing compounds (CHON), oxygen-
93 and sulfur-containing compounds (CHOS), and oxygen-, nitrogen-, and sulfur-containing
94 compounds (CHONS) that Zhao et al. (2013) observed in cloud water, roughly 65% of ions (by
95 number count) contained a nitrogen atom. Roughly half of all species observed were CHON
96 compounds. Also, roughly half of the CHON species had low O/C (<0.7), and were hypothesized
97 to contain reduced nitrogen functional groups. Another example from a study in the Southeastern
98 U.S. by Boone et al. (2015) showed that cloud water samples contained a large fraction of
99 nitrogenated species relative to aerosol-phase samples. From a combination of direct infusion

100 electrospray ionization and nanospray desorption electrospray ionization measurements with
101 high resolution mass spectrometry, Boone et al. (2015) observed roughly four times more CHON
102 molecular formulas in cloud water than in particle-phase samples, representing ~20% of all ions,
103 by number count, in cloud water. They also suggested an important role for aqueous-phase
104 reactions occurring between water-soluble oxygenated organic compounds and a diversity of
105 nitrogen-containing species such as ammonium, nitrate, small amines, among others (Boone et
106 al., 2015).

107 Similar observations have been made in fog water samples. For example, LeClair et al.
108 (2012) discussed the importance of water-soluble organic nitrogen-containing compounds in fog
109 water using FT ICR-MS. Roughly half of their observed compounds contained a nitrogen atom,
110 and by tracking neutral losses, they identified that 50-83% of their observed CHON species
111 showed a neutral loss of HNO_3 and thus likely contained a nitrate group. They noted that in the
112 absence of HNO_3 , CH_3NO_3 , NO , or NO_2 losses, the remaining nitrogen-containing ions observed
113 likely contained reduced nitrogen groups such as amine, amino, or imine structures (LeClair et
114 al., 2012). Another study of fog droplets with aerosol mass spectrometry by Kim et al. (2019)
115 showed an enrichment of organic nitrogen in fog droplets, including observations of reduced
116 nitrogen groups such as imidazoles and pyrazines (Kim et al., 2019). They observed fog water's
117 N/C ratio to be roughly 4 times greater than the N/C ratio in oxygenated organic aerosol samples.

118 These trends extend to rain water as well; FT ICR-MS measurements of rainwater in the
119 Northeastern U.S. by Altieri et al. (2009) showed large contributions of nitrogen-containing
120 organic compounds (Altieri et al., 2009). Approximately 70% of their observed nitrogen-
121 containing species were CHON species from positive mode ionization, which they suggested
122 consisted largely of reduced nitrogen functional groups based on their detection in positive

123 ionization mode and based on their elemental ratios. Similar enhancements in bulk organic
124 nitrogen, made by measuring total nitrogen content and subtracting the contribution from
125 inorganic nitrogen, were noted in both rain water and aerosols collected on the Mediterranean
126 coast (Mace et al., 2003a), and in both rain and cloud water in a Caribbean background marine
127 environment (Gioda et al., 2011).

128 While Boone et al. (2015) showed enhanced nitrogen content in cloud water relative to
129 aerosol particles, aerosol-phase samples have also been observed in other studies across the
130 globe to contain high organic nitrogen content. For example, at another location in the
131 Southeastern U.S. with strong marine and continental air influence, Lin et al. (2010) observed
132 that organic nitrogen in PM_{2.5} contributed roughly 33% of total PM_{2.5} nitrogen mass, which they
133 computed by subtracting inorganic nitrogen contributions from total nitrogen content, as
134 mentioned above (Lin et al., 2010). Similarly, 61% of primary marine aerosols (magnitude-
135 weighted) collected from a ship in the Atlantic ocean and analyzed by FT ICR-MS were shown
136 to contain nitrogen, and 54% of these primary marine aerosol species were CHON compounds,
137 with the remaining 7% of nitrogen content distributed across CHONS and CHONP species
138 (Wozniak et al., 2014). These primary marine aerosols typically had O/C ratios less than 0.5 and
139 were also likely reduced nitrogen-containing, consistent with Zhao et al. (2013). Other examples
140 include bulk organic nitrogen measurements from aerosols collected inland during both the wet
141 and dry seasons in the Amazon basin (Mace et al., 2003b), from aerosols sampled in Davis,
142 California (Zhang et al., 2002), and from aerosols (and fog) in the Po Valley in Italy (Montero-
143 Martínez et al., 2014).

144 Finally, a recent study of aerosols collected in a forest in Tokyo highlighted the role of
145 aerosol liquid water as another important medium for the formation of water soluble organic

146 nitrogen-containing species, and showed a positive correlation between the concentration of
147 aerosol liquid water and water-soluble organic nitrogen (Xu et al., 2020).

148 Considering the coastal nature of our Long Island Sound site and general prevalence of
149 water in the local/regional atmosphere (e.g., as cloud water, fog water, rain water, and aerosol
150 liquid water), the overall goal of this study was to examine the composition and contributions of
151 nitrogen-containing organic compounds from mixed anthropogenic, biogenic, and marine

Deleted: With the
Deleted: of examining

152 sources, as well as the possible roles of secondary product formation via aqueous-phase
153 chemistry. We collected samples of organic gases and particles for detailed chemical speciation
154 on the coast of the Long Island Sound in Guilford, Connecticut. We note that we used this site as
155 a case study, but our observations of emissions and chemistry at this site are likely informative
156 for other coastal urban and downwind regions due to the ubiquity of nitrogen-containing
157 emissions from anthropogenic, biogenic, and marine sources.

Deleted: we
Deleted: aerosols

Deleted: varied sources

158 Samples were collected during the summer and winter, and analyzed via high resolution
159 mass spectrometry to speciate the complex mixture of emissions and chemical transformation
160 products. These samples were taken alongside several targeted pollutant measurements including
161 O₃, nitrogen oxides (NO_x), particulate matter with a diameter of $\leq 2.5 \mu\text{m}$ (PM_{2.5}), and black
162 carbon (BC), all to inform our chemically-speciated analyses, and to contribute to a longer-term
163 characterization of this coastal area.

164 The specific objectives of this study were to: (1) investigate compositional differences
165 and possible chemical pathways contributing to measured summer and winter functionalized
166 organic aerosols at this site; (2) examine the relative contributions of reduced and oxidized
167 nitrogen groups to functionalized organic aerosol; and (3) use a novel sampling and liquid
168 chromatography-based analytical approach to probe the molecular-level composition of

Deleted: trends

175 functionalized gas-phase organic compounds and investigate possible nitrogen-containing gas-
176 phase precursors to the observed reduced nitrogen-containing particles.

177

178 **2. Materials and Methods**

179 We collected measurements at the Yale Coastal Field Station (YCFS) in Guilford,
180 Connecticut (41.26°N, 72.73°W) (Rogers et al., 2020). Inlets were positioned facing the Long
181 Island Sound (i.e., ~~South-Southeast~~) to capture onshore flow. The YCFS often received aged
182 urban incoming air from East Coast metropolitan areas, similar to known common air parcel
183 trajectories in the region (Figure S1). However, due to extensive mixing in the Northeast corridor
184 and over the Long Island Sound, along with extended collection times for offline gas- and
185 particle-phase samples, we also observed considerable biogenic and anthropogenic influence
186 from other areas of the Northeastern U.S.

187

188 2.1. Offline Samples of Organic Particles and Gases Analyzed via Liquid and Gas

189 Chromatography with Mass Spectrometry

190 We discuss three types of sampling and quadrupole time-of-flight mass spectrometry-
191 based analyses here: particles collected on Teflon filters and analyzed using liquid
192 chromatography with electrospray ionization, gases collected on packed adsorbent tubes and
193 analyzed using gas chromatography with atmospheric pressure chemical ionization, and
194 functionalized gases collected on cooled polyether ether ketone (PEEK) samplers and analyzed
195 using liquid chromatography with electrospray ionization. Teflon filter and adsorbent tube
196 measurements were collected at the YCFS during the summer as part of the 2018 Long Island
197 Sound Tropospheric Ozone Study (LISTOS), from July 9 to August 29, 2018. Additional filter

Deleted:

199 and adsorbent tube samples were collected during the following winter from February 25 to
200 March 5, 2019. Supplemental wintertime gas-phase samples on PEEK tubing were collected
201 briefly from March 5-6 2020, prior to the COVID-19 shutdown. [These sampling periods are](#)
202 [discussed here as summer and winter case studies but longer campaigns are warranted to assess](#)
203 [full seasonal trends.](#)

204 A custom filter and adsorbent tube housing was [constructed to simultaneously collect](#)
205 particle- and gas-phase organic compounds, respectively (Sheu et al., 2018). The filter was
206 positioned immediately upstream of the adsorbent tube to collect particles for analysis and to
207 prevent particles from reaching the gas-phase [adsorbent tube](#) sample. The housing was designed
208 to minimize spacing between the filter and adsorbent tube to reduce gas-phase [losses](#) to upstream
209 surfaces, and was built out of a modified passivated stainless steel filter holder ([Pall](#)) and an
210 aluminum block with sealed 6.34 mm (1/4") holes for adsorbent tubes (Sheu et al., 2018).

211 [For filter and adsorbent tube collection, we used a short inlet \(0.9 m long, 5/8" OD](#)
212 [stainless steel tubing, positioned 2.5 m above the ground\) upstream of the custom sampler to](#)
213 [allow the sampling media to be housed in an air-conditioned trailer. A stainless steel mesh screen](#)
214 [\(84 mesh\) was used at the opening of the inlet to limit particle size to ~PM₁₀ and to prevent large](#)
215 [particles from entering the sampler \(Ditto et al., 2018\). Penetration efficiency through the mesh](#)
216 [screen was computed for the 20 L/min flow rate using the screen thickness, mesh size \(84 mesh\),](#)
217 [wire diameter, and accounting for the effects of diffusion, impaction, and interception. Based on](#)
218 [this modeling, we expect roughly 50% penetration efficiency at PM₁₀ and 0% at PM₁₁ and larger.](#)

Deleted:

For filter and adsorbent tube collection, we used a short inlet (0.9 m long, 5/8" OD stainless steel tubing, positioned 2.5 m above the ground) upstream of the custom sampler to allow the sampling media to be housed in an air-conditioned trailer. A stainless steel mesh screen (84 mesh) was used at the opening of the inlet to limit particle size to ~PM₁₀ and to prevent large particles from entering the sampler (Ditto et al., 2018). P.

Deleted: connected to the inlet

232 [2.1.1. Filter sampling, analysis, and data QA/QC](#)

233 Teflon filters (47 mm, 2.0 μm pores, Tisch Scientific) were used for particle-phase
234 sampling. Filters were collected at 20 L/min for 8 hours, during the day (9:00am-5:00pm) and at
235 night (9:00pm-5:00am). Samples were extracted in methanol and analyzed via liquid
236 chromatography (LC) using an Agilent 1260 Infinity LC and an Agilent Poroshell 120 SB-Aq
237 reverse phase column (2.1 x 50 mm, 2.7 μm particle size). The LC was coupled to an
238 electrospray ionization (ESI) source and a high-resolution mass spectrometer (Agilent 6550 Q-
239 TOF), and operated following previously described methods (Ditto et al., 2018, 2020). [The mass](#)
240 [resolution \(M/ \$\Delta\$ M\) of the Q-TOF used in this work was \$\geq\$ 25,000-40,000, and the mass accuracy](#)
241 [was 1-2 ppm. Our use of LC \(or GC\) to separate compounds prior to their ionization and](#)
242 [detection by the mass spectrometer reduced mass spectral interferences and thus enabled](#)
243 [accurate molecular formula assignments beyond what would be possible by relying on the Q-](#)
244 [TOF's mass resolution alone.](#)

245 Filter extracts were run with MS (i.e., TOF-only, to identify molecular formulas) and
246 MS/MS (i.e., tandem mass spectrometry, to identify functional groups) data acquisition, using
247 both positive and negative mode electrospray ionization. These methods are hereafter referred to
248 as “LC-ESI-MS” and “LC-ESI-MS/MS”, respectively. Acquisition and non-targeted analysis
249 methods, including data [quality assurance and quality control \(QA/QC\)](#), are discussed in past
250 work (Ditto et al., 2018, 2020). [Briefly, for LC-ESI-MS analyses, any ion mass appearing in both](#)
251 [a sample and its corresponding blank \(matching ion mass with a tolerance of 5 ppm, and](#)
252 [matching ion retention time with a tolerance of 0.25 min—both tolerances were chosen to be](#)
253 [quite conservative\) was removed if its abundance in the sample was less than 5 times its](#)
254 [abundance in the blank. Ions with greater sample:blank ratios were retained, and the abundance](#)

255 of the blank peaks were subtracted from the sample peaks. Positive and negative ionization mode
256 data were combined and any ions appearing in both modes were flagged; abundances were
257 averaged and the compound was only counted once. Ions from m/z 50-600 were assigned
258 formulas assuming hydrogen or sodium adducts in positive mode and acetate adducts or
259 deprotonation in negative mode. We also allowed for the neutral loss of water. Only peaks that
260 well-surpassed instrument noise and that had strong peak quality scores (based on both liquid
261 chromatography and mass spectrometry data) were selected for formula identification according
262 to thresholds detailed in Ditto et al. 2018. Formulas were assigned with the following elemental
263 constraints in Agilent's Mass Hunter software: C₃₋₆₀H₄₋₁₂₂O₀₋₂₀N₀₋₃S₀₋₃, minimizing the ppm
264 mass difference between the observed and proposed ion mass and accounting for isotope
265 distribution. Prior to non-targeted analysis, further QA/QC was performed on these formula
266 identifications using custom R code. As discussed by Kind and Fiehn (2007), the number of
267 elements was further constrained to 39 carbons and 72 hydrogens, and H/C ratios were checked
268 to ensure they fell within expected limits (0.2 < H/C < 3.1) (Kind and Fiehn, 2007). Formulas
269 were then screened to ensure they agreed with the Nitrogen rule, to ensure that all double bond
270 equivalent values were integers, and to flag any large mass differences (>7 ppm) between the
271 observed and proposed mass for a given molecular formula.

272 For MS/MS, any ions from the LC-ESI-MS analyses that passed these QA/QC steps were
273 targeted for MS/MS fragmentation at 5, 10, 20, 30 and 40 V. We used SIRIUS with
274 CSI:FingerID for functional group identification with a subset of compounds from MS analysis
275 (Dürkop et al., 2015, 2019), as detailed in past work (Ditto et al., 2020). We assumed the same
276 ionization behavior as discussed above, with the same elemental composition constraints and a
277 conservative 7 ppm mass tolerance. Functional groups for the top-scoring candidate structure for

278 each ion were tallied with APRL Substructure Search Program (Ruggeri and Takahama, 2016).
279 The exact position of each functional group was not considered, as the focus of our work was
280 instead to assess the presence or absence of atmospherically relevant functional groups and their
281 combinations across a large number of multifunctional compounds.

282 After stringent QA/QC for peak shape and accurate molecular formula determination,
283 non-targeted compound identification from LC-ESI-MS identified an average of 200 ± 56 and
284 167 \pm 47 compounds per sample analyzed in summer and winter, respectively, across 34 samples
285 in summer and 15 in winter.

Deleted: examined

286 We note that filter ion abundance data is presented as combined positive and negative
287 ionization mode data, which treats the compounds equally without corrections for ionization
288 efficiency. As mentioned above, compounds were not double counted; any ion appearing in both
289 positive and negative mode was flagged, its average abundance computed, and it was tallied only
290 once. While ionization efficiency differences between compound types exist, their exact effects
291 for multifunctional compounds present in a complex mixture are uncertain. Thus, similar to other
292 studies and to our past work, we treat the intercomparison across compounds without adjusting
293 for ionization efficiency differences (Ditto et al., 2018). We note that the figures in the main text
294 are displayed as fractions of total observed ion abundance, to consider variations in atmospheric
295 abundance across the complex mixture of functionalized species. However, due to uncertainty in
296 exact ionization efficiency, these are not intended to directly represent mass concentration. For
297 comparison, identical figures represented by occurrence (i.e., unweighted by abundance) are
298 presented in the SI (Figures S4-S6, S8-S9, S11, S13); general observations remain similar
299 between abundance weighted and occurrence results.

Deleted: For MS/MS, we used SIRIUS with CSI:FingerID for functional group identification with a subset of compounds from MS analysis (Dührkop et al., 2015, 2019), as detailed in past work (Ditto et al., 2020).

Deleted: ies

307 [2.1.2. Adsorbent tube sampling, analysis, and data QA/QC](#)

308 Gas-phase samples were collected on glass adsorbent tubes (6.35 mm OD, 88.9 mm long)
309 packed with quartz wool, glass beads, Tenax TA, and Carbo pack X (Sheu et al., 2018). Samples
310 were collected at 200 mL/min for 2 hours, [sub-sampling off of the 20 L/min filter flow](#), during
311 the day (2:00-4:00pm) and at night (2:00-4:00am). Adsorbent tubes were analyzed using a
312 GERSTEL TD3.5+ thermal desorption unit and an Agilent 7890B gas chromatograph (GC) with
313 a DB5-MS UI column (30 m x 320 μ m x 0.25 μ m). The GC was coupled to an atmospheric
314 pressure chemical ionization (APCI) source and the same Q-TOF as above, operated with MS
315 (i.e., TOF-only) data acquisition and positive ionization mode only. These methods are hereafter
316 called “GC-APCI-MS” and acquisition and analysis methods are discussed in past work (Ditto et
317 al., 2021; Khare et al., 2019). After QA/QC [\(as detailed in Section 2.1.1\)](#), this non-targeted
318 analysis yielded an average of 388 \pm 201 and 612 \pm 133 compounds per sample in summer and
319 winter, respectively, across 34 samples in summer and 14 samples in winter.

320

321 [2.1.1. PEEK collector sampling, analysis, and data QA/QC](#)

322 Finally, as a supplemental analysis to probe the composition of functionalized gases that
323 were not GC amenable and thus not measured using the adsorbent tube and thermal desorption-
324 gas chromatography techniques mentioned above, we used PEEK-based sample collectors and
325 liquid chromatography to trap and speciate oxygen-, nitrogen-, and/or sulfur-containing gases
326 without thermal desorption. This method was designed to target functionalized gases, which
327 represent important precursors, intermediates, and by-products in the atmospheric processing of
328 emitted organic compounds but are often challenging to speciate with traditional GC techniques
329 due to their chemical functionality, reactivity, and/or thermal lability. Additionally, in many gas-

330 phase measurement systems, primary emissions (i.e., hydrocarbons) can overwhelm the signal of
331 more functionalized analytes, adding to the challenge of speciating these lower abundance
332 compounds.

333 Thus, to probe the chemical composition of these functionalized gases, we used a
334 sampling approach, desorption method, separation method, and ionization technique that
335 leveraged their relatively lower volatility and higher polarity. This included adsorptive sampling
336 onto cooled PEEK tubing followed by direct inline desorption into the LC mobile phase for LC-
337 ESI-MS analysis. ESI was specifically chosen here because it is sensitive to functionalized
338 compounds. Testing was performed in positive and negative ionization mode, but field samples

339 were run in positive mode only. [Further details and discussion of this method, including method](#)
340 [development and evaluation](#), can be found in Section S1 and Tables S1-3. [Briefly](#), PEEK tubing
341 was cooled to 2°C and used as an adsorptive collector, with a Teflon filter positioned upstream
342 of the PEEK tubing to remove particles. PEEK was selected due to its inert behavior, thus
343 reducing the possibility for surface-analyte interactions that might inhibit effective inline solvent
344 desorption and dissolution. PEEK is also compatible with the solvents used in the LC system,
345 and is frequently used in LC instruments. Field samples were collected on cooled PEEK tubing
346 during the subsequent winter (March 5-6, 2020), for 2 hours each between 8:00am-2:00pm. For
347 these 2 hour (~2.6 L) field samples, functionalized gases in a typical 100-250 g/mol molecular
348 weight range were resolvable at ~25-60 ppt in the atmosphere, based on instrument detection
349 limits (Ditto et al., 2018). For analysis, each PEEK collector was installed in the LC system flow
350 path, and analytes were directly desorbed using the LC mobile phase solvents then trapped and
351 focused on the LC column for 20 minutes, before being analyzed using the same LC-ESI-MS
352 system in positive ionization mode (Figure 1). This inline mobile phase desorption step gently

Deleted: While

Deleted: f

Deleted: , b

356 mobilized potentially fragile analytes from the PEEK collector and trapped and focused them on
357 the LC column prior to chromatographic separation and mass spectral analysis. Additionally, this
358 preconcentration step allows for the detection and characterization of lower concentration
359 species. [Data were processed and QA/QC were performed as detailed in Section 2.1.1.](#)

360 We note that there are other existing approaches for offline collection of highly-
361 functionalized organic gases and particles that are compatible with LC analysis such as spray
362 chambers, particle into liquid samplers, coated denuders, PUF sampling, and more. This PEEK
363 sampling method with inline desorption into the LC mobile phase was pursued to reduce sample
364 preparation steps and thus possibilities for losses (e.g., during solvent extraction or evaporative
365 preconcentration), as well as for its direct similarity to the filter-based particle-phase LC-ESI-MS
366 analysis.

367 We also note that for all [filter collection and](#) LC analyses ([filters and PEEK collectors](#)), it
368 is possible that some functional groups of interest ~~may have undergone hydrolysis on the filter~~
369 [during 8-hour filter collection periods or](#) in the LC mobile phase, which was primarily water at
370 the beginning of the LC solvent gradient. [For example, organonitrates may be susceptible to](#)
371 [hydrolysis depending on their structure; tertiary organonitrates can undergo hydrolysis on the](#)
372 [timescale of minutes-hours depending on pH, while primary/secondary organonitrates are](#)
373 [relatively stable. Hydrolysis occurs more quickly at low pH. The pH of the LC mobile phase \(pH](#)
374 [~2\) and the pH of the sampled aerosol \(pH < ~5, \(Pye et al., 2020\)\) are both acidic; alpha-](#)
375 [pinene-derived organonitrates, for example, could have a lifetime of as low as of roughly 8](#)
376 [minutes to 1.5 hours across this pH range \(Rindelaub et al., 2016\). If hydrolysis occurred, some](#)
377 [of the observed compounds could be byproducts of other functionalized species. While we did](#)

Deleted: (e.g. organonitrates)

Deleted:

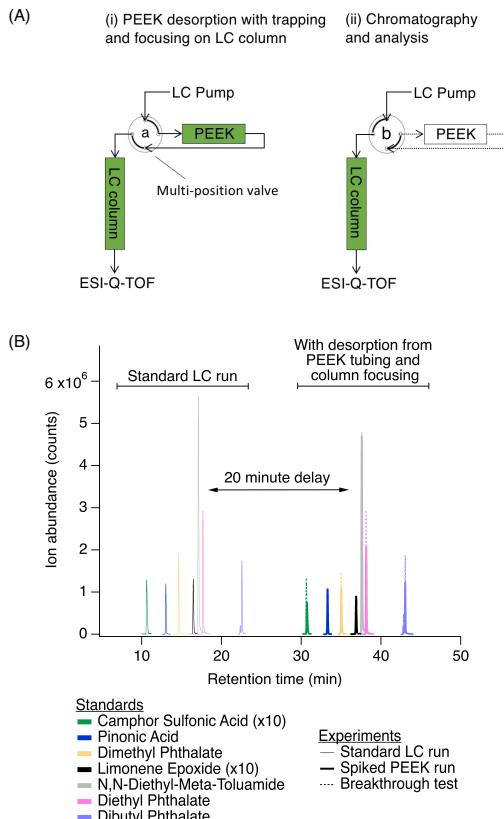
Deleted: so

Deleted: , though this would require hydrolysis to occur on the order of a few minutes

383 not observe any of our nitrogen-containing test standards to hydrolyze over these timescales,
384 standards were not available to reflect every functional group observed in these datasets.

385

386 2.2. Supporting Measurements


387 O₃, NO_x, PM_{2.5}, and BC concentrations were recorded concurrently during both summer
388 and winter sampling periods. O₃ was measured with a 2B Tech Model 202 Ozone Monitor, NO_x
389 with a Thermo Scientific Model 42i-TL Analyzer, PM_{2.5} with a MetOne BAM-1020 instrument,
390 and BC with a Magee Scientific AE33 Aethalometer. O₃ and NO_x inlets were constructed of FEP
391 tubing (1/4" OD), with a Teflon filter housed in a PFA filter holder upstream to remove particles.
392 The PM_{2.5} inlet was made of stainless steel tubing (1 ¼" OD) and the BC inlet was made of
393 copper tubing (3/8" OD). Both particle inlets were outfitted with a PM_{2.5} cyclone to limit particle
394 size to 2.5 µm and below.

395 All inlets were mounted 3 m above the ground. Instrument flow rates were calibrated
396 with an external mass flow controller. O₃ and NO_x monitors were zeroed with laboratory-
397 generated zero air. The O₃ monitor was calibrated against Connecticut Department of Energy and
398 Environmental Protection instrumentation and further confirmed with an O₃ generator in the lab.
399 The NO_x monitor was calibrated using a NO standard (AirGas, 2 ppm NO in nitrogen, ± 5%)
400 diluted to 25 ppb with laboratory-generated nitrogen gas. The BC instrument was programmed to
401 conduct an automatic performance check using particle-free air and the PM_{2.5} instrument was
402 zeroed following MetOne protocols with particle-free air. O₃ and NO_x data were collected at 1-
403 second intervals, BC data were collected at 1-minute intervals, and PM_{2.5} data were collected at
404 1-hour intervals. BC data were saved directly from the instrument, while O₃, NO_x, and PM_{2.5}
405 data were recorded with a LabJack T7 datalogger and custom LabView code. In addition, hourly

406 weather data (temperature, relative humidity, wind speed, wind direction) were collected with a
407 WeatherHawk weather station on top of the 3 m tower.

408 During the summer, we also collected a small number of size-resolved particle samples
409 on quartz filters using an eight-stage cascade impactor (Thermo Scientific [Andersen Non-Viable](#)
410 [Cascade Impactor](#)). Sizes ranged from 0.43-10.0 μm (stage 0: 9.0-10.0 μm , stage 1: 5.8-9.0 μm ,
411 stage 2: 4.7-5.8 μm , stage 3: 3.3-4.7 μm , stage 4: 2.1-3.3 μm , stage 5: 1.1-2.2 μm , stage 6: 0.65-
412 1.1 μm , stage 7: 0.43-0.65 μm). Quartz filters were extracted and analyzed following the same
413 procedure as the Teflon filters discussed above, with the addition of a syringe filtration step to
414 remove insoluble fibers. The cascade impactor was positioned on the roof of the trailer and
415 pulled 28.3 L/min ([GAST 1531-107B-G557X pump](#)) through the inlet for periods of 8 hours
416 during the day and at night (same timing as above).

417 Finally, we computed 48-hour backward trajectories for every hour during each offline
418 sample collection period with the HYSPLIT Backward Trajectory Model (accessed online at
419 <https://www.ready.noaa.gov/HYSPLIT.php>), using GDAS1.0 meteorological data, the field site's
420 coordinates as each trajectory's end point, and a final trajectory height of 50 m above the
421 ground. [We selected 48 hours trajectories to focus on regional influence at the site, and we](#)
422 [selected a final height of 50 m to be high enough to focus on the overall 48-hour dynamics and](#)
423 [reduce the possible influence of surface topography. Contributions from air parcels extending](#)
424 [beyond 48 hours likely exist, but are outside of the regional scope of our study.](#)

425

426 **Figure 1.** (A) Simplified analytical system setup for functionalized gas-phase compounds,
 427 showing (i) desorption from the PEEK collector and trapping on the LC column in order to focus
 428 analytes prior to chromatographic separation, and (ii) subsequent chromatographic separation
 429 and analysis (discussed in detail in Section S1). Green shading indicates active solvent flow
 430 through PEEK collector and/or LC column. A multi-position valve was switched from position
 431 "a" (panel (A)i) to position "b" (panel (A)ii) to remove the PEEK collector from the flow path
 432 for chromatography and analysis. Table S1 describes the flow rates and solvents used in each of
 433 these steps. (B) Comparison of select peaks from a typical LC run (solid traces from 10-23 min)
 434 to that from a PEEK collector spiked with a standard (bold traces from 30-43 min) demonstrates
 435 desorption, trapping/focusing, and similar chromatography. Comparable results from a 2-hour
 436 breakthrough test at 2°C with 22 mL/min air flow are also shown (overlaid dotted traces from
 437 30-43 min). Spiked PEEK and breakthrough tests were performed to validate this sampling and
 438 analysis methods, and are discussed further in Section S1. Test analytes were used across a range
 439 of functionality, with examples shown here and the full list in Table S2.

440 **3. Results and Discussion**

441 3.1. Characteristics of the Urban Regional Site

442 Backward trajectories for summertime and wintertime samples showed a strong urban
443 influence. Summertime trajectories ranged from the northwest, west, and especially the
444 southwest (i.e., New York City and other coastal metropolitan areas, similar to well-established
445 and expected air flow patterns near the Long Island Sound). In contrast, trajectories were almost
446 exclusively from the northwest in the winter (Figure S1). These air parcels brought a range of
447 compounds from a mixture of anthropogenic, biogenic, and marine sources to the site, all with
448 differences in gas- and particle-phase source profiles. However, due to the varied backward
449 trajectories, dynamic variations in wind direction over the long duration filter samples (Figure
450 S2), and a high degree of mixing over the Sound, our 8-hour samples are representative of mixed
451 regional conditions in summer and winter, and are thus discussed in this context. Further detailed
452 site characterization can be found in Section S2 and Figures S1-S3.

453

454 3.2. Summer and Winter Comparisons of Functionalized Organic Aerosols

Deleted: Seasonal

455 3.2.1. Summertime composition and the influence of photochemistry and NO_x

456 During this period of active photochemistry, the observed distribution of particle-phase
457 compounds in summertime samples spanned across the intermediate volatility (IVOC) to
458 ultralow volatility organic compound (ULVOC) range, with a predominance of semivolatile
459 (SVOC), low volatility (LVOC), and extremely low volatility organic compounds (ELVOC) as
460 shown in Figure 2A as a function of compound class. To assess differences in summer and
461 winter volatility distributions, we used individual molecular formulas and the Li et al. (2016)
462 parameterization to estimate the saturation mass concentration (log(C₀)) of each observed

Deleted: and

465 compound (Li et al., 2016). Compounds were then classified into volatility bins following these
466 definitions: VOC $> 3 \times 10^6 \mu\text{g/m}^3$; $3 \times 10^6 \mu\text{g/m}^3 > \text{IVOC} \geq 300 \mu\text{g/m}^3$; $300 \mu\text{g/m}^3 > \text{SVOC} \geq 0.3$
467 $\mu\text{g/m}^3$; $0.3 \mu\text{g/m}^3 > \text{LVOC} \geq 3 \times 10^{-5} \mu\text{g/m}^3$; $3 \times 10^{-5} \mu\text{g/m}^3 > \text{ELVOC} \geq 3 \times 10^{-9} \mu\text{g/m}^3$; 3×10^{-9}
468 $\mu\text{g/m}^3 > \text{ULVOC}$ (Donahue et al., 2011; Schervish and Donahue, 2020).

469 Due to elevated summertime O₃ mixing ratios at the site (shown in Figure S3, 8-hour
470 maximum mixing ratio in summer: 57 ± 20 ppb, vs. winter: 46 ± 5 ppb, including day and night
471 sampling periods), O₃ may have influenced the photochemical processing of emitted volatile
472 species, especially unsaturated biogenic VOCs which readily undergo ozonolysis due to their
473 chemical structure. However, we did not observe a correlation between 8-hour maximum (or 8-
474 hour average) O₃ mixing ratios with average particle-phase volatility (as saturation mass
475 concentration), carbon number, or O/C (nor did we observe such relationships for gas-phase
476 organic compounds). There were, however, weak relationships between NO_x mixing ratios and
477 each of these particle-phase characteristics in the summer. While average NO_x mixing ratios
478 were slightly lower during the summer (as shown in Figure S3, 2.3 ± 1.5 ppb in summer vs. $3.7 \pm$
479 2.7 ppb in winter), NO_x mixing ratios trended weakly with particle-phase O/C ($r \sim 0.45$),
480 volatility (as saturation mass concentration, $r \sim 0.49$), and inversely with carbon number ($r \sim -$
481 0.56) in summer.

482 While our correlations and conclusions are somewhat limited by the 8-hour filter
483 sampling duration and the resulting highly regionally-mixed samples, one possible hypothesis is
484 that the presence of NO_x could have promoted more fragmentation reactions in the gas-phase
485 (Loza et al., 2014) that decreased average carbon number, and correspondingly increased
486 volatility and O/C. In fact, we observed highly oxidized C₃-C₆ compounds in the gas-phase (from
487 adsorbent tube measurements with GC-APCI (Section S2)) that were possibly products of these

493 fragmentation reactions of larger compounds. These trends of NO_x mixing ratios with O/C,
494 volatility, and carbon number were not apparent for the observed complex mixture of gas-phase
495 organic compounds. However, these highly oxidized gases may not have persisted in the gas-
496 phase and could have been taken up by the condensed/aqueous phase due to their water
497 solubility, where they would have instead contributed to the observed trends of NO_x with carbon
498 number, volatility, and O/C in the particle-phase. We note that if there was significant uptake of
499 gas-phase NO₂ to the particle-phase, this may have in part contributed to the particle-phase
500 correlations with NO_x given that the chemiluminescence NO_x analyzer used in this study is
501 known to also respond to gas-phase NO₂ (Dunlea et al., 2007).

502 Additionally, NO_x could have been involved in heterogeneous chemistry, promoting
503 oxidation and/or nitrogen addition reactions, such as interaction with NO₃[·] to yield organonitrates
504 (Lim et al., 2016), formation and interaction with HONO to yield nitrophenols (Vidović et al.,
505 2018), or other pathways.

506

507 3.2.2. Comparison to wintertime composition and the role of aqueous-phase chemistry

508 In the winter, these same relationships between NO_x and particle-phase characteristics
509 were not observed. This is possibly due to the decreased role of photochemistry in the winter and
510 the increased role of other competing physical and chemical processes, such as aqueous-phase
511 chemistry. In the discussion of our results, we note that aqueous-phase chemistry is meant to be
512 inclusive of aqueous processing in aerosols, in cloud water, and/or in fog water, all of which may
513 have occurred upwind of the site during the 8 hour sampling periods under variable local and
514 regional weather conditions.

Deleted: with variations in weather conditions

516 In the winter, we observed a generally higher average saturation mass concentration
517 (summer: $\log(C_0) = -3.7 \pm 3.9 \mu\text{g}/\text{m}^3$, vs. winter: $\log(C_0) = -0.7 \pm 4.0 \mu\text{g}/\text{m}^3$). We note that this
518 comparison of saturation mass concentrations was performed at a reference temperature of 300
519 K, and we discuss the expected wintertime volatility shift below. The wintertime O/C was also
520 slightly lower than summer (summer: O/C = 0.5 ± 0.4 vs. winter: O/C = 0.4 ± 0.4). In the winter,
521 the observed chemical composition of the particle phase—both in terms of volatility and
522 functional group distribution—suggests a relatively greater role for aqueous-phase processing.
523 Our observations were similar to those made in past studies of higher volatility products from
524 fragmentation reactions in the aqueous phase (e.g., Brege et al., where they observed that aged
525 fog-water samples contained organic compounds with smaller carbon backbone structures than
526 non-aqueous aged particles, and linked this difference to aqueous-phase fragmentation reactions,
527 the uptake of smaller water-soluble gases to the aqueous-phase, and/or less oligomerization
528 (Brege et al., 2018); Yu et al., which discussed the role of fragmentation in aging aqueous
529 phenolic secondary organic aerosol (Yu et al., 2016); and Schurman et al., which discussed the
530 role of fragmentation and evaporation in cloud water (Schurman et al., 2018)). Similarly, here we
531 observed a shifted compound distribution that included smaller molecular weight and generally
532 higher volatility particle-phase species in winter compared to summer, along with notably
533 different functional group distribution, both of which could be attributed to aqueous chemistry.
534 We note that for direct comparison, volatility bins in Figure 2A-B were defined for the
535 same reference temperature (i.e., 300 K, the average summertime sampling period temperature),
536 though wintertime saturation mass concentrations for the observed compounds would shift
537 approximately 2 orders of magnitude lower due to lower temperatures (i.e., 270 K). The dotted
538 black line in Figure 2B shows the shift in bins expected at 270 K. In the winter, compounds

Deleted: The observed chemical composition of the particle-phase in the winter was

Deleted: indeed indicative of

Deleted: increased

Deleted:

Deleted: with

Deleted: lower

Deleted: (shown by saturation mass concentration in Figure 2A-B)

Deleted:

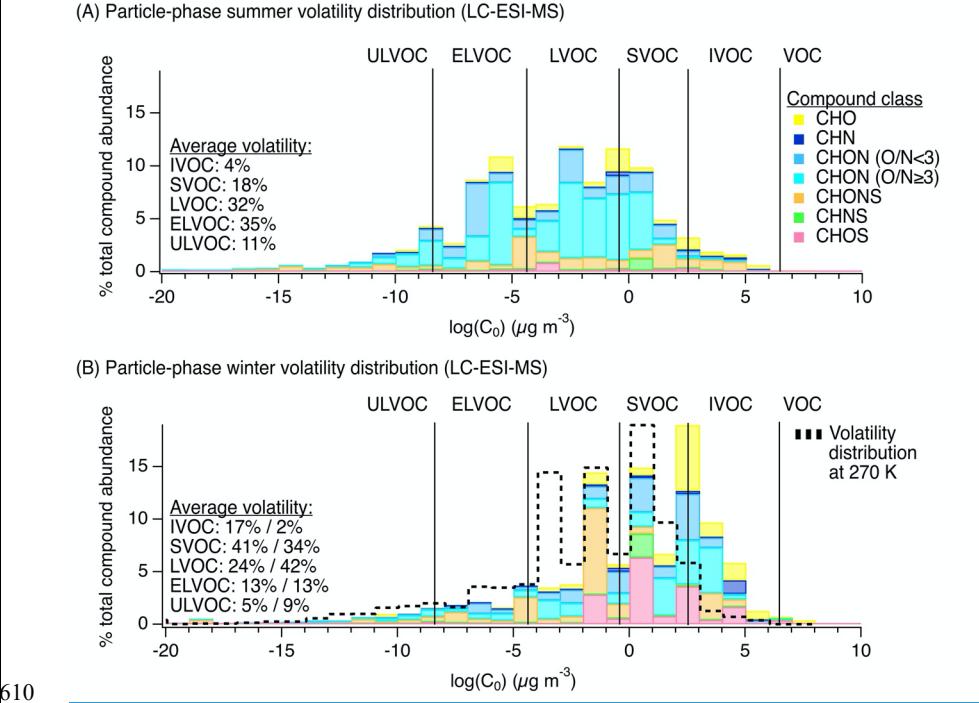
Deleted: This is consistent with another past study that suggested that aged fog-water samples contained organic compounds with smaller carbon backbone structures than aged non-aqueous particles, and linked this difference to aqueous-phase fragmentation reactions, the uptake of smaller water-soluble gases to the aqueous-phase, and/or less oligomerization (Brege et al., 2018).

Formatted: Font color: Text 1

Formatted: Indent: First line: 0.5"

Deleted: In contrast, there was a larger proportion of LVOCs, ELVOCs, and ULVOCs in summer, which decreased the average summertime volatility of the functionalized organic aerosol components. This was likely driven by increased photochemical processing in summer, leading to lower saturation mass concentrations (summer: $\log(C_0) = \sim \pm \mu\text{g}/\text{m}^3$, vs. winter: $\log(C_0) = \sim \pm 4 \mu\text{g}/\text{m}^3$, $p < 0.05$) and higher O/C (summer: O/C = 0.5 ± 0.4 vs. winter: O/C = 0.4 ± 0.4 , $p < 0.05$).

565 defined IVOCs or SVOCs at 300 K will expectedly exhibit a greater degree of partitioning to the
566 particle phase, though the effect of this temperature shift on partitioning was likely more
567 pronounced for the SVOCs than IVOCs (Table S4). Even when accounting for this shift, the
568 mean saturation mass concentration of wintertime samples was $\log(C_0) = -2.7 \pm 3.9 \text{ }\mu\text{g/m}^3$,
569 which is still higher than the mean summertime saturation mass concentration of $\log(C_0) = 3.7 \pm$
570 $3.9 \text{ }\mu\text{g/m}^3$ and thus still demonstrates a volatility difference between summer and winter, with
571 higher volatility species in winter. This shift is also reflected in the carbon number distribution
572 observed via the LC-ESI-MS/MS analysis of this sample set shown in Ditto et al., (2020), Figure
573 S5. In addition to this shift in molecular size and volatility, there was a distinct change functional
574 group composition from summer to winter, discussed below.


575 To assess the potential contribution of aqueous-phase chemistry, we also estimated
576 aerosol liquid water concentrations based on available data in Section S2.1. We estimated a
577 lower but still appreciable aerosol liquid water content in winter relative to summer, but with
578 fewer photochemical processes in winter along with generally cloudier/foggier local weather
579 (i.e., 44% of summer sampling periods with partly cloudy or cloudy weather conditions vs. 67%
580 of winter sampling periods, from Weather Underground archive), aqueous-phase processing
581 likely remains an important pathway. We note that the compounds discussed here could have
582 been formed locally or regionally, and thus the role of conditions at the site (aerosol liquid water,
583 cloud cover, fog cover) is just as important as the conditions in the surrounding upwind region.
584 As a result, it is challenging to pinpoint the exact contributions of aerosol liquid water, in-cloud,
585 or in-fog processing, and we consider that all three may be occurring upwind or near the site.

586 Furthermore, from MS/MS analysis, we observed functional groups that were possible
587 indicators of aqueous-phase processing, including the presence of nitrophenols during the winter,

588 which may have formed via dark aqueous-phase reactions with HONO (Vidović et al., 2018),
589 and relatively low contributions from carbonyls across seasons, possibly linked to carbonyl
590 hydrolysis (Ditto et al., 2020). Based on laboratory studies, the presence of azole functional
591 groups and other heterocyclic nitrogen species could also indicate aqueous phase processing, and
592 may be formed from small carbonyl precursors such as glyoxal (DeHaan et al., 2009; Grace et
593 al., 2019) and biacetyl (Grace et al., 2020) reacting with atmospheric ammonia or small amines.
594 Many of the N-only containing azoles observed here had similar substructures to those formed in
595 the aqueous-phase reactions of small carbonyls with ammonia/amines (DeHaan et al., 2009;
596 Grace et al., 2019). In addition, as discussed above, we observed many small gas-phase C₃-C₆
597 compounds at the site in the summer, which likely included multifunctional isoprene oxidation
598 products (e.g., glycoaldehyde, hydroxyacetone, and isomers); these potential precursors could
599 have reacted with atmospheric ammonia or species containing amino groups to form the
600 observed azole-containing reaction products. We observed more azoles during the summer (Ditto
601 et al., 2020), perhaps due to the increased prevalence of the C₃-C₆ precursors and overall
602 prominence of atmospheric water (e.g., aerosol liquid water, cloud water, fog water).

Deleted: aerosol liquid

603 Lastly, the role of aqueous-phase chemistry in the region is further supported by prior
604 summertime observations at Brookhaven National Laboratory (on the opposite side of the Long
605 Island Sound), which examined a low-volatility oxygenated organic aerosol factor in the source
606 apportionment of aerosol mass spectrometry measurements, and showed a strong contribution
607 from carboxylic acids and other ELVOCs that were attributed to aqueous-phase processing
608 (Zhou et al., 2016).

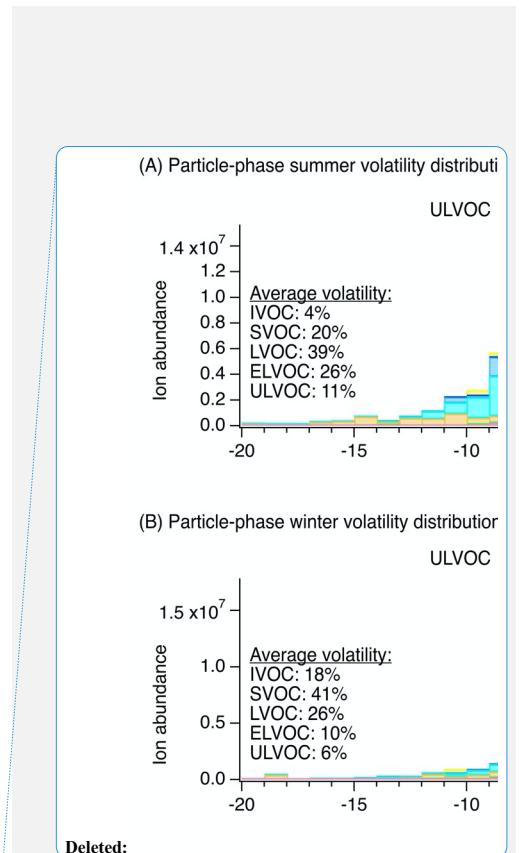

611
612
613
614
615
616
617
618
619
620
621
622

Figure 2. Chemical composition of particle-phase organic compound mixtures at the YCFS from LC-ESI-MS measurements. (A) and (B) show particle-phase volatility distributions by compound class in the summer (N=34) and winter (N=15), respectively, [weighted by ion abundance](#). The same data tallied by occurrence are shown in Figure S4 for comparison. For direct comparison, volatility bins were defined for the same reference temperature in (A) and (B) (i.e., 300 K, the average summertime sampling period temperature), though wintertime saturation mass concentrations for the observed compounds would shift approximately 2 orders of magnitude lower due to lower temperatures (i.e., 270K). [The dotted black line in \(B\) shows the shift in bins expected at 270 K, described further in Table S4](#). The average volatility distributions listed in (B) are shown at 300 K (%) followed by the estimate at 270 K (%).

3.2.3. Comparison to other sites using the same sampling and analytical methods

623
624
625

The distribution of compound classes observed at the YCFS was significantly different from observations at a range of field sites discussed in past studies (Figure 3), including a remote forested site (i.e., the PROPHET site in Northern Michigan), an urban inland site (i.e., near

Deleted: Compound volatility was estimated and grouped following approaches in the literature (Li et al., 2016; Schervish and Donahue, 2020).

Deleted: Thus, in the winter, a larger fraction of I/SVOCs would have partitioned to the particle phase, though this effect was likely more pronounced for SVOCs than IVOCs (see Table S4).

634 downtown Atlanta) across two seasons, and in New York City (Ditto et al., 2018, 2019). We
635 perform a direct comparison to our past studies here, because the same sampling and analytical
636 methods were used, thus we can compare the distribution of ions observed without any biases
637 due to differences and uncertainties resulting from variations in sampling or ionization chemistry
638 between instruments. While a more detailed site-to-site comparison is outside the scope of this
639 work, the proximity of the YCFS to the ocean and thus the impact of marine emissions and over-
640 water chemistry likely contributed to the differences between the YCFS and inland locations. In
641 particular, at the YCFS, we observed notably smaller relative contributions from compounds
642 containing carbon, hydrogen, and oxygen (i.e. CHO, 11-16% of observed functionalized
643 compounds here vs. 34-50% at other sites), and the contributions from nitrogen-containing
644 particle-phase compounds at the YCFS were in stark contrast to other sites. Here, 85% of
645 compounds (by ion abundance) in summer and 68% of compounds in winter contained at least
646 one nitrogen atom, compared to 38-51% at the other previously studied sites (Figure 3). These
647 nitrogen-containing species were comprised of compounds with various reduced and oxidized
648 nitrogen-containing functional groups with varying oxygen-to-nitrogen ratios (O/N), which are
649 broadly classified and discussed below as compounds containing carbon, hydrogen, and nitrogen
650 (i.e. CHN), and compounds containing carbon, hydrogen, oxygen, and nitrogen (i.e. CHON
651 (O/N ratio < 3), and CHON (O/N ratio ≥ 3)). There were notably greater contributions at the site
652 from nitrogen-containing compounds that also contained at least one oxygen atom, including
653 CHON compounds with O/N < 3 (19-20% here vs. 10-15% at other sites), CHON compounds
654 with O/N ≥ 3 (24-44% here vs. 14-19% at other sites), as well as compounds containing oxygen,
655 nitrogen, and sulfur (i.e. CHONS, 20-21% here vs. 9-10% at other sites) (Ditto et al., 2018).
.....

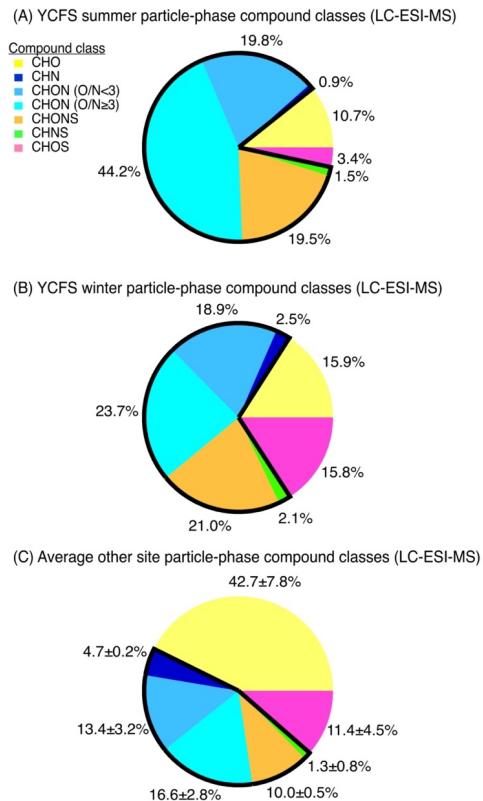
Deleted: See Section S3 and Figure S4 for discussion of additional compound classes.

658 We note that while these [measurements were of PM₁₀ aerosols](#), the observations of high
659 nitrogen content were not biased by the inclusion of larger, [primary \(possibly biological\)](#)
660 particles. Quartz filter samples collected with a cascade impactor at the site during the summer
661 and analyzed with the same LC-ESI-MS methods did not show any [significant differences](#)
662 between any of these nitrogen-containing compound classes as a function of particle size₂ across
663 particles ranging from 0.4 to 10 μm (i.e., 69%-71% of ion abundance for PM $\leq 2.2 \mu\text{m}$ and 69%-
664 73% of ion abundance for PM ranging from 2.2-10 μm were nitrogen-containing species,
665 summarized in Table S5). This is consistent with past studies which have demonstrated that
666 amines, [as one example of a prominent nitrogen-containing functional group](#), are ubiquitous in
667 size-resolved aerosol samples in urban and rural locations (VandenBoer et al., 2011).

Deleted: were

Deleted: measurements

Deleted: possibly


Deleted: statistically

Deleted: .

Deleted: as an example of reduced nitrogen

668 The prevalence of nitrogen-containing species at the YCFS is consistent with the study at
669 Brookhaven National Laboratory discussed above, where a dedicated nitrogen-enriched aerosol
670 mass spectrometry factor was identified, and contained prevalent signal from aliphatic amines
671 and amides. However, in the Brookhaven study, the nitrogen-enriched factor was associated with
672 industrial amine emissions that were enhanced during periods of south/southwestern backward
673 trajectory influence, and that had correlations with tracers linked to industrial processes. In our
674 study, there was no correlation between backward trajectory direction and the contribution of
675 nitrogen-containing species. Also, wintertime air parcels arrived predominantly from directions
676 other than south/southwest, suggesting that the nitrogen-containing species observed in our study
677 were the result of mixed anthropogenic, biogenic, and marine precursors and their transformation
678 products. [This high nitrogen content at the YCFS, where aqueous-phase chemistry is expected to](#)
679 [be important, is also consistent with the cloud water composition discussed in Zhao et al. \(2013\),](#)
680 [which reported roughly 65% of detected ions in their cloud water samples to contain a nitrogen](#)

687 atom, and the primary marine aerosol composition discussed in Wozniak et al. (2014), where
688 61% of their observed compounds contained nitrogen and 54% were CHON species.

689
690 **Figure 3.** Particle-phase compound class distributions shown as fractions of total detected ion
691 signal in the (A) summer and (B) winter at the YCFS, weighted by compound abundance, in
692 contrast with (C) the average compound class distribution from previously studied forested,
693 urban inland, and urban coastal sites. The sites selected for comparison in (C) were chosen
694 because the same sampling and analysis methods were used. Nitrogen-containing compound
695 class contributions are outlined in black, and are notably larger at the coastal site compared to
696 other sites studied with these same filter collection and analysis methods. We note that while a
697 significant fraction of species contained nitrogen, individual compounds contained 1-3 nitrogen
698 atoms and the majority of the ion's molecular mass consisted of carbon and hydrogen atoms
699 (mean N/C in summer: 0.13 ± 0.1 , mean N/C in winter: 0.22 ± 0.19 for all N-containing ions).
700 Note: CH and CHS species have poor ESI ionization efficiencies and are thus excluded here.
701 Data tallied by occurrence are shown in Figure S5 for comparison.

Deleted: Enhancements in nitrogen-containing particle-phase compounds compared to other sites, from LC-ESI-MS measurements.
Deleted: (A)
Deleted: (B)
Deleted: (C).

708 3.3. Speciating Particle-Phase Multifunctional Nitrogen-Containing Compounds

709 The observed particle-phase species were highly functionalized, often multi-functional,
710 and contained combinations of oxygen, nitrogen, and/or sulfur heteroatoms. Here, we discuss the
711 functional groups present, broken up by the nitrogen-containing compound classes shown in
712 Figures 2-3, with additional discussion of other relevant compound classes in Section S3.

713

714 3.3.1. CHN compounds

715 While nitrogen-containing compounds in general were very prominent at the site (Figure
716 3A-B), CHN compounds were relatively less abundant in these samples of functionalized
717 organic aerosol. Particle-phase CHN compounds represented just 1% and 3% of observed
718 functionalized organic aerosol abundance in summer and winter, respectively, which was similar
719 to observations at other ambient sites (~5% CHN) (Ditto et al., 2018).

720 In the summertime LC-ESI-MS/MS measurements, CHN particle-phase compounds were
721 comprised primarily of amines (72% of CHN species contained an amine group) and nitriles
722 (28% of CHN species contained a nitrile group), as shown in Figure 4. In the winter, these
723 compounds were nearly exclusively amines (present in 99% of CHN species). Amines have
724 many primary land-based sources (e.g., biogenic emissions (Kieloaho et al., 2013), agricultural
725 activity (Ge et al., 2011), emissions from decomposing organic matter (Ge et al., 2011;
726 Sintermann and Neftel, 2015), biomass burning (Ge et al., 2011), emissions from port activity
727 (Gaston et al., 2013), chemical products (Khare and Gentner, 2018), and vehicle exhaust
728 (Sodeman et al., 2005)), but their presence on the coast could also indicate marine contributions.
729 Amines have been detected both in bulk ocean water, the surface microlayer, and in sea spray
730 aerosol, and their emissions and chemical transformations in the marine environment have been

731 the topic of many recent studies (e.g., Brean et al., 2021; Dall’Osto et al., 2019; Decesari et al.,
732 2020; Di Lorenzo et al., 2018; van Pinxteren et al., 2012, 2019; Quinn et al., 2015; Wu et al.,
733 2020). [In the summer, biogenic and marine sources likely dominated the amine distribution,](#)
734 [while in the winter, anthropogenic amine sources likely became more important.](#)

735 Recent studies have also evaluated amine phase partitioning or formation in cloud/fog
736 water (e.g., Chen et al., 2018; Youn et al., 2015), as well as condensed-phase or aqueous-phase
737 pathways that may transform emitted amines (e.g., Ge et al., 2016; Lim et al., 2019; Tao et al.,
738 2021). Interestingly, the observed amines at this site, as well as other reduced nitrogen groups
739 like nitriles, imines, and enamines, were not present exclusively in CHN species and thus were a
740 mix of both direct emissions and chemically processed compounds. Reduced nitrogen groups
741 were often paired with hydroxyl groups, carboxylic acids, carbonyls, ethers, and esters as part of
742 nitrogen and oxygen containing compounds with a range of O/N ratios. [This is consistent with](#)
743 [other studies observing reduced-nitrogen contributions to CHON compound classes, such as](#)
744 [Zhao et al. \(2013\), LeClair et al. \(2012\), and Altieri et al \(2009\), discussed above.](#) As such, we
745 discuss CHON species as a function of O/N ratio to focus on differences between less-
746 oxygenated ($O/N < 3$) and more-oxygenated ($O/N \geq 3$, e.g., organonitrates) species, using a ratio
747 of 3 to distinguish between the two as informed by the O/N ratio of the organonitrate functional
748 group.
749

750 3.3.2. CHON ($O/N < 3$) compounds

751 CHON ($O/N < 3$) compounds were notably more important at this site than other sites,
752 representing 20% and 19% of observed functionalized organic aerosol abundance in summer and
753 winter, respectively (Figure 3A-B), compared to ~13% at other sites (from predominantly

754 summer measurements). These CHON compounds included some functional groups that
755 contained both oxygen and nitrogen, such as amide groups (12% of this compound class's
756 nitrogen content in summer, vs. 1% in winter, Figure 4) and nitro groups (15% of this nitrogen
757 content in summer, vs. 6% in winter, Figure 4). However, most CHON (O/N < 3) compounds
758 were comprised of a combination of nitrogen- *or* oxygen-containing groups, rather than a
759 functional group containing both nitrogen and oxygen. This included large contributions from
760 hydroxyls and ethers across both seasons, as well as important contributions from amines,
761 isocyanates, and heterocyclic nitrogen, [as shown in Ditto et al., 2020 \(Figure 1\).](#) The presence of
762 these functional groups in the winter could be indicative of wood burning emissions in the
763 region, which has been observed in the wintertime in past ambient sampling in the Northeast
764 U.S. (Sullivan et al., 2019). Isocyanates contributed notably to this compound class during the
765 winter, which could similarly be linked to burning wood, other biomass, building materials
766 (Leslie et al., 2019; Priestley et al., 2018; Roberts et al., 2014), or could be photochemically
767 produced via the oxidation of amines and amides (Borduas et al., 2015; Leslie et al., 2019).
768 Importantly, levoglucosan, a common biomass burning tracer, was observed across nearly all
769 daytime and nighttime winter particle-phase samples (verified with an authentic standard),
770 supporting the influence of biomass burning compounds at the site. Together, the overall high
771 prevalence of reduced nitrogen at this site could be influenced by the mixing of aged biomass
772 burning plumes with marine air, which is consistent with past observations of very high
773 alkylamine concentrations in biomass burning particles that mixed with marine air prior to
774 sampling (Di Lorenzo et al., 2018).

Deleted: (Ditto et al., 2020).

778 3.3.3. CHON (O/N \geq 3) compounds

779 CHON (O/N \geq 3) compounds were the dominant compound class in the observed
780 summertime distribution and played an important role in the wintertime distribution as well,
781 comprising 44% of observed functionalized organic aerosol abundance in summer vs. 24% in
782 winter (Figure 3A-B). These contributions were far greater than the contributions of CHON (O/N
783 \geq 3) species at other sites, which typically ranged from 14-19% (predominantly from
784 summertime measurement, Figure 3C).

785 Similar to CHON (O/N $<$ 3), we observed some CHON (O/N \geq 3) compounds with
786 functional groups containing 3 oxygen atoms and 1 nitrogen atom, e.g., nitrophenols and
787 organonitrates (Figure 4), but also contributions from nitrogen-only functional groups paired
788 with oxygen-containing groups. Notably, in the summer, there were important contributions from
789 amines (47% of this compound class's nitrogen content), imines (19%), organonitrates (10%),
790 and azoles (16%) (Figure 4). In contrast, in the winter, nitrogen content in the CHON (O/N \geq 3)
791 compound class was dominated by I/SVOC nitrophenols, comprising 64% of the CHON (O/N \geq
792 3) ion abundance.

793 NO_x mixing ratios were typically low in both summer and winter (2.3 ± 1.5 ppb in
794 summer vs. 3.7 ± 2.7 ppb in winter), but were slightly higher during winter. In the winter, CHON
795 (O/N \geq 3) compounds showed a weak positive relationship with NO_x mixing ratios ($r \sim 0.58$) and
796 a stronger correlation with NO mixing ratios ($r \sim 0.81$). This relationship between CHON (O/N \geq
797 3) and NO (and NO_x) suggests that many of these oxidized nitrogen species were products of
798 NO_x-related chemistry (i.e., NO₂ compounds). The enhancements in nitrophenols serves as one
799 example of this, as NO mixing ratios also correlated with the contribution of nitrophenols in the
800 winter ($r \sim 0.69$).

801 In past work, we discussed nitrophenol nighttime enhancements during winter, and noted
802 their reported aqueous formation pathways mentioned in prior laboratory studies (Ditto et al.,
803 2020). Here, we demonstrate that nitrophenols were important contributors to the CHON (O/N \geq
804 3) compound class, and highlight their role as examples of NO_x due to their possible formation
805 via dark aqueous-phase nitration pathways of oxygenated aromatics with ambient nitrous acid
806 (HONO) (Vidović et al., 2018). While nitrophenols may have other sources (e.g., diesel exhaust),
807 our observations of a clear nighttime enhancement during the winter suggest that these functional
808 groups were most likely formed by secondary chemistry related to NO_x oxidation, as this field
809 site was removed from major roadways. Our wintertime observations suggest that HONO could
810 have been derived from local wood burning, and could have reacted away as the smoke plume
811 aged to form stable products like nitrophenols, similar to HONO transformation chemistry into
812 other forms of oxidized nitrogen (e.g., particulate nitrates, PANs, organic nitrates) that has
813 recently been observed in wildfire smoke (Juncosa Calahorrano et al., 2021).

814 Furthermore, the correlation between NO and CHON (O/N \geq 3) could also be influenced
815 by the daytime formation of organonitrates via reaction with OH[•] and NO (i.e., RO₂[•] + NO)
816 (Liebmann et al., 2019; Ng et al., 2017; Perring et al., 2013; Takeuchi and Ng, 2018), though
817 organonitrates contributed to a smaller fraction of CHON (O/N \geq 3) species (i.e., 10% of this
818 compound class's nitrogen content across seasons).

819

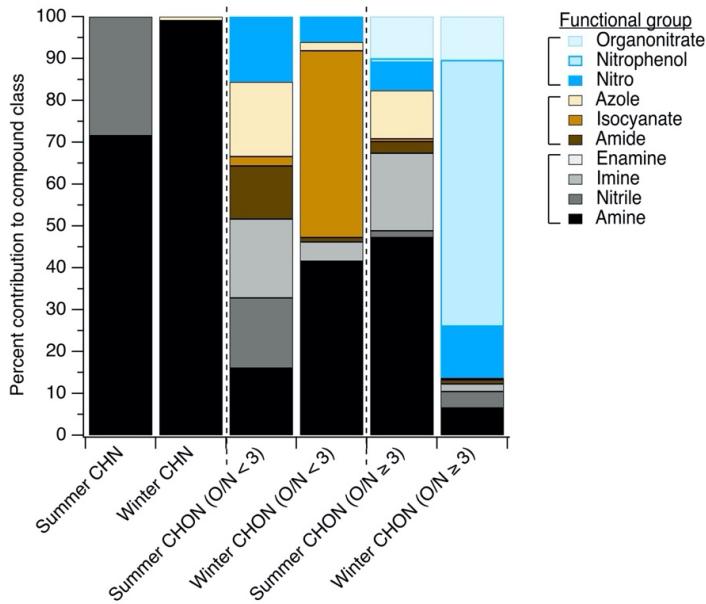
820 3.3.4. Overall contributions of reduced and oxidized nitrogen groups

821 In the summer and winter, contributions from reduced nitrogen groups (e.g., groups
822 shown in black/grey in Figure 4) rivaled that of oxidized nitrogen groups in CHON compounds
823 across a range of O/N ratios. In the summer, reduced nitrogen groups contributed to 50% of all

824 detected CHON ($O/N < 3$) compounds by ion abundance, while in the winter they contributed
825 47% (Figure 4). For CHON compounds with $O/N \geq 3$, reduced nitrogen groups contributed to
826 68% of compound ion abundance in the summer ([possibly related to marine influences](#) (Wozniak
827 et al., 2014)[\),](#) while in the winter they contributed just 13%. Interestingly, 90% of the dominant
828 reduced nitrogen functional groups observed (amines and imines) were present in acyclic rather
829 than cyclic structures, which may have been the result of either direct emissions or formation via
830 reactions with ammonia or other small amines.

831 In contrast, possible NO_x products (e.g., groups shown in blue in Figure 4) were present
832 in 18% and 7% of CHON ($O/N < 3$) compounds in the summer and winter, respectively. For
833 CHON ($O/N \geq 3$) compounds, they were present in 18% and 86% in the summer and winter,
834 respectively, with the latter wintertime increase in oxidized N-groups largely driven by the
835 presence of nitrophenols at night (Ditto et al., 2020). The remaining fraction of nitrogen-
836 containing groups also contained oxygen, but with a reduced nitrogen atom (e.g., [amide,](#)
837 [isocyanate,](#) [nitrogen/oxygen-containing azole,](#) shown in brown in Figure 4). We note that

838 CHONS compounds also represented a sizable fraction of observed organic nitrogen (Figure 3),
839 and contained a mix of reduced and oxidized functional groups (Section S3 and Figures S7-8).
840


Deleted:

Deleted: 4

The importance of reduced nitrogen functional groups in CHON compounds highlights
841 that not all oxygen- and nitrogen-containing species in the CHON ($O/N \geq 3$) compound class
842 were NO_x , despite their apparent molecular formulas and the observed correlation observed
843 between CHON ($O/N \geq 3$) species with NO and NO_x mixing ratios. For instance, many of the
844 observed reduced nitrogen-containing functional groups co-occurred with several oxygen-
845 containing groups like hydroxyls, carboxylic acids, esters, ethers, and carbonyls, and thus had

848 molecular formulas with $O/N \geq 3$, which could incorrectly be assumed to be an organonitrate or
849 similar structure based on molecular formula alone.

850 We note that the relative distribution of reduced and oxidized nitrogen-containing groups
851 shown here is subject to sampling and ionization conditions. While the electrospray ionization
852 source used for the particle-phase analysis discussed here effectively ionized these nitrogen-
853 containing groups, their relative sensitivity may differ because many of these functional groups
854 were present in multifunctional compounds whose other features may also contribute to
855 ionization behavior. Also, other aspects of the sample collection and extraction process could
856 cause variability in observed signal (e.g., PM size cut, organonitrate stability over long duration
857 samples). Thus, we emphasize that the observed relative abundances here are valuable because
858 they suggest that fully reduced nitrogen-containing groups are important contributors to
859 multifunctional CHON species, but their exact mass contributions remain uncertain.

860

861 **Figure 4.** The distribution of functional groups in particle-phase nitrogen-containing compounds
 862 measured via LC-ESI-MS/MS. The breakdown of CHN, CHON ($O/N < 3$), and CHON ($O/N \geq 3$)
 863 compounds is shown as a function of contributions of each functional group to ion abundance,
 864 with possible NO_x species shown in blue shades, fully-reduced nitrogen-containing groups
 865 shown in black/grey shades, and groups containing both oxygen and nitrogen where the nitrogen
 866 atom itself is not oxidized shown in brown shades. [The same data tallied by occurrence are](#)
 867 [shown in Figure S6 for comparison. Figures S7 and S8 show the functional group distribution for](#)
 868 [CHNS and CHONS compound classes tallied by abundance and by occurrence, respectively.](#)

869

870

871 3.4. Probing Possible Nitrogen-Containing Gas-Phase Precursors to Observed Nitrogen-

872 Containing Particles with Adsorptive Sampling and LC-ESI-MS

873 The particle-phase volatility distribution in the winter [ranged from IVOUC-ULVOC](#). Of
 874 the observed compounds in winter, 68% contained nitrogen; these likely included contributions
 875 from functionalized gas-phase precursors and likely were influenced by the active multiphase
 876 partitioning of these precursors, and their gas- or particle-phase reaction products, with changes

Deleted: consisted of 18% IVOCs and 41% SVOCs (Figure 2B)...

879 in organic aerosol loading, atmospheric liquid water concentrations, and temperature (Donahue
880 et al., 2011; Ervens et al., 2011). This emphasizes the need to measure a broader range of these
881 functionalized gas-phase compounds, which have known limitations with GC transmission, but
882 represent uncertain and important-to-measure SOA precursors.

883 However, despite evidence of higher volatility particle-phase compounds with diverse
884 nitrogen-containing functionalities that could dynamically partition between phases (Figure 2A-
885 B), the observed compound class distribution from gas-phase adsorbent tube measurements
886 analyzed via GC-APCI-MS was dominated by hydrocarbons (i.e., CH, 24% of detected ion
887 abundance in summer vs. 18% in winter) and oxygenates (i.e., CHO, 66% in summer vs. 69% in
888 winter) (Figure S10-11). These gas-phase species appeared to be lightly functionalized
889 oxygenates (average O/C: 0.12 ± 0.13), showing minimal contributions from nitrogen (or sulfur)
890 heteroatoms; only 9% of detected ion abundance from gas-phase adsorbent tubes in summer and
891 11% in winter contained a nitrogen heteroatom. This is likely due to measurement limitations;
892 while GC-APCI techniques are extremely well-suited for the analysis of less functionalized
893 organic compounds from both instrument transmission and ionization efficiency perspectives,
894 these techniques are not as effective for more polar, more functionalized, more thermally-labile,
895 or otherwise less-GC-amenable species. Thus, to examine a broader range of functionalized gas-
896 phase compounds, we used an offline adsorptive sampling method on cooled PEEK tubing
897 collectors and inline mobile phase desorption for LC-ESI-MS analysis (Figure 1). CH and CHS
898 compound classes were excluded from this gas-phase LC-ESI-MS analysis due to their poor ESI
899 ionization efficiency.

900 Due to variations in trapping and desorption effectiveness (Section S1), this method was
901 not intended to be used as a quantitative measurement of concentration, but rather a relative

Deleted: substantial contributions from particle-phase
I/SVOCs with

Deleted: S5

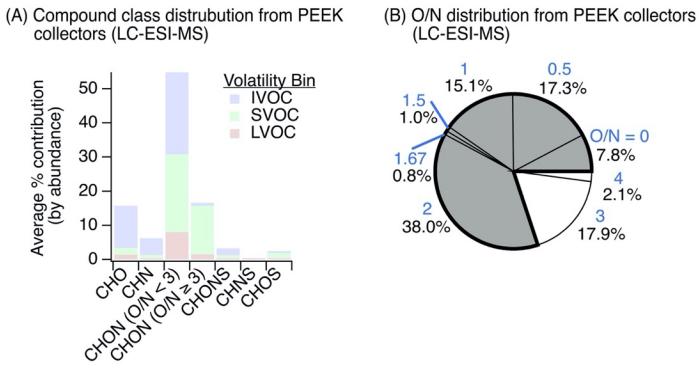
905 assessment of the distribution of nitrogen-containing gas-phase organic compounds. The
906 variation between analytes in breakthrough testing does not influence our conclusions about the
907 overall prevalence of observed gas-phase organic nitrogen. In laboratory tests, gas-phase sample
908 collection, inline desorption to the mobile phase, trapping on the LC column, and
909 chromatographic separation performed well. We observed limited breakthrough for most
910 analytes during sampling, effective focusing prior to LC analysis, and similar separations for
911 spiked collectors and breakthrough tests compared to standard LC runs (Figure 1B).

912 Results from the application of this new method at the YCFS revealed a wide range of
913 compounds with oxygen-, nitrogen-, and/or sulfur-containing functionality (Figure 5) that existed
914 at a lower average saturation mass concentration than the adsorbent tube methods during winter,
915 with a $\log(C_0)$ of $3.5 \pm 3.1 \mu\text{g}/\text{m}^3$ for adsorbent tubes analyzed with GC-APCI-MS compared to
916 $1.9 \pm 2.1 \mu\text{g}/\text{m}^3$ for functionalized gases observed via LC-ESI-MS. This decrease in volatility
917 corresponded to an increase in the average O/C ratio of these functionalized gases to 0.24 ± 0.24 ,
918 which can partly be attributed to LC-ESI's poor ionization of CH compounds and to the
919 collection system's design (targeting heteroatom-containing species and not higher volatility
920 hydrocarbons). This may be a lower limit of O/C among functionalized compounds, as during
921 testing with a mixture of standards, we often observed poor retention of high O/C sugars like
922 xylitol and mannose on the LC analytical column (Table S2).

923 The gas-phase LC-ESI-MS data provide a valuable comparison to the wintertime
924 particle-phase samples analyzed using the same instrument. These particle-phase samples had
925 major contributions from CHO, CHON ($\text{O}/\text{N} < 3$ and $\text{O}/\text{N} \geq 3$), CHONS, and CHOS compound
926 classes (Figure 3B). While not collected concurrently, the functionalized gas-phase samples in
927 winter had similar contributions from CHO (20%) and CHON ($\text{O}/\text{N} \geq 3$) compounds (16%),

928 relatively more CHN (11%) and CHON (O/N < 3) (46%) compounds, and fewer CHONS (2.7%)
929 and CHOS (4.4%) compounds (Figure 5A). The prevalence of gas-phase CHN, CHON (O/N <
930 3), and CHON (O/N \geq 3) is of particular interest given the abundance of CHON compounds
931 observed in the particle phase, and the potential of these gases to partition to the particle-phase
932 and/or act as reactive precursors to other oxidized nitrogen-containing species.

933 The presence of these nitrogen-containing compounds in the gas-phase also suggests that
934 these compound classes observed in the particle-phase at least partly originated in the gas-phase
935 and partitioned, rather than formed exclusively as a result of particle-phase chemistry. These
936 species could have also formed in the particle-phase and partitioned to the gas-phase with or
937 without condensed-phase fragmentation (discussed above). In either scenario, these nitrogen-
938 containing compounds likely actively partitioned between phases due to their volatility (e.g.,
939 I/SVOCs shown in Figure 5A). Also, their polarity and high Henry's Law coefficients (relative
940 to non-functionalized hydrocarbons (Sander, 2015)) suggests that these compounds could have
941 been readily taken up by the aqueous phase. To check that these compounds were indeed gas-
942 phase species under ambient conditions, we predicted the saturation mass concentration for
943 individual compounds using individual ion formulas and estimated their gas-particle partitioning
944 to a pre-existing condensed phase. While the range of compounds in Figure 5A can be expected
945 to dynamically partition, the results confirm that the overall suite of observed compounds would
946 have predominately existed as gases, with on average ~80% of observed ion abundance predicted
947 to equilibrate to the gas-phase across compound classes (Figure S12-13).


Deleted: 6

948 Of all the gas-phase species observed with at least one nitrogen atom (i.e., CHN, CHON,
949 CHONS, CHNS), [collected in winter](#), we note that 78% of these compounds had an O/N ratio of
950 less than 3 (Figure 5B), indicating that most of these gas-phase species were not organonitrates,

952 nitrophenols, or other similar structures. This is similar to our particle-phase [wintertime](#) results,
953 which showed important contributions from reduced nitrogen-containing groups paired with
954 oxygen-containing groups in CHON (O/N < 3) compounds. Notably, we observed an 11%
955 contribution of gas-phase CHN species with this gas-phase LC-ESI-MS method (Figure 5A), in
956 contrast to 2% CHN in the wintertime particle-phase samples (Figure 3). In the winter particle-
957 phase samples, most CHN compounds contained amines (discussed above), and thus we
958 postulate that these functionalized gas-phase CHN species were possibly also amines that acted
959 as precursors to observed nitrogen-containing particle-phase compounds following oxidation and
960 partitioning (or vice versa).

961 The substantial contribution from CHON with O/N < 3 (46%) to the functionalized gas-
962 phase samples could be linked to less photochemical processing of CHON compounds relative to
963 the particle phase and/or the emissions/oxidation of CHN or CHON compounds. Moreover, in
964 the particle-phase, we observed a weak negative relationship between CHN contribution and
965 hydroxyl group prevalence in summertime measurements ($r \sim -0.57$), which may support the
966 transformation of CHN to CHON compounds via the formation of hydroxyl-containing species.

967 [The elemental ratio distribution of these functionalized gases is summarized in Figure S14 and](#)
968 [Table S6.](#)

969

970 **Figure 5.** Observations of gas-phase nitrogen-containing compounds. (A) The distribution of
 971 functionalized gases observed via sampling on PEEK collectors ($N = 6$) and inline mobile phase
 972 desorption with non-targeted LC-ESI-MS analysis contained a diversity of oxygen-, nitrogen-,
 973 and/or sulfur-containing compounds in the IVOC-LVOC range (volatility assignment and
 974 grouping was the same as discussed in Figure 2 [at a reference temperature of 300 K for
 975 intercomparison](#)). While we cannot rule out gas-phase LVOC contributions from evaporation off
 976 of the upstream particle filter, LVOC contributions were limited (~12%). (B) Oxygen-to-
 977 nitrogen (O/N) ratio distribution of observed gas-phase nitrogen-containing species where O/N
 978 ratios < 3 are colored grey and O/N ratios ≥ 3 are [colored](#) white (blue text above each percentage
 979 signifies the O/N ratio). [The same data, tallied by occurrence, are shown in Figure S9 for
 980 comparison.](#)

981

982 4. Conclusions and Opportunities for Future Research

983 Together, these results suggest that a mix of direct emissions and chemical processes
 984 during summer and winter in the Long Island Sound region resulted in a diverse mixture of
 985 multifunctional gases and particles, where more than two-thirds of observed particle-phase
 986 compounds contained at least one nitrogen atom.

987 The observed nitrogen-containing functional groups existed across a range of fully
 988 reduced (e.g., amines, imines) to oxidized (e.g., nitro, organonitrate) structures. These fully
 989 reduced nitrogen functional groups were prevalent across all nitrogen-containing compound
 990 classes, including CHON species, and we highlight their importance as contributors to these
 991 multifunctional compounds beyond typical NO_2 -type compounds that are commonly studied

992 using online mass spectrometers and share similar CHON molecular formulas. For instance,
993 these gas- and particle-phase measurements of nitrogen-containing compounds are
994 complementary to the measurements of these species made by chemical ionization mass
995 spectrometers (CIMS) or by proton transfer reaction mass spectrometers (PTR-MS), whose
996 ionization mechanisms can be tuned for sensitivity towards functionalized compounds of interest
997 (Riva et al., 2019). While online mass spectrometers excel at high time resolution measurements
998 that capture dynamic chemical processes in the atmosphere, their mass resolution is typically
999 lower and they normally do not utilize separations, so they largely depend on parent ion mass-to-
1000 charge ratios to assign molecular formulas without structural attribution. The offline methods
1001 used here cannot match the time resolution of online techniques. However, the use of
1002 chromatography to separate isomers, longer sampling times to increase sensitivity toward a
1003 greater range of compounds, and the use of higher resolution mass spectrometers with MS/MS
1004 capabilities allow for improved compound identification and determination of functional group
1005 distribution at the molecular level. This enables us to distinguish between true NO_z species and
1006 those that contain combinations of nitrogen and oxygen but are not NO_x oxidation products.
1007 Thus, both these online and offline methods should be employed together to differentiate a wider
1008 range of nitrogen-containing species and to achieve both temporal and chemical resolution.

1009 As discussed throughout this work, the Long Island Sound region is affected by a mixture
1010 of anthropogenic, biogenic, and marine sources, all of which contain known emitters of organic
1011 nitrogen. Understanding the combined effect of these individual sources and their chemical
1012 transformations will be important in regions like the Long Island Sound, where a significant
1013 degree of mixing occurs over the Sound before air parcels arrive inland. For example, past work
1014 has noted extremely high contributions from alkylamines in biomass burning-influenced air

1015 mixed with marine air (Di Lorenzo et al., 2018). Similar enhancements could be expected when
1016 mixing other prominent sources of amines with marine air, such as in the aging urban outflow
1017 from the Central Atlantic and Northeast U.S., which may be transported up the coast and impact
1018 states in the surrounding region.

1019 As with any ambient site, these mixed emissions are chemically processed in the
1020 atmosphere via a multitude of pathways. Here, we observed evidence of photochemical and
1021 aqueous processes occurring in both seasons, but in the winter we observed various mixture-wide
1022 trends that suggested an enhanced role for aqueous-phase processing. These observations
1023 included higher overall particle-phase volatility and smaller carbon backbone sizes, which may
1024 indicate a more important role for aqueous-phase fragmentation reactions or aqueous uptake of
1025 water soluble gases (Brege et al., 2018). We also observed key marker functional groups that
1026 may be formed via aqueous phase chemistry (e.g., nitrophenols, azoles). The role of aqueous-
1027 phase chemistry and aqueous-phase uptake of gases is increasingly studied in laboratory and
1028 ambient contexts (Herrmann et al., 2015), and such chemistry should further examined especially
1029 in coastal and other humid regions.

1030 For example, the aqueous-phase processing of atmospherically relevant nitrogen-
1031 containing species is particularly important to understand in ambient air due to the potential of
1032 brown carbon formation, which has significant impacts on climate forcing (Laskin et al., 2015).
1033 The role of ammonia and amines reacting with carbonyls is of interest for this type of chemistry
1034 (e.g., DeHaan et al., 2009; Grace et al., 2020; McNeill, 2015; Sareen et al., 2010) and should
1035 continue to be explored, particularly in coastal settings where concentrations of small gas-phase
1036 amines may be high due to their marine sources. As discussed above, our ambient observations
1037 of azoles could be indicative of such chemistry, and should be explored in future comparisons of

1038 ambient and laboratory-generated species. Also, we observed a significant contribution from
1039 nitrophenols at our site, and while they are not formed by this same chemistry, they represent
1040 another important form of light absorbing nitrogen-containing organic mass in the atmosphere
1041 (Hems and Abbatt, 2018). Finally, many of the nitrogen-containing functional groups observed
1042 in this work may be susceptible to hydrolysis, so the balance between hydrolysis and other
1043 aqueous pathways is important to consider and understand for appropriate representation of
1044 nitrogen-containing compounds in models for both aqueous aerosol and in-cloud/fog chemistry.

1045 As another example, the greater prevalence overall higher volatility species observed in
1046 the winter particle-phase samples suggested possible dynamic partitioning or aqueous uptake of
1047 lighter gas-phase compounds; to explore the composition of these lighter gas-phase compounds
1048 that could exist as I/SVOCs and thus participate in phase partitioning, we supplemented our
1049 particle-phase analyses with a novel approach for investigating functionalized gases with LC-
1050 ESI-MS. Further investigation of these nitrogen-containing gases will facilitate new

1051 understanding of their gas-particle partitioning in the presence of atmospheric water and organic
1052 condensed species, and measurements across dynamic conditions will help elucidate the relative
1053 importance of both processes. For these types of measurements, further design iterations of the
1054 PEEK sampling system for functionalized gases and additional functionalized gas-phase samples
1055 for LC-ESI-MS analysis could be pursued. Concurrent high volume filter samples could be
1056 collected for direct comparison to the particle-phase, which was not possible in this study due to
1057 insufficient mass loading on the upstream filter during the short duration functionalized gas
1058 sample (i.e. 2 hours). Concurrent PEEK samples could also be collected for MS/MS analysis.

1059 In all, combinations of online and offline mass spectrometry to obtain temporal and
1060 chemical detail, further ambient observations of major organic nitrogen sources, a better

Deleted: of I/SVOCs

Deleted: aerosol liquid

1063 understanding of the aqueous processing of nitrogen-containing compounds, and improved
1064 characterization of their gas-particle partitioning in the presence of atmospheric water will
1065 together allow for a more accurate representation of nitrogen-containing organic compounds in
1066 emission inventories and models, and enhance our ability to predict their impacts on atmospheric
1067 composition, human health, and climate.

1068

1069 **Author contributions:** J.C.D. and D.R.G. planned the field sampling and study. J.C.D. collected
1070 and analyzed field samples, and performed PEEK sampling and inline LC method development.
1071 J.M. performed inline LC method development. J.C.D. and D.R.G. wrote the manuscript with
1072 contributions from all co-authors.

1073

1074 **Data availability:** Available upon request to Drew R. Gentner (drew.gentner@yale.edu).
1075

1076 **Competing interests:** The authors declare that they have no substantive conflicts of interest but
1077 acknowledge that D.R.G. is an associate editor with *Atmospheric Chemistry and Physics*.

1078

1079 **Acknowledgements:** We acknowledge support from the National Science Foundation
1080 (AGS1764126) and the Yale Natural Lands Program. J.M. thanks the Goodyear Tire & Rubber
1081 Company and the Grumman Fellowship. We also acknowledge GERSTEL for their collaboration
1082 with the thermal desorption unit used here. We thank David Wheeler at the New York
1083 Department of Environmental Conservation, Pete Babich and Adam Augustine at the
1084 Connecticut Department of Energy and Environmental Protection, Luke Valin at the
1085 Environmental Protection Agency, and Jordan Peccia at Yale for use of sampling equipment, as
1086 well as Paul Miller (NESCAUM) for organizing the LISTOS project. We also thank Richard

1090 Boardman and the Yale Peabody Museum for enabling us to set up and collect samples at the
1091 YCFS site, and acknowledge the help of Yale Peabody Museum EVOLUTIONS interns: Amir
1092 Bond, Ethan Weed, Paula Mock, and Aurea Orencia. We thank Trevor VandenBoer and Barbara
1093 Ervens for helpful feedback on the draft manuscript. Finally, we acknowledge the NOAA Air
1094 Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model.

1095 **References**

1096
1097 Altieri, K. E., Turpin, B. J. and Seitzinger, S. P.: Composition of dissolved organic nitrogen in continental
1098 precipitation investigated by ultra-high resolution FT-ICR mass spectrometry, *Environ. Sci. Technol.*, 43(18), 6950–
1099 6955, doi:10.1021/es9007849, 2009.
1100
1101 Boone, E. J., Laskin, A., Laskin, J., Wirth, C., Shepson, P. B., Stirm, B. H. and Pratt, K. a.: Aqueous Processing of
1102 Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling, *Environ. Sci. Technol.*,
1103 150611113115005, doi:10.1021/acs.est.5b01639, 2015.
1104
1105 Borduas, N., Da Silva, G., Murphy, J. G. and Abbatt, J. P. D.: Experimental and theoretical understanding of the gas
1106 phase oxidation of atmospheric amides with OH radicals: Kinetics, products, and mechanisms, *J. Phys. Chem. A*,
1107 119(19), 4298–4308, doi:10.1021/jp503759f, 2015.
1108
1109 Brean, J., Dall’Osto, M., Simó, R., Shi, Z., Beddows, D. C. S. and Harrison, R. M.: Open ocean and coastal new
1110 particle formation from sulfuric acid and amines around the Antarctic Peninsula, *Nat. Geosci.*, 14(6), 383–388,
1111 doi:10.1038/s41561-021-00751-y, 2021.
1112
1113 Brege, M., Paglione, M., Gilardoni, S., De Cesari, S., Facchini, M. C. and Mazzoleni, L. R.: Molecular insights on
1114 aging and aqueous-phase processing from ambient biomass burning emissions-influenced Po Valley fog and aerosol,
1115 *Atmos. Chem. Phys.*, 18(17), 13197–13214, doi:10.5194/acp-18-13197-2018, 2018.
1116
1117 Chen, C. L., Chen, S., Russell, L. M., Liu, J., Price, D. J., Betha, R., Sanchez, K. J., Lee, A. K. Y., Williams, L.,
1118 Collier, S. C., Zhang, Q., Kumar, A., Kleeman, M. J., Zhang, X. and Cappa, C. D.: Organic Aerosol Particle
1119 Chemical Properties Associated With Residential Burning and Fog in Wintertime San Joaquin Valley (Fresno) and
1120 With Vehicle and Firework Emissions in Summertime South Coast Air Basin (Fontana), *J. Geophys. Res. Atmos.*,
1121 123(18), 10707–10731, doi:10.1029/2018JD028374, 2018.
1122
1123 Cleveland, W. S., Kleiner, B., McRae, J. E. and Warner, J. L.: Photochemical air pollution: Transport from the New
1124 York City area into Connecticut and Massachusetts, *Science*, 191(4223), 179–181, doi:10.1126/science.1246603,
1125 1976.
1126
1127 Dall’Osto, M., Airs, R. L., Beale, R., Cree, C., Fitzsimons, M. F., Beddows, D., Harrison, R. M., Ceburnis, D.,
1128 O’Dowd, C., Rinaldi, M., Paglione, M., Nenes, A., De Cesari, S. and Simó, R.: Simultaneous Detection of
1129 Alkylamines in the Surface Ocean and Atmosphere of the Antarctic Sympagic Environment, *ACS Earth Sp. Chem.*,
1130 3(5), 854–862, doi:10.1021/acsearthspacechem.9b00028, 2019.
1131
1132 De Cesari, S., Paglione, M., Rinaldi, M., Dall’osto, M., Simó, R., Zanca, N., Volpi, F., Cristina Facchini, M.,
1133 Hoffmann, T., Götz, S., Johannes Kampf, C., O’Dowd, C., Ceburnis, D., Ovadnevaite, J. and Tagliavini, E.:
1134 Shipborne measurements of Antarctic submicron organic aerosols: An NMR perspective linking multiple sources
1135 and bioregions, *Atmos. Chem. Phys.*, 20(7), 4193–4207, doi:10.5194/acp-20-4193-2020, 2020.
1136 DeHaan, D. O., Corrigan, A. L., Smith, K. W., Stroik, D. R., Turley, J. J., Lee, F. E., Tolbert, M. A., Jimenez, J. L.,
1137 Cordova, K. E., Ferrell, G. R., Haan, D. O. De, Corrigan, A. L., Smith, K. W., Stroik, D. R., Turley, J. J., Lee, F. E.,

1138 Tolbert, M. A., Jimenez, J. L., Cordova, K. E. and Ferrell, G. R.: Secondary organic aerosol-forming reactions of
1139 glyoxal with amino acids, *Environ. Sci. Technol.*, 43(8), 2818–2824, doi:10.1021/es803534f, 2009.

1140

1141 Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., Dominici, F. and Schwartz, J. D.: Air
1142 pollution and mortality in the medicare population, *N. Engl. J. Med.*, 376(26), 2513–2522,
1143 doi:10.1056/NEJMoa1702747, 2017.

1144

1145 Ditto, J. C., Barnes, E. B., Khare, P., Takeuchi, M., Joo, T., Bui, A. A. T., Lee-Taylor, J., Eris, G., Chen, Y.,
1146 Aumont, B., Jimenez, J. L., Ng, N. L., Griffin, R. J. and Gentner, D. R.: An omnipresent diversity and variability in
1147 the chemical composition of atmospheric functionalized organic aerosol, *Commun. Chem.*, 1(1), 75,
1148 doi:10.1038/s42004-018-0074-3, 2018.

1149

1150 Ditto, J. C., Joo, T., Khare, P., Sheu, R., Takeuchi, M., Chen, Y., Xu, W., Bui, A. A. T., Sun, Y., Ng, N. L. and
1151 Gentner, D. R.: Effects of Molecular-Level Compositional Variability in Organic Aerosol on Phase State and
1152 Thermodynamic Mixing Behavior, *Environ. Sci. Technol.*, 53(22), 13009–13018, doi:10.1021/acs.est.9b02664,
1153 2019.

1154 Ditto, J. C., Joo, T., Slade, J. H., Shepson, P. B., Ng, N. L. and Gentner, D. R.: Nontargeted Tandem Mass
1155 Spectrometry Analysis Reveals Diversity and Variability in Aerosol Functional Groups across Multiple Sites,
1156 Seasons, and Times of Day, *Environ. Sci. Technol. Lett.*, 7(2), 60–69, doi:10.1021/acs.estlett.9b00702, 2020.

1157

1158 Ditto, J. C., He, M., Hass-Mitchell, T. N., Moussa, S. G., Hayden, K., Li, S.-M., Liggio, J., Leithead, A., Lee, P.,
1159 Wheeler, M. J., Wentzell, J. J. B. and Gentner, D. R.: Atmospheric Evolution of Emissions from a Boreal Forest
1160 Fire: The Formation of Highly-Functionalized Oxygen-, Nitrogen-, and Sulfur-Containing Compounds, *Atmos.*
1161 *Chem. Phys.*, 21, 255–267, 2021.

1162

1163 Donahue, N. M., Epstein, S. A., Pandis, S. N. and Robinson, A. L.: A two-dimensional volatility basis set: 1.
1164 organic-aerosol mixing thermodynamics, *Atmos. Chem. Phys.*, 11(7), 3303–3318, doi:10.5194/acp-11-3303-2011,
1165 2011.

1166

1167 Dührkop, K., Shen, H., Meusel, M., Rousu, J. and Böcker, S.: Searching molecular structure databases with tandem
1168 mass spectra using CSIFingerID, *Proc. Natl. Acad. Sci.*, 112(41), 12580–12585, doi:10.1073/pnas.1509788112,
1169 2015.

1170

1171 Dührkop, K., Fleischauer, M., Ludwig, M., Aksenov, A. A., Melnik, A. V., Meusel, M., Dorrestein, P. C., Rousu, J.
1172 and Böcker, S.: SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information, *Nat.*
1173 *Methods*, 16(4), 299–302, doi:10.1038/s41592-019-0344-8, 2019.

1174

1175 Dunlea, E. J., Herndon, S. C., Nelson, D. D., Volkamer, R. M., San Martini, F., Sheehy, P. M., Zahniser, M. S.,
1176 Shorter, J. H., Wormhoudt, J. C., Lamb, B. K., Allwine, E. J., Gaffney, J. S., Marley, N. A., Grutter, M., Marquez,
1177 C., Blanco, S., Cardenas, B., Retama, A., Ramos Villegas, C. R., Kolb, C. E., Molina, L. T. and Molina, M. J.:
1178 Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment, *Atmos. Chem. Phys.*,
1179 7(10), 2691–2704, doi:10.5194/acp-7-2691-2007, 2007.

1180

1181 Ervens, B., Turpin, B. J. and Weber, R. J.: Secondary organic aerosol formation in cloud droplets and aqueous
1182 particles (aqSOA): A review of laboratory, field and model studies, *Atmos. Chem. Phys.*, 11(21), 11069–11102,
1183 doi:10.5194/acp-11-11069-2011, 2011.

1184

1185 Gaston, C. J., Quinn, P. K., Bates, T. S., Gilman, J. B., Bon, D. M., Kuster, W. C. and Prather, K. A.: The impact of
1186 shipping, agricultural, and urban emissions on single particle chemistry observed aboard the R/V Atlantis during
1187 CalNex, *J. Geophys. Res. Atmos.*, 118(10), 5003–5017, doi:10.1002/jgrd.50427, 2013.

1188

1189 Ge, X., Wexler, A. S. and Clegg, S. L.: Atmospheric amines - Part I. A review, *Atmos. Environ.*, 45(3), 524–546,
1190 doi:10.1016/j.atmosenv.2010.10.012, 2011.

1191

1192 Ge, Y., Liu, Y., Chu, B., He, H., Chen, T., Wang, S., Wei, W. and Cheng, S.: Ozonolysis of Trimethylamine
1193 Exchanged with Typical Ammonium Salts in the Particle Phase, *Environ. Sci. Technol.*, 50(20), 11076–11084,

1194 doi:10.1021/acs.est.6b04375, 2016.
1195
1196 Gioda, A., Reyes-Rodríguez, G. J., Santos-Figueroa, G., Collett, J. L., Decesari, S., Ramos, M. D. C. K. V., Bezerra
1197 Netto, H. J. C., De Aquino Neto, F. R. and Mayol-Bracero, O. L.: Speciation of water-soluble inorganic, organic,
1198 and total nitrogen in a background marine environment: Cloud water, rainwater, and aerosol particles, *J. Geophys.*
1199 *Res. Atmos.*, 116(5), doi:10.1029/2010JD015010, 2011.
1200
1201 de Gouw, J. A., Middlebrook, A. M., Warneke, C., Goldan, P. D., Kuster, W. C., Roberts, J. M., Fehsenfeld, F. C.,
1202 Worsnop, D. R., Canagaratna, M. R., Pszenny, A. A. P., Keene, W. C., Marchewka, M., Bertman, S. B. and Bates,
1203 T. S.: Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002,
1204 *J. Geophys. Res. D Atmos.*, 110(16), 1–22, doi:10.1029/2004JD005623, 2005.
1205
1206 Grace, D. N., Sharp, J. R., Holappa, R. E., Lugos, E. N., Sebold, M. B., Griffith, D. R., Hendrickson, H. P. and
1207 Galloway, M. M.: Heterocyclic Product Formation in Aqueous Brown Carbon Systems, *ACS Earth Sp. Chem.*,
1208 3(11), 2472–2481, doi:10.1021/acsearthspacechem.9b00235, 2019.
1209
1210 Grace, D. N., Lugos, E. N., Ma, S., Griffith, D. R., Hendrickson, H. P., Woo, J. L. and Galloway, M. M.: Brown
1211 Carbon Formation Potential of the Biacetyl-Ammonium Sulfate Reaction System, *ACS Earth Sp. Chem.*, 4(7),
1212 1104–1113, doi:10.1021/acsearthspacechem.0c00096, 2020.
1213
1214 Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M.,
1215 George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E.,
1216 Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T. F., Monod, A., Prevot, A. S. H.,
1217 Seinfeld, J. H., Suratt, J. D., Szmigielski, R. and Wildt, J.: The formation, properties and impact of secondary
1218 organic aerosol: current and emerging issues, *Atmos. Chem. Phys.*, 9(14), 5155–5236, doi:10.5194/acp-9-5155-
1219 2009, 2009.
1220
1221 Hems, R. F. and Abbatt, J. P. D.: Aqueous Phase Photo-oxidation of Brown Carbon Nitrophenols: Reaction
1222 Kinetics, Mechanism, and Evolution of Light Absorption, *ACS Earth Sp. Chem.*, 2(3), 225–234,
1223 doi:10.1021/acsearthspacechem.7b00123, 2018.
1224
1225 Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich, M. and Otto, T.: Tropospheric Aqueous-
1226 Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a Changing Gas Phase, *Chem. Rev.*, 115(10), 4259–
1227 4334, doi:10.1021/cr500447k, 2015.
1228
1229 Jerrett, M., Burnett, R. T., Pope, C. A., Ito, K., Thurston, G., Krewski, D., Shi, Y., Calle, E. and Thun, M.: Long-
1230 term ozone exposure and mortality, *N. Engl. J. Med.*, 360(11), 1085–1095, doi:10.1056/NEJMoa0803894, 2009.
1231
1232 Juncosa Calahorrano, J. F., Lindaas, J., O'Dell, K., Palm, B. B., Peng, Q., Flocke, F., Pollack, I. B., Garofalo, L. A.,
1233 Farmer, D. K., Pierce, J. R., Collett, J. L., Weinheimer, A., Campos, T., Hornbrook, R. S., Hall, S. R., Ullmann, K.,
1234 Pothier, M. A., Apel, E. C., Permar, W., Hu, L., Hills, A. J., Montzka, D., Tyndall, G., Thornton, J. A. and Fischer,
1235 E. V.: Daytime Oxidized Reactive Nitrogen Partitioning in Western U.S. Wildfire Smoke Plumes, *J. Geophys. Res. Atmos.*, 1236 126(4), 1–22, doi:10.1029/2020JD033484, 2021.
1237
1238 Khare, P. and Gentner, D. R.: Considering the future of anthropogenic gas-phase organic compound emissions and
1239 the increasing influence of non-combustion sources on urban air quality, *Atmos. Chem. Phys.*, 18(8), 5391–5413,
1240 doi:10.5194/acp-18-5391-2018, 2018.
1241
1242 Khare, P., Marcotte, A., Sheu, R., Walsh, A. N., Ditto, J. C. and Gentner, D. R.: Advances in offline approaches for
1243 trace measurements of complex organic compound mixtures via soft ionization and high-resolution tandem mass
1244 spectrometry, *J. Chromatogr. A*, 1598, 163–174, doi:10.1016/j.chroma.2019.03.037, 2019.
1245
1246 Kieloaho, A. J., Hellén, H., Hakola, H., Manninen, H. E., Nieminen, T., Kulmala, M. and Pihlatie, M.: Gas-phase
1247 alkylamines in a boreal Scots pine forest air, *Atmos. Environ.*, 80, 369–377, doi:10.1016/j.atmosenv.2013.08.019,
1248 2013.
1249

1250 Kilian, J. and Kitazawa, M.: The emerging risk of exposure to air pollution on cognitive decline and Alzheimer's
1251 disease – Evidence from epidemiological and animal studies, *Biomed. J.*, 41(3), 141–162,
1252 doi:10.1016/j.bj.2018.06.001, 2018.

1253

1254 Kim, H., Collier, S., Ge, X., Xu, J., Sun, Y., Jiang, W., Wang, Y., Herckes, P. and Zhang, Q.: Chemical processing
1255 of water-soluble species and formation of secondary organic aerosol in fogs, *Atmos. Environ.*, 200(August 2018),
1256 158–166, doi:10.1016/j.atmosenv.2018.11.062, 2019.

1257

1258 Kind, T. and Fiehn, O.: Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass
1259 spectrometry., *BMC Bioinformatics*, 8(1), 105, doi:10.1186/1471-2105-8-105, 2007.

1260

1261 Laskin, A., Laskin, J. and Nizkorodov, S. A.: Chemistry of Atmospheric Brown Carbon, *Chem. Rev.*, 115(10),
1262 4335–4382, doi:10.1021/cr5006167, 2015.

1263

1264 LeClair, J. P., Collett, J. L. and Mazzoleni, L. R.: Fragmentation analysis of water-soluble atmospheric organic
1265 matter using ultrahigh-resolution FT-ICR mass spectrometry, *Environ. Sci. Technol.*, 46(8), 4312–4322,
1266 doi:10.1021/es203509b, 2012.

1267

1268 Leslie, M. D., Ridoli, M., Murphy, J. G. and Borduas-Dedekind, N.: Isocyanic acid (HNCO) and its fate in the
1269 atmosphere: A review, *Environ. Sci. Process. Impacts*, 21(5), 793–808, doi:10.1039/c9em00003h, 2019.

1270

1271 Li, Y., Pöschl, U. and Shiraiwa, M.: Molecular corridors and parameterizations of volatility in the chemical
1272 evolution of organic aerosols, *Atmos. Chem. Phys.*, 16(5), 3327–3344, doi:10.5194/acp-16-3327-2016, 2016.

1273

1274 Liebmann, J., Sobanski, N., Schuladen, J., Karu, E., Hellén, H., Hakola, H., Zha, Q., Ehn, M., Riva, M., Heikkinen,
1275 L., Williams, J., Fischer, H., Lelieveld, J. and Crowley, J. N.: Alkyl nitrates in the boreal forest: formation via the
1276 NO₃-, OH- and O₃-induced oxidation of biogenic volatile organic compounds and ambient lifetimes, *Atmos. Chem.
1277 Phys.*, 19, 10391–10403, doi:10.5194/acp-2019-463, 2019.

1278

1279 Lim, S., McArdell, C. S. and von Gunten, U.: Reactions of aliphatic amines with ozone: Kinetics and mechanisms,
1280 *Water Res.*, 157, 514–528, doi:10.1016/j.watres.2019.03.089, 2019.

1281

1282 Lim, Y. Bin, Kim, H., Kim, J. Y. and Turpin, B. J.: Photochemical organonitrate formation in wet aerosols, *Atmos.
1283 Chem. Phys.*, 16(19), 12631–12647, doi:10.5194/acp-16-12631-2016, 2016.

1284

1285 Lin, M., Walker, J., Geron, C. and Khlystov, A.: Organic nitrogen in PM2.5 aerosol at a forest site in the Southeast
1286 US, *Atmos. Chem. Phys.*, 10(5), 2145–2157, doi:10.5194/acp-10-2145-2010, 2010.

1287

1288 Lin, P., Laskin, J., Nizkorodov, S. A. and Laskin, A.: Revealing Brown Carbon Chromophores Produced in
1289 Reactions of Methylglyoxal with Ammonium Sulfate, *Environ. Sci. Technol.*, 49(24), 14257–14266,
1290 doi:10.1021/acs.est.5b03608, 2015.

1291

1292 Di Lorenzo, R. A., Place, B. K., VandenBoer, T. C. and Young, C. J.: Composition of Size-Resolved Aged Boreal
1293 Fire Aerosols: Brown Carbon, Biomass Burning Tracers, and Reduced Nitrogen, *ACS Earth Sp. Chem.*, 2(3), 278–
1294 285, doi:10.1021/acsearthspacechem.7b00137, 2018.

1295

1296 Loza, C. L., Craven, J. S., Yee, L. D., Coggon, M. M., Schwantes, R. H., Shiraiwa, M., Zhang, X., Schilling, K. A.,
1297 Ng, N. L., Canagaratna, M. R., Ziemann, P. J., Flagan, R. C. and Seinfeld, J. H.: Secondary organic aerosol yields of
1298 12-carbon alkanes, *Atmos. Chem. Phys.*, 14(3), 1423–1439, doi:10.5194/acp-14-1423-2014, 2014.

1299

1300 Mace, K. A., Kubilay, N. and Duce, R. A.: Organic nitrogen in rain and aerosol in the eastern Mediterranean
1301 atmosphere: An association with atmospheric dust, *J. Geophys. Res. Atmos.*, 108(10), doi:10.1029/2002jd002997,
1302 2003a.

1303

1304 Mace, K. A., Artaxo, P. and Duce, R. A.: Water-soluble organic nitrogen in Amazon Basin aerosols during the dry
1305 (biomass burning) and wet seasons, *J. Geophys. Res. Atmos.*, 108(16), doi:10.1029/2003jd003557, 2003b.

1306
1307 McNeill, V. F.: Aqueous organic chemistry in the atmosphere: Sources and chemical processing of organic aerosols,
1308 Environ. Sci. Technol., 49(3), 1237–1244, doi:10.1021/es5043707, 2015.
1309
1310 Montero-Martínez, G., Rinaldi, M., Gilardoni, S., Giulianelli, L., Paglione, M., Decesari, S., Fuzzi, S. and Facchini,
1311 M. C.: On the water-soluble organic nitrogen concentration and mass size distribution during the fog season in the
1312 Po Valley, Italy, Sci. Total Environ., 485–486(1), 103–109, doi:10.1016/j.scitotenv.2014.03.060, 2014.
1313
1314 Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A., Donahue, N. M., Fry,
1315 J. L., Fuchs, H., Griffin, R. J., Guzman, M. I., Herrmann, H., Hodzic, A., Iinuma, Y., Kiendler-Scharr, A., Lee, B.
1316 H., Luecken, D. J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H. D., Ouyang, B., Picquet-Varrault, B., Platt, U.,
1317 Pye, H. O. T., Rudich, Y., Schwantes, R. H., Shiraiwa, M., Stutz, J., Thornton, J. A., Tilgner, A., Williams, B. J. and
1318 Zaveri, R. A.: Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic
1319 aerosol, Atmos. Chem. Phys., 17(3), 2103–2162, doi:10.5194/acp-17-2103-2017, 2017.
1320
1321 Perring, A. E., Pusede, S. E. and Cohen, R. C.: An Observational Perspective on the Atmospheric Impacts of Alkyl
1322 and Multifunctional Nitrates on Ozone and Secondary Organic Aerosol, Chem. Rev., 113(8), 5848–5870,
1323 doi:10.1021/cr300520x, 2013.
1324
1325 van Pinxteren, M., Müller, C., Iinuma, Y., Stolle, C. and Herrmann, H.: Chemical Characterization of Dissolved
1326 Organic Compounds from Coastal Sea Surface Microlayers (Baltic Sea, Germany), Environ. Sci. Technol., 46(19),
1327 10455–10462, doi:10.1021/es204492b, 2012.
1328
1329 van Pinxteren, M., Fomba, K. W., van Pinxteren, D., Triesch, N., Hoffmann, E. H., Cree, C. H. L., Fitzsimons, M.
1330 F., von Tümpeling, W. and Herrmann, H.: Aliphatic amines at the Cape Verde Atmospheric Observatory:
1331 Abundance, origins and sea-air fluxes, Atmos. Environ., 203, 183–195, doi:10.1016/j.atmosenv.2019.02.011, 2019.
1332
1333 Pope, C. A. and Dockery, D. D.: Health Effects of Fine Particulate Air Pollution: Lines that Connect, J. Air Waste
1334 Manage. Assoc., 56, 709–742, doi:10.1080/10473289.2006.10464485, 2006.
1335
1336 Priestley, M., Le Breton, M., Bannan, T. J., Leather, K. E., Bacak, A., Reyes-Villegas, E., De Vocht, F., Shallcross,
1337 B. M. A., Brazier, T., Khan, M. A., Allan, J., Shallcross, D. E., Coe, H. and Percival, C. J.: Observations of
1338 Isocyanate, Amide, Nitrate, and Nitro Compounds From an Anthropogenic Biomass Burning Event Using a ToF-
1339 CIMS, J. Geophys. Res. Atmos., 123, 7687–7704, doi:10.1002/2017JD027316, 2018.
1340
1341 Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett, J. L., Fahey, K. M.,
1342 Hennigan, C. J., Herrmann, H., Kanakidou, M., Kelly, J. T., Ku, I. T., Faye McNeill, V., Riemer, N., Schaefer, T.,
1343 Shi, G., Tilgner, A., Walker, J. T., Wang, T., Weber, R., Xing, J., Zaveri, R. A. and Zuend, A.: The acidity of
1344 atmospheric particles and clouds., 2020.
1345
1346 Quinn, P. K., Collins, D. B., Grassian, V. H., Prather, K. A. and Bates, T. S.: Chemistry and Related Properties of
1347 Freshly Emitted Sea Spray Aerosol, Chem. Rev., 115(10), 4383–4399, doi:10.1021/cr500713g, 2015.
1348
1349 Rindelaub, J. D., Borca, C. H., Hostetler, M. A., Slade, J. H., Lipton, M. A., Slipchenko, L. V. and Shepson, P. B.:
1350 The acid-catalyzed hydrolysis of an α -pinene-derived organic nitrate: Kinetics, products, reaction mechanisms, and
1351 atmospheric impact, Atmos. Chem. Phys., 16(23), 15425–15432, doi:10.5194/acp-16-15425-2016, 2016.
1352
1353 Riva, M., Rantala, P., Krechmer, J. E., Peräkylä, O., Zhang, Y., Heikkinen, L., Garmash, O., Yan, C., Kulmala, M.,
1354 Worsnop, D. and Ehni, M.: Evaluating the performance of five different chemical ionization techniques for detecting
1355 gaseous oxygenated organic species, Atmos. Meas. Tech., 12, 2403–2421, doi:<https://doi.org/10.5194/amt-12-2403-2019>, 2019.
1356
1357 Roberts, J. M., Veres, P. R., VandenBoer, T. C., Warneke, C., Graus, M., Williams, E. J., Lefer, B., Brock, C. A.,
1358 Bahreini, R., Ozturk, F., Middlebrook, A. M., Wagner, N. L., Dube, W. P. and DeGouw, J. A.: New insights into
1359 atmospheric sources and sinksof isocyanic acid, HNCO, from recent urbanand regional observations, J. Geophys.
1360 Res. Atmos., 119, 1060–1072, doi:10.1002/2013JD019931, 2014.
1361

1362
1363 Rogers, H. M., Ditto, J. C. and Gentner, D. R.: Evidence for impacts on surface-level air quality in the northeastern
1364 US from long-distance transport of smoke from North American fires during the Long Island Sound Tropospheric
1365 Ozone Study (LISTOS) 2018, *Atmos. Chem. Phys.*, 20(2), 671–682, doi:10.5194/acp-20-671-2020, 2020.
1366
1367 Ruggeri, G. and Takahama, S.: Technical Note: Development of chemoinformatic tools to enumerate functional
1368 groups in molecules for organic aerosol characterization, *Atmos. Chem. Phys.*, 16, 4401–4422, doi:10.5194/acp-16-
1369 4401-2016, 2016.
1370
1371 Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, *Atmos. Chem. Phys.*, 15(8),
1372 4399–4981, doi:10.5194/acp-15-4399-2015, 2015.
1373
1374 Sareen, N., Schwier, A. N., Shapiro, E. L., Mitroo, D. and Mcneill, V. F.: Secondary organic material formed by
1375 methylglyoxal in aqueous aerosol mimics, *Atmos. Chem. Phys.*, 10, 997–1016, doi:10.5194/acpd-9-15567-2009,
1376 2010.
1377
1378 Schervish, M. and Donahue, N. M.: Peroxy radical chemistry and the volatility basis set, *Atmos. Chem. Phys.*,
1379 20(2), 1183–1199, doi:10.5194/acp-20-1183-2020, 2020.
1380
1381 Schroder, J. C., Campuzano-Jost, P., Day, D. A., Shah, V., Larson, K., Sommers, J. M., Sullivan, A. P., Campos, T.,
1382 Reeves, J. M., Hills, A., Hornbrook, R. S., Blake, N. J., Scheuer, E., Guo, H., Fibiger, D. L., McDuffie, E. E., Hayes,
1383 P. L., Weber, R. J., Dibb, J. E., Apel, E. C., Jaeglé, L., Brown, S. S., Thornton, J. A. and Jimenez, J. L.: Sources and
1384 Secondary Production of Organic Aerosols in the Northeastern United States during WINTER, *J. Geophys. Res.*
1385 Atmos., 123(14), 7771–7796, doi:10.1029/2018JD028475, 2018.
1386
1387 Schurman, M. I., Boris, A., Desyaterik, Y. and Collett, J. L.: Aqueous secondary organic aerosol formation in
1388 ambient cloud water photo-oxidations, *Aerosol Air Qual. Res.*, 18(1), 15–25, doi:10.4209/aaqr.2017.01.0029, 2018.
1389
1390 Sheu, R., Marcotte, A., Khare, P., Charan, S., Ditto, J. C. and Gentner, D. R.: Advances in offline approaches for
1391 chemically speciated measurements of trace gas-phase organic compounds via adsorbent tubes in an integrated
1392 sampling-to-analysis system, *J. Chromatogr. A*, 1575, 80–90, doi:10.1016/j.chroma.2018.09.014, 2018.
1393
1394 Sintermann, J. and Neftel, A.: Ideas and perspectives: On the emission of amines from terrestrial vegetation in the
1395 context of new atmospheric particle formation, *Biogeosciences*, 12(11), 3225–3240, doi:10.5194/bg-12-3225-2015,
1396 2015.
1397
1398 Sodeman, D. A., Toner, S. M. and Prather, K. A.: Determination of Single Particle Mass Spectral Signatures from
1399 Light-Duty Vehicle Emissions, *Environ. Sci. Technol.*, 39(12), 4569–4580, doi:10.1016/j.atmosenv.2007.01.025,
1400 2005.
1401
1402 Sullivan, A. P., Guo, H., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., Campos, T., Shah, V., Jaeglé, L., Lee,
1403 B. H., Lopez-Hilfiker, F. D., Thornton, J. A., Brown, S. S. and Weber, R. J.: Biomass Burning Markers and
1404 Residential Burning in the WINTER Aircraft Campaign, *J. Geophys. Res. Atmos.*, 124(3), 1846–1861,
1405 doi:10.1029/2017JD028153, 2019.
1406
1407 Takeuchi, M. and Ng, N. L.: Organic nitrates and secondary organic aerosol (SOA) formation from oxidation of
1408 biogenic volatile organic compounds, *ACS Symp. Ser. Multiph. Environ. Chem. Atmos.*, 1299, 105–125,
1409 doi:10.1021/bk-2018-1299.ch006, 2018.
1410
1411 Tao, Y., Liu, T., Yang, X. and Murphy, J. G.: Kinetics and Products of the Aqueous Phase Oxidation of
1412 Triethylamine by OH, *ACS Earth Sp. Chem.*, 5(8), 1889–1895, doi:10.1021/acs.earthspacechem.1c00162, 2021.
1413
1414 United States Environmental Protection Agency: Historical Exceedance Days in New England, Reg. 1 EPA New
1415 Engl. [online] Available from: <https://www3.epa.gov/region1/airquality/standard.html> (Accessed 14 August 2021),
1416 2020.
1417

1418 VandenBoer, T. C., Petroff, A., Markovic, M. Z. and Murphy, J. G.: Size distribution of alkyl amines in continental
1419 particulate matter and their online detection in the gas and particle phase, *Atmos. Chem. Phys.*, 11(9), 4319–4332,
1420 doi:10.5194/acp-11-4319-2011, 2011.

1421
1422 Vidović, K., Lašić Jurković, D., Šala, M., Kroflič, A. and Grgić, I.: Nighttime Aqueous-Phase Formation of
1423 Nitrocatechols in the Atmospheric Condensed Phase, *Environ. Sci. Technol.*, 52(17), 9722–9730,
1424 doi:10.1021/acs.est.8b01161, 2018.

1425
1426 Warneke, C., McKeen, S. A., de Gouw, J. A., Goldan, P. D., Kuster, W. C., Holloway, J. S., Williams, E. J., Lerner,
1427 B. M., Parrish, D. D., Trainer, M., Fehsenfeld, F. C., Kato, S., Atlas, E. L., Baker, A. and Blake, D. R.:
1428 Determination of urban volatile organic compound emission ratios and comparison with an emissions database, *J.
1429 Geophys. Res. Atmos.*, 112(10), 1–13, doi:10.1029/2006JD007930, 2007.

1430
1431 Wozniak, A. S., Willoughby, A. S., Gurganus, S. C. and Hatcher, P. G.: Distinguishing molecular characteristics of
1432 aerosol water soluble organic matter from the 2011 trans-North Atlantic US GEOTRACES cruise, *Atmos. Chem.
1433 Phys.*, 14(16), 8419–8434, doi:10.5194/acp-14-8419-2014, 2014.

1434
1435 Wu, C., Wen, Y., Hua, L., Jiang, J., Xie, Y., Cao, Y., Chai, S., Hou, K. and Li, H.: Rapid and highly sensitive
1436 measurement of trimethylamine in seawater using dynamic purge-release and dopant-assisted atmospheric pressure
1437 photoionization mass spectrometry, *Anal. Chim. Acta*, 1137, 56–63, doi:10.1016/j.aca.2020.08.060, 2020.

1438
1439 Xu, Y., Miyazaki, Y., Tachibana, E., Sato, K., Ramasamy, S., Mochizuki, T., Sadanaga, Y., Nakashima, Y.,
1440 Sakamoto, Y., Matsuda, K. and Kajii, Y.: Aerosol Liquid Water Promotes the Formation of Water-Soluble Organic
1441 Nitrogen in Submicrometer Aerosols in a Suburban Forest, *Environ. Sci. Technol.*, 54(3), 1406–1414,
1442 doi:10.1021/acs.est.9b05849, 2020.

1443
1444 Ye, C., Zhou, X., Pu, D., Stutz, J., Festa, J., Spolaor, M., Tsai, C., Cantrell, C., Mauldin, R. L., Campos, T.,
1445 Weinheimer, A., Hornbrook, R. S., Apel, E. C., Guenther, A., Kaser, L., Yuan, B., Karl, T., Haggerty, J., Hall, S.,
1446 Ullmann, K., Smith, J. N., Ortega, J. and Knot, C.: Rapid cycling of reactive nitrogen in the marine boundary layer,
1447 *Nature*, 532, 489–491, doi:10.1038/nature17195, 2016.

1448
1449 Youn, J. S., Crosbie, E., Maudlin, L. C., Wang, Z. and Sorooshian, A.: Dimethylamine as a major alkyl amine
1450 species in particles and cloud water: Observations in semi-arid and coastal regions, *Atmos. Environ.*, 122, 250–258,
1451 doi:10.1016/j.atmosenv.2015.09.061, 2015.

1452
1453 Yu, L., Smith, J., Laskin, A., M George, K., Anastasio, C., Laskin, J., M Dillner, A. and Zhang, Q.: Molecular
1454 transformations of phenolic SOA during photochemical aging in the aqueous phase: Competition among
1455 oligomerization, functionalization, and fragmentation, *Atmos. Chem. Phys.*, 16(7), 4511–4527, doi:10.5194/acp-16-
1456 4511-2016, 2016.

1457
1458 Zhang, J., Ninneman, M., Joseph, E., Schwab, M. J., Shrestha, B. and Schwab, J. J.: Mobile Laboratory
1459 Measurements of High Surface Ozone Levels and Spatial Heterogeneity During LISTOS 2018: Evidence for Sea
1460 Breeze Influence, *J. Geophys. Res. Atmos.*, 125(11), 1–12, doi:10.1029/2019JD031961, 2020.

1461
1462 Zhang, Q., Anastasio, C. and Jimenez-Cruz, M.: Water-soluble organic nitrogen in atmospheric fine particles
1463 (PM2.5) from northern California, *J. Geophys. Res. D Atmos.*, 107(11), 1–9, doi:10.1029/2001jd000870, 2002.

1464
1465 Zhao, Y., Hallar, A. G. and Mazzoleni, L. R.: Atmospheric organic matter in clouds: Exact masses and molecular
1466 formula identification using ultrahigh-resolution FT-ICR mass spectrometry, *Atmos. Chem. Phys.*, 13(24), 12343–
1467 12362, doi:10.5194/acp-13-12343-2013, 2013.

1468
1469 Zhou, S., Collier, S., Xu, J., Mei, F., Wang, J., Lee, Y.-N., Sedlacek, A. J., Springston, S. R., Sun, Y. and Zhang, Q.:
1470 Influences of upwind emission sources and atmospheric processing on aerosol chemistry and properties at a rural
1471 location in the Northeastern U.S., *J. Geophys. Res. Atmos.*, 121(10), 6049–6065, doi:10.1002/2015JD024568, 2016.

1472