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Abstract 15 

Nanoparticles can absorb water to grow up and this will affect the light scattering 

behavior, cloud condensation nuclei properties, lifetime, and chemical reactivity of 

these particles. Current techniques usually assume the shapes of nanoparticles to be 

spherical in calculation of aerosol liquid water content (ALWC), which may result in 

large uncertainties when the shapes of nanoparticles show large deviations to the 20 

spherical assumptions. Furthermore, current techniques are also difficult to identify the 

intermolecular chemical interactions of phase transition micro-dynamics during 

nanoparticle deliquescence process because their limited temporal resolutions are 

unable to capture the complex femtosecond-level intermediate states. In this study, the 

hygroscopic growth properties of nanoparticles with electrical mobility diameter of 25 

approximately 100 nm and their phase transition interaction dynamics on molecular 

scale are characterized on real time by using the Fourier transform infrared (FTIR) and 

the two-dimensional correlation infrared (2D-IR) spectroscopic techniques. With the 

FTIR spectroscopy, we develop a novel real-time method for ALWC by constructing 

the absorption spectra of liquid water, and realized real-time measurements of water 30 

content and dry nanoparticle mass to characterize the hygroscopic growth factors (GF) 

which show discrepancies to the extended aerosol inorganics model (E-AIM). We 

further explore the difference that the deliquescence points of sodium nitrate (SN) and 

oxalic acid (OA) compounds are lower than that of AS by using the 2D-IR 

spectroscopic analysis technique. We also identify the occurrence sequential order of 35 
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the hydration interactions and investigate the dynamic deliquescence process of the 

functional groups for AS and its mixture compounds. Both SN and OA compounds 

lower the deliquescence point of AS, but only AN can change the hydrolysis reaction 

mechanism for AS in AS/AN and AS/OA mixtures. This study can not only provide 

important information with respect to the difference in phase transition point under 40 

different conditions, but also improve current understanding of the chemical interaction 

mechanism between nanoparticles (particularly for organic particles) and medium, 

which is of great significance for haze control across China. 

Keywords: Nanoparticles; phase transition micro-dynamics; two-dimensional 

correlation infrared spectroscopy; hydration interactions; functional groups 45 

1. Introduction 

Nanoparticles have long atmospheric lifetimes of weeks to months. As the increase 

in relative humidity, the sizes of nanoparticles will grow up due to the absorption of 

water, which may have complex phases and mixing states(Riemer et al., 2019) that 

influence the light scattering behavior, cloud condensation nuclei properties, lifetime, 50 

and chemical reactivity of the particles(Lee and Allen, 2012; Vogel et al. 2016; Abbott 

and Cronin, 2021). An improved knowledge of these complex phases and states are 

crucial for investigating the gas–particle interactions in the atmosphere. Since the 

particle size vs. water uptake relationship is influenced by mixing characteristics of 

various inorganic and organic compounds (Nguyen et al., 2016;Steinfeld and Pandis, 55 

2016), characterizing the water-aerosol interactions is also critical for identifying the 

fate and transport of trace species in the Earth’s system and their effects on air quality, 

radiative forcing, and regional hydrological cycling(Carlton et al., 2020; Fan et al., 

2018).  

Ammonium sulfate is an important constituent and a major source of atmospheric 60 

nanoparticles originated from anthropogenic activities(Ruehl et al., 2016; Kirkby et al., 

2011; Xu et al., 2020). Various techniques such as the hygroscopic tandem differential 

mobility analyzer (H-TDMA), the electrodynamic balance (EDB), and the 

environmental scanning electron microscope (ESEM) have been used to investigate the 
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hygroscopicity of ammonium sulfate (Tang and Munkelwitz, 1977; Tang and 65 

Munkelwitz, 1994; Gysel et al.,, 2002; Matsumura and Hayashi 2007). These methods 

can characterize the deliquescence or phase transition processes of particles down to 

nanoscale. However, they usually assume the shapes of nanoparticles to be spherical in 

calculation of aerosol liquid water content (ALWC), which may result in large 

uncertainties when the shapes of nanoparticles show large deviations to the spherical 70 

assumptions. Furthermore, current techniques are also difficult to identify the 

intermolecular chemical interactions of phase transition micro-dynamics during 

nanoparticle deliquescence process because their limited temporal resolutions are 

unable to capture the complex femtosecond-level intermediate states. 

Recent studies concluded that the phase transition processes of particles may 75 

include multiple intermediate states and are more complex than those indicated in 

previous results. These intermediate states differ from one to the other and last less than 

10 ms(Esat et al., 2018). A label-free photonic microscope which uses Bloch surface 

waves as its illumination source for imaging and sensing is capable to provide real-time 

measurements of the hygroscopic growth process of a single aerosol with particle 80 

diameter of less than 100 nm(Kuai et al., 2020). This method can provide valuable 

insights into the deliquescence and phase transition mechanisms of particles but cannot 

determine chemical composition information of particle deliquescence or growth or 

phase transition processes. It is necessary to develop a method to characterize the 

intermolecular interaction mechanisms during hygroscopic growth of nanoparticles, 85 

which is crucial to understand the physicochemical properties of atmospheric aerosol 

and the nanoparticle-water interactions in hygroscopic growth, and further for haze 

control purpose.  

In this study, the hygroscopic growth properties of mixed nanoparticles 

containing (NH4)2SO4/NaNO3 (ammonium sulfate (AS)/sodium nitrate (AN)) and 90 

(NH4)2SO4/oxalic acid (AS/OA) and the phase transition interactions of these particles 

on molecular scale are characterized on real time by using the Fourier transform 

infrared (FTIR) and the two-dimensional correlation infrared (2D-IR) spectroscopic 

techniques. We use a FTIR spectrometer and an extended aerosol inorganics model (E-
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AIM) to characterize and predict the hygroscopic growth of pure AS particle and the 95 

AS/AN and AS/OA mixed particles, respectively. We further use the 2D-IR 

spectroscopic technique to analyze the intermolecular interactions of the phase 

transition with respect to different levels of relative humidity (RH). This study can not 

only provide important information with respect to the difference in phase transition 

point under different conditions, but also improve current understanding of the 100 

chemical interaction mechanism between nanoparticles (particularly for organic 

particles) and medium, which is of great significance for haze control across China. 

2. Material and method 

2.1 Experiment description 

 The experimental system includes a nanoparticle generation system, a 105 

humidification system, and a FTIR analysis system. Nanoparticles with diameters of 

∼100 nm (volume equivalent diameter (Dve)) are aerosolized by an atomizer (model 

255, MetOne), dried by a diffusion dryer (model 3062, TSI), sorted into specific 

diameters (Dve) by a differential mobility analyzer (DMA; model 3082, TSI), and 

finally deposited onto a 3 cm × 3 cm zinc selenide (ZnSe) substrate (Figure 1) inside a 110 

sample cell through a cone-shaped hole. The sheath-to-sample flow ratio of the DMA 

is set to be 10:1(the sheath flow is 10 L/min and the sample flow is 1 L/min), which can 

produce an effective mobility for the measured aerosol with size ranging from 14.9 to 

673.2 nm. The nanoparticles with a Dve of ∼100 nm are selected for deposition. After 

about a deposition time of 12 h, the substrate is sealed inside the sample cell to obtain 115 

a stable humidity condition for subsequent analysis. The humidification system(Kuai et 

al., 2020) can provide a specific RH for the sample cell with a precision of 0.1%. The 

FTIR spectrometer (Tensor 27, Bruker Optics, Germany) starts to take absorption 

spectra of the samples approximately 5 min after the injection of each designated RH. 

This time interval is used to stabilize the atmospheric condition inside the sample cell.  120 

The FTIR spectrometer is equipped with a KBr beam splitter and a liquid nitrogen-

cooled mercury cadmium telluride (MCT) detector for measuring the absorption spectra 

of the samples. A He-Ne laser metrology keeps the FTIR instrument in a good optical 

alignment. The FTIR spectrometer saves middle infrared (MIR) spectra with a spectral 

range of 800 to 4000 cm−1, spectral resolution of 4 cm-1, and repeat times of 64. The 125 

infrared spectra are first subjected to a baseline correction with Opus 7.0 software, and 
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then are used to derive the liquid water content using the optical constants of water in 

the infrared provided by Downing and Williams(Downing and Williams, 1975). We 

quantify the nanoparticles masses using a simple procedure described in our previous 

studies without any treatment to the substrates (Wei et al., 2019). 130 

After baseline correction, the infrared spectra are normalized into 2D-IR spectra 

with the 2D Shige software (Kwansei-Gakuin University, Japan)(Noda and Ozaki, 

2014). The wavenumber regions ranging from 2800–3800cm−1 and from 800–

1400cm−1 which cover the absorption features of almost all identifiable functional 

groups of interest are selected for analysis. In present work, the red and blue colors in 135 

the 2D-IR spectra represent positive and negative correlations, respectively.  

2.2 Sample description 

In this study, all chemical reagents are produced by Aladdin Reagent Inc. (reagent 

grade, 99.8% purity), and the water is obtained from an ultrapure water system (Direct-

Q3, Millipore). Table 1 lists all chemicals used in the experiment and their 140 

concentrations. The single components were dissolved individually in ultrapure water 

with a concentration of 4.0 g/L. The mixture (including AS/AN and AS/OA) solutions 

were prepared by mixing the two required single components with a mass ratio of 1:1. 

AS is selected as the representative inorganic salt and OA is an important water-soluble 

organic compound contained in atmospheric aerosols. We select AS as the 145 

representative inorganic salt because it is a significant component of the submicron-

scale aerosol mass in the atmosphere. In addition to an important water-soluble organic 

compound contained in atmospheric aerosols (Wang et al., 2019), OA is also the 

dominant dicarboxylic acid in both urban and remote atmospheric aerosols (Richards 

et al., 2020). 150 

 2.3 Methodology 

The hygroscopic growth factor (GF), indicating the water uptake ability of aerosol 

particles, is defined as GF = Dwet/D0, where Dwet (cm) is the mean diameter of the 

particles at the designated RH and D0 (cm) is the mean initial diameter of the dry 

particles at room temperature. In present work, room temperature is assumed to be 25°C 155 

and the RH varies from 50% to 95%. The GF used for investigation of hygroscopic 

growth properties of nanoparticles can be calculated via equations (1) to (4),  
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Where V0 (cm3) is the initial volume of the dry nanoparticle at approximately 25°C, 

and Vwater (cm3) is the water volume contained in the nanoparticle at the designated RH; 

Mwater (g) and Mi (g) are the calculated water mass and the mass of the ith pure 

component at the designated RH, respectively; ρwater (g/cm3) (approximately 1 g/cm3) 165 

and ρi (g/cm3) are the densities of water and the ithe pure component, respectively, and 

i is the number of pure component. 

We use the E-AIM (UNIFAC) following the Zdanovski-Stokes-Robinson (ZSR) 

method to predict GF (http://www.aim.env.uea.ac.uk/aim/aim.php). The basis of this 

method is described as,  170 
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Where i  is the volume fraction of the ith pure component in the dry mixture, GFi is 

the GF of the ith pure component. 

3. Results and discussion 175 

3.1 Spectral characteristics of nanoparticles during hygroscopic 

growth process.  

Figure 2 shows the FTIR spectral characteristics of the AS nanoparticles under 

humidity conditions from 45% to 92%. Figure 3 compares the predicted Mwater/M0 

(Mwater is the mass of liquid water in the nanoparticles; M0 is the initial mass of 180 

nanoparticles) ratio after deliquescence from E-AIM (UNIFAC model) 

(http://www.aim.env.uea.ac.uk/aim/aim.php) and the measured hygroscopic growth 

properties from the FTIR spectra for the AS particles. The results show that the 
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predicted and measured Mwater/M0 results are generally consistent throughout the 

humidification process. The strong peaks observed at 3250 cm−1 and 1112 cm−1 at the 185 

initial RH of 45% are the stretching vibration peak of OH and the symmetrical 

stretching vibration (νs) peak of the sulfate, respectively(Wang et al., 2017; Nájera and 

Horn, 2009; Gopalakrishnan et al., 2005). With the increase in RH between 45% and 

80%, the peak position of the symmetrical stretching vibration of the sulfate (1112 cm−1) 

starts to redshift slowly (Figure 3), which indicates that water molecules have been 190 

attached to the surface of the solid AS, and the sulfate is then bonded with these water 

molecules to form a hydrogen bond during this hydration process(Yeşilbaş and Boily, 

2016). The area of OH reflects the liquid water content in the ZnSe substrate. We find 

that, in the meantime, the area and position of the OH stretching peak did not change 

significantly, which indicates that no hygroscopic growth of the AS nanoparticles 195 

occurs. All these behaviors are captured on real time by the FTIR spectra. (Wang et al., 

2019; Tang et al., 2016; Nájera and Horn 2009; Martin 2000)  

When the RH reaches 80%, the peak position of the sulfate shifts to 1099 cm−1, the 

O-H stretching peak is still the same as that in initial humidity condition (45%) but the 

area of the peak increase abruptly from 0.25 to 5.47 (Figure 3). This indicates that the 200 

nanoparticles have absorbed water rapidly and transformed from the crystalline phase 

to the aqueous phase. According to the E-AIM predictions and the results from previous 

studies (Estillore et al. , 2016; Cruz and Pandis, 2000; Tang 1982), this process is called 

the deliquescence, and the RH at this stage is referred to as the deliquescence RH (DRH). 

When deliquescence occurs, NH4
+ molecules hydrated with SO4

2− are replaced with 205 

H2O molecules, which leads to the redshift in the symmetrical stretching vibration peak 

for the sulfate (Dong et al., 2007). Tang et al. (1982), Cruz and Pandis (2000), and 

Estillore et al. (2016) have used the photonic microscope to observe hygroscopic 

growth properties of big-size particles. Our method and the size of particle are different 

from previous studies, but we obtained a consistent DRH to those in Tang et al. (1982), 210 

Cruz and Pandis (2000), and Estillore et al. (2016). Since the particle size (~100 nm) in 

this study is much smaller than those in previous studies and is not influenced by Kelvin 

effect, we can capture the hygroscopic growth properties of nanoparticles on real time 

with the FTIR spectroscopy.  

The AS nanoparticle continues to be humidified after deliquescence, resulting in a 215 

further increase in OH area due to continuous water uptake. However, the peak position 
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of the sulfate keeps constant regardless of RH, indicating that the AS is still in the 

aqueous phase after deliquescence. As the increase in RH, the nanoparticle volume 

increases but its mass keeps constant, resulting in a decrease in concentration and peak 

area. Figure S1 compares the predicted Mwater/M0 (Mwater is the mass of liquid water in 220 

the nanoparticles; M0 is the initial mass of nanoparticles) ratio from E-AIM (UNIFAC 

model) (http://www.aim.env.uea.ac.uk/aim/aim.php) and the measured hygroscopic 

properties (Measured Mwater and M0 are calculated from the IR spectroscopy in Sect. 

2.1) from the FTIR spectra for the AS particles with a dry diameter of 100 nm. The 

results show that the predicted and measured Mwater/M0 results are consistent after 225 

deliquescence, indicating continuous particle water uptake with the increase in RH. It 

indicated FTIR could be a method to quantitative analysis Mwater and M0. 

Figure 4 shows the FTIR spectral characteristics of the OA nanoparticles under 

humidity conditions from 40% to 90% (RH). The results for the OA nanoparticle differ 

from those for AS. Throughout the humidification processes, the O-H stretching peak 230 

at 3250 cm−1 for liquid water was not detected, indicating that liquid water is not 

absorbed by the OA. The peaks at 3400 cm−1 and 1240 cm−1 are for O-H and the C=O 

stretching vibration of OA (Jing et al., 2016), respectively. It shows that the positions 

and areas of these peaks are also independent of RH. This verifies that no water is 

absorbed and that no deliquescence transition occurs within the whole RH range.  235 

Figure 5 compares the predicted and measured Mwater/M0 results for the AS/OA and 

AS/AN nanoparticle mixtures during the humidification processes from 60% to 95% 

(RH). The predicted and measured Mwater/M0 values showed similar behaviour during 

these humidification processes. This means that the liquid water absorbed by pure and 

mixed particles could be measured on real time using the FTIR spectroscopy. 240 

3.2 Hygroscopic growth of pure and mixed-component nanoparticles  

With the results derived from the FTIR measurements, we calculated the GFs for 

both pure and mixed nanoparticles via equation (4) and investigated their variabilities 

with respect to the changes in RH. Figure 6 compares the measured and predicted GF 

for both pure and mixed nanoparticles under the humidity conditions from 50% to 95%. 245 

The measured and predicted GF are in good agreement. The GF can be obtained 

precisely using the H-TDMA technique via a direct measurement to the aerosol 

diameter. In this study, the GFs for both pure and mixed compounds are calculated with 

liquid water content and the relative masses of dry compound obtained from FTIR 
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measurements. Though with different methods, the DRH and GF for different 250 

components in this study are in good agreement with those from previous studies(Jing 

et al., 2016; Braban et al,. 2003).  

The GF curves can be used to investigate the sensitivity of particle volume to RH. 

If the RH is less than 80%, the AS nanoparticles are in a stable crystal state that is 

immune to water and the size of these particles keeps constant. At the RH of 79.9 ± 255 

0.10%, deliquescence occurs, the nanoparticle volume grows up sharply by up to 

approximately 3.1 times and transforms from the crystalline to aqueous phase. As RH 

keeps increasing after deliquescence, the AS nanoparticles become fully liquid droplets, 

and their volumes keep increase due to further water uptake.  

Since both the AS/AN and AS/OA mixed nanoparticles absorb liquid water below 260 

their DRH, their GF curves differ from the pure AS particle, and their DRH values were 

lower than that of the AS. The results are in good agreement with previous 

studies(Seinfeld and Pandis, 2016) which measure GF by H-TDMA. As a result, FTIR 

measurement technique in this study provide a real-time method to characterize the 

hygroscopic growth of aerosols. 265 

3.3 Phase transition dynamics of pure AS nanoparticles 

 Although FTIR measurements can be used to characterize the liquid water content 

and functional groups contained in the nanoparticles during the humidification process, 

it is difficult to separate the absorption peaks of the nanoparticles (especially for organic 

compounds) since these absorption peaks are overlapped. In contrast, 2D-IR 270 

spectroscopic technique can resolve the overlapping peaks(McKelvy et al., 1998; Du et 

al., 2021) and, more importantly, can provide detailed information about the dynamic 

deliquescence processes of the functional groups(Noda and Ozaki, 2014). Synchronous 

correlation maps reflect the simultaneous changes that occur in the two separate spectral 

intensity variations. Asynchronous spectra can be used to identify the occurrence 275 

sequential order of the hydration interactions caused by external perturbations (Jing et 

al. 2016). 

Figure 7 shows the synchronous and asynchronous correlation maps derived from 

the 2D-IR measurements for the pure AS compounds. The corresponding correlation 

maps are not shown for the OA nanoparticles because they absorbed no water and thus 280 

presented no deliquescence transition during the humidification process. From the 
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synchronous map, one main red/positive (3250, 1097) auto-peak was observed for the 

AS nanoparticles in the 50–90% RH range, which indicated the existence of coherent 

variation in those spectral intensities. In addition, the existence of coupling of the 

spectral intensity variations for the O-H stretching peak for liquid water and the 285 

symmetrical stretching vibration for the sulfate in the aqueous AS is also possible. 

Furthermore, two main blue/negative (1112, 1097) and (3250, 1112) auto-peaks were 

also observed for the AS nanoparticles, which indicates that the O-H stretching peak 

intensity is increasing, while the symmetrical stretching vibration for the sulfate when 

hydrated with NH4
+ in the solid is decreasing. The blue/negative (1112, 1097) auto-290 

peak indicates that the intensity of the symmetrical stretching vibration for the sulfate 

in the aqueous AS increased, while that in the solid AS decreased, and these two 

chemical bonds can be converted into each other. This behavior can thus be explained 

by the fact that NH4
+ particles hydrated with SO4

2− are being replaced by H2O 

molecules with increase in RH. 295 

In addition to the synchronous map, the asynchronous map indicates the sequential 

changes in the spectral intensities in response to the hygroscopic activities. Two main 

red/positive (3250, 1097) and (1112, 1097) and two main blue/negative (3250, 1112) 

and (1097, 1112) auto-peaks are observed for the AS nanoparticles, which indicated 

that the peaks changed in the order from (1112) cm−1 > (3250) cm−1 > (1097) cm−1. The 300 

intensity of the symmetrical stretching vibration for the sulfate when hydrated with 

NH4
+ in the solid would decrease, and then water molecules would attach to the surface 

of the solid (NH4)2SO4(Yeşilbaş and Boily, 2016); finally, NH4
+ particles hydrated with 

SO4
2− are replaced by the H2O molecules and the AS nanoparticles then become fully 

liquid droplets. This indicates that the surface-limited processes may control the water 305 

transport to the AS. 

3.4 Phase transition dynamics of mixed nanoparticles 

Figure 8 shows the synchronous and asynchronous correlation maps for the AS/AN 

mixture nanoparticles. In the synchronous map, one main red/positive (3250, 1097) and 

two blue/negative (1320, 1112) and (3250, 1112) auto-peaks were observed for the 310 

AS/AN nanoparticles (mass ratio of 1:1) in the RH range from 50–90%. This can be 

explained by the fact that NH4
+ particles hydrated with SO4

2− and NO3
− are replaced by 

the H2O molecules with increasing RH. In the asynchronous map, three main 

red/positive (3250, 1097), (1097, 1112), and (1320, 1097) and two main blue/negative 
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(3250, 1320) and (1112, 1097) auto-peaks are observed, which indicates that the peaks 315 

change in the order from (1320) cm−1 > (3250) cm−1 > (1097) cm−1> (1112) cm−1. This 

indicates that the nitrate would be in the aqueous solution at a lower RH than the sulfate 

because the AN has a lower DRH (RH=74.3±0.4%, (Seinfeld and Pandis, 2016; Tang 

and Munkelwitz, 1993)), and the characteristics of the nitrate when hydrated with water 

differ from those of the sulfate. Furthermore, the hydrolysis reaction mechanism for the 320 

sulfate in AS/AN may differ from that for the pure sulfate. One possible explanation 

for this phenomenon is that the nitrate would begin to absorb water at low RH, which 

enhances the dissolution of the AS. Therefore, the NH4
+ particles that would be 

hydrated with the sulfate are replaced by the H2O molecules, and the intensity of the 

symmetrical stretching vibration for the sulfate in the solid AS nanoparticles would then 325 

decrease (Jing et al., 2016).  

Figure 9 shows the synchronous and asynchronous correlation maps for the 

AS/OA mixture nanoparticles. In the synchronous map, one main red/positive (3260, 

1080) and two main blue/negative (1112, 1050) and (3250, 1112) auto-peaks were 

observed for the AS/OA nanoparticles in the RH range from 50–90%. The two 330 

blue/negative auto-peaks are transformed into each other, and the intensity of the 

symmetrical stretching vibration for the sulfate in aqueous form increases while that in 

the solid form decreases. In the asynchronous map, one main red/positive (3250, 1080) 

and one main blue/negative (3250, 1112) auto-peaks are observed, which indicated that 

the peaks change in the order from (1112) cm−1 > (3250) cm−1 > (1080) cm−1. Therefore, 335 

the hydrolysis reaction mechanism for the sulfate in AS/OA may be similar to that for 

the pure sulfate. The 2D-IR measurements could thus provide a real time method to 

characterize the dynamic variability of the nanoparticles during the hygroscopic growth 

process. 

4. Conclusions 340 

In this work, we demonstrate use of FTIR spectroscopy to measure the hygroscopic 

growth properties of assembled nanoparticles and combine this technique with 2D-IR 

spectroscopy to identify the occurrence sequential order of the hydration interactions 

and provide detailed information about the dynamic deliquescence processes of the 

functional groups. This approach enabled measurement of the water content and the dry 345 

nanoparticle mass to characterize the hygroscopic GF and also further investigation of 

the deliquescence process, with results that were matched well with those obtained from 
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the E-AIM and the H-TDMA technique in the 50–95% RH range. Furthermore, we used 

2D-IR spectroscopic technique to resolve the overlapping peaks and provide detailed 

information about the dynamic deliquescence processes of the functional groups. For 350 

pure AS, the intensity of the symmetrical stretching vibration for the sulfate when 

hydrated with NH4
+ in the solid would decrease, and water molecules would then attach 

to the surface of solid AS before the NH4
+ particles hydrated with SO4

2− are finally 

replaced by the H2O molecules and the AS nanoparticles become fully liquid droplets. 

For the AS/AN and AS/OA mixtures, both the AN and OA compounds could lower the 355 

deliquescence point for AS. However, AN may have changed the hydrolysis reaction 

mechanism for the sulfate in AS/AN while the OA did not, which resulted in differences 

between the results obtained for the sulfates in the pure and mixed nanoparticles.  

Therefore, 2D-IR spectroscopic technique represents a suitable method for study 

of the hygroscopic growth micro-dynamics of nanoparticles and would provide insight 360 

into the intermolecular interactions that govern the physicochemical properties of the 

aerosol and enable better understanding of the nanoparticle-water interactions during 

the phase transitions. 
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Table 

Table 1. Properties of chemicals used in this study 

Chemical compound Mol wt, g/mol Density, g/cm3 
Solubility, 

g per 100 cm3 H2O, 20 OC 

(NH4)2SO4 (AS) 132.14 1.769 75.4 

NaNO3 (AN) 84.99 2.257 88 

Oxalic acid (OA) 90.04 1.900 9.52 
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 515 

Figure 1. Diagrammatic sketches of the experimental system used to measure nanoparticle 

hygroscopicity.  
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Figure 2. FTIR spectral characteristics of the AS nanoparticles under humidity conditions from 45% 

to 92%.  
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Figure 3. Comparison of the predicted mwater/m0 and measured hygroscopic properties of AS 

particles from FTIR with a dry diameter of 100 nm in the humidification process as a function of 

RH. The black curves show the E-AIM (UNIFAC) predictions. 
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Figure 4. FTIR spectra of OA nanoparticles with a dry diameter of 100 nm. 
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(a) AS/AN                          (b) AS/OA 

Figure 5. Comparison of the predicted Mwater/M0 results and measured hygroscopic properties from 

the FTIR spectra of (a) AS/OA and (b) AS/AN particles with a dry diameter of 100 nm during the 

humidification process as a function of the RH. The black curves represent the E-AIM (UNIFAC) 540 

predictions. 
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Figure 6 Comparison of the measured and predicted growth factor (GF) values of different 545 

component nanoparticles: (A) pure AS; (B) AS/AN; and (C) AS/OA. The error bars are shown. 
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  Asynchronous                      Asynchronous 

Figure 7 Aynchronous and asynchronous two-dimensional correlation maps generated from the 555 

4000–800 cm−1 region of the FTIR spectra for AS. Red and blue represent the positive and negative 

correlations, respectively. 
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Figure 8. Synchronous and asynchronous two dimensional correlation maps generated in the 800 – 

4000cm−1 region of the FTIR spectra for AS/AN. Red and blue represent the positive and negative 565 

correlations, respectively. 
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  590 

Figure 9. Two dimensional synchronous and asynchronous correlation maps generated in the 800 – 

4000cm−1 region of the FTIR spectra for AS/OA. Red and blue represent positive and negative 

correlations, respectively. ( A) Synchronous 2D-IR correlation spectrum; (B) synchronous 2D-IR 

correlation spectrum; (C) asynchronous 2D-IR correlation spectrum； 

 595 

Wavenumber(cm-1)

W
a

v
en

u
m

b
er

(c
m

-1
)

A Synchronous

Wavenumber(cm-1)

W
a

v
en

u
m

b
er

(c
m

-1
)

B Synchronous

Wavenumber(cm-1)

W
a

v
en

u
m

b
er

(c
m

-1
)

C Asynchronous

https://doi.org/10.5194/acp-2021-763
Preprint. Discussion started: 15 November 2021
c© Author(s) 2021. CC BY 4.0 License.


