Real-Time Diagnosis of the Hygroscopic Growth Micro-Dynamics of Nanoparticles with Two-Dimensional Correlation Infrared Spectroscopy

Xiuli Wei^{1,2,}, Haosheng Dai^{1,2}, Huaqiao Gui^{1,3}, Jiaoshi Zhang¹, Yin Cheng^{1,2}, Jie

Wang¹, Yixin Yang¹, Youwen Sun¹, and Jianguo Liu^{1,2,3}

1 Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

2 University of Science and Technology of China, Hefei 230031, China

3 CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

Correspondence to: hqgui@aiofm.ac.cn (Huaqiao Gui) and ywsun@aiofm.ac.cn(Youwen Sun)

Figure S1 shows the comparison of predicted M_{water}/M_0 and measured hygroscopic properties of AS nanoparticles

Figure S1. Comparison of predicted M_{water}/M_0 and measured hygroscopic properties of AS nanoparticles from FTIR spectra with a dry diameter of 100 nm during the humidification process as a function of RH. The black curve shows the E-AIM (UNIFAC) prediction.