Real-time diagnosis of the hygroscopic growth micro-dynamics of nanoparticles with Fourier transform infrared spectroscopy

Xiuli Wei^{1,2}, Haosheng Dai^{1,2}, Huaqiao Gui^{1,3*}, Jiaoshi Zhang¹, Yin Cheng^{1,2}, Jie

Wang¹, Yixin Yang¹, Youwen Sun^{1*}, and Jianguo Liu^{1,2,3}

1 Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

2 University of Science and Technology of China, Hefei 230031, China

3 CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

Correspondence to: hqgui@aiofm.ac.cn (Huaqiao Gui) and ywsun@aiofm.ac.cn(Youwen Sun)

Figure S1 Time series of RH downstream of DMA

Figure S2. FTIR spectral characteristics of the SN nanoparticles under humidity conditions from 55% to 85% (RH).

Figure S3. FTIR spectral characteristics of the AS/SN nanoparticles under humidity conditions from 50% to 90% (RH).

Figure S4. FTIR spectral characteristics of the AS/OA nanoparticles under humidity conditions from 55% to 88% (RH).