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Abstract. Improvements in air quality and Earth’s climate predictions require improvements of the 
aerosol speciation in chemical transport models, using observational constraints. Aerosol speciation (e.g., 25 
organic aerosols, black carbon, sulfate, nitrate, ammonium, dust or sea salt) is typically determined using 
in situ instrumentation. Continuous, routine aerosol composition measurements from ground-based 
networks are not uniformly widespread over the globe. Satellites, on the other hand, can provide a 
maximum coverage of the horizontal and vertical atmosphere but observe aerosol optical properties (and 
not aerosol speciation) based on remote sensing instrumentation. Combinations of satellite-derived 30 
aerosol optical properties can inform on Air Mass aerosol Types (AMTs). However, these AMTs are 
subjectively defined, might often be misclassified and are hard to relate to the critical parameters that 
need to be refined in models. 
In this paper, we derive AMTs that are more directly related to sources and hence to speciation. They are 
defined, characterized, and derived using simultaneous in situ gas-phase, chemical and optical 35 
instruments on the same aircraft during the Study of Emissions and Atmospheric Composition, Clouds, 
and Climate Coupling by Regional Surveys (SEAC4RS, an airborne field campaign carried out over the 
US during the summer of 2013). We find distinct optical signatures for AMTs such as biomass burning 
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(from agricultural or wildfires), biogenic and polluted dust. We find that all four AMTs, studied when 
prescribed using mostly airborne in situ gas measurements, can be successfully extracted from a few 40 
combinations of airborne in situ aerosol optical properties (e.g., extinction angstrom exponent, absorption 
angstrom exponent and real refractive index). However, we find that the optically based classifications 
for biomass burning from agricultural fires and polluted dust include a large percentage of 
misclassifications that limit the usefulness of results related to those classes.  
The technique and results presented in this study are suitable to develop a representative, robust and 45 
diverse source-based AMT database. This database could then be used for widespread retrievals of AMTs 
using existing and future remote sensing suborbital instruments/networks. Ultimately, it has the potential 
to provide a much broader observational aerosol data set to evaluate chemical transport and air quality 
models than is currently available by direct in situ measurements. This study illustrates how essential it 
is to explore existing airborne datasets to bridge chemical and optical signatures of different AMTs, before 50 
the implementation of future spaceborne missions (e.g., the next generation of Earth Observing System 
(EOS) satellites addressing Aerosol, Cloud, Convection and Precipitation (ACCP) designated 
observables). 
 

1 Introduction 55 

Aerosols have an important yet uncertain impact on the Earth’s radiation budget (e.g., Boucher et al., 
2013) and human health (e.g., US EPA, 2011, 2016; Lim et al., 2012; Lanzi, 2016; Landrigan et al., 2018; 
Wu et al., 2020). In particular, aerosols impact human health by increasing the number of cases of 
emphysemas, lung cancers, diabetes, hypertensions and premature deaths (e.g., Wichmann et al., 2000; 
Pope et al., 2002; Lim et al., 2012; Lelieveld et al., 2019, 2015; Stirnberg et al., 2020; Nault et al., 2021); 60 
this particularly holds true for specific species of aerosols with high oxidative potential (e.g., Daellenbach 
et al. 2020).  
We define aerosol speciation as the inherent chemical composition of the aerosol, the chemical species 
that are represented in Chemical Transport Models (CTMs) (e.g., black carbon (BC), organic aerosol 
(OA, typically classified into primary, and secondary organic aerosol, SOA), brown carbon, sulfate, 65 
nitrate, ammonium, dust, sea salt). These are typically defined to match the operational quantities reported 
by in situ instruments. 
CTMs derive aerosol optical properties and estimate the Radiative Forcing due to aerosol-radiation 
interactions (RFari), based on simulated water uptake, simulated aerosol mass concentrations, simplified 
aerosol size distributions and assumed aerosol refractive indices per species (Chin et al., 2002). RFari for 70 
individual aerosol species are less certain than the total RFari (Boucher et al., 2013; Myhre et al., 2013). 
Myhre et al. (2013) present a large AeroCom Phase II inter-model spread in the RFari of several aerosol 
species. BC, for example, had a 40% relative standard deviation in RFari. Inter-model diversity in 
estimates of RFari is caused in part by different methods for estimating aerosol properties (e.g., emissions, 
transport, chemistry, deposition, optical properties (Loeb and Su, 2010)), and to a lesser extent by surface 75 
and cloud albedos, water vapor absorption, and radiative transfer schemes (e.g., Randles et al., 2013; 
Myhre et al., 2013; Stier at al., 2013; Thorsen et al., 2021).  
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In order to constrain model simulations, and in particular to reduce the uncertainties associated to RFari 
per species, data assimilation techniques have been adopted using optimal estimation methods and 
observational constraints that we separate in four main groups. The first group of constraints consists in 80 
column-integrated aerosol optical properties from passive orbital and/or suborbital instruments (e.g., 
Collins et al., 2001; Yu et al., 2003; Generoso et al., 2007; Adhikary et al., 2008; Niu et al., 2008; Zhang 
et al., 2008; Benedetti et al., 2009; Schutgens et al., 2010; Kumar et al., 2019; Tsikerdekis et al., 2021). 
The second group consists in fine aerosol mass concentrations from airborne and/or ground-based 
instruments (e.g., Lin et al., 2008; Pagowski and Grell, 2012). The third group consists in a combination 85 
of in situ gas-phase measurements (e.g., sulfur dioxide, nitrogen dioxide (NO2), ozone and carbon 
monoxide (CO)), fine aerosol mass concentrations from ground-based instruments and column-integrated 
aerosol optical properties from passive orbital instruments (e.g., Ma et al., 2019). The fourth group 
consists in surface (e.g., Kahnert, 2008, Yumimoto et al., 2008; Uno et al., 2008) and space-based aerosol 
lidar profiles (e.g., Sekiyama et al., 2010; Zhang et al., 2011), which are used to constrain aerosol mass 90 
and extinction. Constraining model-predicted aerosol mass concentrations with passive satellite total 
column-integrated aerosol properties has been shown to be useful to constrain model-predicted Aerosol 
Optical Depth (AOD). This is the case for the single-channel visible AOD retrievals from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) sensor (e.g., Yu et al., 2003; Zhang et al., 2008; 
Benedetti et al., 2009; Sessions et al., 2015; Buchard et al., 2017; Kumar et al., 2019; Ma et al., 2019). 95 
However, this process does not correct the uncertainty associated with the simulated vertical distribution 
of aerosols, nor can it derive aerosol chemical speciation. On the other hand, assimilation of satellite-
derived optical properties related to particle size (e.g., Extinction Angstrom Exponent, EAE) and light 
absorption (e.g., Single Scattering Albedo, SSA) represents a step forward (e.g., Tsikerdekis et al., 2021). 
Another way to improve estimates of speciated RFari would be to use satellite-derived total column 100 
speciated aerosol mass concentration to adjust the mass concentration of individual aerosol masses when 
applying data assimilation techniques in the model (and potentially the emission/chemistry/transport 
processes driving them). However, currently no satellite-derived retrievals of aerosol chemical speciation 
exist. 
Let us note an important distinction between what is called aerosol speciation and Air Mass Aerosol Type 105 
(AMT). The AMT is representative of typical aerosol mixes associated with certain seasons and 
geographical locations. It is a coarse definition (qualitative) of the aerosol size, shape and color that 
dominates an air mass (e.g., clean marine, dust, polluted continental, clean continental, polluted dust, 
smoke, and stratospheric in the case of the active spaceborne Cloud-Aerosol Lidar with Orthogonal 
Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 110 
(CALIPSO) (Omar et al., 2009)). 
In the next paragraphs, we concentrate on A-Train’s POLDER (Polarization and Directionality of Earth’s 
Reflectances) passive satellite observations on board the PARASOL platform. POLDER measures 
polarized radiances in 14-16 viewing directions at 443, 670 and 865 nm and retrieves aerosol optical 
properties over land (Deuzé et al., 2001) and over ocean (Herman et al., 2005) using its standard retrieval 115 
algorithm. In addition, two alternate POLDER retrieval algorithms from the SRON-Netherlands Institute 
for Space Research algorithm (Hasekamp et al., 2011, Fu et al., 2020) and generated by the GRASP 
(Generalized Retrieval of Atmosphere and Surface Properties) algorithm (Dubovik, 2014) make full use 
of multi-angle, multi-spectral polarimetric data. 
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On the one hand, recent techniques infer aerosol speciation from POLDER using an inverse modeling 120 
framework, which consists in fitting satellite observations to model estimates by adjusting aerosol 
emissions. For example, Chen et al. (2018, 2019) use POLDER/GRASP spectral AOD and Aerosol 
Absorption Optical Depth (AAOD) to estimate e.g., emissions of desert dust, or BC. Similarly, 
Tsikerdekis et al., (2021) use POLDER/SRON AOD, AAOD, EAE and SSA, but with a different model 
and assimilation technique, and to estimate the aerosol mass and number mixing ratio of specific aerosol 125 
species. 
On the other hand, AMTs inferred by various techniques and using satellite remote sensing observations 
are useful to provide spatial context (e.g., regional, seasonal, annual trends) to support other observations 
of aerosols and clouds or evaluate other aerosol type classifications. These AMTs are also useful in 
evaluating models in simple cases where a single aerosol species is present (e.g., “pure dust”). For 130 
example, Johnson et al. (2012) demonstrated how CALIOP mineral dust aerosol extinction retrievals were 
applied to improve dust emission and size distribution parameterizations in the global GEOS-Chem 
model, a global 3-D model of atmospheric chemistry driven by meteorological input from the Goddard 
Earth Observing System (GEOS).  
We have inferred qualitative AMTs from passive POLDER/SRON remote-sensing retrievals of EAE 135 
between 491 and 863 nm, SSA at 491 nm, a difference in Single Scattering Albedo, dSSA between 863nm 
and 491 nm, a Real Refractive Index, RRI at 670 nm and a pre-Specified Clustering and Mahalanobis 
Classification method (SCMC) (Russell et al., 2014).  
The SCMC method, based on the methodology developed by Burton et al. (2012), uses the Mahalanobis 
distance (Mahalanobis, 1936) analysis in multidimensional space to assign AMTs based on a suite of 140 
observed parameters. The number of parameters is adjustable, as are the nature of the parameters 
themselves. Similarly, the AMT definitions are flexible. However, a key requirement for the SCMC 
method is that reference values for each AMT must be defined (i.e., the mean, variances and covariances 
of the aerosol variables), typically using prescribed AMTs for a subset of observations. In practice, when 
applying SCMC to a new environment, a training data set is created by prescribing a set of air masses 145 
based on independent observations. Those pre-specified AMTs from Russell et al. (2014) are based on 
dominant aerosol types from AErosol RObotic NETwork (AERONET) stations at specific locations and 
times (Holben et al., 1998). In Russell et al. (2014), qualitative AMTs were derived over the island of 
Crete, Greece, during a 5-year period using the SCMC method and pre-specified AMTs from global 
AERONET observations. We refer the reader to section 2 of Russell et al. (2014) or Burton et al. (2012) 150 
for a thorough description of the SCMC method. 
 
We have extended the methods of Russell et al. (2014) (i.e., over Greece) to the entire globe for the year 
2006. On the one hand, the POLDER-derived AMTs presented reassuring features such as (i) dust over 
the Atlantic between the Saharan coast and Central to South America, predominant from March to August, 155 
(ii) urban industrial aerosols found near industrialized cities such as the East Coast of North America and 
over South East Asia, and (iii) two different types of Biomass Burning (BB) over the South East Atlantic 
(i.e., one illustrating more smoldering combustion and pre-specified using AERONET stations located in 
South America and the other one illustrating more flaming combustion and using AERONET stations in 
Africa). We found darker BB (i.e., lower SSA) in August compared to September, due to an increase of 160 
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POLDER-retrieved SSA during the season, reflecting either a change in BB aerosol composition (Eck et 
al., 2013) or a mix of AMTs (Bond et al., 2013).  
On the other hand, many features such as marine aerosols over the Saharan Desert or urban industrial 
aerosol type in South America, were most likely misclassified. Ambiguities in POLDER-derived AMTs 
could result from a combination of four factors: 165 
(i) Errors in POLDER reflectance/polarization measurements and aerosol retrievals (e.g., errors in 
POLDER retrievals get larger for smaller AOD and/ or smaller range of scattering angles),  
(ii) A coarse spatial resolution of the gridded POLDER product (e.g., 2º x 2º),  
(iii) Non-optimal AERONET-based pre-specified AMTs used as a training dataset (e.g., the AMT 
illustrating more flaming combustion is defined in locations, such as Mongu in Africa, where smoldering 170 
and flaming combustion might be occurring at the same time, together with other AMTs present in the 
atmospheric column) and/or 
(iv) A restricted number of POLDER-derived aerosol optical parameters. That is, the relative AMT 
discriminatory power increases with the number and diversity of observed parameters. 
 175 
Unlike in Russell et al. (2014), where we used total column remote sensing-inferred optical properties 
which are often representative of a mix of different AMTs, the AMTs in this study are defined, 
characterized, and derived using simultaneous gas-phase, chemical and optical instruments on the same 
aircraft. This reduces errors in measurements/retrievals and errors due to spatio-temporal colocation (see 
i-ii above). It also reduces ambiguities in the selection of the AMT training dataset (see iii), and we 180 
specifically investigate the strengths and weaknesses of optical properties used as tools to define AMTs 
and how much these optical properties can capture dominant aerosol speciation (see iv). 
 
The objectives of this study are to: 
• Prescribe well-informed AMTs that display distinct aerosol chemical and optical signatures to act 185 
as a training (i.e., reference) AMT dataset, and 
• Evaluate the ability of airborne in situ measured aerosol optical properties that are suitable to be 
retrieved from space to successfully extract these AMTs. 
 
We first describe the instruments, observations and methods used in this study (section 2). We provide 190 
additional information on the methods in Appendix A.1. We then present (section 3), conclude (section 
4) and discuss (section 5) our results. We provide additional results in Appendix A.2. We refer the reader 
to Appendix B for the abbreviations and acronyms used in this paper. 

2. Data and Method 

2.1. Instruments and Observations 195 

We select NASA DC-8 airborne in situ data collected during the Study of Emissions and Atmospheric 
Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) project (Toon et al., 2016), 
which was carried out in August–September 2013 over North America with a strong focus on the 
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Southeastern US (SEUS). Measurements are collected at the altitude of the aircraft and are not 
representative of the full column satellite retrieval. Although these airborne in situ observations lack the 200 
widespread coverage of surface networks or satellite retrievals, their benefits include measuring a wide 
variety of gas-phase species, aerosol types and aerosol optical properties (Toon et al., 2016). A major 
strength of our study is the use of in situ gas-phase, chemical and optical instruments on the same NASA 
DC-8 research aircraft during the SEAC4RS campaign. Table 1 lists the various airborne in situ 
instruments, products used in this study and important references for each instrument. It also shows that 205 
the instruments in Table 1 sample different aerosol sizes. This is especially true for the DASH-SP 
instrument, which sampled particles with dry diameters between 180 and 400 nm during SEAC4RS 
(Shingler et al., 2016). In contrast, the sampled air was provided to the PI-Neph instrument through the 
NASA LARGE shrouded diffuser inlet, which sampled isokinetically and is known to have a 50% passing 
efficiency at an aerodynamic diameter of at least 5 μm at low altitude (McNaughton et al., 2007; Espinosa 210 
et al., 2017). 
 

Instruments Products Sampled Aerosol Size References 
1 PTR-MS, 

DACOM, TD-
LIF, NOyO3 

Acetonitrile, isoprene, 
monoterpene, Carbon 
Monoxide (CO), Nitrogen 
dioxide (NO

2
) 

- PTR-MS (Mikoviny et al., 
2010); DACOM (Fried et 
al., 2008); TD-LIF (Cleary 
et al., 2002); NOyO3 

(Ryerson et al., 2012) 
2 PALMS Internally mixed Sulfate/ 

Organic/ Nitrate (SON), 
Biomass Burning (BB), Sea 
salt, and Dust particle types 

<5µm dry diameter Murphy et al., 2006 
Froyd et al., 2019 

3 SAGA Chloride (Cl), Bromide (Br), 
Nitrate (Nit.), Sulfate (Sul.), 
Oxalate(C2O4), Sodium 
(Na), Ammonium (Amm.), 
Potassium (K), Magnesium 
(Mg), Calcium (Ca.) 

<4µm dry diameter Dibb et al., 2003 

4 AMS Organic Aerosol (OA), 
Sulfate, Ammonium, Nitrate 

0.02 - 0.8 µm (trapezoidal 
transmission efficiency, 
D50 at 0.035 and  0.35 
µm) 

DeCarlo et al., 2006; 
Canagaratna et al., 2007; 
Hu et al., 2015; Guo et al., 
2021 

5 SP2 Black Carbon (BC) 0.1-0.5µm (BC 
component, only) 

Perring et al., 2017 

6 LARGE TSI 
Neph and 
PSAP 

Absorption, Scattering and 
Extinction Coefficient (AC, 
SC and EC) at 450, 550 and 
700 nm 

<5µm dry diameter for 
Dry Total Scattering 
Coefficients at 450, 550, 
and 700 nm (TSI Neph) 
and Total Absorption 
Coefficients at 467, 530 
and 660 nm (PSAP) 
 

Ziemba et al., 2013; 
McNaughton et al., 2007 

7 DASH-SP Real Refractive Index (RRI) 
at 532nm 

0.18-0.40µm dry diameter Sorooshian et al., 2008; 
Shingler et al., 2016 
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8 PI-Neph RRI at 532 nm <5 µm dry diameter Dolgos and Martins, 2014; 
Espinosa, 2017, 2018 

Table 1: Instruments, products, sampled aerosol size, and references relevant to this study. More 
information on the instruments during SEAC4RS can be found here: 
https://espo.nasa.gov/home/seac4rs/content/Instruments. 215 
 
In this study, we use the sixteen aerosol optical parameters listed in Table 2 (i.e., five first parameters at 
three wavelengths and/or three combinations of wavelengths and last parameter at 532nm) and derived 
from the optical instruments in line 6-8 of Table 1. 
 220 

 Initial 
Names 

What We Call Them in This Study Calculation 

1 AC AC ACl1  = ECl1 - SCl1 
2 EAC Extinction Angstrom Exponent (EAE) EACl1,l2 = - ln(ECl1 / ECl2)/ ln(l1/l2) 
3 AAC Absorption Angstrom Exponent (AAE) AAC l1,l2 = - ln(ACl1 / ACl2)/ ln(l1/l2) 
4 SSAC Single Scattering Albedo (SSA) SSACl1 = SCl1/ECl1 
5 dSSAC Difference in SSA at  l1 and l2 (dSSA) SSAC l1,l2 = SSAC l1 -SSAC l1 
6 RRI Real Refractive Index (RRI) - 

 
Table 2: In situ optical parameters used in this study (provided at a given aircraft altitude by the 
instruments in line 6-8 of Table 1), the way we call them in this paper, and how they are computed. 
The way we call these parameters is closer to what would be observed from remote sensing 
instruments. In the calculations, l1 and l2 are two given wavelengths. In this paper, we compute 225 
(i) SSA and AC at 450, 550 and 700 nm, (ii) EAE, AAE and dSSA between 450-550, 550-700 and 
450-700 nm and (iii) RRI at 532 nm. 
 
Instead of simply using the standardized SEAC4RS merged dataset, a lot of effort was dedicated to 
carefully collocate, combine, cloud-screen, filter, humidify datasets (i.e., convert from dry to ambient 230 
conditions), as well as compute and interpolate/extrapolate optical parameters to specific wavelengths 
(see section A.1.1 and A.1.2 in the appendix). 

2.2. Method 

Figure 1 illustrates the overall method in this study, which involves following the five steps described 
below. 235 
 
(1) Prescribe Source-based Aerosol air Mass Types (called PS-AMT) 
The PS-AMTs are defined using the gas-phase and aerosol instruments in line 1-2 of Table 1 and a method 
based on Espinosa et al. (2018) and Shingler et al. (2016) illustrated in Fig. 2. These aerosol and gas 
measurements better characterize the aerosol properties in these AMTs compared to observations of 240 
aerosol optical properties. First, we define Polluted Dust PS-AMT (called “PollDust”) using PALMS 
dust number fraction (i.e., PALMS 'MineralFrac_PALMS') above 0.15 and the integrated dry aerosol 
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volume concentration by the TSI Aerodynamic Particle Sizer (APS) above 2µm3cm-3 (i.e., 
'IntegV_Daero-PSL_APS_LARGE'; note that APS measurements sampled dry aerodynamic diameters 
ranging from 0.56 to 6.31µm (Espinosa et al., 2018)). Similarly, we define Marine PS-AMTs when 245 
PALMS sea-salt number fraction > 0.15 and total volume >2 µm3 cm-3. The remaining observations may 
then be evaluated for BB PS-AMTs using PTRMS “Acetonitrile”, WAS “Isoprene_WAS”, PTRMS 
“Isoprene-Furan”, PTRMS “Monoterpenes”, WAS “CO_WAS” and DACOM “CO_DACOM” if (i) 
acetonitrile > 250 x 10-3 ppbv, or (ii) (acetonitrile > 190 x 10-3 ppbv) & (acetonitrile/(isoprene + 
monoterpene)>2.5) or (iii) CO>250 ppbv. BB PS-AMTs are further differentiated as coming from 250 
agricultural fires (called “BBAg.”) if the longitude is east of -95º or from wildfires (called “BBWild.”) if 
the longitude is west of -95º.The -95º longitude threshold was selected according to the location of 
agricultural fires in Liu et al. (2016). If observations are not classified as PollDust or BB, we classify 
them as biogenic (called “Bio.”) if isoprene + monoterpene > 2ppbv. Finally, remaining observations are 
classified as Urban if the altitude is below 3km and NO2 > 1 ppbv (i.e., using the NOAA Nitrogen Oxides 255 
and Ozone (NOyO3), NO2_ESRL or TDLIF “NO2_TDLIF”). 
Section 3.1 describes these PS-AMTs, their location and composition during SEAC4RS. 
 
(2) Determine most useful and well separated aerosol optical properties 
Once the PS-AMTs are defined, we test whether these PS-AMTs exhibit distinct aerosol optical properties 260 
and then, select the most useful and well separated aerosol optical properties. This step, as well as the 
following steps, use the optical parameters listed in Table 2 and provided by the instruments listed in lines 
6-8 of Table 1. To select the most useful and well separated aerosol optical properties for each PS-AMT, 
we define a cluster in multi-dimensional parameter space, which is composed of all the data points (values 
of optical properties) in that PS-AMT category. Then, for each point in the data set, we calculate the 265 
nearest cluster using the Mahalanobis distance (Mahalanobis, 1936). If the nearest cluster to a point 
corresponds to the PS-AMT, then that point is “steady”. This method was used in previous studies (e.g., 
Espinosa et al. (2018)) and is described in further detail in section A.1.3 in the appendix. Section 3.2 
describes the results from this step i.e., the most useful and well separated aerosol optical properties in 
our study. 270 
 
(3) Define optical-based training classes (called DO-Class) 
We use the set of aerosol optical parameters defined in the second step above to define optical-based class 
definitions (called DO-Class), including means, variances and covariances. In other terms, in this step, 
we form the mathematical definitions of the classes. The DO-Class use the “steady” (i.e., well separated) 275 
points from the first half of all valid aerosol optical observations. Once the training clusters DO-Class are 
defined, we use the Mahalanobis distance to filter outliers from our training dataset and further “purify” 
them. Similar to Russell et al. (2014), we delete points that have less than 1% probability of belonging to 
each pre-specified DO-Class. We also delete from a specified cluster any points that are closer (in terms 
of Mahalanobis distance) to a different cluster. Note that unlike in Russel et al. (2014), this additional 280 
filtering step has a minimal impact on the training dataset in our study. 
 
(4) Derive Optical-based Aerosol air Mass Types (called DO-AMT) 
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The DO-AMTs are analyzed and classified using the set of aerosol optical properties defined in the second 
step above, the DO-Class defined in the third step and the SCMC method for a set of observations that 285 
was not included in the training data sets. This test data set is based on independent observations and must 
be of the same nature than the training dataset. In this study, our test dataset is composed of independent 
airborne in situ optical properties. It is the other half of all valid aerosol optical observations (DO-Class 
are defined using the “steady” portion of the first half). We derive DO-AMT to each test data point using 
the SCMC method and the DO-Class. This is achieved by assigning the test datapoint to the DO-Class 290 
that shows minimum Mahalanobis distance in a multi-dimensional space made of the best suited and most 
separable optical properties. Section 3.3 describes the results from this step. 
 
(5) Compare Derive Optical-based (DO-AMT) and Prescribe source-based AMTs (PS-AMT) 
We evaluate the ability of airborne aerosol optical properties to successfully extract PS-AMTs by 295 
comparing PS-AMTs and DO-AMTs. Section 3.4. describes the results of this final step in our study. 
 
In Fig. 1, we illustrate AMTs as wolves, and their optical properties as their tracks. The second and third 
step consist in describing the optical properties (or tracks) of each AMT (or wolf). The fourth step consists 
in inferring an AMT (or wolf) from its optical properties (or tracks). The fifth and last step consists in 300 
comparing the inferred to the initial AMT (or wolf). 

Figure 1: Overall method in this study; PS-AMTs: Prescribed Source-based Air Mass Types 
(AMTs); DO-Class: Defined Optical-based Class definitions and DO-AMTs: Derived Optical-
based AMTs; EAE: Extinction Angstrom Exponent; SSA: Single Scattering Albedo; dSSA: 
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difference in SSA; AAE: Absorption Angstrom Exponent; AC: absorption coefficient; RRI: real 305 
Refractive Index; SCMC: pre-Specified Clustering and Mahalanobis Classification. The concept 
of the wolf and its tracks is based on the dragon and its tracks in Bohren and Huffman (1983).  
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 310 
Figure 2: 
Scheme to 
pre-specify 

Air Mass 
Types (PS-315 
AMTs; step 
1 of Fig. 1) 

using 
mostly gas 

measurements and a method based on Espinosa et al. (2018) and Shingler et al. (2016), but modified 320 
to include Marine and two different types of BB AMTs (i.e., BBAg. and BBWild.). 
 

3. Results 

3.1 Prescribe Source-based Air Mass Types (PS-AMTs) 

Figure 3 shows the PS-AMTs pre-specified using mostly measured gas phase compounds and the 325 
method described in Fig. 2. 
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Figure 3: Air mass 
types pre-specified 330 
(PS-AMT) using 
mostly gas 
measurements and 
methods based on 
Espinosa et al. (2018) 335 
and Shingler et al., 
(2016) (see Fig. 2). The 
number of data points 
assigned to each PS-
AMTs are N=31 340 
BBAg., N=382 
BBWild., N=646 Bio. 
and N=46 PollDust PS-
AMTs. PS-AMTs 
Marine and Urban 345 
were not analyzed in 
the remainder of this 
study due to their 
limited number of data 

points (N=9 Urban in black and N=7 Marine in blue). Green triangles show the location of 350 
agricultural fires according to Liu et al. (2016). 
 
During SEAC4RS, according to Kim et al. (2015) and Wagner et al. (2015), the campaign-averaged 
aerosol mass was composed of mostly OA that is internally mixed with sulfate and nitrate at all altitudes 
over the SEUS i.e., 55% OA and 25% sulfate mass on average according to ground-based filter-based 355 
PM2.5 (Particulate Matter concentration with an aerodynamic diameter smaller than 2.5 µm) speciation 
measurements from the US EPA Chemical Speciation Network. This is consistent with the findings of 
Edgerton et al. (2006), Hu et al. (2015), Xu et al. (2015) and Weber et al. (2007) which show that PM2.5 
is dominated by SOA and sulfate during the summer in SEUS. Aircraft data show that 60% of the aerosol 
column mass (i.e., mostly OA and sulfate) is contained within the mixing layer (Kim et al., 2015). 360 
GEOS-Chem attributes OA mass as 60% from biogenic isoprene and monoterpenes sources (with a 
significant role of isoprene in accordance with Hu et al. (2015), Marais et al. (2016), Zhang et al. (2018), 
Jo et al. (2019), and Liao et al. (2015)), 30% from anthropogenic sources and 10% from open fires (Kim 
et al., 2015). Espinosa et al. (2018) confirms the domination of biogenic emissions in the SEUS (see their 
Fig. 2). Fig. 3, in agreement with these studies, shows a majority of biogenic PS-AMTs (in green, N=646), 365 
mostly in the SEUS. 
During SEAC4RS, the air sampled by the DC8 was also affected by both long-range transport of wildfire 
from the west (Peterson et al., 2015; Saide et al., 2015; Forrister et al., 2015; Liu et al., 2017) and local 
agricultural fires mostly from the burning of rice straw along the Mississippi River Valley (Liu et al., 

Ag. Fires from Liu et al. [2016] 
Bio PD BBAg.    BBWild.    Urban    Marine
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2016). Fig. 3, in agreement with these studies, shows BBWild. PS-AMT in the West (in grey, N=382) 370 
and BBAg. PS-AMT in the East (in salmon, N=31). Both agricultural and wildfire smoke are mainly 
composed of OA, which includes a substantial amount of light-absorbing brown carbon (Liu et al., 2017), 
produced mostly by smoldering combustion (Reid et al., 2005; Laskin et al., 2015).  
Although Fig. 3 also shows Urban and Marine PS-AMTs in the SEUS, these PS-AMTs were not further 
analyzed in the remainder of this study due to their limited number of data points (Urban in black with 375 
N=9 and Marine in blue with N=7 data points).  
Figure 4 describes the aerosol chemical signatures of the principal PS-AMTs using the PALMS, SAGA, 
AMS and SP2 instruments (see line 2-5 in Table 1 for more information on these instruments and their 
products). Note that some aerosol components (e.g., OA, sulfate, nitrate) are very general chemical 
indicators and much less specific than the gas-phase chemistry they are trying to predict. These aerosol 380 
components are nonetheless directly comparable to aerosol chemical components simulated in CTMs. 
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 385 

Figure 4: (a) Average PALMS normalized volume concentration per PS-AMT. PALMS 
normalization uses the sum of BB particles, sulfate-, organic- and nitrate-rich particles from non-
BB sources, mineral dust, sulfate-organic-nitrate (SON) particles without a dominant sub-

a) PALMS Particle Types

b) SAGA Aerosol Components

c) AMS and SP2 Aerosol Components
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component, and sea-salt (the latter two PALMS aerosol types are not shown and constitute the 
remainder). (b) Averaged and normalized SAGA mass concentrations per PS-AMT; normalization 390 
uses the sum of all the SAGA components in the x-axis; Cl: chloride, Br: bromide, Nit: nitrate, Sul: 
sulfate, C2O4: oxalate, Na: sodium, Amm: ammonium, K: potassium, Mg: magnesium and Ca: 
calcium (c) Normalized mass fractions of AMS sulfate, ammonium, nitrate, OA, SP2 BC and ratio 
of SP2 BC and AMS OA per PS-AMT. The AMS inorganic mass fraction of sulfate, ammonium 
and nitrate are normalized to the sum of sulfate, ammonium, and nitrate. The AMS and SP2 total 395 
Non-Refractory NR-mass fraction of OA and BC are normalized to the sum of OA, BC, sulfate, 
ammonium, and nitrate. In each blue box, the red horizontal line indicates the median, and the 
bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The black 
whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted 
individually using red points. PS-AMTs Marine and Urban are not analyzed due to their limited 400 
number of data points (N=9 Urban and N=7 Marine PS-AMTs). 
 
Note that the four aerosol instruments in Fig. 4 measure different aerosol properties. For instance, AMS 
and SAGA measure bulk concentrations of chemical sub-components (e.g., sulfate) whereas PALMS 
classifies individual particles into several size-resolved types, including mineral dust, BB and several 405 
non-BB types that have varying amounts of internally mixed sulfate, organic, and nitrate.  
 
The PS-AMTs on Fig. 4 show expected chemical features: 
• The BB PS-AMTs (i.e., BBAg. and BBWild.) record high BB particle concentrations from 
PALMS in Fig. 4a, high nitrate (Nit.), ammonium (Amm.), calcium (Ca.) and potassium (K) 410 
concentrations from SAGA in Fig. 4b, high OA (i.e., >0.8) from AMS and high BC mass fractions from 
SP2 in Fig. 4c, in agreement with many other studies (e.g., Cubison et al., (2011); Hecobian et al., (2011); 
Jolleys et al., (2015), Guo et al. (2020)). The BB PS-AMTs also record higher AMS ammonium and 
nitrate, compared to Bio. and PollDust PS-AMTs in Fig. 4c. This is due to ammonium nitrate forming in 
fires by neutralization of freshly formed nitric acid from NOx oxidation with an excess of primary 415 
ammonia (e.g., Guo et al. (2020)). 
• The Bio. PS-AMTs record higher non-BB organic-rich particles from PALMS in Fig. 4a, higher 
SAGA sulfate concentrations in Fig. 4b, smaller nitrate and ammonium (i.e., relatively acidic) and higher 
sulfate particle concentrations (from e.g., coal plants) from AMS in Fig. 4c, compared to the BB PS-
AMTs. As such, the Bio. PS-AMTs in this study are typical of the SEUS region (e.g., (Kim et al., 2015 420 
and Hu 2015)). When using Positive Matrix Factorization (Ulbrich et al., 2009) on the AMS 
measurements, most of the organic aerosols in the Bio. PS-AMTs are composed of biogenic SOA. The 
Bio. PS-AMTs also record significantly lower BC concentrations from the SP2 as well as BC to OA ratios 
from the AMS and SP2 in Fig. 4c, compared to the BB and PollDust PS-AMTs, in accordance with e.g., 
Hodzic et al. (2020). 425 
• The PollDust PS-AMTs record, as expected, high dust concentration from PALMS in Fig. 4a and 
high calcium (Ca) and magnesium (Mg) from SAGA in Fig. 4b. In addition, the PollDust PS-AMTs also 
include BB from PALMS in Fig. 4a and possibly a minor sea salt component (i.e., high sodium, Na and 
chloride, Cl) from SAGA in Fig. 4b as well as relatively high sulfate from SAGA and AMS in Fig. 4c. A 
compositional picture of the PollDust PS-AMTs from PALMS in section A.2.3 in the appendix shows 430 
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dust predominately in the coarse mode but also an accumulation mode that contains a variety of particle 
types, all of which contain sulfate and organic material. 
 
The analysis in Fig. 4 confirms that the gas-phase-derived PS-AMTs indeed have distinct aerosol 
chemical properties. Therefore, we explore whether these PS-AMTs can be derived using only aerosol 435 
optical properties. 
 

3.2 Determine Most Useful and Well Separated Aerosol Optical Properties 

As described in section 2.2, we need to test if the PS-AMTs from section 3.1 exhibit distinct aerosol 
optical properties. This is an essential step to optimize the final prediction of AMTs using aerosol optical 440 
properties (DO-AMTs).  
 
We start with the sixteen aerosol optical parameters in Table 2 (i.e., EAE, SSA, dSSA, AAE and AC at 
different combinations of 450, 550 and 700 nm and RRI at 532 nm). Section A.2.1 in the appendix 
illustrates the ranges of these sixteen aerosol optical parameters, classified by PS-AMTs. Given that many 445 
of these parameters have similar properties, we select six out of these sixteen aerosol optical parameters, 
to simplify the analysis and presentation of results. To do that, we first look at the percentage of points 
unambiguously retrieved or “steady” (i.e., points that are well separated from other clusters and, hence, 
remain in their initial clusters) when using different combinations of two out of sixteen aerosol optical 
parameters across all four PS-AMTs. We first select parameters AAE between 450 and 550nm and RRI 450 
at 532nm as they form the only combination of two parameters to achieve >65% “steady points” for all 
four PS-AMTs (see Fig. A5 in the appendix). The rest of the six optical parameters are either chosen at 
550nm (i.e., closest wavelength to 532 nm) or between 450 and 550nm. As a result, the six parameters 
we choose for the remainder of this study are dSSA 450-550 nm, RRI 532 nm, EAE 450-550 nm, AAE 
450-550 nm, SSA 550 nm and AC at 550nm. Among these parameters, the usefulness of parameters dSSA 455 
450-550 nm, EAE 450-550 nm, SSA 550 nm and AC at 550nm only becomes apparent in a 3-D parameter 
space (see Fig. A6 and its orange boxes in the appendix, which record >65% “steady points” for many 
combinations of three parameters among these six selected aerosol optical parameters). 
 
Figure 5 illustrates the range of these six aerosol optical properties for each PS-AMT. Fine particles (i.e., 460 
BBWild., BBAg. and Bio. PS-AMTs with higher EAE values) show mostly well-separated variability in 
RRI, AAE and dSSA. Coarse particles (i.e., PollDust PS-AMT with lower EAE values) are optically 
distinctive from the other PS-AMTs, particularly showing lower RRI, higher AAE and higher dSSA. In 
agreement with Selimovic et al. (2019; 2020) in Missoula, MT, we seem to also observe separate optical 
signatures, and more specifically different AAE ranges, for BBAg. and BBWild. PS-AMTs during 465 
SEAC4RS.  
The aerosol optical properties of the PollDust PS-AMTs in this study differ from the ones of the “pure 
dust” AMT in Russel et al. (2014). The “pure dust” in Russel et al. (2014) is based on AERONET 
measurements in various dusty regions of the world. In this study, PollDust PS-AMT show a median EAE 
of ~1.3 between 450 and 550 nm and a median RRI of ~1.4 at 532 nm on Fig. 5, compared to respectively 470 
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~0 between 491 and 864 nm and 1.53 at 670 nm for AERONET-based “pure dust” in Russel et al. (2014). 
We show that the higher PollDust PS-AMT EAE values in our study are due to the presence of 
accumulation mode non-dust aerosols, which constitute a significant contribution to the total number and 
volume concentration of particles (see Fig. A7 in the appendix for a compositional picture of PollDust 
PS-AMT). Similarly, we also suggest that the low PollDust PS-AMT RRI values are due to its non-dust 475 
accumulation mode, which is generally more hygroscopic than pure dust and may have a larger 
contribution to the PollDust total Growth Factor. We refer the reader to Fig. A4 in the appendix for a 
closer look at RRI values in the case of PollDust PS-AMTs from the PI-Neph and DASH-SP instruments 
separately. 
 480 

 
 
Figure 5: Optical characterization of PS-AMTs using the LARGE, PI-Neph and DASH-SP 
instruments (see Table 1). In each blue box, the red horizontal line indicates the median, and the 
bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The black 485 
whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted 
individually using red points. (a) AAE: Absorption Angstrom Exponent, (b) AC: Absorption 
Coefficient, (c) dSSA: difference in Single Scattering Albedo, (d) SSA: Single Scattering Albedo, (e) 
EAE: Extinction Angstrom Exponent, (f) RRI: Real Refractive Index. Numbers in the title 
correspond to the number of points behind each box-whisker for the respective BBAg., BBWild., 490 
Bio. and PollDust PS-AMTs. 
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Figure 6 shows “steady” values (i.e., fraction of cases of a given type that are correctly identified) for 
combinations of two, three and four optical parameters out of the six selected aerosol optical parameters 
in Fig. 5 and four AMTs (i.e., BBAg., BBWild., Bio. and PollDust). Moving forward, we select the sixteen 495 
combinations of optical parameters highlighted by grey boxes and black dots in Fig. 6, as they show > 
65% “steady points” for PS-AMTs BBAg., BBWild., Bio. and PollDust. These combinations are 
numbered in grey at the top of Fig. 6. 
 

 500 
 
Figure 6: 
Percentage of 

“steady” 
points (i.e., 505 
fraction of 
cases of a given 
type that are 

correctly 
identified) in 510 
the lower panel 
when using 

different 
combinations 

of aerosol 515 
optical 

parameters in 
the upper 

panel for each PS-AMT. Grey boxes and black points depict combinations of optical parameters 
showing > 65% “steady points” for PS-AMTs BBAg., BBWild., Bio. and PollDust. RRI: Real 520 
Refractive Index, AAE: Absorption Angstrom Exponent, AC: Absorption Coefficient, dSSA: 
difference in Single Scattering Albedo, SSA: Single Scattering Albedo, EAE: Extinction Angstrom 
Exponent 
 
Let us note that for some cases, the fraction of “steady” points seems to decrease when adding classifying 525 
variables. These cases were investigated and are mostly due to fewer data points that are non- “steady” 
when adding classifying parameters, out of an already small total number of datapoints (e.g., a 
combination of EAE, dSSA, AAE and RRI show <65% “steady points” for BBAg. PS-AMT, compared 
to >65% “steady points” for a combination of EAE, AAE and RRI; this is due to 4 more “steady” points 
(N=18) when using a combination of 3 parameters, compared to 4 parameters (N=14), out of a total of 530 
N=26 cases). 
 
Moreover, we suggest that higher aerosol loadings within the air masses allow for more accurate 
identification by optical properties, due to higher accuracy of the aerosol optical properties themselves. 
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For example, we have seen an increase from ~80% to 100% “steady” data points in the BBWild. PS-535 
AMT when using EAE, AAE and RRI when extinction coefficients increased from 30-40 Mm-1 to 60-70 
Mm-1 (number of data points between N=11 and N=20). 
 

3.3 Define Optical-based Class Definitions and Derive Optical-based Air Mass Types (DO-Class 
and DO-AMTs) 540 

 
Next, we derive AMTs (DO-AMTs), followed by a comparison between DO-AMTs and the initial PS-
AMTs to test the ability of aerosol optical properties alone to capture PS-AMTs.  
As described in section 2.2, to derive DO-AMTs using the SCMC method, we need (i) a combination of 
useful and well separated optical properties (e.g., EAE, AAE and RRI or combination #4 in Fig. 6), (ii) a 545 
set of defined classes of reference (i.e., a training dataset that we call DO-Class) and (iii) the computation 
of the Mahalanobis distance between each observation we want to classify in a test data set and each of 
the clusters from the training dataset.  

 
We introduce Table 3, 550 
which records the 
number of data points 
behind each step in 
our study. 
 555 
Table 3: Number of 
data points per 
AMTs behind each 
step in our study. 
PS-AMTs Marine 560 
and Urban are not 
analyzed due to their 
limited number of 
data points (N=9 
Urban and N=7 565 
Marine PS-AMTs). 
EAE: Extinction 
Angstrom Exponent, 
AAE: Aerosol 

Absorption Exponent and RRI: Real Refractive Index. 570 
 
The first line of Table 3 shows the number of data points per PS-AMTs (see Fig. 3). Then, line 2, 3 and 
4 of Table 3 show the valid number of AAE, RRI and a combination of EAE, AAE and RRI data points. 
Line 5 of Table 3 shows the “steady” number of data points per PS-AMT in the case of a combination of 
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EAE, AAE and RRI (see Fig. 6). To create the training dataset DO-Class (line 7 in Table 3), we select 575 
the “steady” portion of half (every other sample) of the entire set of valid datapoints (line 6 in Table 3). 
The test data set that we want to classify as DO-AMTs is the other half of the entire set of valid datapoints 
(line 8 in Table 3). This DO-AMT dataset is made of “steady” and non- “steady” data points.  
 
Figure 7 illustrates the separability of the DO-Class in the 3-D space made of aerosol optical parameters 580 
EAE, AAE and RRI. The regions of the DO-Class are described by colored ellipses representing the mean, 
variance, and covariance of the DO-Class training set. It also shows that most of the DO-Class represent 
the original source-based PS-AMTs (represented by colored triangles on Fig. 7). However, let us note 
that a distinct portion of the Bio. PS-AMTs (green triangles) seem to not be represented by the Bio. DO-
Class (green ellipse). These Bio. PS-AMTs show higher AAE and lower EAE values and mostly fall into 585 
the PollDust DO-Class instead (red ellipse). 

 
 
 Figure 7: DO-Class definition (solid and dashed ellipses 
colored by AMTs defining boundaries of the DO-Class 590 
clusters; DO-Class data points are not plotted) and 
prescribed source-based PS-AMTs (triangles colored by 
AMTs). 75% of the DO-Class are contained in the solid 
ellipses and 50% of the DO-Class are contained in the 
dashed ellipses. RRI: Real Refractive Index, AAE: 595 
Absorption Angstrom Exponent, EAE: Extinction 
Angstrom Exponent. Graphs (a), (b) and (c) illustrate 
PS-AMT and DO-Class in the respective 2-D spaces 
made of AAE-RRI, EAE-AAE and EAE-RRI. 
 600 
Line 9 in Table 3 shows the number of DO-AMTs (correctly 
and incorrectly) classified as BBAg., BBWild., Bio. or 
PollDust AMTs using the combination of EAE, AAE and 
RRI as an example, the SCMC method and the DO-Class 
reference clusters. Most points from the test data set were 605 
assigned an AMT (see N=381 assigned DO-AMTs on line 
9, compared to N=8 unknown on line 10 of Table 3). 
Unclassified/unknown DO-AMTs are those where the 3-D 
data point is outside the 99% probability surface for all four 
DO-Classes. 610 
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3.4 Compare Optical-based and Source-based Air Mass Types (DO- vs. PS-AMTs) 

Once we have derived DO-AMTs from optical properties (i.e., inferred our wolf based on its tracks in 
Fig. 1), we need to assess how many of the DO-AMTs agree with those originally assigned as PS-AMTs. 
Line 11 in Table 3 shows the number of prescribed PS-AMTs in each category when only looking at the 615 
test dataset to derive DO-AMTs on line 8 of Table 3 (N=389). Line 12 in Table 3 shows the number of 
DO-AMTs that are identical to PS-AMTs. Line 13 and 14 show the same result, but as a percentage of 
the respectively derived DO-AMTs or prescribed PS-AMTs in the same category. In Table 3, we find 
77% BBAg., 79% BBWild., 73% Bio. and 81% PollDust PS-AMTs are correctly reflected in the DO-
AMTs. This result can also be seen for combination #4 in Fig. 8 (i.e., EAE, AAE and RRI).  620 
Fig. 8 illustrates the percentage of identical DO-AMTs to PS-AMTs when using each of the sixteen 
combinations of optical parameters illustrated by black squares in the table of Fig. 8. These combinations 
are the same as the ones in grey at the top of Fig. 6. This percentage, like line 14 in Table 3, is computed 
as the number of DO-AMTs that agree with those originally assigned as PS-AMTs, compared to the total 
number of prescribed PS-AMTs in each category in our test dataset (e.g., line 11 in Table 3). 625 

 
Figure 8: Identical DO-AMT and PS-AMTs as a percentage of prescribed PS-AMTs in each 
category when using the different combinations of optical parameter listed in the table to the right 
(black squares show combination on each line) and for the four PS-AMTs BBAg. (salmon), 
BBWild. (grey), Bio. (green) and PollDust (red). Back horizontal dashed lines show 60% and 70% 630 
identical DO-AMT and PS-AMTs. 
 
According to Fig. 8, the entire sixteen combinations of aerosol optical properties listed in the Table of 
Fig. 8 as black squares seem to capture both the Bio. and BBWild. PS-AMTs (>~60% identical DO-AMT 

Bio PollDust BBAg.    BBWild. 
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and PS-AMTs in green and grey solid lines in Fig. 8). We remind the reader that these PS-AMTs are 635 
mostly based on gas measurements (see Fig. 2) and are dominated by different aerosol species (see Fig. 
4).  
On the other hand, fewer combinations of aerosol optical parameters seem to adequately capture the 
BBAg. and PollDust PS-AMTs. Further analysis shows that, in average, most DO-AMTs assigned to the 
BBAg. and PollDust categories are, in fact, misclassified and failing to capture the Bio. PS-AMTs. As 640 
shown earlier in Fig. 7, we suggest these DO-AMTs fail to capture the Bio. PS-AMTs because the Bio. 
DO-Class might not be entirely representative of the Bio. PS-AMTs (see green triangles outside of the 
green ellipses in Fig. 7).  
Note that three combinations of aerosol optical parameters, namely #4 (EAE, AAE and RRI), #12 (EAE, 
RRI, AC and dSSA) and #13 (EAE, AAE, RRI and AC) in Fig. 8, seem to capture all four PS-AMTs 645 
particularly well (>~70% identical DO-AMT and PS-AMTs). Let us mention that results linked to the use 
of the absorption coefficient, AC, an extensive property that is dependent on aerosol loading, is likely to 
be unique to this study and might not be representative of any other field campaign. 

4. Conclusion 

One desire of our scientific community is to ultimately translate the space-based “total atmospheric 650 
column effective” AMTs such as biomass burning, dust, urban industrial, and polluted marine into 
chemical species with defined emission source inventories and formation/aging chemistry such as sulfate, 
BC, OA, SOA, nitrate, dust, or sea salt to better improve models. Fully achieving that goal might not be 
feasible and progress can only be incremental. This study constitutes a first step towards the goal of 
translating the space-based “total atmospheric column effective” aerosol optical properties and derived 655 
optical-based AMTs into source-based AMTs. 
 
Current satellite derived AMTs inferred by various techniques are useful to provide spatial context to 
support other observations of aerosols and clouds or evaluate other aerosol type classifications. However, 
these satellite derived AMTs are ambiguously defined and might often be misclassified. 660 
 
The AMTs in this study are defined, characterized, and derived using gas-phase, chemical and optical 
instruments on the same aircraft. This reduces errors in measurements/retrievals, due to spatio-temporal 
colocation and ambiguities in the selection of the AMT training dataset. We also specifically investigate 
the strengths and weaknesses of various aerosol optical properties used as tools to define AMTs and how 665 
much these optical properties can capture dominant aerosol speciation. 
 
We first define AMTs using mostly airborne gas-phase measurements during SEAC4RS. We find distinct 
optical signatures for biomass burning (from agricultural/ prescribed or wildfires), biogenic and dust-
influence AMTs (Marine and Urban AMTs show too few data points to analyze). Useful aerosol optical 670 
properties to characterize these signatures are the extinction angstrom exponent between 450-550nm, the 
single scattering albedo at 550nm, the difference of single scattering albedo in two wavelengths between 
450-550nm, the absorption coefficient at 550nm, the absorption angstrom exponent between 450-550nm, 
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and the real part of the refractive index at 532nm. We then use these aerosol optical properties, prescribe 
a well-separated AMT training dataset, and use the pre-specified clustering and Mahalanobis 675 
classification method to derive optical-based AMTs during SEAC4RS. We find that by using any of 
sixteen combinations of these six optical parameters, over 65% of optical-based wildfire biomass burning 
and biogenic AMTs agree with their source-based analogue. We find that biogenic, BB from wildfires, 
BB from agricultural fires, and polluted dust AMTs, when prescribed using mostly airborne in situ gas 
measurements, can be successfully extracted from at least three combinations of airborne in situ aerosol 680 
optical properties over the US during SEAC4RS, such that more than 70% of optical observations are 
typed consistently with source-based analog. However, we find that misclassifications are not evenly 
distributed across the classes, and specifically the optically based classifications for BB from agricultural 
fires and polluted dust include a large percentage of misclassifications that limit the usefulness of results 
relating to those classes. 685 
 

5. Discussion 

We suggest a similar study should be performed using data from additional airborne field campaigns 
which have the necessary, or equivalent, gas-phase measurements to derive source based-AMTs and many 
of the critical optical properties to extract optical based-AMTs. First, this would provide more robust 690 
statistics e.g., particular attention should be given to revisit the BB from agricultural fires and polluted 
dust AMTs in this study. Second, this would provide more AMTs/sub-AMTs to analyze e.g., Urban and 
Marine AMTs should be visited during CAMP2EX (Clouds, Aerosol and Monsoon Processes-Philippines 
Experiment) or KORUS-AQ (An International Cooperative Air Quality Field Study in Korea) and other 
types of BB and at different aging stages should be visited during FIREX-AQ (Fire Influence on Regional 695 
to Global Environments and Air Quality). Finally, this would also help assess if these chemical and optical 
signatures are reproducible from one year to another. 
 
In this study, we obtained in situ aerosol optical signatures. Another essential step should be to examine 
optical signatures from space-based passive remote sensor(s), which derive total column effective 700 
ambient aerosol optical properties (instead of properties measured at the altitude of the aircraft in this 
study). One way to answer this question would be to compare the defined optical-based classes (DO-
Class) signatures using collocated airborne in situ aerosol optical properties and total column aerosol 
optical properties measured or inferred by sunphotometry (e.g., airborne 4STAR, Spectrometers for Sky-
Scanning Sun-Tracking Atmospheric Research (Dunagan et al., 2013) or ground-based AERONET). This 705 
DO-Class database could then be used as an optical-based training dataset to enable widespread derivation 
of optical-based AMTs (DO-AMTs) using existing and future orbital and suborbital remote sensing 
instruments and networks. 
 
The space mission addressing the designated observable Aerosol, Cloud, Convection and Precipitation 710 
(ACCP) from the NASA decadal survey (National Academies 
of Sciences, Engineering, and Medicine, 2018) is currently designing its suborbital (airborne and ground-
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based) component to address science questions that cannot be addressed from space (e.g., bridging 
satellite-inferred aerosol optical properties and aerosol speciation). This study illustrates how essential it 
is to explore existing airborne datasets to bridge chemical and optical signatures of different AMTs, before 715 
the implementation of future spaceborne missions and their corresponding suborbital field campaign(s) 
(e.g., upcoming spaceborne polarimeters SPEXone (Hasekamp et al., 2019) and Hyper-Angular Rainbow 
Polarimeter HARP-2 onboard the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) (Werdell 
et al., 2019) and the multi-viewing multi-channel multi-polarization imager (3MI) (Fougnie et al., 2018) 
to be launched in the next 3 years or the next generation of Earth Observing System (EOS) satellites 720 
addressing NASA’s ACCP). 
 
Most of the six optical properties in this study (i.e., extinction angstrom exponent, single scattering 
albedo, difference of single scattering albedo, absorption coefficient, absorption angstrom exponent, and 
real part of the refractive index) are routinely derived by in situ and remote sensing 725 
instrumentation/networks (see Table 4). Some optical properties are more likely to present a higher 
uncertainty when measured from suborbital field campaigns and/ or from satellites. The real part of the 
refractive index, for example, although generally more uncertain, is highly desirable in many 
combinations of optical parameter to capture both the BB from wildfires and biogenic AMTs in this study. 
We strongly suggest future airborne campaigns consider including in situ measurements of AAE and RRI 730 
(very few of the campaigns to date flew PI-Neph and/or DASH-SP instruments) and a special attention 
should be given to deriving these parameters accurately from space. Our analysis has the advantage of 
providing alternate combinations of optical parameters when one optical parameter is either not available 
or too uncertain.  
 735 

Table 4: Frequency 
at which the six 
aerosol optical 
parameters in our 
study are routinely 740 
derived from 
aircraft and 
current passive 
satellite sensors 
and importance of 745 
these optical 
parameters in our 
study. RRI: Real 
Refractive Index, 

AAE: Absorption Angstrom Exponent, AC: Absorption Coefficient, dSSA: difference in Single 750 
Scattering Albedo, SSA: Single Scattering Albedo, EAE: Extinction Angstrom Exponent 
 
Ultimately, this technique and its results has the potential to provide a much broader observational aerosol 
data set to evaluate global transport models than is currently available. Current satellite derived AMTs 
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seem to marginally help models. One way to assess models would be to directly compare satellite derived 755 
AMTs to AMTs derived from modeled optical properties (which are, in turn, computed from modeled 
chemical composition) using the same classification method (e.g., Taylor et al., 2015, Dawson et al. 
(2017), Nowottnick et al. (2015), Meskhidze et al. (2021)). However, it would be difficult to define the 
main source of errors in the case of a disagreement between model- and observation-based AMTs. 
Potential causes of such a disagreement could be a combination of observation and method-specific errors 760 
or model-specific errors (e.g., the assumed model size distribution, dry refractive index, growth factor per 
specie, mass extinction efficiency per species, estimated mass per species, RH, transport, chemical 
processing, emissions, and other physiochemical variables). Let us emphasize that the technique and 
results in this study, alone, will not be able to fully explain any discrepancies between model and 
observations. However, we suggest that the use of near-simultaneous gas-phase, chemical and optical 765 
instruments on the same aircraft restrict the causes of a disagreement between model- and observation-
based AMTs to mostly model-specific errors. Moreover, as the AMTs in this study are less ambiguously 
defined (e.g., to each AMT corresponds an averaged distribution of aerosol chemical composition), we 
suggest that this may allow the assessment (and, by extension, improvement) of a few aerosol processes 
simulated in CTMs. 770 
 

Appendix A 

A.1 Additional Information on Methods 

A.1.1 Method to Cloud-screen, Filter, and Humidify Airborne Observations 

This section describes the cloud-screening, filtering, humidification, and colocation involved in the 775 
computation of the final set of sixteen optical parameters (i.e., EAE, dSSA and AAE between 450-550, 
550-700 and 450-700 nm, AC, SSA at 450, 550 and 700nm and the RRI at 532 nm) in this study. 
 
The LARGE TSI nephelometer and PSAP instruments operate under dry conditions. The only 
measurement provided at ambient conditions is the EC at 532nm. In this work, we need LARGE EC and 780 
SC at 450, 550 and 700nm at ambient conditions. To do that, we use the parameter “fRH550_RH20to80” 
at 550 nm provided by the LARGE f(RH) system (different from the TSI or PSAP instruments) and an 
exponential curve to obtain the impact of hygroscopic growth on the aerosol light scattering coefficient 
i.e., the scattering enhancement factor f(RH) at 450, 550 and 700 nm. Ambient SC at 550 nm, for example, 
is computed as the product of dry SC at 550 nm and f(RH) at 550nm. We filter out any values of LARGE 785 
dry SC at 450 nm ≤ 10 Mm-1 and LARGE ambient SSAC at 863 nm ≤ 0.7. 
 
DASH-SP provides measurements of RRIDASH-SP_dry, information on the particle hygroscopicity, 𝜅DASH-
SP_dry,	and	the	particle	diameter,	DpDASH-SP_dry,	in dry conditions. We compute DASH-SP RRI in ambient 
conditions, RRIDASH-SP_ambient, using RRIDASH-SP_dry, 𝜅DASH-SP_dry, and the ambient relative humidity and 790 
temperature measurements, RHHSKP and THSKP, provided by the	 AIMMS-20	 (Aircraft-Integrated 
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Meteorological Measurement System) or	3D-winds instruments. First, we vary the Growth	Factor,	GFvar,	
from	1.02	 to	 1.5	 by	 increments	 of	 0.01	 and	 compute	 the	 particle	 hygroscopicity,	 𝜅var,	 for	 given	
RHHSKP, THSKP and DpDASH-SP_dry measurements as follows: 
𝜅var = (GFvar 3 - 1) x (1-	𝜅a) / 𝜅a	 	 	 	 	 	 	 (Eq.	A.1.1a) 795 
Where: 

• 𝜅a = (RHHSKP  / 100%) / exp(Camb / ( GFvar x	DpDASH-SP_dry)) 
• Camb = (4 x ssa x Mw) / (R x THSKP x rw)  
• ssa = 0.0761-1.55 x 1e-4 x (THSKP -273);  
• Mw = 18.01528/1000 kg/mole 800 
• R = 8.3144598 
• rw = 1000 kg/m3 

 
We select	 the	 growth	 factor,	 GFvar, that provides	 the	 closest	 𝜅var	 value	 to	 the	 𝜅DASH-SP_dry	
measurement.	We	call	 this	growth	 factor	GFselect. Finally, we	compute	 the	ambient	RRI,	RRIDASH-805 
SP_ambient,	using	RRIDASH-SP_dry	and	GFselect obtained in the precious steps and equation 5 of Mallet et al. 
(2003) (based on Hänel (1976)) as follows:	
RRIDASH-SP_ambient = RRIw + (RRIDASH-SP_dry - RRIw) x (GFselect)-3     (Eq.	A.1.1b) 

Where	RRIw	=	1.33. Let us note that Aldhaif et al. (2018) demonstrate the limitations of using the 
volume-weighted mixing rule approach above, especially in the presence of OA.	810 
	
The PI-Neph provides measurements of dry phase function (P11) and the second element of the scattering 
phase matrix (P12) at three wavelengths over an angular range spanning >170°. These measurements are 
fed into the GRASP (Dubovik et al., 2014) algorithm to obtain retrieved values of spectral complex 
refractive index, a parameterized size distribution as well as derived optical properties like scattering 815 
coefficients. In this work we utilize these optical properties provided by PI-Neph in dry conditions: the 
SC at 532 nm, SCPI-Neph_dry, the dry size distribution, dNdlnrPI-Neph_dry and the Refractive Index, RIPI-Neph_dry. 
First, we compute the “target” ambient SC at 532 nm, SCPI-Neph_target, as the product of SCPI-Neph_dry and 
LARGE f(RH) measurements at 550nm. Second, we compute the ambient SC at 532 nm, SCPI-Neph_ambient, 
corresponding to each GFvar from 1 to 1.5 by increments of 0.01 using (i) a Mie code (Mishchenko et al., 820 
2002) and, as input to the Mie code, (ii) the ambient size distribution and corresponding radii, computed 
from dNdlnrPI-Neph_dry and GFvar, (iii) the ambient refractive index computed from RIPI-Neph_dry and GFvar 
(see Eq. A.1.1b) and  a prescribed geometric standard deviation (i.e., ~1.12, which results in similar 
computed and provided SCPI-Neph_dry values when using the same Mie code and initial parameters dNdlnrPI-

Neph_dry and RIPI-Neph_dry). Third, we select GFvar (we	call	this	growth	factor,	GFselect) and corresponding 825 
RRIPI-Neph_ambient that records the minimum difference between SCPI-Neph_ambient and SCPI-Neph_target. 
 
We compute ambient AMS and SP2 mass concentrations using the parameter “stdPT-to-
AMB_Conversion_AMS-60s” reported with the AMS data. SP2 BC standard concentration (referred to 
as “refractory black carbon”, and experimentally equivalent to elemental carbon at the 15% level (Petzold 830 
et al., 2013; Kondo et al., 2011; Perring et al., 2017)), originally in ng.m-3, is converted into µg.m-3 and 
scaled upwards, on a flight-by-flight basis, to represent the entire accumulation mode (on average by 
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1.14). The AMS sulfate, ammonium and nitrate are normalized to the sum of sulfate, ammonium, and 
nitrate. The AMS OA and SP2 BC are normalized to the sum of OA, BC, sulfate, ammonium, and nitrate. 
In the case of SAGA, bromide and chloride are set to zero if under the detection limit of 0.0107 and 835 
0.0391 µg.m3. In the case of PALMS, we use volume weighted products (Froyd et al., 2019). In this 
study, PALMS particle classes include mineral dust, sea salt, biomass burning, and sulfate-organic-nitrate 
mixtures (SON). The SON class was further refined into organic-rich, sulfate-rich, and nitrate-rich 
particle types, plus a remainder of SON particles that did not exhibit a dominant chemical sub-component. 
To define the Marine and Polluted Dust AMTs, PALMS composition was combined with aerosol size 840 
distribution data from LARGE to yield integrated volume fractions of mineral dust and sea-salt particle 
types from D=0.1-5 µm based on the method of Froyd et al. (2019). The average AMT chemical 
composition is determined as a raw number fraction of particles observed by PALMS. 
 

A.1.2 Method to Collocate Airborne Observations 845 

All the airborne observations are cloud screened using wing-mounted cloud probes. Table A1 defines 
three datasets used in this study with its associated number of data points, called AIRBO1, AIRBO2 and 
AIRBO3 and their combination, AIRBO. In all four datasets, the LARGE data is first collocated to 
housekeeping (HSKP) data (i.e., select same “start_utc” in seconds) and humidified/ filtered (see A.1.1).  
 850 
In the AIRBO1 dataset, we compute the mean HSKP and LARGE values in a ± 30 second range centered 
on each collocated AMS-PALMS-SP2 “start_time” (i.e., the 1 min “merged” file). We then record 
LARGE averaged values if (i) the average is made of at least 20 points and (ii) the standard deviation of 
the LARGE EAE is below 30%. In the AIRBO2 dataset, we compute the mean HSKP and LARGE values 
between each DASH-SP “start_utc” and “end_utc”. We record HSKP, humidified LARGE and DASH-855 
SP values if the following four parameters are below 30%: (i) the standard deviation of the LARGE EAE, 
(ii) the difference between 𝜅DASH-SP_dry and 𝜅var (Eq.	A.1.1a), (iii) the standard deviation of RHHSKP and 
(iv) the standard deviation of THSKP. In the AIRBO3 dataset, we compute the mean HSKP and LARGE 
values between each PI-Neph “start_utc” and “end_utc”. We record HSKP, humidified LARGE and PI-
Neph values if the following four parameters are below 30%: (i) the standard deviation of the LARGE 860 
EAE, (ii) the standard deviation on scatPI-Neph_dry , (iii) the standard deviation on LARGE f(RH), and the 
difference between PI-Neph SCPI-Neph_target and SCPI-Neph_ambient (see A.1.1). Finally, we collocate the 
HSKP-LARGE-DASH-SP (HSKP-LARGE-PI-Neph) to the AMS-PALMS-SP2 datasets in the case of 
AIRBO2 (AIRBO3). To do that, if there are multiple AMS-PALMS-SP2 data points between each HSKP-
LARGE-DASH-SP (HSKP-LARGE-PI-Neph) averaged time stamp, we average all AMS-PALMS-SP2 865 
data between the HSKP-LARGE-DASH-SP (HSKP-LARGE-PI-Neph) averaged time stamps. If there 
are no multiple AMS-PALMS-SP2 data points between the HSKP-LARGE-DASH-SP (HSKP-LARGE-
PI-Neph) averaged time stamps, we select the closest AMS-PALMS-SP2 data in time to the HSKP-
LARGE-DASH-SP (HSKP-LARGE-PI-Neph) averaged time stamps. The dataset in this study, AIRBO, 
was obtained by first, selecting common 1 min UTC time stamps from all 3 datasets, and then arbitrarily 870 
selecting, in order of priority when present, AIRBO2, AIRBO1 and AIRBO3. 
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Name Instrument Aerosol Optical Parameters Number of Points 
AIRBO1 LARGE EAE, SSA, dSSA, AC, AAE 871 
AIRBO2 LARGE, 

DASH-SP 
EAE, SSA, dSSA, AC, AAE, RRI 716 

AIRBO3 LARGE,  
PI-Neph 

EAE, SSA, dSSA, AC, AAE, RRI 176 

AIRBO  
(This study) 

LARGE, 
DASH-SP,  
PI-Neph 

EAE, SSA, dSSA, AC, AAE, RRI 781 

Table A1: Definition of three datasets (AIRBO1, AIRBO2, AIRBO3) and their combination, AIRBO 
(which is the dataset used in this study), the airborne instruments involved during SEAC4RS (see 
Table 1), the co-located parameters (see Table 2 for a definition of EAE, SSA, dSSA, AC, AAE, and 875 
RRI) and the number of data points showing valid aerosol optical properties and PS-AMT BBAg., 
BBWild., Bio. or PollDust. 
 

A.1.3 Method to Select Most Useful and Well Separated Aerosol Optical Properties 

This section explains the second step of Fig. 1 in more details. Figure A1 is a simplified example to 880 
illustrate our method. It shows only two optical parameters (i.e., SSA and EAE) and three hypothetical 
PS-AMTs (e.g., “pure” dust in red, marine in blue and BB in green) measured by one hypothetical optical 
instrument in two different environments (defined by different locations and times, Fig. A1 a-b vs. A1 c-
d). Fig A1 a-b shows a smaller hypothetical range of EAE and SSA for the BB PS-AMT (green cluster), 
compared to Fig. A1 c-d.  885 
To answer the question “how well are these PS-AMTs (i.e., red, blue and green clusters in either Fig. A1 
a or A1 c) separated?”, we (i) select each data point separately (e.g., yellow crosses on Fig A1 b and A1 
d), (ii) recompute each PS-AMT cluster with the data point excluded (i.e., different blue PS-AMT on A1 
b and green PS-AMT on A1 d compared to A1 a and A1 c) and calculate the Mahalanobis distance 
(Mahalanobis, 1936; Burton et al., 2012). The Mahalanobis distance is the distance between the data point 890 
in question (i.e., yellow crosses on Fig. A1 b or A1 d) and the position of each cluster center (i.e., red, 
blue, and green clusters on Fig. A1 b or A1 d), which depends on cluster center, tilt and width in a multi-
parameter space. These distances are called D1, D2 and D3 on either Fig. A1 b or A1 d. In the case of the 
yellow cross on Fig. A1 b, distance D1 is the smallest and the test point is reassigned to its original cluster. 
The test point is by consequence well separated from other clusters and “steady”. On the other hand, 895 
distance D1 is also the smallest on Fig. A1 d, which means the test point (yellow cross) on Fig. A1 d is 
not reassigned to its original cluster. The test point is by consequence not well separated from other 
clusters in this case and not “steady”. The “steady fraction” is the fraction of cases within each PS-AMT 
that are correctly identified. “Steady” fractions are used to assess separation between PS-AMTs. When 
including additional components (e.g., any other aerosol optical parameter from Table 2 in addition to 900 
SSA and EAE on Fig. A1), the additional number of “steady points” shows the component’s relative 
importance in separating the PS-AMTs. The yellow points that are “steady” on Figure A1 (i.e., correctly 
classified, or well separated) are used to define the most useful and well separated aerosol optical 
properties for each PS-AMT. 
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 905 
 

Figure A1: Conceptual/ hypothetical illustration of how we quantify separation between different 
air mass types, select the most useful and well separated aerosol optical parameters. It shows three 
hypothetical PS-AMTs (e.g., dust in red, marine in blue and BB in green) measured by one 
hypothetical optical instrument (Fig. A1 a-b) in one environment and another (Fig. A1 c-d). The 910 
EAE and SSA values in this illustration are based on AERONET observations (Russell et al, 2014) 
and are representative of typical “pure” dust, marine and BB total column remote sensing inferred 
ground based EAE and SSA values. Note that it only shows two dimensions even though some 
calculations of Mahalanobis Distances (e.g., D1, D2, D3) will be made using more dimensions in this 
study. 915 
 

A.2 Additional Information on Results 

A.2.1 Aerosol Optical Parameters classified by PS-AMT 

This section describes the ranges of the sixteen aerosol optical parameters (i.e., EAE, SSA, dSSA, AAE 
and AC at different combinations of 450, 550 and 700 nm and RRI at 532 nm from Table 2), classified 920 
by PS-AMTs in our study. 
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Figure A2: EAE (450-700nm, 450-550nm, 550-700nm) and AC (450, 550 and 700nm) per PS-AMTs. 925 
In each blue box, the red horizontal line indicates the median, and the bottom and top edges of the 
box indicate the 25th and 75th percentiles, respectively. The black whiskers extend to the most 
extreme data points not considered outliers, and the outliers are plotted individually using red 
points. Let us note that the LARGE EC measurements at 700 nm experienced issues during the 
latter half of SEAC4RS (Shinozuka et al., pers. comm.). AC: Absorption Coefficient, EAE: 930 
Extinction Angstrom Exponent. Numbers in the title correspond to the number of points behind 
each box-whisker for the respective BBAg., BBWild., Bio. and PollDust PS-AMTs. 
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 935 
Figure A3: SSA (450, 550 and 700nm) and AAE (450-700nm, 450-550nm, 550-700nm) per PS-
AMTs. In each blue box, the red horizontal line indicates the median, and the bottom and top edges 
of the box indicate the 25th and 75th percentiles, respectively. The black whiskers extend to the 
most extreme data points not considered outliers, and the outliers are plotted individually using red 
points. AAE: Absorption Angstrom Exponent, SSA: Single Scattering Albedo. Numbers in the title 940 
correspond to the number of points behind each box-whisker for the respective BBAg., BBWild., 
Bio. and PollDust PS-AMTs. 
 
 
 945 
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Figure A4: dSSA (700-450nm, 550-450nm, 700-550nm), RRI (from DASH-SP and PI-Neph), RRI 
from DASH-SP and RRI from PI-Neph at 532 nm per PS-AMTs. In each blue box, the red 
horizontal line indicates the median, and the bottom and top edges of the box indicate the 25th and 950 
75th percentiles, respectively. The black whiskers extend to the most extreme data points not 
considered outliers, and the outliers are plotted individually using red points. RRI: Real Refractive 
Index, dSSA: difference in Single Scattering Albedo. Numbers in the title correspond to the number 
of points behind each box-whisker for the respective BBAg., BBWild., Bio. and PollDust PS-AMTs. 
 955 
Note the slightly lower RRI values for DASH-SP, compared to PI-Neph (i.e., respectively 1.41 and 1.43 
at 532nm in Fig. A4) in the case of PollDust PS-AMTs. We explain this difference in RRI values by 
different PollDust PS-AMT Growth Factor (GF) values. We obtain GF through two methods: (1) the 
values directly measured by DASH-SP for particles in the size range 0.18 < Dpdry < 0.40 μm and (2) 
through an iterative procedure matching the output of a Mie code with dry PI-Neph retrievals and f(RH) 960 
measurements made by the LARGE group in parallel (see section A.1.1 for more details). We find a 
respective median PollDust PS-AMT GF value of ~1.3 and ~1.2 in the case of DASH-SP and PI-Neph, 
which we suggest is due to a smaller sampling size range for DASH-SP, compared to PI-Neph (see Table 
1).  
 965 
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A.2.2 Most Useful and Well Separated Aerosol Optical Properties – Sixteen Parameters 

This section describes the percentage of points unambiguously retrieved or “steady” (i.e., points that are 
well separated from other clusters and, hence, reassigned to their initial clusters) when using different 
combinations of respectively two and three out of sixteen aerosol optical parameters across all four 
principal PS-AMTs (i.e., provides more details to section 3.2).  970 
 

 
 
 
 975 
 
 
 
 
 980 
 
 
 
 
 985 
 
 
 
 
 990 
 
 
 

Figure A5: Percentage of “steady” points (i.e., fraction of cases of a given type that are correctly 
identified) in the upper panel when using different combinations of two aerosol optical parameters 995 
in the lower panel for each PS-AMT. The grey box and black points is a combination of optical 
parameters showing > 65% “steady” for PS-AMTs BBAg., BBWild., Bio.and PollDust. RRI: Real 
Refractive Index, AAE: Absorption Angstrom Exponent, AC: Absorption Coefficient, dSSA: 
difference in Single Scattering Albedo, SSA: Single Scattering Albedo, EAE: Extinction Angstrom 
Exponent. 1000 
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Fig. 

Figure A6: Percentage of “steady” points (i.e., fraction of cases of a given type that are correctly 
identified; see section 2.4 for more info) in the upper panel when using different combinations of 1005 
three aerosol optical parameters in the lower panel for each PS-AMT. Black points are 
combinations of optical parameters showing > 65% “steady points” for PS-AMTs BBAg., BBWild., 
Bio. and PollDust. RRI: Real Refractive Index, AAE: Absorption Angstrom Exponent, AC: 
Absorption Coefficient, dSSA: difference in Single Scattering Albedo, SSA: Single Scattering 
Albedo, EAE: Extinction Angstrom Exponent. Horizontal orange boxes show the selection of our 1010 
six aerosol optical parameters. Orange boxes show the six aerosol optical parameters that we have 
selected in this study. 
 

A.2.3 Composition of our Polluted Dust (PollDust) PS-AMT 

Fig. A7 shows a compositional picture of the PollDust PS-AMTs from PALMS. The accumulation mode 1015 
is a mixture of particle types, all of which contain sulfate and organic material. Coarse mode dust particles 
account for most of the aerosol volume, whereas a non-dust accumulation mode contributes most to the 
total number concentration of particles. 
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 1020 

 
 
Figure A7: PALMS particle classes are mapped to the total number (a) and volume (b) size 
distribution from LARGE based on the method of Froyd et al. (2019). Data include flight segments 
representative of the Polluted Dust PS-AMT. 1025 
 

Appendix B 

Abbreviations and acronyms 
 
3MI  Multi-viewing Multi-channel Multi-polarization imager 1030 
4STAR Spectrometers for Sky-Scanning Sun-Tracking Atmospheric Research 
AAC  Absorption Angstrom Coefficient 
AAE  Absorption Angstrom Exponent 
AAOD  Aerosol Absorption Optical Depth 
AC  Absorption Coefficient 1035 
ACCP  Aerosol, Cloud, Convection and Precipitation  
AERONET AErosol RObotic NETwork 
AIMMS-20	 Aircraft-Integrated Meteorological Measurement System 
Amm.  Ammonium 
AMS  Aerosol Mass Spectroscopy 1040 
AMT  Air Mass aerosol Types 
AOD  Aerosol Optical Depth 
APS  TSI Aerodynamic Particle Sizer 
BB  Biomass Burning Air Mass aerosol Types 
BBAg.  Biomass Burning Agricultural Air Mass aerosol Types 1045 
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BBWild. Biomass Burning Wildfire Air Mass aerosol Types 
BC  Black Carbon 
Bio.  Biogenic Air Mass aerosol Types  
Br.  Bromide 
C2O4  Oxalate 1050 
Ca.  Calcium 
CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization 
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 
CAMP2EX Clouds, Aerosol and Monsoon Processes-Philippines Experiment  
Cl  Chloride 1055 
CO  Carbon monoxide 
CTM  Chemical Transport Models 
DACOM Differential Absorption Carbon mOnoxide Monitor 
DASH-SP Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe 
DO-Class Defined Optical-based Classes 1060 
DO-AMTs Optical-based Air Mass aerosol Types 
Dp  particle	diameter	
dNdlnr  particle size distribution 
dSSA  difference in SSA at two wavelengths 
dSSAC difference in SSAC at two wavelengths 1065 
EAC  Extinction Angstrom Coefficient 
EAE  Extinction Angstrom Exponent 
EC  Extinction Coefficient 
EOS  Earth Observing System 
FIREX-AQ Fire Influence on Regional to Global Environments and Air Quality 1070 
GEOS-Chem Goddard Earth Observing System- model of atmospheric CHEMistry 
GF  Growth Factor 
GRASP Generalized Retrieval of Atmosphere and Surface Properties 
HARP2 Hyper-Angular Rainbow Polarimeter 
HSKP  Housekeeping dataset 1075 
K  potassium 
𝜅	 	 particle	hygroscopicity 
KORUS-AQ An International Cooperative Air Quality Field Study in Korea 
LARGE NASA Langley Aerosol Research group TSI nephelometer and Particle Soot Absorption 
Photometer (PSAP) instruments 1080 
Mg  Magnesium 
MODIS Moderate Resolution Imaging Spectroradiometer 
Na  Sodium 
Nit.  Nitrate 
NO2  Nitrogen dioxide 1085 
NOyO3  NOAA Nitrogen Oxides and Ozone 
OA  Organic Aerosol 
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PACE  NASA Plankton, Aerosol, Cloud, ocean Ecosystem 
PALMS Particle Analysis by Laser Mass Spectrometry 
PI-Neph Polarized Imaging Nephelometer 1090 
PM2.5   Particulate Matter concentration with an aerodynamic diameter smaller than 2.5 µm 
POLDER Polarization and Directionality of Earth’s Reflectances 
PollDust Polluted Dust Air Mass aerosol Types 
PS-AMTs Prescribed Source-based Air Mass aerosol Types 
PTR-MS high-temperature Proton-Transfer-Reaction Mass Spectrometer 1095 
RFari  Radiative Forcing due to aerosol-radiation interactions 
RH  Relative Humidity 
RI  complex Refractive Index 
RRI  Real part of the Refractive Index 
SAGA  Soluble Acidic Gases and Aerosol 1100 
SC  Scattering Coefficient 
SCMC  pre-Specified Clustering and Mahalanobis Classification method 
SEAC4RS Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by 
Regional Surveys 
SEUS  Southeastern US 1105 
SOA  Secondary Organic Aerosol 
SON  Sulfate-Organic-Nitrate 
SP2  NOAA Single Particle Soot Photometer 
SPEXone  Spectro-Polarimeter for Planetary Exploration orbital 
SSA  Single Scattering Albedo 1110 
SSAC  Single Scattering Albedo Coefficient 
Sul.  Sulfate  
T  Temperature 
TD-LIF Thermal Dissociation and Laser Induced Fluorescence 
US EPA United Stated (of America) Environmental Protection Agency 1115 
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