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Abstract.  

Biomass burning episodes measured at 14 stations of the European Aerosol Research Lidar Network (EARLINET) over 2008-

2017 were analysed using the methodology described in "Biomass burning events measured by lidars in EARLINET - Part 1: 

Data analysis methodology" (Adam et al., 2020, this issue). The smoke layers were identified in lidar optical properties profiles. 

A number of 795 layers for which we measured at least one intensive parameter was analysed. These layers were 35 

geographically distributed as follows: 399 layers observed in South-East Europe, 119 layers observed in South-West Europe, 

243 layers observed in North-East Europe, and 34 layers observed in Central Europe. The mean layer intensive parameters are 

discussed following two research directions: (I) the long-range transport of smoke particles from North America, and (II) the 
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smoke properties (fresh versus aged), separating the smoke events into four continental source regions (European, North 

American, African, Asian or a mixture of two), based on back trajectory analysis. The smoke detected in Central Europe 

(Cabauw, Leipzig, and Hohenpeißenberg) was mostly transported from North America (87% of fires). In North-East Europe 

(Belsk, Minsk, Warsaw) smoke advected mostly from Eastern Europe (Ukraine and Russia), but there was a significant 

contribution (31%) from North America. In South-West Europe (Barcelona, Evora, Granada) smoke originated mainly from 5 

the Iberian Peninsula and North Africa (while 9% were originating in North America). In the South-East Europe (Athens, 

Bucharest, Potenza, Sofia, Thessaloniki) the origin of the smoke was mostly local (only 3% represented North America smoke). 

The following features, correlated with the increased smoke travel time (corresponding to aging) were found: the colour ratio 

of the lidar ratio (i.e., the ratio of the lidar ratio at 532 nm to the lidar ratio at 355 nm) and the colour ratio of the backscatter 

Ångström exponent (i.e., the ratio of the backscatter-related Angstrom exponent for the pair 532 nm – 1064 nm to the one for 10 

the pair 355 nm – 532 nm) increase, while the extinction Ångström exponent and the colour ratio of the particle depolarization 

ratio (i.e., the ratio of the particle linear depolarization ratio at 532 nm to the particle depolarization ratio at 355 nm) decrease. 

The smoke originating from all continental regions can be characterized on average as aged smoke, with a very few exceptions. 

In general, the long range transported smoke shows higher lidar ratio and lower depolarization ratio compared to the local 

smoke. 15 

1 Introduction  

The biomass burning (BB) context was given in Adam et al., 2020 (Part 1, this ACP issue). Therein, the information on BB 

was reviewed, its importance and role on radiative transfer, air quality and human health, were highlighted, and an overview 

of the fire monitoring perspective was discussed.  

There is a direct link between climate change and forest wildfires. The European Union reports of fires occurrence over Europe 20 

(http://effis.jrc.ec.europa.eu/reports-and-publications/annual-fire-reports, last access 13 July 2021) indicate that the climate 

change induces an increase in the number of fires. Flannigan et al. (2000) modelled the climate change impact, demonstrating 

an increase of forest wildfire activity. Carvalho et al. (2011) modelled the impact of forest fires in a changing climate on air 

quality (a case study on Portugal) showing a strong impact on ozone and PM10 (particulate matter with size diameter below 

10 m). One of the current challenges is in evaluating accurately the role of BB in climate change. Besides the BB impacts on 25 

climate change, Keywood et al. (2013) describe the impacts of climate change on BB (e.g., fire severity, increase of fuel 

consumption). The authors state that, based on the BB impact on air pollution, climate, poverty, security, food supply and 

biodiversity, a more effective control of the fires is needed, along with continuous and improved monitoring.  

EARLINET (European Aerosol Research Lidar Network; https://www.earlinet.org/ last access: 10 July 2021; e.g., Pappalardo 

et al., 2014) provides high temporal and spatial resolution ground-based aerosol measurements, and represents a valuable tool 30 

for smoke monitoring. EARLINET is part of the Aerosol Cloud and Trace Gases Research Infrastructure (ACTRIS) 

(https://actris.eu, last access: 13 July 2021). There are numerous studies describing various BB events over Europe, most of 
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them focusing on the optical properties of either fresh/local aerosol (e.g. Balis et al., 2003; Alados‐Arboledas et al., 2011; 

Sicard et al., 2012; Nicolae et al., 2013; Stachlewska et al. 2017a,b; Osborne et al., 2019) or aged/long range transported 

aerosol (Wandinger et al., 2002; Mattis et al., 2003; Müller et al., 2005; Ancellet et al., 2016; Ortiz-Amezcua et al., 2017; 

Haarig et a., 2018; Stachlewska et al., 2018; Vaughan et al., 2018; Hu et al., 2019; Sicard et al., 2019, Baars et al., 2019).  

The aim of this study is to find specific features of the smoke originating from North America and investigate different 5 

continental origin of the smoke for each of the four considered geographical regions. The smoke origin is assessed by 

backtrajectory analyses and the FIRMS product. The analysis is made using intensive parameters (referred to as IPs), which 

are independent of the aerosol load and are solely aerosol type dependent. This paper presents the Part 2 of investigation of 

biomass burning episodes as measured by EARLINET, and it focuses on results interpretation. Part 1 (Adam et al, 2020) 

described in detail the methodology used to analyse lidar data. Nonetheless, a short overview of the methodology is given in 10 

Section 2. In Section 3, we analyse the results for the smoke originating in North America. In Section 4, we focus on results 

from four European geographical regions, with different continental smoke origin. In Section 5, we provide the summary and 

conclusions. A list of acronyms used in the current work is given in Appendix A. The location of the EARLINET stations 

along with the chosen geographical regions are given in Appendix B.  

2 Methodology 15 

The methodology steps are shown in Fig. S1 (Fig. 2 in Adam et al., 2020). The input for the analysis is the 

EARLINET/ACTRIS so-called backscatter (b) and extinction (e) files providing the vertical profiles of particle backscatter 

coefficient, particle extinction coefficient, and particle linear depolarization ratio (when available). In general, for most of the 

stations the range resolution of profiles is 3.75 m for backscatter coefficients and 60 m for extinction coefficients and the 

profiles are averages of 1 h (i.e., various resolutions were used by the stations; Adam et al., 2020). The files are allocated by 20 

the stations to the Forest Fire category in the EARLINET/ACTRIS database when an investigation at the station level 

highlighted the potential presence of smoke layer. The aerosol layer assignment is made manually by the EARLINET stations 

and it is typically made by means of investigation of intensive parameters (Ångström exponent, lidar ratios, linear particle 

depolarization ratio, etc), model outputs, backward trajectory analyses, and ancillary instruments data if available. Data are 

quality assured following the EARLINET Quality Check (QC) procedures. Most of the data used for this paper are the 25 

EARLINET data reported in Forest Fire category labelled as Level 2 data, where 2341 files out of 3589 files (input data) were 

compliant with all the QC v2.0, at the date of 23 April 2019 (Adam et al., 2020). 

Additional data check procedures were applied for the specific purposes and analysis, as described in detail Part 1, here recalled 

in short. i) For the analysis, a distinct peak in signal amplitude well above the SNR was considered as essential for a layer 

identification.  ii) For identifying the layer(s) affected by smoke a ten days backtrajectory was computed per each layer using 30 

the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT; Stein et al., 2015; Rolph et al., 2017). The 

meteorological model applied was the Global Data Assimilation System (GDAS), with 0.5 resolution. The identification of 
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the smoke layers was assessed based on the hypothesis of an existing fire within 100 km and  1 h from the location and time 

of the air mass, respectively. The location of the fires was provided by the Fire Information for Resource Management System 

(FIRMS) (https://firms.modaps.eosdis.nasa.gov/, last access: 13 July 2021) that uses satellite observations of the Moderate 

Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua and Terra satellites (Davies et al., 2009). In the current 

study, a fire was defined by a specific location (given by latitude and longitude) and a specific time. According to MODIS, 5 

latitude and longitude are the middle points of 1 km grid (centre of 1 km fire pixel) but not necessarily the actual location of 

the fire as one or more fires can be detected within the 1 km pixel. The uncertainties related with the Hysplit backtrajectories 

or the FIRMS database were not considered. iii) The layer’s mean optical properties were calculated only for sufficient signal 

to noise ratio (SNR  2) and the number of available data in the layer being  90% (Adam et al., 2020). The number of layers 

available after each criterion was presented therein (Table 2). iv) As a last step, outliers were removed from the data, i.e., the 10 

mean intensive parameters in the layers were discarded when outside the following boundaries: 20 sr ≤ LR@355 ≤ 150 sr, 20 

sr ≤ LR@532 ≤ 150 sr, -1 ≤ EAE ≤ 3, -1 ≤ BAE@355/532 ≤ 3, -1 ≤ BAE@532/1064 ≤ 3, 0 ≤ PDR@355 ≤ 0.3, and 0 ≤ 

PDR@355 ≤ 0.3. BAE represents the backscatter Ångström exponent and PDR represents the linear particle depolarization 

ratio (see Appendix A). As mentioned in Part 1, there was a low number of IPs removed (outliers) based on the above 

predefined ranges (3.7%). In general, the number of the optical properties analysed is lower than the number of layers due to 15 

the following reasons: a) profiles of some optical properties are not available, b) some profiles do not cover the entire altitude 

range, c) the mean values are calculated only if 90% of the data are available while the SNR  2. Thus, we analysed a number 

of 795 layers for which we identified at least one intensive parameter. 

The mean, median, minimum and maximum values of the intensive parameters for all of the stations providing at least one 

parameter (except Sofia station) are shown in Table 1. The number of available values for each variable is shown as well (# 20 

lines).  

In the current study, the smoke is considered fresh if LR@355 > LR@532 and EAE > 1.4 (Nicolae et al., 2013). Conversely, 

the smoke is considered aged when LR@532 > LR@355 and EAE < 1.4. LR denotes the lidar ratio and EAE the extinction 

Ångström exponent. These findings by Nicolae et al. (2013), based on lidar measurements were confirmed by measurements 

with an aerosol mass spectrometer which allowed to estimate the degree of oxidation in BB aerosol. The colour ratio CR 25 

(spectral ratio) is the ratio of an optical parameter or an intensive parameter at two wavelengths (Appendix A). Here we refer 

to the colour ratio for the following intensive parameters: LR, BAE and PDR. We investigate the values of the CRs and we 

expect that they can be associated with fresh or aged smoke (short versus long distance smoke transport) and further be a 

fingerprint of the smoke as compared with other types of aerosols. 

An event represents a series of BB measurements over a specific period of time. Thus, an event and a period are 30 

interchangeable. A measurement represents the data acquisition for a specific time, where the time is the average over 1 h. A 

measurement can contain one or more layers over the vertical profiles. 
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3 Biomass burning events originating in North America 

In total, 24 events (periods of measurements) of smoke originating in North America were identified, for which at least one 

intensive parameter was retrieved. The events occurred in 2009 and 2011 and during 2012–2017. Eight events represented 

measurements of smoke coming solely from North America (‘pure North America’), while the others represented ‘mixed’ 

smoke (mixture of North American and local smoke, i.e., fires were found along backtrajectory both in North America and 5 

locally). “Local smoke” refers to smoke originating in European locations, in general. In a few cases, the smoke came from 

North Africa or Middle East. The number of fires as well as the number of their detections (a fire can be detected more than 

once) are quantified. 

3.1. Statistics on smoke originating from North America 

There were 78 measurements over the 24 periods for which the backtrajectories of the layers met the criteria for North America 10 

origin, i.e., one period in 2009 and 2011, two periods in 2012 and 2014, three periods in 2015, and five periods in 2013, 2016 

and 2017. All these periods lasted one day, except for the period 810 July 2013. From those, 8 events (51 measurements) 

represent pure North America smoke and 16 events (27 measurements) represent mixed smoke. 

Figure 1 shows the intensive parameters and layers altitudes measured during the LRT of smoke from North America (smoke 

originating in North America is shown in black and mixed smoke in blue). At a first glance, there is no evidence of a systematic 15 

difference between the two categories. The mean (line), minimum and maximum (shaded areas) values from literature are 

displayed in red (for the variables displayed by ‘*’) and green (for the variables displayed by ‘o’) corresponding to the 

references presented in Table 2. Compared to the values found in the rather limited existing literature for smoke originating in 

North America and measured over Europe (only tropospheric measurements were considered), we noted several IP values 

(especially for BAE@355/532) that fall outside of the range reported. The large value for the mixed smoke EAE may be due 20 

to the contribution of the local, fresh smoke. At a closer look, the large ‘pure N America’ EAE value, recorded on 4 July 2013 

in Thessaloniki in a layer at ~ 3.6 km altitude, corresponds to air masses reaching ~ 9 – 11 km over the fires in North America. 

It is possible that the fires did not reach that altitude and thus the measurements for that layer may come from other sources. 

On the other hand, biomass burning particles can be found even in the lower stratosphere (e.g., Hu et al., 2019). The smallest 

EAE value (negative) may be due to dust contamination for a measurement performed in Granada on 19 August 2013 at 20:45 25 

UTC, when fires in Portugal and North America were found along the backtrajectory. We also observe that mean PDR values 

are in general smaller if compared to the mean over the values reported in literature. However, still within the extreme values 

for smoke originating in North America (see Fig. 1 and Table 2). The minimum value reported for PDR@355 was 0.010.001 

and for PDR@532 0.0230.003 (Janicka et al., 2019). An EAE extreme value of -0.3 was reported by Haarig et al. (2018) but 

for the stratospheric smoke.  30 

Overall, based on the mean values, we observed for North America fire particles advected over Europe a moderate absorption 

at 355 nm and a high absorption at 532 nm (CRLR > 1), with low depolarization at both wavelengths, relatively large EAE 
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(apart from 2 isolated cases) - indication of small particles, slightly larger BAE@355/532 than BAE@532/1064. CRLR and 

EAE suggest the presence of aged particles, while BAE shows more backscatter for smaller wavelengths indicating small 

particles. 

4 Analyses of biomass burning over geographical regions 

A few studies are available on BB where the analysis is performed by examining different European regions by ground-based 5 

lidars. Baars et al. (2019) discuss the stratospheric smoke originating from Canada measured over different regions in Europe. 

The authors studied the event over six months and information about the change in optical depth, extinction, depolarization as 

well as the estimation of the mass concentration and ice nucleating particles are provided. Sicard et al. (2019) discuss the LRT 

of smoke plumes as measured over the Iberian Peninsula by means of ground/space, passive/active remote sensing and 

modelling. Observations and dispersion modelling altogether suggest that the particle depolarization properties are enhanced 10 

during their vertical transport from the mid to the upper troposphere. Ortiz-Amezcua et al. (2017) discuss the microphysical 

properties of the LRT smoke from North America over three lidar stations in Europe (Granada, Leipzig and Warsaw). It was 

shown that the layers accounted for ~ 40%, 30% and 70% of the total AOD for the three stations, respectively. Colour ratio of 

lidar ratios was around 2 while EAE was < 1. 

The locations of the fires which produced the smoke layers detected by the stations located in South-East, South-West, North-15 

East and Central Europe, and their histogram are shown in Figs. S2. For a straightforward comparison, we reproduce the figure 

for the South-East region from Part 1. Note that the grid size is 1°×1° (longitude×latitude).  

For the South-East region, we distinguished a number of 321 fires located in North America (4.3%) and 7127 elsewhere, most 

of them located in East Europe. Most of the fires were located over [20°E 30°E] and [37°N 46°N], which corresponds to the 

Balkan region, covering parts of Romania, Bulgaria, North Macedonia, and Greece. Most of the measurements were taken at 20 

Bucharest, Athens and Thessaloniki stations.  

For the South-West region, we identified a number of 197 fires in North America (8.7%) and 2066 elsewhere, most of the 

latter being located in the Iberian Peninsula and North Africa. Most of the fires occurred in the region [0° 10°W] x [35°N 

43°N] that corresponds mostly to the Iberian Peninsula. Other fires were located over [0° 20°E] x [30°N 40°N], corresponding 

to North Africa (mostly North Algeria) and Sicily in South Italy. Most of the measurements were taken at Granada station. 25 

For the Central Europe region, we have found 1420 fires originating in North America (86.9 %) and 214 elsewhere, most of 

the latter located in East Europe. Most of the fires occurred over [80°W 75°W] x [51°N 53°N] region, which corresponds to 

North America (East Canada). Most of the measurements in Cabauw station were performed over the LRT of smoke from 

North America, contributing to the histogram peak indicating North American locations. The stations of Hohenpeißenberg and 

Leipzig contained a ~24 % and ~79 % LRT of smoke from North America, but their number of measurements is much smaller 30 

than that of the Cabauw. 
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For the North-East region, 2761 of fires identified were located in North America (30.7 %), and 6228 elsewhere, most of the 

latter being located in East Europe (Ukraine and West Russia). Two peaks of the histogram indicate locations from North 

America ([75°W 78°W] x [51°N 53°N] and 95°W x [57°N 59°N]), which correspond to measurements taken at Belsk and 

Warsaw stations. Most of the measurements in East Europe belong to the grids delimited by [20°E 40°E] x [46°N 53°N] 

(mostly in Ukraine). 5 

In summary, the main fire sources are located in: East Europe (especially Ukraine and West Russia), South Europe (Iberian 

Peninsula, Italy, Balkan region) and North America. Wildfires in the West Russian regions and Ukraine occur each year from 

March to October. Events of small particles transport, in the boundary layer, from these regions to the North-West Europe 

(Belarus, Poland, Germany, Nordic countries and European Arctic) are regularly recorded (Lund Myhre et al., 2007). Such 

transport of biomass burning aerosol can be extremely fast and affect relative humidity within the boundary layer (Stachlewska 10 

et al., 2017b). Transport of such particles to Arctic regions is contributing to arctic haze by significantly alternating the arctic 

aerosol properties (Stachlewska and Ritter, 2010), and thus contributing to Arctic warming. 

The histogram of the backtrajectories (Figs. S3) revealed some preferential air circulation patterns for three of the regions 

(Central, South-West and North-East), with one common pattern being the circulation over the Atlantic. For the South-West 

region, we identified a vortex type circulation over North Africa as the main air pathway. For the North-East region we 15 

observed other patterns as well: a circulation from Iberian Peninsula, a circulation from East Europe (Caspian Sea), and a 

circulation over North Europe (Scandinavian Peninsula and West Russia). 

4.1. Intensive parameters by geographical regions 

A statistical investigation of the intensive parameters was performed, based on the continental fire source origin. As mentioned 

in Part 1, the following continental source origins were considered: Europe (EU), Africa (AF), Asia (AS), North America 20 

(NA), and combinations of two or more (e.g., EUAF=EU+AF, etc). The statistical analysis was performed over all of the 

available cases, despite their low number.  Thus, we label the series with less than five cases as low statistics, and thus the 

results are just indicative and it is not safe to draw any conclusion. We reproduce here the results for South-East for a 

straightforward comparison with the other three regions. To thoroughly assess the smoke type, the scatter plots of EAE and 

CRLR are used. 25 

Assuming that the aerosol size for the smoke layers is not significantly changing (e.g., Papanikolaou et al., 2020, for 532 nm), 

the LR is an indication for the absorption capacity of the particles and thus, the following description of the absorption (based 

on the values of the LR) can be further used: low absorption for LR < 40 sr, medium absorption for 40 sr < LR < 60 sr, high 

absorption for 60 sr < LR < 80 sr and very high absorption for LR > 80 sr.  

4.1.1. South-East region 30 

The mean values of the IPs in South-East region are shown in Fig. 2. One can observe the largest number for EU source region 

for all IPs. As for the other source regions we have low statistics. The mean LR values are between 40-60 sr (medium 
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absorption) except the larger values at LR@355 for the AS source region and LR@532 for the NA source region (low 

statistics). LR@355 is larger than LR@532 for EUAF and EUNA indicates fresh smoke and can be explained by a larger 

contribution to the mixed smoke from EU region. The mean value for EAE for the EU source region is 1.4 which suggests a 

mixture of fresh and aged smoke. Based on low statistics, we observe an increase of EAE from EUAF source region to EUAS 

and EUNA source regions which corresponds to aged, fresh/aged and fresh smoke. Thus, the contribution of the local smoke 5 

in the mixed smoke is larger for EUNA. Similar values for LR and EAE for EU and EUAS suggest the larger contribution to 

the smoke from EU region. BAE values are similar for all source regions while BAE@355/532 > BAE@532/1064 for EU, AF 

and EUNA source regions. The PDR values are similar (except EU source regions, the others are just indicative). The scatter 

plots between various IPs do not show specific trends. Those plots are available in Supplement (Fig. S4.1). 

4.1.2. North-East region 10 

The mean values for the IPs are shown in Fig. 3. The majority of the events were recorded for the EU source region. LR@532 

is slightly larger than LR@355 for EU source region, around 75sr. Based on low statistics, the two LR values for other source 

regions tend to be different. EAE ~1.4 is obtained for the EU source region which suggests a mixture of fresh and aged smoke. 

It would be worth investigating further in the future to see if the decrease of EAE from EUAF towards EUAS and EUNA 

holds, based on different local contribution to the mixed smoke. BAE values are similar, except for AS (low statistics), where 15 

are larger. BAE@355/532 is larger than BAE@532/1064 for all source regions, which denotes more backscatter at 355 nm. 

The similarity between NA and EUNA source regions suggests a major contribution from NA to the EUNA mixture. 

PDR@532 is larger than PDR@355, except for EUNA source region. As expected, the scatter plots between various IPs show 

a linear regression between the two PDR and between the two BAE (Figs. S4.2). Large values of LR for EU suggest more 

absorption, if compared to the South-East region. 20 

4.1.3. South-West region 

The mean values for the IPs for South West region are shown in Fig. 4. LR values are similar, slightly larger for EUNA. 

LR@355 is larger than LR@532 for EU and AF (low statistics) source regions. A few values available for EAE indicate aged 

smoke. Small EAE values for EUAF and EUNA (low statistics) indicate large contribution from Africa and North America, 

respectively. Large, similar values are observed for BAE for NA and EUNA source regions, suggesting that the contribution 25 

to EUNA is more from North America. Smaller values are observed for EUAF source region. BAE@355/532 is larger than 

BAE@532/1064 for all but AF source region. Based on scatter plots (Figs. S4.3), we observe a direct proportionality between 

the two BAEs (observed also for North-East region). 

4.1.4. Central region 

The mean values for the IPs in the Central region are shown in Fig. 5. The number of IPs is very small and thus, the observations 30 

are not statistically significant, although there seems to be a tendency towards low absorption (LR ~40 sr). EAE for EU source 
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region suggests fresh smoke, while the two values for NA indicate aged smoke. The large value for EAE for EUAF region 

needs to be investigated (e.g., if the contribution of the local fires is predominant). BAE values are similar for the two source 

regions (EU and NA). Due to the small number of values, the scatter plots are not statistically significant (Figs. S4.4). Average 

values were performed for EU source region. For the scatter plot between the two BAEs, a mean value from NA source region 

was also available.  5 

4.2 Statistical analysis over all regions 

We perform the analysis based on the mean IP values as a function of continental source region. We consider analysing the 

scatter plots between the different CRs and EAE, where, for each scatter plot, the mean values correspond to the same 

measurements. Still, different scatter plots can refer to slightly different sets of measurements. 

As a general statement, we consider that the cases where we have only one or two measurements are not statistically significant, 10 

a good confidence is considered when at least five measurements are available. Therefore, the results discussed below should 

be carefully treated in such situations. 

4.2.1 Observations based on scatter plots 

The general observations based on the scatter plots between CR or EAE are shown in Fig. 6. Each point on the graph represents 

the average for one measurement region (South-East, South-West, Central and North-East Europe) and one continental source 15 

(EU, AF, AS, NA, EUAF, EUAS, EUNA). All available data are averaged. We added for comparison the mean values (red 

circles, Fig. 6) found in literature (Table S1, Part 1). For the North-East region, the PDRs provided by the Warsaw station 

allowed a complete comparison. For a better visualization of the mean CR (Fig. 6) and the corresponding IPs, in Fig. 7 are 

shown the CR and IP values versus continental source regions (i.e., the panels a–f of Fig. 7 corresponds to the a–f scatter plots 

of Fig. 6). The right-hand side axis shows the number of available measurements for the scatter plots. The black line represents 20 

the number of five cases. 

For increasing CRPDR we found an increase of the EAE (Fig. 6b), while the CRLR decreases (Fig. 6c). Based on panel b), we 

observe that except the case with low EAE (<0.5) and CRPDR<1 which indicates aged particles and larger depolarization at 355 

nm, the depolarization at 532nm can be higher for either fresh or aged smoke. The dataset is not statistically significant, but 

increased number of samples in future studies is expected to reveal the statistical significance of this correlation. A slight 25 

decrease of the CRPDR with smoke travel time was observed (see lower values for EUNA, NA, AS and EUAS), while the 

CRBAE maintained similar values for all the source regions. An increase of EAE versus decreasing CRLR (Fig. 6d), evident 

especially for the North-East region (Fig. 7d), was reported also by Samaras et al. (2015) and Janicka et al. (2019). 

No clear relationship between CRBAE and CRLR (Fig. 6e), CRBAE and EAE (Fig. 6f) and CRBAE and CRPDR (Fig. 6a) was found. 

Veselovskii et al. (2015) showed that the relationship between EAE and BAE is not straightforward, pointing out that while 30 

EAE depends mainly on the particle size, BAE depends on both particle size and complex refractive index. The relationship 

between BAE and EAE was analysed from the relative humidity (RH) perspective by Su et al. (2008) and Wang et al. (2019). 
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They showed that the relationship of BAE and EAE depends on the RH values and, thus, one can find correlated and anti-

correlated behaviours. However, the RH influence is out of the scope of this study. Still, we made use of RH values for an 

individual case shown below. 

As seen in Fig. 7, different features are observed for different measurement regions. Based on the EAE–CRBAE scatter plot 

(Fig. 6f), Fig. 7f indicates for the source regions EUAF, EUAS and EUNA the following. For the North-East region, EAE 5 

decreases (from EUAF towards EUAS and EUNA), while both BAE increase, but CRBAE is similar. For the South-West region, 

EAE and both BAE increase from EUAF to EUNA source regions, while CRBAE is similar. For the South-East region, EAE 

increases, while no signature is found for BAE and CRBAE. The Central region provides data for the EU and NA source regions. 

Here, EAE, both BAE and CRBAE decrease from EU to NA source regions. Considering the findings of Veselovskii et al. 

(2015), we conclude that, for the Central region, the fine particle mode is predominant for the EU source region (as compared 10 

with the NA source region), result which is expected. For the South-East region we find a larger amount of fine particles for 

EUNA source region as compared to EUAS and EUAF source regions. This implies a large contribution of the EU source 

region to the mixture. For the North-East measurement region, we also find an increase for BAE@355/532, while based on 

the LR and CRLR values, the absorption at 532 nm increases from EUAF towards EUAS and EUNA.  

4.2.2 Continental source regions 15 

Based on the results shown in Figs. 6 and 7, one can assess how distinct are the characteristics of the smoke coming from 

various continental source regions as observed in different geographical regions. The mean values are shown in Table 3 for 

each of the d)–f) scatter plots presented in Fig. 6. The smoke type (fresh versus aged) is assessed based on the values of the 

CRLR and EAE. Information on the smoke absorption and depolarization ratio (where available) is provided. There is no clear 

relationship between CRBAE and EAE or CRLR (see Fig. 6d–f), while a slight decrease of EAE with increasing CRLR is captured. 20 

The highlighted values in Table 3 show the occurrences with low statistics and thus, more corroborated results are needed in 

the future to draw unambiguous conclusions. 

Except for one isolated case, we obtained positive values for BAE (and CRBAE), which indicates more backscattering towards 

smaller wavelengths, and low depolarization ratios (all PDR < 0.1). Except for two extremes (-1.6 and 3.2), all CRBAE values 

range between 0.18 and 1.6. The CRPDR (available for the North-East region only) has the largest value for the EUAF source 25 

region, followed by EU and EUAS. The lowest CRPDR and EAE values were found for the EUNA source region, characterized 

also by the highest CRLR (aged smoke; less depolarizing and more absorbing at 532 nm). The high EAE values of the smoke 

mixtures are likely due to the large EU contribution (EAE value for the North-East region with EUAF origin is 1.46, for the 

South-East region with EUAS origin is 1.5, and for the South-East region with EUNA origin is 1.9). Table 4 summarizes the 

key observations over BB layers according to its source and measurement region.  30 

The main features are the following. In the South-East region generally aged smoke with the EU source was measured. For 

the other source regions (low statistics), the smoke was labelled as aged for NA and EUAF regions, a mixture of fresh and 

aged smoke from the EUAS source region and fresh smoke from EUNA source region. For the mixed source regions (EUAF, 
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EUAS and EUNA), the contribution of the local (EU) determine if the smoke type was fresh or aged. The EU source region 

provided medium absorbing particles. The other values are indicative (low statistics). The smoke from EUAS and EUNA show 

medium absorption (as for EU) suggesting the influence of EU smoke contribution. However, the particles size is slightly 

smaller, based on EAE values. The smoke from AF and NA indicates lower absorption at 355nm. High absorption is observed 

for EUAF source region and it does not resemble either EU or AF regions.  5 

In the South-West region (low statistics except EUAF), aged and highly absorbing smoke particles from all source regions 

were measured. For the EU and AF source regions (which have similar EAE and LR values), we assume aged smoke, based 

on the high RH (where CRLR < 1 and EAE ~ 1).  

In the Central region (low statistics), aged smoke from EU and NA source regions was measured, displaying a low absorption 

for the EU source region and higher backscatter values at 1064 nm for the NA source region. More corroborative measurements 10 

are needed to draw solid conclusions. 

The North-East region displayed mixed fresh and aged smoke from the EU source region (highly absorbing). For the other 

regions, the few values are only indicative. For EUAF source region, we measured fresh smoke (probably due to EU 

contributions) with less absorption at 532nm. The smoke from EUAS and EUNA was labelled as aged, showing very high 

absorption at 532nm. 15 

 Higher/lower depolarization at 355/532 nm was observed for the LRT of smoke from North America (as for the North-East 

region). Based on a single continental source, in all regions, aged smoke was measured, except the North-East with a mixture 

of fresh and aged smoke from the EU source region. Based on two continental sources (mixtures), the regions measure either 

aged, fresh or mixed (aged and fresh) smoke, depending on the lower or higher contribution of the local source. 

5 Summary and conclusions 20 

The present study shows results based on the biomass burning events as measured by EARLINET over the 2008–2017 period, 

according to a methodology described in Part 1 (Adam et al., 2020). The aerosol layers were labelled as smoke based on a 

combined analysis of Hysplit backtrajectories and the FIRMS fire locations. The smoke was further labelled as ‘mixed’ if 

multiple fire sources contributed to the smoke measurement. For the smoke originating in North America, the smoke was 

labelled as ‘pure North America’ or ‘mixed’ (with contribution from fires in Europe). We demonstrated that in most of the 25 

cases the smoke was mixed and the quantification (based on number of fires and detections) of the contributing fires to the 

mixture explains the wide range of values obtained for the intensive parameters. 

The statistics over all LRT events from North America revealed no significant difference between the measurements where 

the smoke was originating solely from North America and the measurements with mixed smoke (having origin in both North 

America and local). This suggests that the contribution of the local smoke is not significant. Based on the LR values, a moderate 30 

absorption at 355 nm (46 sr) and a high absorption at 532 nm (66 sr) were observed. The mean CRLR and EAE suggest aged 
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smoke, while the PDR values indicate a low depolarization and the BAE reveal higher backscatter values at smaller 

wavelengths. 

The statistical analysis of the smoke properties (fresh versus aged and absorption capability) in four European regions (Central, 

North-East, South-West and South-East Europe) separating the smoke events into continental source regions (European, North 

American, African, Asian or a mixture of European with each of the remaining), based on trajectory analysis revealed the 5 

following. The smoke detected in Central Europe (Cabauw, Leipzig, and Hohenpeißenberg) was mostly brought form North 

America (87% of fires). In North-East Europe (Belsk, Minsk, Warsaw), the smoke was advected mostly from Eastern Europe 

(Ukraine and Russia) but there was a significant contribution (31%) of smoke from North America. In South-West Europe 

(Barcelona, Evora, Granada) smoke originated mainly in Iberian Peninsula and North Africa, (while 9% was originating in 

North America. In South-East Europe (Athens, Bucharest, Potenza, Sofia, Thessaloniki) the origin of the smoke was mostly 10 

local (only 3% of smoke from North America.  

For each region, the IPs were analysed based on their continental source origin.  

The analysis of the scatter plots revealed correlated with the increase of smoke travel time (corresponding to aging), CRLR and 

CRBAE increase while EAE and CRPDR decrease. These tendences, associated with the smoke characteristics, can be further 

used when analysing various types of aerosols and thus helping identifying the smoke among other aerosol types. The 15 

variability of the mean values / standard deviation (STD) was large in general and, thus, the individual values for different 

source regions overlap. Based on data from Warsaw (North-East region), the depolarization at 532 nm decreases for LRT 

smoke from North America (while CRPDR < 1).  

Smoke was found to be aged in all measurement regions (except North-East) if there is no mixture among different fires. On 

the contrary, when the origin of the smoke has two continental sources, either aged, fresh or a mixture of aged and fresh smoke 20 

can be measured, depending on the smaller or higher contribution of the European (local) sources. Thus, in the South-East 

measurement region, fresh smoke from the EUNA source region and a mixture of fresh and aged smoke originating from the 

EUAS was measured. In the North-East, region fresh smoke originating from EUAF was measured. 

For the South-West region with European or African source regions we obtained a CRLR of 0.8 and an EAE of 1. We assumed 

that the smoke measured was aged based on the high RH (in agreement with Veselovskii et al., 2020). The lowest absorption 25 

was determined for the Central region (LRs < 36 sr). The South-West region displayed a highly absorbing smoke (61 sr < 

LR@355 < 79 sr and 64 < LR@532 < 91 sr). The South-East region displayed smoke with a medium/high absorption at 532 

nm (50–72 sr) and a low/medium absorption at 355 nm (31–48 sr). The smoke measured in the North-East region has a medium 

to very high absorption at 532 nm (57–91 sr) and a medium to high absorption at 355 nm (46–78 sr).  

The quite diverse absorption was determined for the different measurement’s regions, even for smoke from the same 30 

continental source region, which may be related, among others, with different RH conditions (e.g., Veselovskii et al, 2020).  

In line with previous studies, we showed that BAE and further CRBAE do not show specific values based on sources and no 

trends, and thus, they cannot be used to identify the smoke type. In order to easily quantify the smoke type, LR (CRLR) and 

EAE are essential. The aerosol typing algorithm developed by Papagiannopoulos et al. (2018) based on 3 backscatter and 2 
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extinction input provides one category for smoke. NATALI (Nicolae et al, 2018) distinguishes between smoke, continental 

smoke and mixed smoke if depolarization data are available additionally. Based on the implementation of ACTRIS Research 

Infrastructure in the next few years, the presented methodology will be applied on a larger dataset (more automatic lidar 

systems expected) providing a more complete (3 backscatter + 2 extinction + 1-3 depolarization) datasets with enhanced 

quality control procedures. 5 

The present methodology shows new approaches for smoke characterization (smoke type along with information on absorption 

and depolarization in the context of different continental sources) and provides valuable information for various scientific 

communities (modelling, satellite).. The analysis reported in the paper shows the potentialities of the used approach for 

identifying specific features of smoke particles in different geographical regions and for long range transported cases. The 

obtained results will be corroborated by the increasing number of aerosol profiling data coming into the EARLINET database 10 

thanks to the implementation of ACTRIS (Aerosol Clouds Trace Gases Research Infrastructure). This process is currently 

reducing the time delay in data provision, improving the quality of data products and increasing also the number of multi 

wavelength lidar systems over Europe. This extension of the observations will allow in the near future to increase the statistics 

of the result obtained with the approach here presented.  

For further investigations we envisage a more detailed analysis on grouping the sources’ locations using cluster analysis, where 15 

a larger number of clusters should be chosen to identify more homogeneous regions with similar vegetation type. Thus, a more 

accurate correlation between the source type and the measurements is envisaged. Moreover, the smoke time travel will be 

integrated. The challenge that remains is the quantification of the contribution of different fires in the mixed smoke (besides 

their number and detections). EartCARE future mission could provide this kind of information about the smoke coverage and 

transport (https://earth.esa.int/eogateway/missions/earthcare, last access 19 July 2021). 20 
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Appendix A 

Table A1. List of acronyms 

Nomenclature Definition  

ACTRIS Aerosol Cloud and Trace Gases Research Infrastructure 

a.g.l. Above ground level 

a.s.l. Above sea level 

“atz”, “brc”, “cog”, “ino”, 
“cbw”, “evo”, “gra”, “lei”, 
“mas”, “hpb”, “pot”, “sof”, 
“the”, “waw” 

Athens, Barcelona, Belsk, Bucharest, Cabauw, Evora, Granada, Leipzig, Minsk, Hohenpeißenberg, 
Potenza, Sofia, Thessaloniki and Warsaw  

(lidar stations considered in this study)  

BAE Backscatter Ångström exponent. BAE@355/532=-log(p355/p532)/log(355/532),          
BAE@355/532=-log(p532/p1064)/log(532/1064) 

BB Biomass burning 

p Particle backscatter coefficient [1/m/sr] 

CR(s) Colour ratio(s). CRLR=LR@532/LR@355, CRBAE=BAE@532/1064/BAE@355/532, 
CRPDR=PDR@532/PDR@355 

EAE Extinction Ångström exponent. EAE@355/532=-log(p355/p532)/log(355/532) 

EARLINET European Aerosol Research Lidar Network 

EU, AF, NA, AS Europe, Africa, North America, Asia continental source regions 

EUAF, EUNA, EUAS Europe + Africa, Europe + North America, Europe + Asia continental source regions 

FIRMS Fire Information for Resource Management System 

FRP Fire radiative power 

GDAS Global Data Assimilation System 

HYSPLIT Hybrid Single-Particle Lagrangian Integrated Trajectory model 

IP(s) Intensive parameter(s) 

p Particle extinction coefficient [1/m] 

LR Lidar ratio [sr]. LR@355=p355/p355, LR@532=p532/p532 

LRT Long range transport 

MODIS Moderate Resolution Imaging Spectroradiometer 

PDR Linear particle depolarization ratio 

QC Quality control 

SCC Single Calculus Chain. See D’Amico et al., EARLINET Single Calculus Chain – overview on 
methodology and strategy, Atmos. Meas. Tech., 8, 4891–4916, doi:10.5194/amt-8-4891-2015, 2015. 

SE, SW, CE and NE Southeast, Southwest, Central and Northeast Europe (geographical measurement regions) 

SNR Signal to noise ratio. It is defined as the ratio of the signal to its uncertainty. 

STD Standard deviation 
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Appendix B 

 

Figure B1. The geographical location of the 14 stations providing data for Forest Fire category in EARLINET database over 2008-
2017 period. The stations are located in Athens (“atz”), Barcelona (“brc”), Belsk (“cog”), Bucharest (“ino”), Cabauw (“cbw”), Evora 
(“evo”), Granada (“gra”), Leipzig (“lei”), Minsk (“mas”), Hohenpeissenberg (“hpb”), Potenza (“pot”), Sofia (“sof”), Thessaloniki 5 
(“the”) and Warsaw (“waw”). The blue circles show the four European geographical regions: South-East (SE), South-West (SW), 
North-East (NE) and Central (CE). 

Table B1. Geographical coordinates for the lidar stations (https://www.earlinet.org/index.php?id=105, last access 19 August 2021) 

               Coordinates  

Station (“code”) 

Latitude Longitude Altitude [m] link 

Athens (“atz”) 37.9600 N 23.7800 E 212 http://www.physics.ntua.gr/~papayannis/ 

Barcelona (“brc”) 41.3930 N 2.1200 E 115 http://www.tsc.upc.edu/rslab/ 

Belsk (“cog”) 51.8300 N 20.7800 E 180 http://www.igf.edu.pl/ 

Bucharest (“ino”) 44.3480 N 26.0290 E 93 http://www.inoe.ro/en/ 

Cabauw (“cbw”) 51.9700 N 4.9300 E 0 http://projects.knmi.nl/earlinet/ 

Evora (“evo”) 38.5678 N 7.9115 W 293 http://www.icterra.pt/g1/ 

Granada (“gra”) 37.1640 N 3.6050 W 680 http://www.iista.es/ 

Leipzig (“lei”) 51.3500 N 12.4330 E 125 http://www.tropos.de/en/ 

Minsk (“mas”) 53.9170 N 27.6050 E 200 http://ifan.basnet.by/ 
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Hohenpeissenberg 

(“hpb”) 

47.8019 N 11.0119 E 974 http://www.dwd.de/EN/research/observing_atmospher

e/composition_atmosphere/hohenpeissenberg/start_mo

hp_node.html 

Potenza (“pot”) 40.6000 N 15.7200 E 760 https://www.imaa.cnr.it/ 

Sofia (“sof”) 42.6500 N 23.3800 E 550 http://www.ie-bas.org/ie_Eng.htm 

Thessaloniki (“the”) 40.6300 N 22.9500 E 50 http://lap.physics.auth.gr/ 

Warsaw (“waw”) 52.2100 N 20.9800 E 112 https://www.igf.fuw.edu.pl/en/instruments/laboratoriu

m-pomiarow-zdalnych-e91845-7230/ 
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Figure 1. All of the 78 measurements recorded during LRT smoke from North America. Measurements are divided into North 
America origin (‘pure NA’ - black) and ‘mixed’ (North America and local - blue) origin. There are 27 measurements of mixed smoke. 
Along with the intensive parameters, the layers mean altitude and thickness (marked as error bar) are shown in the upper plot. 5 
Mean values from literature are shown with red (for * values) and green (for o values) lines while the shaded areas delineate the 
minimum and maximum values. ‘pure NA’ stands for ‘pure North America’. Symbols (* and o) are shown in panels title. 
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  3.4 

 

Figure 2. The mean and standard deviation of the intensive parameters for the South-East (SE) region. The right axis shows the 
number of available values for each IP. The horizontal line represents 5 cases. The number of cases below this threshold are 5 
considered low statistics.   
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Figure 3. The mean and standard deviation of the intensive parameters for the North-East (NE) region. The right axis shows the 
number of available values for each IP. 
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Figure 4. The mean and standard deviation of the intensive parameters for the South-West (SW) region. The right axis shows the 
number of available values for each IP. 
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Figure 5. The mean and standard deviation of the intensive parameters for the Central Europe (CE) region. The right axis shows 
the number of available values for each IP. 
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Figure 6. Scatter plots between (a) CRBAE and CRPDR, (b) EAE and CRPDR, (c) CRLR and CRPDR, (d) EAE and CRLR, (e) CRBAE and 
CRLR, and (f) CRBAE and EAE. The mean values found in literature are shown in red circles. a)-c) plots are obtained only for the 
North-East (NE) region where two PDR values are available (Warsaw).  
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Figure 7. Intensive parameters and corresponding colour ratio (CR) versus smoke source origin. Plots a)–f) correspond to plots a)–
f) in Fig. 6.  
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Table 1. Main features (mean, median, minimum, maximum values and associated uncertainties) of the intensive parameters. 

 1 355/532; 2 532/1064; 3 number of total values for a specific parameter. Mean values are highlighted. See stations’ acronyms in 
Appendix A. 

    atz brc cog ino cbw evo gra lei mas hpb pot the waw 

L
R

35
5 

 

#3 83 0 0 52 9 0 19 0 0 2 3 20 71 
Mean 472     512 353   652     331 481 360.4 732 
Med 423     521 371   611     331 511 320.5 741 
Min  201     251 241   311     321 431 211 301 
Max 1266     9011 441   867     331 511 651 1282 

L
R

53
2 

#3 54 0 0 34 1 1 22 0 0 2 2 34 78 
Mean 575     571 462 369 683     311 553 581 772 
Med 501     531 462 369 661     311 551 501 721 
Min  213     291 462 369 404     301 272 201 291 
Max 1428     1151 462 369 1214     331 823 1333 1462 

E
A

E
1  

#3 64 0 0 32 2 0 13 0 0 7 2 46 59 
Mean 1.4 

0.2 
    1.3 

0.02 
1.3 
0.3 

  0.8 
0.1 

    1.7 
0.3 

1.4 
0.1 

1.6 
0.05 

1.4 
0.05 

Med 1.4 
0.5 

    1.2 
0.1 

1.3 
0.4 

  1 
0.04 

    1.7 
0.1 

1.4 
0.2 

1.8 
0.1 

1.3 
0.02 

Min  -0.8 
0.1 

    -0.6 
0.01 

0.3 
0.1 

  -0.4 
0.1 

    0.8 
0.2 

0.6 
0.1 

-0.9 
0.1 

0.3 
0.1 

Max 2.6 
0.3 

    2.6 
0.01 

2.3 
0.4 

  1.7 
0.3 

    2.9 
0.2 

2.3 
0.1 

2.7 
0.2 

2.8 
0.2 

B
A

E
1  

#3 113 5 5 113 14 2 77 0 37 5 4 78 150 
Mean 1.6 

0.1 
1.4 
0.2 

2.1 
0.1 

1.4 
0.03 

1.8 
0.01 

2 
0.03 

1.2 
0.04 

  1.3 
0.2 

1.2 
0.02 

1 
0.05 

1.5 
0.1 

1.4 
0.05 

Med 1.6 
0.1 

1.2 
0.3 

2.2 
0.05 

1.5 
0.006 

1.8 
0.1 

2 
0.1 

1.3 
0.001 

  1.2 
0.2 

1.4 
0.01 

0.8 
0.1 

1.5 
0.1 

1.3 
0.15 

Min  -1 
0.01 

1.2 
0.03 

1.5 
0.1 

-0.1 
0.0004 

0.5 
0.01 

1.7 
0.03 

-0.2 
0.02 

  0.4 
0.1 

0.1 
0.03 

0.7 
0.03 

-0.8 
0.03 

0.4 
0.1 

Max 2.9 
0.01 

1.8 
0.02 

2.5 
0.1 

2.8 
0.1 

2.4 
0.03 

2.3 
0.04 

2.9 
0.03 

  2.6 
0.1 

1.8 
0.02 

1.7 
0.1 

3 
0.01 

2.8 
0.1 

B
A

E
2  

#3 110 14 20 119 14 8 98 6 35 6 3 76 176 
Mean 1.4 

0.04 
1.2 
0.04 

1.2 
0.1 

1.4 
0.02 

1.1 
0.05 

1.3 
0.1 

1 
0.01 

0.9 
0.1 

0.8 
0.1 

1.2 
0.02 

1.3 
0.01 

1.3 
0.03 

0.7 
0.03 

Med 1.3 
0.1 

1.1 
0.4 

1.2 
0.2 

1.3 
0.01 

1.2 
0.1 

1.3 
0.2 

1.1 
0.04 

1.1 
0.1 

0.7 
0.03 

1.3 
0.1 

1.3 
0.01 

1.2 
0.2 

0.7 
0.11 

Min  0.8 
0.02 

0.7 
0.01 

1 
0.1 

0.1 
0.003 

0.6 
0.04 

0.8 
0.3 

-0.7 
0.04 

-0.6 
0.1 

-0.9 
0.1 

-0.2 
0.02 

1.3 
0.02 

0.1 
0.002 

-0.2 
0.03 

Max 2.8 
0.05 

1.8 
0.01 

1.5 
0.1 

2.8 
0.01 

1.4 
0.03 

1.6 
0.01 

2.9 
0.01 

1.6 
0.05 

1.9 
0.1 

2.6 
0.04 

1.3 
0.01 

3 
0.01 

2.2 
0.03 

P
D

R
35

5 
 

#3 0 0 0 0 0 0 0 0 0 0 0 0 132 
Mean                         0.024 

0.000
2 

Med                         0.022 
0.01 

Min                          0.002 
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0.000
01 

Max                         0.086 
0.000
4 

P
D

R
53

2 
 

#3 0 0 0 64 0 0 0 0 0 10 5 0 160 
Mean       6.6 

0.3 
          3.3 

0.1 
4.5 
0.1 

  0.039 
0.000
4 

Med       4.9 
0.6 

          2.4 
1.3 

4.9 
0.1 

  0.034 
0.012 

Min        0.04 
0.001 

          1.2 
0.03 

2.3 
0.1 

  0.006 
0.000
1 

Max       27.5 
1.5 

          8.1 
0.1 

6.1 
0.1 

  0.151 
0.001 
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Table 2. Long range transport events with fire sources in North America. Mean and STD of the intensive parameters. The number 
of cases available is given in parenthesis (# cases). Pure NA stands for smoke originating in North America solely. 

Intensive 

parameter 

LR 

355  

mean  

STD [sr] 

LR 

532  

mean  

STD [sr] 

EAE  

355/532 

mean  

STD 

BAE 

355/532 

mean  

STD 

BAE 

532/1064 

mean  

STD 

PDR 

355  

mean   STD 

[%] 

PDR 

532  

mean   STD 

[%] 

All 

(# cases) 

46  16 

(18) 

66  32 

(10) 

1.1  0.9 

(9) 

1.7  0.6 

(53) 

1.2  0.5 

(74) 

0.024  0.005 

(10) 

0.031  0.022 

(10) 

Pure NA 

(# cases) 

42  14 

(11) 

54  30 

(5) 

1.3  0.7 

(4) 

1.7  0.7 

(32) 

1.3  0.6 

(48) 

0.025  0.005 

(6) 

0.036  0.029 

(6) 

Mixed 

(# cases) 

52  17 

(7) 

78  32 

(5) 

1  1.2 

(5) 

1.8  0.5 

(21) 

1.1  0.3 

(26) 

0.024  0.006 

(4) 

0.024  0.002 

(4) 

Lit res* 

(# cases) 

min, max 

54  10 

(9) 

23, 100 

61  3 

(12) 

40, 129 

1.3  0.4 

(6) 

0.2, 2.2 

1.6  0.1 

(6) 

0.5, 2.1 

1.5  0.03 

(8) 

0.4, 2.85 

0.03  0.03 

(3) 

0.01, 0.07 

0.05  0.006 

(6) 

0.02, 0.12 

*Literature research: according to references 4,13,15,19,20,23,26,31,36,46** from Table S4, Part 1 (Adam et al., 2020). Current 
mean values are the averages over the values reported (see text). Minimum and maximum values are shown as well.  

** 4. Ancellet, G., Pelon, J., Totems, J., Chazette, P., Bazureau, A., Sicard, M., Di Iorio, T., Dulac, F., and Mallet, M.: Long-5 
range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar 
observations in the western Mediterranean basin, Atmos. Chem. Phys., 16, 4725–4742, doi:10.5194/acp-16-4725-2016, 2016. 

13. Groß, S., Esselborn, M., Weinzierl, B., Wirth, M., Fix, A, and Petzold, A.: Aerosol classification by airborne high spectral 
resolution lidar Observations, Atmos. Chem. Phys., 13, 2487–2505, doi:10.5194/acp-13-2487-2013, 2013. 

15.  Haarig, M., Ansmann, A., Baars, H., Jimenez, C., Veselovskii, I., Engelmann, R., and Althausen, D.: Depolarization and 10 
lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke, 
Atmos. Chem. Phys., 18, 11847-11861, https://doi.org/10.5194/acp-18-11847-2018, 2018. 

19. Janicka, L., Böckmann, C., Wang, D., Stachlewska, I. S.: Lidar derived fine scale resolution properties of tropospheric 
aerosol mixtures, ILRC29, S2-122, Hefei, China, 2019. 

20. Janicka, L., Stachlewska, I. S., Veselovskii, I., Baars, H.: Temporal variations in optical and microphysical properties of 15 
mineral dust and biomass burning aerosol derived from daytime Raman lidar observations over Warsaw, Poland, Atmos. Environ., 
169, 162-174, http://dx.doi.org/10.1016/j.atmosenv.2017.09.022, 2017. 

23. Mattis, I., Müller, D., Ansmann, A., Wandinger, U., Preißler, J., Seifert, P., and Tesche, M.: Ten years of multiwavelength 
Raman lidar observations of free-tropospheric aerosol layers over central Europe: Geometrical properties and annual cycle, J. 
Geophys. Res., 113, D20202, doi:10.1029/2007JD009636, 2008. 20 
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Table 3. Mean values and their STD for IPs for each region (SE, SW, CE, NE) and each continental source region (EU, AF, NA, 
EUAF, EUAS, EUNA). The first column block refers to the scatter plot in Fig. 6d (EAE versus CRLR), the middle column block 
refers to the scatter plot in Fig. 6e (CRLR versus CRBAE) and the last column block refers to the scatter plot in Fig. 6f (EAE versus 
CRBAE). n represents the number of events available for each scatter plot. The highlighted values correspond to low statistics. 

SE CRLR LR532 LR355 EAE n CRLR LR532 LR355 CRBAE BAE2 BAE1 n EAE CRBAE BAE2 BAE1 n 

EU 1.20.6 5726 4814 1.40.7 81 1.20.5 5527 4813 0.71.5 1.30.5 1.60.6 76 1.50.8 0.91.4 1.40.6 1.60.6 80 

AF         1.60 500 310 0.70 1.10 1.50 1         

NA         2.41.6 7238 325 1.61.3 2.10.2 1.91.4 2         

EUAF 1.00.1 6415 6110 0.40.1 2 1.00 530 540 5.40 2.10 0.40 1 0.80.4 3.13.1 2.00.2 1.21.1 2 

EUAS 1.10.2 5535 4722 1.51 3 1.10.2 5535 4722 1.00.6 1.70.5 1.80.7 3 1.51 1.00.6 1.70.5 1.80.7 3 

EUNA 0.90.2 5017 545 1.90.8 3 0.90.2 5017 545 1.20.3 1.80.3 1.60.2 3 1.90.8 1.20.3 1.80.3 1.60.2 3 

                  
SW CRLR LR532 LR355 EAE   CRLR LR532 LR355 CRBAE BAE2 BAE1   EAE CRBAE BAE2 BAE1   

EU 0.80.1 646 787 1.00.6 3 0.80.1 646 787 1.40.8 0.80.6 0.50.2 3 1.00.6 1.40.8 0.80.6 0.50.2 3 

AF 0.80 700 840 1.00 1                   

NA                           

EUAF 1.10.3 6718 616 0.60.8 5 1.10.2 6712 585 0.40.7 0.30.5 0.50.4 8 0.30.5 0.50.6 0.40.7 0.80.4 4 

EUAS                           

EUNA 1.30.5 9025 7311 0.90.9 4 1.30.5 9025 7311 0.60.3 0.80.3 1.30.3 4 0.90.9 0.60.3 0.80.3 1.30.3 4 

                  
CE CRLR LR532 LR355 EAE   CRLR LR532 LR355 CRBAE BAE2 BAE1   EAE CRBAE BAE2 BAE1   

EU 1.20.5 369 304 1.10.8 3 1.20.5 369 304 0.90.3 1.30.1 1.50.4 3 1.70.9 1.00.3 1.50.6 1.60.3 5 

AF                           

NA                   0.90 -1.60 -0.20 0.10 1 

EUAF                           

EUAS                           

EUNA                                   

                  
NE CRLR LR532 LR355 EAE   CRLR LR532 LR355 CRBAE BAE2 BAE1   EAE CRBAE BAE2 BAE1   

EU 0.90.2 7427 7819 1.40.4 54 1.00.2 7427 7819 0.40.2 0.50.3 1.20.3 53 1.40.4 0.40.2 0.50.3 1.20.3 54 

AF                           

NA                           

EUAF 0.90 570 650 1.50 1 0.90 570 650 0.20 0.20 1.10 1 1.50 0.20 0.20 1.10 1 

EUAS 1.20.1 871 705 1.10.1 2 1.20.1 871 705 0.40.1 0.70.1 1.70.1 2 1.10.1 0.40.1 0.70.1 1.70.1 2 

EUNA 2.00 910 460 0.30 1 2.00 910 460 0.50 0.90 1.90 1 0.30 0.50 0.90 1.90 1 

 5 

https://doi.org/10.5194/acp-2021-759
Preprint. Discussion started: 18 October 2021
c© Author(s) 2021. CC BY 4.0 License.



36 
 

Table 4. Smoke characteristics based on CRLR and EAE for each measurement region (South-East - SE, South-West - SW, North-
East - NE and Central - CE) and each source region (Europe - EU, Africa - AF, Asia - AS, North America - NA, Europe + Africa - 
EUAF, Europe + Asia - EUAS, Europe + North America - EUNA) based on scatter plots in Fig. 6. The highlighted values correspond 
to low statistics. 

 CRLR EAE LR532 
(sr)* 

LR355 
(sr)* 

CRBAE
** Comments Smoke type 

based on CRLR 
and EAE*** 

Absorption at 
532nm and 
355nm**** 

SE      
EU 1.2 1.4 57 48 0.8 81 meas. CRLR and EAE aged Medium 
AF 1.6  50 31 0.74 1 meas. CRLR and CRBAE aged Medium at 532nm  

Low at 355nm  
NA 2.4  72 32 1.6 2 meas. CRLR based on 

CRLR versus CRBAE  
aged High at 532nm  

Low at 355nm 
EUAF 1 0.4 64 61 3.2 2 meas. CRLR and EAE aged High  

EUAS 1.1 1.5 55 47 1 3 meas. CRLR and EAE 
larger EU contribution 

fresh/aged Medium 

EUNA 0.9 1.9 51 54 1.2 3 meas. CRLR and EAE  
larger EU contribution 

fresh Medium 

SW     
EU 0.8 1 64 78 1.4 3 meas. CRLR and EAE 

RH=68–70%. 
aged High  

 
AF 0.8 1 70 84  1 meas. CRLR and EAE. 

RH=73%. 
aged High at 532nm 

Very high at 355nm 
EUAF 1.1 0.6 67 61 0.5 5 meas. CRLR and EAE aged High  
EUNA 1.3 0.9 90 73 0.6 4 meas. CRLR and EAE  aged Very high at 532nm 

High at 355nm  
CE     
EU 1.2 1.1 36 30 0.9 3 meas. CRLR and EAE aged Low 
NA  0.9   -1.6 (-0.2 

/ 0.1) 
1 meas. EAE and CRBAE. 
More backscattering at 
1064nm. 

aged  

NE     
EU 1 1.4 74 78 0.4 54 meas. CRLR and EAE 

CRPDR > 1 
fresh/aged High 

EUAF 0.9 1.5 57 65 0.2 1 meas. CRLR and EAE  
larger EU contribution  
CRPDR > 1 

fresh Medium at 532nm  
High at 355nm 

EUAS 1.1 1.1 87 70 0.4 2 meas. CRLR and EAE  
CRPDR > 1 

aged Very high at 532nm  
High at 355nm 

EUNA 2 0.3 91 46 0.5 1 meas. CRLR and EAE  
CRPDR < 1 

aged Very high at 532nm 
Medium at 355nm 

 5 
* corresponding to CRLR; ** based on CRBAE versus CRLR and/or EAE; *** Based on scatter plot between EAE and CRLR where 
available (Fig. 6, upper right-hand side); **** LR is considered low for <40sr, medium for [40,60]sr, high for [60,80]sr, very high 
for > 80sr.  
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