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Abstract. The number of cloud droplets formed at the cloud base depends both on the properties of aerosol particles and

the updraft velocity of an air parcel at the cloud base. As the spatial scale of updrafts is too small to be resolved in global

atmospheric models, the updraft velocity is commonly parameterised based on the available turbulent kinetic energy. Here we

present alternative methods through parameterising updraft velocity based on high-resolution large eddy simulation (LES) runs

in the case of marine stratocumulus clouds. First we use our simulations to assess the accuracy of a simple linear parametri-5

sation where the updraft velocity depends only on cloud top radiative cooling. In addition, we present two different machine

learning methods (Gaussian process emulation and random forest) that account for different boundary layer conditions and

cloud properties. We conclude that both machine learning parameterisations reproduce the LES-based updraft velocities at

about the same accuracy, while the simple approach employing radiative cooling only produce on average lower coefficient

of determination and higher root mean square error values. Finally, we apply these machine learning methods to find the key10

parameters affecting cloud base updraft velocities.

1 Introduction

Clouds are important for the global climate due to their ability to reflect solar radiation (shortwave radiation) and trap out-

going longwave infrared radiation but there are still several unknowns and uncertainties related to their dynamics including

aerosol-cloud interactions (e.g., Wood, 2012; Seinfeld et al., 2016; Schneider et al., 2017; Rosenfeld et al., 2019). Cloud for-15

mation requires supersaturation with respect to water vapour and aerosol particles that can act as cloud condensation nuclei

(CCN). Although several processes can lead to the formation of supersaturation within an air parcel, the most important one

is the adiabatic cooling caused by updrafts. Malavelle et al. (2014) state that updraft velocities strongly control the activa-

tion of aerosol particles. Together with aerosol properties and concentrations, the strength of updraft determines the number

of droplets formed. Cloud droplet number concentration (CDNC) directly impacts both the precipitation formation and the20

radiative properties of clouds.
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The relative importance of aerosol properties and updraft speed on droplet concentration and aerosol indirect effect has been

widely studied and found to be dependent on cloud type and aerosol loading (e.g., Lance et al., 2004; McFiggans et al., 2006;

Reutter et al., 2009; Bougiatioti et al., 2020). Sullivan et al. (2016) state that input updraft velocity fluctuations can explain as

much as 61 % in droplet number variability in GEOS-5. Kacarab et al. (2020) found that the characteristic vertical velocity (w∗ )25

plays a very important role in driving droplet formation in a rather polluted marine boundary layer (MBL) regime, in which

even a small shift in w∗ may make a significant difference in droplet concentrations. Regayre et al. (2018) stated that vertical

velocity standard deviation perturbations have the greatest influence on cloud droplet concentrations in regions of relatively

high aerosol concentrations because in such environments droplet activation is updraft-limited rather than aerosol-limited. On

a global scale, Yoshioka et al. (2019) found the uncertainty in the updraft velocity to be the second most important cause for30

uncertainty in the aerosol radiative forcing.

Globally, shallow marine clouds have significant climate impacts, because they cover major parts of oceans (Bennartz, 2007).

At the same time, these clouds are particularly difficult to model, because they require high model resolution to capture the

turbulence (Honnert et al., 2020). Such resolution is available for example, by using Large Eddy Simulation (LES). These

models solve large turbulent eddies explicitly and smallest eddies are parameterised (e.g., Schneider et al., 2017). LES models35

are currently widely used and offer a good dynamical core and basis for cloud model development.

The resolution of cloud processes in a global model can be increased through the use of LES or Cloud Resolving Models

(CRM) in each GCM column, which is known as superparameterisation, (e.g., Khairoutdinov and Randall, 2001; Khairoutdinov

et al., 2005). However, this is a computationally very demanding solution, so parameterisations are commonly used.

As the resolution of global atmospheric models is too coarse to resolve the cloud-scale updrafts, different parameterisations40

are employed either to estimate the probability density function of updrafts or a single characteristic updraft for the whole

cloud. Most global models employ information on resolved turbulent kinetic energy or eddy diffusivity to parameterise the

subgrid turbulence, which can be related to updraft velocity (Golaz et al., 2011). Other suggested methods, given in remote

sensing studies (Zheng and Rosenfeld, 2015; Zheng et al., 2016), rely on parameterising the updraft based on the boundary

layer properties and the forcing causing the turbulence. Zheng et al. (2016) stated that the parameterisation of vertical velocity45

has long been recognised as a core issue in numerical weather prediction. For example, it has been suggested that updraft

depends on the cloud top radiative cooling in case of stratocumulus (Zheng et al., 2016) or cloud base height for cumulus

clouds (Zheng and Rosenfeld, 2015). Recently, machine learning approaches have gained attention, because they can be used as

parameterisations with higher accuracy than traditional parameterisations and with much smaller computational costs compared

to explicit simulations (e.g., Rasp et al., 2018; Silva et al., 2021; Kashinath et al., 2021).50

Here, we present three LES-based boundary layer cloud updraft velocity parameterisations that could be used within a

global climate model. The parameterisations are based on detailed LES runs. The three methods are based on 1) a Gaussian

process emulator, 2) a linear parameterisation based on cloud radiative cooling (Zheng et al., 2016), and 3) machine learning to

correct the approximation error of the linear fit obtained with method 2 (Lipponen et al., 2013, 2018). We also examine which

parameters are most important for predicting updraft velocities.55
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2 Methods

The parameterisations are specifically designed for marine clouds seen in ECHAM. This means that each LES run is initialised

using an ECHAM cloud state as an input and then the LES predicts the updraft velocity related to this cloud state. The

process for creating a LES-based updraft velocity parameterisation for marine boundary layer clouds is shown as a pipeline

in Fig. 1. Here the aim is to create a parameterisation that would represent detailed LES runs with low computational cost.60

The pipeline has three main stages. First, we need source data that describes boundary layer conditions in a large number of

marine boundary layer cloud cases (Sect. 2.2.1). Second, a representative subset of this data is selected (Sect. 2.2.2) and the

corresponding simulations are run with the LES model (Sect. 2.3). Third, specific LES model outputs are selected from these

simulations and corresponding parameterisations are created (Sect. 2.4).

2.1 LES65

The parameterisations developed in this study are based on simulations with UCLALES-SALSA (Tonttila et al., 2017; Ahola

et al., 2020), which models atmospheric dynamics with a LES and includes a four-stream radiative transfer solver (Fu and Liou,

1993). We used two different cloud microphysical modules with the LES. First, the default UCLALES (Stevens et al., 1999,

2005) includes Seifert & Beheng microphysics (SB) with diagnostic clouds (saturation adjustment for cloud water, constant

cloud droplet number concentration as an input) and a two-moment bulk scheme with parameterised autoconversion for rain70

(Seifert and Beheng, 2006). The second set-up employs SALSA, which is a sectional scheme where aerosol, cloud droplet and

raindrop size distributions and chemical composition are described with several size bins (Kokkola et al., 2008; Tonttila et al.,

2017). Cloud activation is calculated by solving equations for condensation of water on aerosol particles and then counting

the number of droplets reaching the critical droplet size (prognostic supersaturation scheme). Rain formation uses the same

autoconversion parameterisation as used in the SB microphysics. This scheme is employed because UCLALES-SALSA cloud75

and aerosol bins are based on the dry size. Tracking the dry size means that the wet size may become inaccurate when the

droplets grow larger. For this reason, we have implemented rain bins that are based on wet size. Both rain and cloud droplets

grow by condensation and collision-coalescence. The autoconversion scheme moves the largest cloud droplets to rain bins

with a minimum size of 50 µm, where their size-dependent dynamics can be modelled accurately. Due to the high number of

prognostics variables, SALSA simulations are about ten times computationally heavier compared to the SB simulations.80

Both SALSA and SB simulations are initialised with temperature and humidity profiles, and solar zenith angle is an ad-

ditional input for daytime simulations. In addition, SALSA requires aerosol composition and size distributions while cloud

droplet number concentration is the only cloud input for SB. Remaining model parameters and settings are the same for all

simulations. These inputs are obtained from a global climate model as described in the next section.

3



2.2 Sampling representative initial cloud states85

2.2.1 Source data from ECHAM

Source data describes typical boundary layer cloud conditions so that these can be used to initialise LES runs. In principle,

source data could be collected from different satellite products or re-analysis data sets, but we decided to use global aerosol-

chemistry-climate model ECHAM-HAMMOZ (echam6.3-ham2.3-moz1.0) outputs because it provides all the needed variables

including details about aerosols (Tegen et al., 2019). With the given resolution ECHAM-HAMMOZ provided a large number90

of shallow clouds that could not be clearly labelled as stratocumuli. Because we wanted to develop a parameterisation that

could be used for other than ideal stratocumuli, the selection criteria were relaxed.

The source data was collected from standard model outputs of a one-year ECHAM-HAMMOZ AMIP (Atmospheric Model

Intercomparison Project) type run (Fig. 1 point A). Filtered source data was sampled from open ocean columns that represent

single-layer low clouds (Fig. 1 point 1.). In practise, first, continental or sea ice covered columns were excluded. Next, columns95

without a single-layer cloud above the sea surface and below 700 hPa (about 3000 m) level were screened out. Stratocumulus

clouds rarely extend beyond 1500 m, but ECHAM produced such liquid clouds at higher altitudes. The current 3000 m cut-off

limit is based on the computational requirements of the LES model, as with this limit we can still undertake high resolution

simulations with reasonable computational cost. The threshold cloud water content for a cloudy grid cell was 0.01 g kg−1,

which is the limit used in UCLALES-SALSA. Liquid (LWP) and ice (IWP) water paths were calculated for the low cloud and100

for the whole column. The column was accepted if the column IWP was less than 10 % of the low cloud’s LWP and the low

cloud’s LWP was more than half of the total cloud water path (LWP+IWP). These 10% and 50% thresholds should ensure that

the selected columns contain mostly liquid single-layer clouds below 700 hPa level and eliminate radiative impacts from other

clouds above the stratocumulus deck.

The previously described calculations produced two of the source data variables, namely LWP for the low cloud and plane-105

tary boundary layer height (HPBL), which was defined as the difference between sea level and cloud top pressures. These and

the rest of the source data variables are shown in Table 1. The first five meteorological variables in the table describe liquid

water potential temperature profiles and liquid water content for a well-mixed boundary layer. The last variable is the cosine

of the solar zenith angle, which determines the solar radiative flux at the top of atmosphere.

SB microphysics requires cloud droplet number concentration as input. On the other hand, SALSA needs aerosol size110

distributions and chemical composition or hygroscopicity. In order to reduce the number of variables, log-normal particle

size modes are described by using effective dry radii (reff ). Hygroscopicity parameter κ (Petters and Kreidenweis, 2007)

in ECHAM-HAMMOZ depends on aerosol chemical composition while the aerosol in SALSA is assumed to be sulphuric

acid for which κH2SO4
= 1.008 is constant. Sulphuric acid was chosen as the only chemical component of aerosols to limit

computational expenses and it resembles aged sea salt aerosols. When critical supersaturation for cloud activation is the same115

in ECHAM-HAMMOZ and SALSA, then κr3 = κH2SO4
r3eff , where r is the dry radius in ECHAM. The effective dry radius

of the accumulation mode is considered as a variable, because this mode can be important for cloud activation. For Aitken

and coarse modes we fixed the effective dry radii to 0.0105 and 0.4813 µm, respectively, based on their time averages in
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the source data. Aitken, accumulation and coarse modes have fixed standard deviations 1.59, 1.59 and 2.0, respectively, in

ECHAM-HAMMOZ and these are used also in the LES simulations.120

2.2.2 Sampling the source data

The next part of the pipeline is sampling representative subsets from the filtered source data (Point 2. in Fig. 1). Here, these

subsets are called designs (Point C in Fig. 1). These are used to initialise the LES simulations and further on as a part of inputs

for the updraft parameterisations after filtering (Table 2).

Creating a design is a crucial part of the parameterisation development (Diggle and Lophaven, 2006). For instance, a Gaus-125

sian Process emulator in general is accurate near the points it is trained with but loses accuracy as one tries to predict conditions

far away from them (Rasmussen and Williams, 2006). Therefore, determining the distribution of the points (a good design)

plays a vital role in the prediction. It is of key importance to identify regions where a higher accuracy is required, either due

to their relevance to the application or simply because predictions are more often done there. On the other hand, one should

not focus too heavily on any single region because of the diminishing return from each additional nearby point. As the designs130

are model-based, the aforementioned aspects imply two competing requirements of a design: i) the design should cover the

entire domain of interest, and ii) it should focus on sub-regions of interest where a higher accuracy is desired (see also Liu and

Vanhatalo (2020)).

In this work, we used a simple stratified sampling method based on binary space partitioning (BSP) trees (e.g., Fuchs et al.,

1980; Tóth, 2005). The goal of the algorithm is to create a partitioning that represents the high level distributional properties of135

the collection (Sect. 2.2.1) and then uniformly sample a point in each partition. By enforcing a single sample per each partition,

we ensure a space-covering property while still letting the distribution of the points in the collection guide which areas to focus.

The BSP method was used to generate separate day and night designs for both SB and SALSA microphysics. The designs

are separate, because they contain different variables. For example, cosine of the solar zenith angle has an impact on updraft

velocity only during daytime. The number of samples taken from the source data for each design depends on the number of140

variables as well as the computational resources available for the LES simulations. Both day and night SB designs have 500

samples while SALSA designs have 135 and 150 samples in total for night and day, respectively. Ten samples per variable can

be considered as the minimum at least for the Gaussian process emulator (Loeppky et al., 2009).

The probability density function (PDF) of each design variable is given in Fig. 2. The numbers show the full range of values

in the designs from min to max. The highest cloud droplet and mode number concentration values are excluded from the figures145

for clarity. The method used to calculate distributions for the design variables is the Kernel Density Estimation (Scott, 1992),

which smooths the PDF and was used due to the low number of samples. It should be noted that the spikes of HPBL values in

Filtered ECHAM data in Fig. 2e are related to the vertical discretisation of the model. We added noise to the HPBL values to

get a smoother, i.e. more realistic, planetary boundary layer height distribution.
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2.3 Setting up the LES runs150

After creating the four designs (SB and SALSA microphysics, day and night), we generate the LES inputs and run the simula-

tions (point 3. in Fig. 1). Initial temperature and humidity profiles for LES are reconstructed from the design variables (Table

1) while assuming a well-mixed cloud-topped marine boundary layer. With this assumption, boundary layer total water mixing

ratio (qt) was solved from LWP, and boundary layer height was converted from the pressure difference to meters above sea

surface.155

Figure 3 shows an example of the initial temperature and humidity profiles that were generated using the five meteorological

input variables. Here, inversion layer thickness is based on an assumed liquid water potential temperature gradient of 0.3

K m−1. Above the inversion layer, θL increases at a rate of 3 K km−1 and qt decreases linearly so that it would reach zero 2

km above the top of the inversion layer. Note that the hypothetical total water zero point would be at least 1 km above the top

of the LES domain.160

The remaining design variables are related to cloud microphysics and solar radiation. Daytime simulations have a fixed solar

zenith angle, i.e. it is not changing with time. We did not include diurnal cycle as that would disconnect the end state of the

simulations from the input values, which would violate the underlying assumptions of the machine-learning-based approach

presented in this study. For SB microphysics, the only cloud micro-physical parameter is cloud droplet number concentration.

The SALSA simulations are initialised with the specified tri-modal aerosol size distribution in each grid cell (Sect. 2.2.1).165

The model also has options related to initialisation, surface interactions, radiative transfer, large scale forcing, and micro-

physics. For most of these, default values were used in the simulations, but the following parameters were adjusted. Initial

horizontal wind profiles were set to 10 m s−1 in the East-West direction for all altitudes. Surface sensible and latent heat

fluxes were set to zero, which is in line with the idealised initial temperature and humidity profiles. The radiative solver needs

the surface skin temperature, which was set to be the same as the air temperature in the first model layer above the surface.170

Large-scale divergence was set to 1.5× 10−6s−1.

In the simulations, horizontal grids cover 10 km in each direction with a 50 m resolution. Vertical grid is case-dependent

so that it extends from the sea-surface up to a height that is 1.333 times the planetary boundary layer height (HPBL). The

vertical resolution is 10–20 m depending on the boundary layer height (maximum about 3000 m). The adaptive time step of

the model was set to be 2 s minimum and the statistics sampling time period was set to 300 s. Sub-grid fluxes are calculated175

with Smagorinsky model. The advection of momentum is based on fourth-order difference equations with leapfrog method as

a time stepping scheme. The scalar advection uses a second-order flux-limited scheme. The time integration is executed with a

simple Eulerian forward time stepping method.

Coagulation, cloud-to-rain autoconversion and sedimentation processes were switched off during the first 1.5 h spin-up,

which allows enough time for turbulence to develop. The simulation time was limited to 3.5 hours to prevent the model from180

drifting too far from the state representing the design variables. For the same reason, we nudged the liquid water potential

temperature and SALSA aerosol concentrations towards their initial values using a relaxation time τ = 3600 s. This choice for
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the relaxation parameter is a compromise value which aims to eliminate too large changes in boundary layer height while still

allowing radiative cooling to create mixing. Aerosol was nudged only in the first grid layer above sea surface.

Once the simulations were ready (point D in Fig. 1), we collected standard model outputs cloud top radiative cooling185

values and updraft velocities from the last simulation hour and calculated averages over the domain (point 4. in Fig. 1). These

simulation statistics are used in creating the updraft parameterisations (point E in Fig. 1).

Although we show here only the few selected parameters, some additional details about the cloud evolution is provided in

the Supplementary material. This analysis includes discussion about the possible decoupling of clouds from the surface, cloud

top and base changes, water path development, surface precipitation and how the turbulence is developed.190

2.4 Updraft parameterisations

In this study we created three different updraft parameterisations (point 5. in Fig. 1). The first parameterisation is a simple linear

fit (LF) based on cloud top radiative cooling (Zheng et al., 2016) (Sect. 2.4.1), the second is the same linear fit with a random

forest (LFRF) improvement (Sect. 2.4.2) and the third is a Gaussian Process Emulator (GPE) (Sect 2.4.3). Parameterisations

are trained based on LES run outputs, where parameterisation input values can include design variables (=LES run input195

variables, Table 1) and/or LES run outputs (i.e. cloud radiative cooling). The objective of the parameterisations is to reproduce

the simulated domain mean positive updraft velocities at cloud base (LES output) and predict those according to selected input

variables. Since training input values include both LES inputs and outputs, it is vital that the simulations do not drift too far

away from the initial state.

We used only one non-machine learning method (LF, Zheng et al. (2016)) as it has only one input variable and hence is200

possibly the simplest parameterisation available. Yet, as we will show below, it still performs quite well. Here, we focus on

introducing machine learning based parameterisations for which the LF parameterisation serves as a baseline.

The main statistical measures for parameterisation intercomparisons are coefficient of determination (R2) and Root Mean

Square Error (RMSE). R2 is a measure that tells how well the regression model fits the data. R2 equals the proportion of

variance in the dependent variable (y-axis values) that can be explained by the independent variable (x-axis value). However,205

R2 does not indicate whether there are enough data points to make a solid conclusion. RMSE is frequently used to measure the

differences between predicted values (here parameterisations) and the values regarded as a ground truth (LES runs). RMSE is

dependent on the scale of the numbers used, i.e. has the same physical unit as in the original data, and is sensitive to outliers.

2.4.1 Linear fit (LF)

The linear fit approach is inspired by the observational study of Zheng et al. (2016) who found a strong correlation between210

cloud top radiative cooling (CTRC) and updraft velocity at the cloud base (Wb). Based on that, they proposed a parameterisation

Wb = −0.44×CTRC + 22.30± 13, (1)
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where Wb and CTRC have units of cm s−1 and W m−2, respectively. Here, negative CTRC values indicate cooling. This pa-

rameterisation is based on both day and night radar observations and radiative transfer model simulations on non-precipitating215

marine stratocumulus clouds.

Here, we make a linear fit, Wb as a function of CTRC, where data is obtained from the LES runs, and compare it with

the parameterisation of Zheng et al. (2016). We did not exclude precipitating cases, because this would have limited the

applicability of the method in a global model. The parameterisation coefficients were derived separately for the SB and SALSA

microphysics and for day and night.220

2.4.2 Linear Fit improved with Random Forest (LFRF)

The second parameterisation builds on the linear updraft velocity model (Sect. 2.4.1). However, instead of directly predicting

the updraft velocity, this parameterisation predicts the approximation error, i.e. the difference between the LF and the LES

output for given design variable values (Sect. 2.3). This error prediction is then used to correct the predictions of the linear fit.

The approach used in this study is similar to the approximation error correction method introduced in Lipponen et al. (2013)225

and Lipponen et al. (2018). In Lipponen et al. (2018), it was shown that predicting and correcting the approximation error of

the output of an approximative model often leads to more accurate results than directly predicting the model output.

In this study, we trained a Random Forest (Breiman, 2001) regression model to correct for the approximation error in the

linear updraft velocity model. Random Forest regressor consists of an ensemble of binary regression trees. Random Forests can

learn non-linear functions, and they are relatively tolerant against overfitting. As a result, Random Forests have provided highly230

accurate results in many applications. For more information on Random Forests, and training and evaluation of the models,

see Breiman (2001). In this study, the Random Forest regressor model was trained using the Scikit-learn machine learning

package (Pedregosa et al., 2011). The Random Forest model consisted of 200 regression trees, otherwise, the default training

parameters of the Scikit-learn package were used. Inputs of the approximation error correction model during training include

the design variables and cloud top radiative cooling from the LES simulations. The software used to produce the results is235

available in GitHub (Ahola et al., 2022b).

2.4.3 Gaussian process emulator (GPE)

The third method we used is a Gaussian process emulator (O’Hagan, 1978; O’Hagan, 2006) to directly predict the updraft

velocity as a function of design variables (Table 1). Our implementation is based on the Gaussian Process Regressor given in

the Scikit-learn machine learning package (Pedregosa et al., 2011) that uses Rasmussen and Williams (2006) as the theoretical240

foundation. Gaussian process regression models are based on multivariate normal distributions and covariance functions. Given

an input data, a Gaussian process regression model trained with a training dataset can predict the probability distribution of the

outputs corresponding to the input data. For more information on training and evaluation of the Gaussian process regression

models see, for example, Rasmussen and Williams (2006). The software used produce the results is available in GitHub (Ahola

et al., 2021a, 2022b).245
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2.5 Post-processing the LES runs

In this study we focus on the updraft velocity at the cloud base where the majority of the cloud droplets form. From the different

definitions of cloud base updraft velocity (Romakkaniemi et al., 2009), we found that the following gives the best agreement

with the Zheng et al. (2016) observations:

Wb =

∑c
iW

2
i∑c

iWi
, (2)250

where Wi is positive updraft velocity at the lowest cloudy grid cell (liquid water content LWC > 0.01 g kg−1) in a column and

c is the number of cloudy columns. Negative Wi values (downdrafts) are set to zero, i.e. ignored. The sum includes 3D LES

model outputs from the last simulation hour.

Linear Fit (LF) and Linear Fit improved with Random Forest (LFRF) are based on cloud top radiative cooling (CTRC),

which is calculated from the LES outputs as255

CTRC =

∑c
i (Ri,base −Ri,top)

c
, (3)

where Ri,base and Ri,top are the net (shortwave + longwave) radiative fluxes at the cloud base and top, respectively. Because

net fluxes are defined to be positive upward, negative CTRC means cooling. The sum includes 3D (SB microphysics) or

horizontally averaged 1D (SALSA microphysics) model outputs that are averaged over the last simulation hour. For SALSA

microphysics, 3D radiation fields were not saved in order to reduce the high number of outputs. In the SB simulations, differ-260

ences between CTRC values calculated from the 3D and 1D radiation outputs were found to be negligible.

Training data for the parameterisations includes the design variables and the corresponding LES updraft velocity (Eq. 2)

and CTRC (Eq. 3) outputs. Some simulations that diverged significantly from the initial conditions produced outliers, which

reduced the accuracy of the parameterisations in representing the rest of the cases. Therefore, in all following results, before

creating a parameterisation, we filtered out simulations where cloud fraction was smaller than 0.61 or cloud top rose more than265

10 % (see Table 2). In an initial analysis conducted when calculating the LF, these cases were found to produce most of the

outliers. All filtering parameter values were the last retrievable values from the simulations. The cases where the cloud top rose

more than 10 % were mostly related to weak temperature inversions at the cloud top (Sect. 2.2.1). For example, our temperature

inversions start from 0.78 K (Fig. 2b) while Feingold et al. (2016) excluded values lower than 6 K. Weak temperature inversions

are less effective in reducing entrainment mixing, which causes the deepening of the boundary layer (Wood, 2012). Nudging270

the model fields towards the initial conditions was used to suppress the issue, but it was not entirely eliminated. Using more

restrictive initial conditions would have produced a more idealised stratocumulus sample, but at the same time we would have

lost the ability to predict updraft velocities for less ideal cases commonly present in ECHAM simulation. In short, the limits

for the filter (Table 2) were chosen so that they eliminate clear outliers from the linear fit. Changing these thresholds would

have an impact for the accuracy of the Linear Fit parametrisation simply by changing the number of outliers, but not so for the275

two machine learning parameterisations that can represent complex dependencies. In other words, the LF is sensitive on the

thresholds while the two machine learning methods are less sensitive.
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3 Results and discussion

3.1 Parameterisation intercomparison

In the comparisons of the three parameterisations, LES runs are regarded as the ground truth, LF is regarded as a baseline280

simple parameterisation, LFRF improves the LF with a machine learning method, and GPE is a standalone machine learning

method. The presented parameterisations are compared to each other and the LES runs.

The Linear Fit (LF) to simulated updraft and CTRC values overlaps quite well with the parameterisation from the Zheng

et al. (2016) study (marked with grey line and shading) especially in daytime simulations (Fig. 4). In nighttime simulations,

the cloud radiative cooling explains much less of the variance of updraft velocity than during daytime, and the Linear Fit285

nighttime R2 values for SB and SALSA are 0.36 (Fig.4a) and 0.29 (Fig.4c), respectively, compared to 0.67 (Fig. 4b) and

0.56 (Fig. 4d) during daytime. The daytime simulations make a better fit, because they have a wider distribution of radiative

cooling values due to the large variability in solar radiation. In the absence of solar radiation, CTRC values in SB microphysics

nighttime simulations are clustered around the value of -70 Wm−2 and the exceptions are related to high boundary layer

heights (increased CTRC and Wb), thin clouds (reduced CTRC and Wb), and rising clouds (reduced Wb). A cooling value290

of -70 Wm−2 is a typical difference in net longwave radiation between cloud top and cloud base for shallow boundary layer

clouds.

Figure 5 shows the evaluation of the three different parameterisations, Linear Fit (LF), Linear Fit improved with Random

Forest (LFRF) and Gaussian Process Emulator (GPE), based on a cross-validation approach. To get the predicted points,

training data is shuffled randomly and then a 10-fold cross-validation is used. This means that for each fold, 90 % of the295

training data is used to train the parameterisation and predicted values are retrieved for the remaining 10 % of the points.

When comparing parameterisations and simulation sets, R2 and RMSE values are in line with each other, meaning that as R2

increases (= better fit), RMSE decreases (=smaller error).

Figure 5 shows that LFRF performs better than the other methods in all simulation sets based on R2 and RMSE values. GPE

is close second in all but the daytime SALSA simulations. Both LFRF and GPE work generally well. The probable reason why300

the LFRF method performs so well, outperforming even GPE, is that it is supported with an embedded dependency, the linear

model LF. This is in line with Lipponen et al. (2013, 2018) where they showed that including a dependency (= correcting a

rough empirical model with random forest) improved results compared to a pure random forest learning method. LF is the least

accurate method in all simulation sets, except in SALSA day where it outperforms the GPE only slightly. Because LF shows

worse results during night than during day (see Fig. 4), there is more room for improvement for the machine learning methods305

during nighttime.

Parameterisations perform slightly better for simulation sets with SB than the sets with SALSA microphysics. One reason

is that accounting for aerosol-cloud interactions increases the variability of model predictions as prognostic supersaturation

scheme increases degrees of freedom. Hence, the variability can be difficult to capture in a parameterisation based on a rela-

tively small set of training data. This additional variability can be seen as lower R2 values in Fig. 4. The other main reason is310
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that the number of computationally heavy SALSA simulations had to be limited to the lowest possible. Limited learning data

set will have an impact on the accuracy of the predictions.

3.2 Permutation feature importance

We calculated permutation feature importances to reveal the significance of individual input parameters for the LFRF and GPE

updraft velocity parameterisations. The permutation feature importance is defined to be the decrease in a model score (=R2)315

when a single feature (=input variable) value is randomly shuffled (Breiman, 2001; Pedregosa et al., 2011). This method breaks

the relationship between the feature and the target, thus the decrease in the model score shows how much the model depends

on the feature. This technique does not depend on the used model and it can be applied many times with different permutations

of the feature. A high feature importance value means that the variable is important for the model. Some variables had small

negative feature importance values, meaning that the variable actually decreased the model score. These values were set to zero320

as small negative values can be regarded as numerical artefacts. The legend of Fig. 6 shows the overall order of significance

based on the mean of fractional (absolute values divided by the total in each subplot of Fig. 6) feature importances.

It should be noted that, as GPE is a standalone method, those variables that physically contribute to updraft velocity are the

most important features also in Fig. 6. On the other hand, when improving LF with the learning method (=LFRF), an important

physical aspect (=CTRC) is already incorporated, and variables that contribute to the error of the LF are shown as important325

features. Hence, GPE is easier to interpret physically while the results for LFRF tell which variables, beyond radiative cooling,

impact the updraft velocity in the selected setup. LFRF can also be considered as a piecewise-defined constant function, when

within a certain subset of inputs, some features can be more important than outside the subset. As the learning method with

LFRF is random, it enables that these kind of subsets can be very small and sharp-edged, meaning that training points outside

a specific subset do not affect the outputs of the subset. In contrast, GPE makes predictions based on the whole training point330

domain. These distinct characteristics of GPE and LFRF indicate that important features for GPE are probably relevant in the

whole training domain, while for LFRF, the features may be important only in certain subdomains.

Figure 6 shows that the most important parameters are LWP, cosµ, θL, ∆qt, and NAit. Of these variables, NAit is a micro-

physical variable and specific only to the SALSA microphysics scheme. LWP, θL and ∆qt are meteorological variables and

common to all simulation sets. cosµ is used only in the daytime simulation sets.335

Unravelling the meaning of these variables is simplest to start with cosµ as it affects updraft velocity quite straightforwardly.

For the GPE parameterisation during daytime, cosµ is the most important feature, because it strongly influences cloud top

radiative cooling, which indicates that the learning method grasps on significant physical aspects that affect updraft velocity.

For LFRF, cosµ is not that significant since the linear fit for the updraft velocity (wlin.fit) already incorporates solar radiation

dependency through cloud top radiative cooling.340

LWP is important for both LFRF and GPE. First, radiative cooling requires sufficient LWP, so it is important for GPE. On

the other hand, high LWP increases precipitation probability. Precipitation causes deviations from the linear trend of Wb vs.

CTRC by stabilising the boundary layer and reducing updraft velocities, so LWP is important for the LFRF as well. Zheng

et al. (2016) used a radar to measure vertical velocities, so they had to exclude precipitating cases. Our parameterisations are
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aimed for GCMs where precipitation cannot be excluded as updraft velocity at the cloud base is solved before calculating the345

cloud droplet number concentration and precipitation formation.

Boundary layer liquid-water potential temperature (θL) and boundary layer height (HPBL) determine the cloud top tem-

perature, so they have a direct impact on radiative cooling rates. This can be seen with GPE. With LFRF radiative cooling is

already incorporated with wlin.fit, but LF does not work well with high and low θL values, hence θL is an important feature

with LFRF.350

A strong humidity jump (∆qt) means a dry free troposphere, which allows strong radiative cooling. Radiative cooling is an

important factor for turbulence, and therefore, ∆qt is an important feature for GPE. LF accounts for the radiative cooling, so

∆qt is not an important feature with LFRF.

Regarding aerosol parameters, CDNC is not shown as an important feature with GPE and SB microphysics. This is likely

because the bulk model uses saturation adjustment to calculate cloud water mixing ratios. However, with SALSA, the droplet355

concentration change affects condensation/evaporation rate, buoyancy and thus updrafts, which consequently is seen as high

importances with aerosol parameters. This phenomenon (= high aerosol related feature importances) is better shown with

LFRF (Figs. 6e and 6g) as this is most likely a significant characteristic only within a subset of simulations with a low aerosol

concentration and GPE does not pick it that well as it is not a common feature. Interestingly with LFRF, the relative role of θL

seems to be smaller when SALSA is employed instead of SB.360

4 Conclusions

In this study we present three cloud base updraft velocity parameterisations which are based on detailed cloud simulations that

can be used in global atmospheric models. The parameterisations represent the predictions of the large-eddy simulation model

UCLALES-SALSA (Tonttila et al., 2017) for a wide range of marine boundary layer clouds described by the global climate

model ECHAM. One parameterisation is a linear fit (LF) depending on cloud top radiative cooling only. The LF was first365

presented in Zheng et al. (2016) and is based on cloud observations. Another is based on the linear fit which is improved with a

random forest model (LFRF). The random forest model was trained to predict the error of the linear fit as function of parameters

describing marine boundary layer clouds. The third is a stand-alone Gaussian Process Emulator (GPE) for predicting updraft

velocities based on the cloud parameters.

As can be expected, the simple LF works well for cases where radiative cooling is the main driver for turbulence. The other370

machine learning techniques perform better, because they account for additional variables such as cloud thickness and inversion

strength, which have an additional influence on turbulence via processes like cloud top entrainment mixing and evaporative

cooling, and drizzle formation (Wood, 2012). Overall, LFRF performs slightly better than GPE.

When choosing between LFRF and GPE, there are some points that should be considered. GPE is purely based on machine

learning without any underlying information about physical processes while LFRF includes the effect of cloud top radiative375

cooling. Therefore, when extrapolating outside of the range of the training inputs, the GPE prediction is the mean of the training

outputs that may not be a good prediction. LFRF, on the other hand, reduces to the radiative cooling described by the linear
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fit when outside of the range of training outputs. The downside of the LFRF method is that it requires the value for the cloud

top radiative cooling (CTRC) from the host model, which must be taken from the previous model time step. As a result, any

uncertainties in the input CTRC will influence the predictions while CTRC is not needed for the GPE. On the other hand, using380

CTRC as an input provides a possibility to extend LFRF also to cases with thin overlaying cloud layers, whereas extending

GPE to such cases would require including these cases in the training set.

We developed updraft parameterisations for two different cloud microphysics modules implemented in UCLALES-SALSA.

One microphysics module (SALSA) accounts for aerosol-cloud interactions and the other (SB) uses prescribed values for

CDNC. Full prediction of the effect of aerosols on clouds and updraft velocity is complicated by the fact that meteorological385

parameters such as the inversion strength and the liquid water path dominate over aerosol effects. The increased computational

cost of SALSA also limited the size of the training data set, which reduced the accuracy of the predictions. Nevertheless, we

were able to show that aerosol number concentration has an impact on updraft velocities. In addition, SALSA could be used to

predict properties that are more dependent on aerosol such as rain formation.

To conclude, machine learning techniques are becoming commonly used methods for parameterising complex dependencies390

(e.g. Rasp et al., 2018). Our work shows that the dependency of updraft velocity on boundary layer state can be predicted

with a reasonable accuracy and machine learning methods are able to capture also the effect of variables that are important

only in a limited subset of all possible conditions, like is the case with aerosol number concentrations. Our results also show

that machine learning is effective when it is supported with an underlying physical dependency, which is in line with previous

studies (Lipponen et al., 2013, 2018; Silva et al., 2021; Kashinath et al., 2021). The parameterisations introduced are valid only395

for marine stratocumulus, but extension of the training set to cover the effects of surface heat fluxes and wind shear would

improve the physical foundation of updraft parameterisations, and increase the applicability of the method to continental

stratiform boundary layer clouds also (e.g., Matheou and Teixeira, 2019).

Code and data availability. Filter source data (ECHAM): https://github.com/ECLAIRscripts/FilterSourceData (Nordling, 2021).

BSP algorithm: https://github.com/ECLAIRscripts/StateSpaceDesign (Alper and Liu, 2021).400

Designs: https://github.com/JaakkoAhola/DESIGN/

SB microphysics during NIGHT time (Alper, 2021d),

SB microphysics during DAY time (Alper, 2021c),

SALSA microphysics during NIGHT time (Alper, 2021b),

SALSA microphysics during DAY time (Alper, 2021a).405

Creating inputs for training simulations based on the design: https://github.com/JaakkoAhola/LES-emulator-01prepros

(Ahola and Raatikainen, 2021).

LES runs with UCLALES-SALSA, ECLAIR branch: https://github.com/UCLALES-SALSA/UCLALES-SALSA/tree/ECLAIR (Tonttila

et al., 2021b).

Postprocessing training simulations: https://github.com/JaakkoAhola/LES-02postpros (Tonttila et al., 2021a).410

Configuration files for result and figure scripts https://github.com/JaakkoAhola/LES-emulator-04configFiles/

13

https://github.com/ECLAIRscripts/FilterSourceData
https://github.com/ECLAIRscripts/StateSpaceDesign
https://github.com/JaakkoAhola/DESIGN/
https://github.com/JaakkoAhola/LES-emulator-01prepros
https://github.com/UCLALES-SALSA/UCLALES-SALSA/tree/ECLAIR
https://github.com/JaakkoAhola/LES-02postpros
https://github.com/JaakkoAhola/LES-emulator-04configFiles/


(Ahola, 2021).

Creating parameterisations: https://github.com/JaakkoAhola/LES-emulator-02postpros (Ahola et al., 2022b).

Gaussian Process emulator script: https://github.com/JaakkoAhola/GPEmulatorPython (Ahola et al., 2021a).

Library for python scripts: https://github.com/JaakkoAhola/LES-03plotting (Ahola, 2022a).415

Plotting the results: https://github.com/JaakkoAhola/LES-emulator-03plotting (Ahola, 2022b).

Data of LES runs: https://fmi.b2share.csc.fi/records/296483f247b1412ebd27f0b82dd1bb76 (Ahola et al., 2022a).

Results available at https://fmi.b2share.csc.fi/records/477af35be02f4a158e2f7e852022ec60 (Ahola et al., 2021b).
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Figure 2. Filtered ECHAM data and Kernel Density Estimated (KDE) LES input variable probability density functions (PDFs). The highest

values in panels f,g,h,i are not shown as the density is close to zero. Min and max values are extreme values of all LES simulations sets (i.e.

not ECHAM values).
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Table 1. Variables retrieved from ECHAM.

Variable name Unit Variable explanation Way of retrieving from ECHAM

∆qt g kg−1
jump in total water mass mixing ra-

tio at the boundary layer top

difference of max and min values

of the total water within two levels

from the cloud top

θL K
liquid water potential temperature

in the boundary layer

minimum value of potential temper-

ature (the same levels as for ∆qt)

∆θL K
inversion strength of liquid water

potential temperature

difference of max and min values of

potential temperature (the same lev-

els as for ∆qt)

LWP g m−2 liquid water path for the cloud
integrated from the surface up to the

cloud top

HPBL hPa

planetary boundary layer height de-

scribed as a pressure difference

from the surface

pressure difference from surface up

to the cloud top

CDNC mg−1
cloud droplet number concentration

(SB only)
averaged over the cloud

reff nm
effective dry radius of accumulation

mode (SALSA only)

calculated based on values from the

lowest level

NAit mg−1
aerosol number concentration in the

Aitken mode (SALSA only)
concentration from the lowest level

Nacc mg−1
aerosol number concentration in the

accumulation mode (SALSA only)
concentration from the lowest level

Ncoa mg−1
aerosol number concentration in the

coarse mode (SALSA only)
concentration from the lowest level

cosµ - cosine of solar zenith angle as is
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Table 2. Filtering of the LES simulations.

Dataset Number of simulations All filtered cases Percentage excluded

SB Night 500 472 5.6 %

SB Day 500 461 7.2 %

SALSA Night 135 117 13.3 %

SALSA Day 150 130 12.8%
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