
Response to the comments on the manuscript: Parameterising cloud
base updraft velocity of marine stratocumuli, Ref. ACP-2021-757.

Dear Editor, dear Reviewers, we would like to thank the Editorial Board for considering our
paper for publication in ACP and the reviewers for their constructive comments. We have addressed
all of them and modified the paper accordingly. Our detailed answers follow. Text from the original
manuscript that has been removed in the revised manuscript is marked in red. New text in the
revised manuscript is marked in blue.
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Answers to Reviewer 1

Overview R1.1 This article presents an LES assessment of 3 types of parametrisations used to
derive cloud base vertical velocity in large scale models.

The methods tested include one “traditional” linear parametrisation where updraft velocity
is derived from cloud top radiative cooling and two parametrisations derived from different ma-
chine learning techniques (Gaussian process emulation and random forest). The authors demon-
strate that when compared to LES simulations, which are viewed as truth, the machine learning
techniques produce a more accurate representation of the cloud base vertical velocity than the
“traditional” method.

The authors do a nice job of explaining machine learning methods and defining a workflow. In
particular, the authors have structured the methods around the workflow design, which makes the
method easy to read and reference. Using the workflow, the authors clearly show the application
of the machine learning techniques can improve on more “traditional” parametrisation methods
when all methods are compared to LES data. On face value this is a nice result, however, it is
very difficult to understand if either parametrisation is performing well because the article fails to
present enough information about simulations to understand the validity of the training data.
Answer to R1.1 We thank the referee for these comments and do our best to improve the
manuscript according to the suggestions.

General comment R1.2 The authors fail to present any cloud evolutions over time, e.g. cloud
base and height plots, LWP and surface/cloud base precipitation. The authors do present statistics,
but it is important to present a mean and a range of the time evolution of the simulated marine
Sc, so that a reader can be confident the machine learning is training on sensible pseudo-data.
Answer to R1.2 Cloud evolution is not shown in the manuscript, because we have 1190 simu-
lations in total. However, based on the referee comment we have now added additional statistics
about cloud development including changes in cloud base and top heights and LWP in the supple-
ments to maintain the readability and focus of the manuscript (see the specific comment R1.11).
We also show statistics about accumulated surface and cloud base precipitation.

We have further elaborated the explanation in the answer to question R1.11.

General comment R1.3 There are a lot of thresholds defined in the paper, which are used to
include or ignore data, but many of these thresholds are not justified and it is not demonstrated
how sensitive the techniques are to these thresholds.
Answer to R1.3 We used thresholds first to sample stratocumulus-like clouds from ECHAM for
the LES simulations (line 88), and then different threshold we used to exclude a fraction of the
LES simulations that clearly deviated from the linear updraft velocity vs. radiative cooling trend
expected for marine stratocumulus (line 245).

We used ECHAM as source data keeping the goal in mind that we could improve the global
model updraft parameterisations. However, ECHAM is somewhat problematic in representing
stratocumulus clouds and hence, the LES cannot forcefully be made to maintain the cloud in the
problematic initial state. With these thresholds, we aim to keep the applicability of the methods
as large as possible by excluding the most problematic cases.

Concerning the threshold given in line 88 is further discussed in the answer to the question
R1.8.

Thresholds for filtering LES simulations (line 245) are discussed in the answers to the question
R1.15 and R2.2.
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General comment R1.4 It is unclear why the authors use a fixed solar zenith angle for daytime
and separate daytime and night-time, rather than run diurnal simulations. This choice, without
further justification, casts doubt on the simulations, i.e. a diurnal simulation was not possible.

Hence, while I think there is good explanation of the methods, the minimal presentation of
the simulation results to demonstrate the simulations produce a good representation of marine Sc
mean that I recommend major revisions.
Answer to R1.4 Our parameterisations were specifically designed to be used in ECHAM simu-
lations. For this reason, we sampled the LES inputs from ECHAM simulations so that the sample
is truly representing ECHAM (sampling based on the BSP method). Then we made short LES
simulations which are representative of the inputs (this is why solar zenith angle is fixed), yet long
enough to develop turbulence and other processes. With these we could use ECHAM inputs and
LES outputs in developing the parameterisations. If we would have taken both the inputs and
outputs from the longer (and fewer) LES runs, which change with time, the sample would not be
representative of ECHAM anymore. We have clarified our strategy in the revised manuscript.

We have further clarified our approach in the revised manuscript. Specifically, our machine
learning methods take the inputs from the global model ECHAM instead of using those calculated
from the LES simulations. This ensures that the parameter space is representative of ECHAM
clouds, for which the updraft parameterisations are designed for, although the LES would produce
more realistic stratocumulus cases. Similarly, diurnal simulations would provide more realistic
clouds. However, that would limit the applicability of data within global modelling framework
where also different microphysical process representations (e.g precipitation formation, lack of
subgrid processes) might lead to different cloud properties than those simulated by the LES in
the same conditions. This could be avoided only through emulating all cloud properties with the
output from the same LES, which naturally should be the goal of future studies, but is out of the
scope here.

Changes in the manuscript, first paragraph of Sect. 2 Methods :

::::
The

::::::::::::::::::
parameterisations

::::
are

::::::::::::
specifically

:::::::::
designed

::::
for

::::::::
marine

:::::::
clouds

:::::
seen

::
in

:::::::::::
ECHAM.

:::::
This

:::::::
means

::::
that

::::::
each

:::::
LES

:::::
run

:::
is

:::::::::::
initialised

::::::
using

::::
an

::::::::::
ECHAM

::::::
cloud

::::::
state

::::
as

:::
an

:::::::
input

:::::
and

:::::
then

:::::
the

:::::
LES

::::::::
predicts

::::
the

:::::::::
updraft

:::::::::
velocity

::::::::
related

:::
to

:::::
this

::::::
cloud

:::::::
state.

::
The process for creating a LES-based

updraft velocity parameterisation for marine boundary layer clouds is shown as a pipeline in Fig.
1. Here the aim is to create a parameterisation that would represent detailed LES runs with low
computational cost. The pipeline has three main stages. First, we need source data that describes
boundary layer conditions in a large number of marine boundary layer cloud cases (Sect. 2.2.1).
Second, a representative subset of this data is selected (Sect. 2.2.2) and the corresponding simu-
lations are run with the LES model (Sect. 2.3). Third, specific LES model outputs are selected
from these simulations and corresponding parameterisations are created (Sect. 2.4).

Changes in the manuscript, third paragraph of Sect. 2.3 Setting up the LES runs :

”The remaining design variables are related to cloud microphysics and solar radiation. Day-
time simulations have a fixed solar zenith angle, i.e. it is not changing with time.

::::
We

:::::
did

::::
not

:::::::
include

:::::::::
diurnal

::::::
cycle

:::
as

:::::
that

:::::::
would

::::::::::::
disconnect

::::
the

:::::
end

::::::
state

:::
of

::::
the

:::::::::::::
simulations

:::::
from

:::::
the

::::::
input

:::::::
values,

:::::::
which

:::::::
would

::::::::
violate

::::
the

:::::::::::
underlying

::::::::::::::
assumptions

:::
of

::::
the

:::::::::::::::::::::::::
machine-learning-based

::::::::::
approach
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::::::::::
presented

:::
in

::::
this

:::::::
study.

::
For SB microphysics, the only cloud micro-physical parameter is cloud

droplet number concentration. The SALSA simulations are initialised with the specified tri-modal
aerosol size distribution in each grid cell (Sect. 2.2.1).”

Specific comment R1.5 Line 70 – I was surprised to read that there is an autoconversion scheme
in the bin model. It is important to note that such a configuration for a bin model is non-standard,
possibly unique(?) since bin models tend to represent the (semi)-continuous growth of activated
droplets to rain through condensation and collision-coalescence processes. From the description in
this article, it is not clear whether SALSA includes collision-coalescence for cloud bins or do the
cloud bins just experience condensation? This should be clarified in the text.
Answer to R1.5 UCLALES-SALSA is indeed a unique bin model. Most bin models track cloud
droplet wet size, but UCLALES-SALSA cloud (and aerosol) bins are based on the dry size. Track-
ing the dry size means that the wet size may become inaccurate when the droplets grow larger
through collisions. For this reason, we have implemented rain bins that are based on wet size,
which allow modelling their continuous growth. Similar to bulk schemes, when cloud droplets
become larger, the autoconversion scheme moves the largest droplets to rain bins with a minimum
size of 50 micrometers, where their size-dependent dynamics can be modelled accurately. Precipi-
tation forms when the initially small rain drops grow mainly with the collision-coalescence process.
Both rain and cloud droplets grow by condensation and collision-coalescence. In the recent model
release there is also an option not to use autoconversion scheme. We have clarified this in the
revised manuscript.

Changes in the manuscript first paragraph of Sect. 2.1 LES :

”The parameterisations developed in this study are based on simulations with UCLALES-SALSA
(Tonttila et al., 2017; Ahola et al., 2020), which models atmospheric dynamics with a LES and
includes a four-stream radiative transfer solver (Fu and Liou, 1993). We used two different cloud
microphysical modules with the LES. First, the default UCLALES (Stevens et al., 1999, 2005) in-
cludes Seifert & Beheng microphysics (SB) with diagnostic clouds (saturation adjustment for cloud
water, constant cloud droplet number concentration as an input) and a two-moment bulk scheme
with parameterised autoconversion for rain (Seifert and Beheng, 2006). The second set-up employs
SALSA, which is a sectional scheme where aerosol, cloud droplet and raindrop size distributions
and chemical composition are described with several size bins (Kokkola et al., 2008; Tonttila et al.,
2017). Cloud activation is calculated by solving equations for condensation of water on aerosol
particles and then counting the number of droplets reaching the critical droplet size

:::::::::::
(prognostic

::::::::::::::::
supersaturation

:::::::::
scheme). However, rain formation uses the same autoconversion parameterisation

as used in the SB microphysics.
:::::
This

::::::::
scheme

::
is
:::::::::::

employed
:::::::::
because

::::::::::::::::::::
UCLALES-SALSA

::::::
cloud

:::::
and

:::::::
aerosol

:::::
bins

::::
are

::::::
based

::::
on

::::
the

::::
dry

:::::
size.

::::::::::
Tracking

::::
the

::::
dry

:::::
size

:::::::
means

:::::
that

::::
the

::::
wet

:::::
size

:::::
may

::::::::
become

:::::::::::
inaccurate

::::::
when

::::
the

:::::::::
droplets

:::::
grow

:::::::
larger.

:::::
For

::::
this

::::::::
reason,

::::
we

:::::
have

::::::::::::::
implemented

::::
rain

:::::
bins

:::::
that

::::
are

::::::
based

:::
on

:::::
wet

:::::
size.

::::::
Both

:::::
rain

:::::
and

::::::
cloud

:::::::::
droplets

::::::
grow

:::
by

::::::::::::::
condensation

:::::
and

::::::::::::::::::::::
collision-coalescence.

::::
The

::::::::::::::::
autoconversion

::::::::
scheme

:::::::
moves

::::
the

:::::::
largest

::::::
cloud

:::::::::
droplets

:::
to

::::
rain

:::::
bins

:::::
with

::
a
::::::::::
minimum

:::::
size

::
of

:::
50

::::
µm,

:::::::
where

:::::
their

::::::::::::::::
size-dependent

:::::::::::
dynamics

::::
can

:::
be

::::::::::
modelled

::::::::::::
accurately.

:
Due to the high number of

prognostics variables, SALSA simulations are about ten times computationally heavier compared
to the SB simulations.”

Specific comment R1.6 Line 70 – The authors explicitly state that SB uses saturation adjust-
ment but they do not state what SALSA uses. Does SALSA use a prognostic supersaturation
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scheme? This needs to be clarified and stated for completeness.
Answer to R1.6 SALSA uses a prognostic supersaturation scheme. This has been clarified in
the revised manuscript.

See the changes made in the manuscript in the answer to question R1.5.

Specific comment R1.7 Line 85 – The filtering applied to the ECHAM data isolates single layer
clouds, which are below 3000 m. What do the authors mean by single layer cloud? Could they
provide more information since it is not clear whether the authors are filtering on clouds that are
one vertical grid in thickness or clouds that are multiple grids but continuous, i.e. not multi-layer
clouds between the surface and 3000 m. Without more information, I have assumed that the
filtering is on multi grid clouds and I am concerned that the filtering of this data will thus result in
the inclusion of Marine Sc and Cu. If this is the case then the clouds could develop from different
dynamical forcing, which could be a problem because the “traditional” parametrisation (Zheng
2016) is only applicable to marine Sc. Hence, could the authors confirm that Cu is filtered out of
the data and if this can not be confirmed, could they discuss the impact of the inclusion of Cu in
the data?
Answer to R1.7 We assume a single layer cloud for cases when there are one or more consec-
utive cloudy grid cells in the vertical. Cloud top has to be below or at 3000 m altitude. It is
true that with this definition, clouds can contain different stages of development. The relaxed
initial sampling is part of our sampling strategy, and it is based on the fact that the low resolution
ECHAM (the AMIP setup) has difficulties in producing Sc. The LES runs based on the initial
sample showed that some cases do not represent stratocumulus, so we applied filtering based on
cloud fraction and changes in cloud top height. Especially the minimum cloud fraction limit 0.61
should remove most cumulus cases. Although the filtered sample contains some non-ideal cloud
cases, the vast majority of the data points represent stable stratocumulus clouds.

Specific comment R1.8 Line 89 – How sensitive is the filtering to the cloud water threshold?
Answer to R1.8 This limit sets the minimum LWP (i.e., a single cloudy layer with this cloud wa-
ter content) and also determines the separation between clear and cloudy conditions. For the latter
purpose, this limit is fixed to a value commonly used at least in LES modelling, so it should not
be adjusted. Also, the threshold should be low so that the training data for the parameterisation
would include only single layer clouds. An additional LWP threshold could have been set, but it
was not found necessary, because the minimum LWP for a steady Sc depends on other conditions
like the inversion strength.

Changes in the manuscript second paragraph of Sect. 2.2.1 Source data from ECHAM :

”The source data was collected from standard model outputs of a one-year ECHAM-HAMMOZ
AMIP (Atmospheric Model Intercomparison Project) type run (Fig. 1 point A). Filtered source
data was sampled from open ocean columns that represent single-layer low clouds (Fig. 1 point 1.).
In practise, first, continental or sea ice covered columns were excluded. Next, columns without a
single-layer cloud above the sea surface and below 700 hPa

:::::::
(about

:::::
3000

:
m

:
) level were screened out.

:::::::::::::::
Stratocumulus

:::::::
clouds

:::::::
rarely

::::::::
extend

::::::::
beyond

:::::
1500

::::
m,

::::
but

::::::::::
ECHAM

::::::::::
produced

:::::
such

:::::::
liquid

:::::::
clouds

:::
at

::::::
higher

:::::::::::
altitudes.

:::::
The

::::::::
current

::::::
3000

::
m

::::::::
cut-off

:::::
limit

:::
is

::::::
based

::::
on

::::
the

:::::::::::::::
computational

::::::::::::::
requirements

:::
of

:::
the

:::::
LES

::::::::
model,

::
as

::::::
with

::::
this

:::::
limit

::::
we

::::
can

::::
still

:::::::::::
undertake

:::::
high

::::::::::
resolution

:::::::::::::
simulations

:::::
with

:::::::::::
reasonable

:::::::::::::::
computational

:::::
cost.

:
The threshold cloud water content for a cloudy grid cell was 0.01 g kg−1

:
,
::::::
which
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::
is

::::
the

:::::
limit

::::::
used

::
in

::::::::::::::::::::
UCLALES-SALSA. Liquid (LWP) and ice (IWP) water paths were calculated

for the low cloud and for the whole column. The column was accepted if the column IWP was
less than 10 % of the low cloud’s LWP and the low cloud’s LWP was more than half of the total
cloud water path (LWP+IWP). These conditions

:::::
10%

::::
and

:::::
50%

:::::::::::
thresholds

::::::::
should ensure that the

selected columns contain mostly liquid single-layer clouds below 700 hPa level (about 3000 m)
::::
and

:::::::::
eliminate

::::::::::
radiative

:::::::::
impacts

::::::
from

::::::
other

:::::::
clouds

::::::
above

:::::
the

:::::::::::::::
stratocumulus

::::::
deck.”

Specific comment R1.9 Line 90-91 – Is there a justification for the IWP and LWP percentage
thresholds, beyond the maintenance of the single-layer cloud.
Answer to R1.9 These limits were decided in order to exclude cases with mixed-phase Sc and to
avoid radiative impacts from other clouds above the Sc deck. The exact numbers were decided so
that these filters would not be too restrictive.

Changes in the manuscript second paragraph of Sect. 2.2.1 Source data from ECHAM, see answer
to the question R1.8.

Specific comment R1.10 Line 92 – Why has 3000 m been selected as the cut-off for the clouds?
Answer to R1.10 Stratocumulus clouds rarely extend beyond 1500 m, but ECHAM produced
such liquid clouds at higher altitudes. The current 3000 m cut-off is based on the computational
requirements of the LES. With this limit we can still do high resolution simulations with reasonable
computational cost. A lower cut-off could have been used, but this would have limited the use of
the developed updraft parameterisations in ECHAM.

Changes in the manuscript second paragraph of Sect. 2.2.1 Source data from ECHAM, see answer
to the question R1.8.

Specific comment R1.11 Line 145 – the authors present examples of the initial profiles, which
is good and they look very sensible for an idealised marine stratocumulus. However, the authors
do not present any demonstration of the simulation beyond the statistics of wpos versus cloud top
longwave cooling. This means that as a reader and a reviewer, I can not make any assessment
of the validity of the training data, i.e. how does the daytime or nightime cloud evolve? Is the
turbulence spun up? Is the simulated marine Sc coupled or decoupled from the surface, are they
precipitating, etc? This is really important information, which the reader needs to understand the
presented plots. Could the authors provide example plots of the evolution of cloud top and base,
LWP and RWP and surface precipitation? Ideally, the plots should include some representation
of the range of values.
Answer to R1.11 As explained above, showing cloud development in all 1190 simulations is
not practical. However, we can show statistics about cloud development based on the difference
between the initial and final states. We provide these in the supplements to maintain the readability
of the manuscript. The evolution of individual clouds is publicly available in the raw data. Ideally,
cloud top (Fig. R1) and base (Fig. R2) height and LWP (Fig. R3) would not be changing from the
initial state but RWP and precipitation occur only after spin-up (Fig. R4). Cloud top and base
hardly show any changes, but the LWC inside the stratocumulus decreases due to entrainment
mixing at the cloud top, leading to sub-adiabatic LWC profile and lower LWP than the initial
value. As ideal profiles are assumed based on ECHAM LWC output, we have still selected to use
the initial simulation state as an input for the parameterisations.

Figure R5 shows the histogram of the tendency of updraft velocity during the last simulation
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hour. The mean is close to zero, which means that updraft velocities are not changing much during
the last hour, so the turbulence is fully developed.

In Figs. R6 and R7 we have calculated decoupling analysis in the same way as in Jones et al.
(2011). The lower left corner of Figs. R6a,b,c,d (where most of our simulations lie) present cases
that are not decoupled. Decoupling would show as a large difference between boundary layer
bottom and top liquid water potential temperatures (Fig. R7). We used temperature nudging to
avoid such situations.
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Specific comment R1.12 Line 150 – The article presents 2 sets of simulations – Daytime with
fixed solar zenith and Nighttime. I am puzzled why the authors did not do a diurnal cycle and
sample the data in day and night? Could the authors justify the choice of fixed solar zenith angle
over a diurnal cycle? Also, are the results sensitive to the choice of solar zenith angle?
Answer to R1.12 We have elaborated our choice of fixed solar zenith angle in the answer to
question R1.4.

Changes in the manuscript, third paragraph of Sect. 2.3 Setting up the LES runs, see the an-
swer to the question R1.4.

Specific comment R1.13 Line 175 – the simple, non-machine learning parametrisation is based
on Zheng et al (2016), why was this the only non-machine learning parametrisation tested?
Answer to R1.13 The Zheng et al (2016) parametrisation has only one input and it is likely the
simplest parametrisation available, and still seems to be performing well. Our focus is in intro-
ducing machine learning methods instead of comparing different updraft parameterisations. This
is now explained in the revised manuscript.

Changes in the manuscript second paragraph of Sect. 2.4 Updraft parameterisations :

”
:::
We

::::::
used

::::::
only

::::
one

::::::::::::::
non-machine

::::::::::
learning

::::::::
method

::::::
(LF,

:::::::::::::::::::::
Zheng et al. (2016)

:
)

:::
as

:::
it

::::
has

:::::
only

:::::
one

:::::
input

::::::::::
variable

:::::
and

:::::::
hence

::
is

::::::::::
possibly

::::
the

::::::::::
simplest

::::::::::::::::::
parameterisation

:::::::::::
available.

::::::
Yet,

:::
as

::::
we

:::::
will

:::::
show

::::::::
below,

::
it

:::::
still

::::::::::
performs

::::::
quite

::::::
well.

:::::::
Here,

:::
we

:::::::
focus

:::
on

:::::::::::::
introducing

:::::::::
machine

:::::::::
learning

:::::::
based

::::::::::::::::::
parameterisations

::::
for

::::::
which

:::::
the

:::
LF

::::::::::::::::::
parameterisation

:::::::
serves

:::
as

::
a
:::::::::::
baseline.”

:

Specific comment R1.14 Line 230 – 235 – Are the authors filtering for columns that include evap-
orating rain? For example, the cloud base is defined as the lowest grid where LWC > 0.01g kg−1.
If rain is evaporating then this threshold could be very low, since the evaporation will return drops
to cloud sized bins in SALSA (this will not be an issue in SB), hence there is the risk the updraft
velocity at that grid does not represent cloud base where activation occurs. Could the authors
clarify that evaporating rains does not bias the cloud base vertical velocity?
Answer to R1.14 Precipitating clouds were not filtered for the reasons explained in the manuscript
(second paragraph of Sect. 2.4.1). In the definition of cloud base, the precipitating droplet are
not accounted as liquid water and therefore precipitation has no direct impact on the determined
cloud base.
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Specific comment R1.15 Line 245 – Data was thrown away if the cloud fraction was smaller
than 0.61 or cloud top rose more than 10%, could the authors justify these thresholds and add
some discussion about the sensitivity of the parametrisation comparison to these thresholds? (I
note the discussion of Feingold et al but that does not justify the 0.61.
Answer to R1.15 The initial ECHAM sampling strategy and the filters applied after that do
have an impact on the parametrisation comparison, but with filtering we made parametrisation
comparison fairer for the different methods. Although the Linear Fit improved with a Random
Forest (LFRF) and the Gaussian Process Emulator (GPE) can predict updraft velocities for a wide
variety of conditions and cloud cases, the Linear Fit (LF) parametrisation is originally for non-
precipitating stratocumulus (Zheng et al., 2016). The initial ECHAM data contains also less ideal
cloud cases, and some of these resulted in clear outliers for the linear fit. The above-mentioned
thresholds were specifically designed to remove these outliers (Fig. 4 in the manuscript), which
seem to represent other cloud types than stratocumulus.

Figure R8 shows all data points, and in SB simulations there is a group of points near -80
W m−2 that clearly deviate from the linear trend. For SALSA, there are also points near 0 W m−2

which are essentially cloud free. Initial visual analysis showed that the outliers are related to rising
cloud tops and fractional cloudiness. Based on this visual analysis, we chose the limits from our
data so that only the worst outliers (5.6–13.3% of the data) are removed. With this filter the data
set is still representative of the original data set (and ECHAM) while excluding cases that deviate
from the linear updraft velocity vs radiative cooling trend expected for stratocumulus.

Changing these thresholds would have an impact for the accuracy of the Linear Fit parametri-
sation simply by changing the number of outliers, but not so for the two machine learning param-
eterisations that can represent complex dependencies. In other words, the LF is sensitive on the
thresholds while the two machine learning parameterisations are not.

Changes in the manuscript, last paragraph of Sect. 2.5 Post-processing the LES runs :

”Training data for the parameterisations includes the design variables and the corresponding LES
updraft velocity (Eq. 2) and CTRC (Eq. 3) outputs. Some simulations that diverged significantly
from the initial conditions produced outliers, which reduced the accuracy of the parameterisations
in representing the rest of the cases. Therefore, in all following results, before creating a parame-
terisation, we filtered out simulations where cloud fraction was smaller than 0.61 or cloud top rose
more than 10 % (see Table 2). These cases were spotted in

::
In

:
an initial analysis

::::::::::
conducted

::::::
when

:::::::::::
calculating

::::
the

:::::
LF,

::::::
these

::::::
cases

::::::
were

::::::
found

:
to produce most of the outliers. All filtering param-

eter values were the last retrievable values from the simulations. The cases where the cloud top
rose more than 10 % were mostly related to weak temperature inversions at the cloud top (Sect.
2.2.1). For example, our temperature inversions start from 0.78 K (Fig. 2b) while Feingold et al.
(2016) excluded values lower than 6 K.

:::::
Weak

::::::::::::::
temperature

:::::::::::
inversions

:::
are

:::::
less

:::::::::
effective

:::
in

:::::::::
reducing

::::::::::::
entrainment

:::::::::
mixing,

:::::::
which

:::::::
causes

::::
the

::::::::::::
deepening

:::
of

::::
the

::::::::::
boundary

::::::
layer

:::::::::::::::
(Wood, 2012)

:
.
:

Nudging
the model fields towards the initial conditions was used to suppress the issue, but it was not en-
tirely eliminated.

::::::
Using

::::::
more

:::::::::::
restrictive

:::::::
initial

:::::::::::
conditions

:::::::
would

:::::
have

:::::::::::
produced

::
a

:::::
more

::::::::::
idealised

:::::::::::::::
stratocumulus

::::::::
sample,

:::::
but

:::
at

::::
the

::::::
same

::::::
time

::::
we

:::::::
would

:::::
have

:::::
lost

::::
the

::::::::
ability

:::
to

::::::::
predict

:::::::::
updraft

:::::::::
velocities

::::
for

:::::
less

:::::
ideal

:::::::
cases

:::::::::::
commonly

::::::::
present

:::
in

::::::::::
ECHAM

:::::::::::::
simulation.

:::
In

:::::::
short,

:::::
the

::::::
limits

::::
for

:::
the

::::::
filter

:::::::
(Table

:::
2)

::::::
were

:::::::
chosen

:::
so

:::::
that

:::::
they

:::::::::::
eliminate

:::::
clear

::::::::
outliers

::::::
from

::::
the

:::::::
linear

:::
fit.

:::::::::::
Changing

:::::
these

::::::::::::
thresholds

::::::
would

::::::
have

:::
an

::::::::
impact

::::
for

::::
the

:::::::::
accuracy

:::
of

::::
the

::::::::
Linear

::::
Fit

:::::::::::::::::
parametrisation

:::::::
simply

::
by

:::::::::::
changing

::::
the

:::::::::
number

::
of

::::::::::
outliers,

::::
but

:::::
not

:::
so

:::
for

:::::
the

::::
two

::::::::::
machine

:::::::::
learning

:::::::::::::::::::
parameterisations

::::
that

:::::
can

::::::::::
represent

:::::::::
complex

:::::::::::::::
dependencies.

::::
In

::::::
other

::::::::
words,

::::
the

::::
LF

:::
is

:::::::::
sensitive

::::
on

::::
the

:::::::::::
thresholds
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:::::
while

::::
the

:::::
two

:::::::::
machine

:::::::::
learning

::::::::::
methods

:::
are

:::::
less

::::::::::
sensitive.

:
”

0

0.2

0.4

0.6

0.8

1.0
(a) SB Night

Si
m

ul
at

ed
w

po
s

(m
s

1 )

NA Filtered outNA Filtered out

(b) SB Day

-140
-120

-100
-80 -60 -40 -20 0 20 40

0

0.2

0.4

0.6

0.8

1.0
(c) SALSA Night

Cloud top radiative cooling (W m 2)

-140
-120

-100
-80 -60 -40 -20 0 20 40

(d) SALSA Day

Figure R8: Calculating the Linear Fit (LF) without any filters (NA = No simulations excluded)
or with LES filter used in the manuscript (Filtered out = orange points excluded).

Specific comment R1.16 Line 281 – Updraft velocity parameterisations from SB are shown to
be better than those from SALSA. I agree that this is mainly due to the difference in sample set
number but, could the difference also be due to the use of a prognostic supersaturation in SALSA
vs “all-or-nothing” scheme in SB.
Answer to R1.16 Using a prognostic supersaturation scheme means that there are more degrees
of freedom. Because we cannot increase the number of simulations when increasing the number of
variables (we have even fewer simulations due to the significantly increased computational costs),
prediction errors are likely to increase. Arguably, it is easier to develop parameterisations for the
simple ”all-or-nothing” scheme than for the more detailed SALSA scheme where for example the
evaporation of cloud droplets and related latent heat change at cloud edges is slower than when the
saturation adjustment is employed. We have adjusted the manuscript according to the referee’s
notion.

Changes in the manuscript last paragraph of Sect. 3.1 Parameterisation intercomparison:

”Parameterisations perform slightly better for simulation sets with SB than the sets with SALSA
microphysics. One reason is that accounting for aerosol-cloud interactions increases the variability
of model predictions , which

::
as

:::::::::::
prognostic

:::::::::::::::::
supersaturation

::::::::
scheme

::::::::::
increases

:::::::::
degrees

::
of

::::::::::
freedom.

:::::::
Hence,

::::
the

:::::::::::
variability

:
can be difficult to capture in a parameterisation based on a relatively small

13



set of training data. This additional variability can be seen as lower R2 values in Fig. 4. The
other main reason is that the number of computationally heavy SALSA simulations had to be
limited to the lowest possible. Limited learning data set will have an impact on the accuracy of
the predictions. ”
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Answers to Reviewer 2

Overview R2.1 This is an interesting study that attempts to improve the parameterization of
cloud-base updraft speed for marine stratocumulus using a large ensemble of large-eddy simulations
(LES) driven by a GCM. Three methods are examined: (1) a linear physics-based scheme developed
by a previous study, (2) a machine learning method that incorporates the (1), developed by the
authors, and (3) a purely machine-learning-based method without incorporating physics, also
developed by the authors. By comparing these three methods, it is found that (2) and (3) markedly
outperform the (1), suggesting their potential usage for improving cloud-base updraft simulation
in more coarse-resolution models. Some analyses about which predictor is more dominant were
conducted.

Overall, the manuscript is clearly written and straightforward to understand. The conclusion
that the new parameterizations improve the previous one is robust and convincing. Also, the
data of the large ensemble of LES, which are released publically, should be very useful datasets.
However, there are two major gaps that undermine the scientific quality, with one regarding the
sampling issue and one regarding a lack of physical interpretation of the results. If these two issues
can be well addressed, the manuscript should be a good fit for the ACP. See my detailed comments
below.
Answer to R2.1 We thank the referee for these comments and do our best to improve the
manuscript according to the suggestions.

Major comment R2.2 Marine stratocumulus only occurs under certain large-scale environments
(e.g. see Wood (2012)’s review article). Your samples include many cases with ∆θL of only several
K degrees (Fig. 2b). Under this condition, an overcast stratocumulus deck can hardly sustain
because of the strong cloud-top entrainment under a weak temperature inversion. Moreover,
under weak inversions, the strong entrainment of warm air from above into the boundary layer,
stably stratifying (or decoupling) the boundary layer so that your assumption of well-mixedness
becomes invalid. Although you removed some of these cases (in Lines 244-251), the standard seems
arbitrary to me and it cannot guarantee the remaining samples are physically reasonable since they
are sampled based on a purely statistical method. I would suggest plotting a map showing where
those samples are, so that the readers can have a sense of what kinds of stratocumulus we are
looking at: eastern subtropical stratocumulus deck? or stratocumulus in the postfrontal region of
midlatitude cyclones? or polar stratocumulus under an unperturbed environment? The point is
to build a physical context for understanding those samples. Actually, Zheng et al. (2016)’s study
is limited to only two regions, which does not necessarily guarantee a universal relationship.
Answer to R2.2 The initial sample contains a wide range of ECHAM-based cloud states, which
means that the developed parameterisations can also be applicable to non-ideal stratocumulus
cloud cases, which are common in our low-resolution ECHAM simulations. For example, low
model vertical resolution is probably the main reason for the low ∆θL values. Although these
cloud states are physically reasonable, they may differ from the cloud states seen in the nature.
Another reason for sampling a wide range of cloud states from ECHAM is that the LES is the best
tool to show which ones of the initially sampled cases are representing reasonable stratocumulus
clouds. This is because cloud stability and other cloud properties depend on the combination of
the input parameters (e.g., humidity inversion), and not just the absolute value of temperature
inversion. The final filtering criterion is based on identifying cases which deviate from the Zheng
et al. (2016) parametrisation, which was developed for stratocumulus clouds. The chosen filtering
limits exclude quite well unstable cases (rapidly decreasing cloud fraction) and those representing
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marine cumulus (rising cloud top). More strict filtering could have been applied (e.g., precipitating
cases, which are not included in Zheng et al. (2016) study), but this seemed unnecessary from the
parametrisation point of view; the linear fit performs well considering its simplicity.

More analysis on the LES filter, including a sensitivity analysis on the filter limits, is presented
in the answer to question R1.15.

Unfortunately, geographic coordinates were not stored in the input data set for this study that
was originally pulled from ECHAM, so we cannot draw a map from this data. Based on maps from
our initial analysis, the known stratocumulus regions have the highest frequency of occurrences,
but otherwise the clouds are fairly evenly distributed over ice-free marine regions. The specific
region in ours or the Zheng et al. (2016) study are not important as updraft velocity depends on
cloud state and not on location.

Major comment R2.3 I feel the discussion of the results is somewhat superficial. For example,
entrainment is a crucial process governing the boundary layer dynamics. Stronger entrainment
of warm air above can stabilize the boundary layer, reducing the turbulence. Such an important
process, however, is not even mentioned in the discussion. Another important process is evaporative
cooling that can also promote instability and enhance turbulence. Discussions should include these
fundamental processes that contribute to the TKE budget of the boundary layer.
Answer to R2.3 Entrainment and evaporative cooling are known to be important processes (see,
e.g., Wood, 2012; Zheng et al., 2016), and our simulations fully account for these and several other
processes not explicitly mentioned in the manuscript. We now mention some of these processes
in the discussion. Because we are not able to provide any new insight into these processes (they
are not included in the current LES output statistics) and our focus is elsewhere, we keep this
discussion brief.

Changes in the manuscript

Last paragraph of Sect. 2.5. Post-processing the LES runs, see answer to the question R1.15.

Second paragraph of Sect. 4 Conclusions :

”As can be expected, the simple LF works well for cases where radiative cooling is the main
driver for turbulence. The other machine learning techniques perform better, because they ac-
count for additional variables such as cloud thickness and inversion strength, which have an ad-
ditional influence on turbulence

:::
via

::::::::::
processes

::::
like

:::::::
cloud

::::
top

:::::::::::::
entrainment

::::::::
mixing

::::
and

:::::::::::::
evaporative

::::::::
cooling,

::::
and

::::::::
drizzle

::::::::::
formation

:::::::::::::::
(Wood, 2012). Overall, LFRF performs slightly better than GPE.”

Minor comment R2.4 L335: ”developed three xxx”. I think the first method is developed by
previous work. The wording should be revised.
Answer to R2.4 This is now corrected in the revised manuscript.

Changes in the manuscript first paragraph of Sect. 4 Conclusions :

”In this study we developed
:::::::
present

:
three cloud base updraft velocity parameterisations

::::::
which

:::
are

:::::::
based

:::
on

:::::::::
detailed

::::::
cloud

:::::::::::::
simulations

:
and can be used in global atmospheric models. The pa-

rameterisations represent the predictions of the large-eddy simulation model UCLALES-SALSA
(Tonttila et al., 2017) for a wide range of marine boundary layer clouds described by the global
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climate model ECHAM. One parameterisation is a linear fit (LF) depending on cloud top radiative
cooling only.

::::
The

:::
LF

:::::
was

:::::
first

::::::::::
presented

::
in

::::::::::::::::::::::
Zheng et al. (2016)

:::
and

:::
is

::::::
based

:::
on

::::::
cloud

::::::::::::::
observations.

Another is based on the linear fit which is improved with a random forest model (LFRF). The
random forest model was trained to predict the error of the linear fit as function of parameters
describing marine boundary layer clouds. The third is a stand-alone Gaussian Process Emulator
(GPE) for predicting updraft velocities based on the cloud parameters.”
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