
1 
 

Technical note: Investigating sub-city gradients of air quality: lessons 
learned with low-cost PM2.5 and AOD monitors and machine learning 
Michael Cheeseman1, Bonne Ford1, Zoey Rosen2, Eric Wendt3, Alex DesRosiers1, Aaron J. Hill1, 
Christian L'Orange3, Casey Quinn3, Marilee Long2, Shantanu H. Jathar3, John Volckens3, Jeffrey R. 
Pierce1 5 
1Department of Atmospheric Science, Colorado State University, Fort Collins, 80521, US 
2Department of Journalism & Media Communication, Colorado State University, Fort Collins, 80521, US 
3Department of Mechanical Engineering, Colorado State University, Fort Collins, 80521, US 

Correspondence to: Michael Cheeseman (cheesemanmj@gmail.com) 

Abstract. Accurate sub-city fine particulate matter (PM2.5) estimates could improve epidemiological and health-impact studies 10 

in cities with heterogeneous distributions of PM2.5, yet most cities globally lack the monitoring density necessary for sub-city-

scale estimates. To estimate spatiotemporal variability in PM2.5, we use machine learning (Random Forests; RFs) and 

concurrent PM2.5 and AOD measurements from the Citizen Enabled Aerosol Measurements for Satellites (CEAMS) low-cost 

sensor network as well as PM2.5 measurements from the Environmental Protection Agency’s (EPA) reference monitors during 

wintertime in Denver, CO, USA. The RFs predicted PM2.5 in a 5-fold cross validation (CV) with relatively high skill (95% 15 

confidence interval R2=0.74-0.84 for CEAMS; R2=0.68-0.75 for EPA) though the models were aided by the spatiotemporal 

autocorrelation of the PM2.5 measurements. We found that the most important predictors of PM2.5 were factors associated 

with pooling of pollution in wintertime, such as low planetary boundary layer heights (PBLH), stagnant wind conditions, and, 

to a lesser degree, elevation. In general, spatial predictors were less important than spatiotemporal predictors because temporal 

variability exceeded spatial variability in our dataset. Finally, although concurrent AOD was an important predictor in our RF 20 

model for hourly PM2.5,  it did not improve model performance with high statistical significance. Regardless, we found that 

low-cost PM2.5 measurements incorporated into an RF model were useful in interpreting meteorological and geographic 

drivers of PM2.5 over wintertime Denver. We also explored how the RF model performance and interpretation changes based 

on different model configurations and data processing. 

1 Introduction 25 

Exposure to high concentrations of airborne particulate matter, especially particles with aerodynamic diameters smaller than 

2.5 µm (PM2.5), has adverse effects on public health (Forouzanfar et al., 2016; Hennig et al., 2018; Lelieveld et al., 2019; Pope 

et al., 2002; Schwartz et al., 1996). Increased exposure to PM2.5 also imposes large economic burdens due to medical costs, 

welfare loss, disruptions to work productivity, and elevated crime rates (Burkhardt et al., 2019; Dechezleprêtre et al., 2019). 

As PM2.5 concentrations are generally higher in urban areas, this burden can be especially large in major cities (Anenberg et 30 

al., 2019; Marlier et al., 2016). Research has shown that urban concentrations of PM2.5 can be uniform with relatively larger 
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heterogeneity in black carbon, organic aerosol, and particle number concentrations (Gu et al., 2018; Saha et al., 2021). In 

addition, there can still be sub-city spatial and sub-daily temporal gradients in PM2.5 that are difficult to measure due to the 

low spatial density of reference monitoring networks(Just et al., 2015; Bi et al., 2019; Gao et al., 2015; Wang and Oliver Gao, 

2011). Improving predictions of PM2.5 across cities could aid epidemiological investigations into the public health impacts of 35 

poor air quality (Southerland et al., 2021). 

 

Low-cost sensor networks have been increasingly used to supplement reference networks and increase the spatiotemporal 

density of PM2.5 measurements (Bi et al., 2020; Gao et al., 2015; Gupta et al., 2018; Snyder et al., 2013). These networks can 

be  deployed by citizen scientists, thus simultaneously contributing to our understanding of air pollution and increasing public 40 

awareness of air quality issues (Ford et al., 2019; Gupta et al., 2018). For example, the PurpleAir network 

(https://www.purpleair.com), which uses light-scattering sensors to estimate PM2.5 at sub-hourly timescales, has thousands of 

citizen-deployed monitors across the US and has been growing rapidly over recent years (Delp and Singer, 2020; Krebs et al., 

2021). Despite the usefulness of low-cost sensor networks, they are often limited by their lower quality monitors, which can 

result in moderate to large uncertainties in their measurements (Gupta et al., 2018; Snyder et al., 2013). Furthermore, many 45 

regions in the US lack both low-cost and reference measurements of PM2.5, which limits our understanding of public exposure 

to air pollutants. 

 

Satellite observations of aerosol optical depth (AOD), an estimate of light extinction due to aerosols in an atmospheric column, 

can provide near-global coverage of clear-sky regions every 1-2 days; these observations are useful for filling in the gaps of 50 

PM2.5 monitoring networks. Since satellite-retrieved AOD does not provide information about surface PM2.5 directly, various 

techniques have been developed to leverage AOD measurements to inform surface PM2.5 predictions. These techniques can 

generally be grouped into two categories: geophysical and statistical approaches. The geophysical approach to translate satellite 

AOD into PM2.5 uses chemical transport models (CTMs) to simulate the relationship between PM2.5 and AOD (Hammer et al., 

2020; Liu et al., 2004, 2005; van Donkelaar et al., 2006, 2013, 2011) on global to local scales. The modeled PM2.5:AOD ratios 55 

are then multiplied by the satellite AOD to derive an estimate of PM2.5. While this approach is useful for annual-average 

concentrations (Hammer et al., 2020; van Donkelaar et al., 2010) and on shorter timescales for some locations and seasons 

(van Donkelaar et al., 2012), there are many limitations to this approach. For example, most satellites that capture AOD are 

polar-orbiting satellites, which only provide coverage during specific daytime-only (and cloud-free) overpass times, and hence 

fully rely on the model’s predicted diurnal cycles for daily mean PM2.5 estimates. Modeled PM2.5:AOD relationships have also 60 

been found to be a large source of uncertainty in satellite-derived PM2.5 (Ford and Heald, 2016; Jin et al., 2019), and a lack of 

reference measurements of PM2.5:AOD means they are difficult to validate. Monitoring networks such as the (SPARTAN) 

have been developed to provide high fidelity PM2.5:AOD observations but the monitoring sites are expensive and there are few 

worldwide (Snider et al., 2015, 2016). Finally, the resolution of satellite AOD measurements and CTM grid cells tends to be 

too coarse (e.g., >10 km) to study the fine-scale spatiotemporal resolutions necessary to capture the heterogeneity of PM2.5 65 
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concentrations in urban areas, although recent satellite AOD products (Lyapustin et al., 2018) and high-resolution simulations 

(Jena et al., 2021; Kirwa et al., 2021) may remedy these issues. 

 

Alternatively, satellite AOD retrievals can be incorporated into a statistical model to estimate surface PM2.5. The simplest of 

these approaches uses co-located satellite AOD and surface PM2.5 measurements in a linear regression model (Engel-Cox et 70 

al., 2004; Koelemeijer et al., 2006). However the relationship between AOD and PM2.5 is complex and can vary due to changes 

in the aerosols’ vertical distribution, water content, speciation, optical properties, and size distribution (Ford and Heald, 2016; 

Snider et al., 2015; van Donkelaar et al., 2010, 2006, 2013). Thus, many techniques for PM2.5 estimation have been developed 

to incorporate information from many data sources including but not limited to AOD, meteorology, and geographic information 

such as land-use regression (Hoogh et al., 2016; Song et al., 2014) and geographically weighted regression (e.g. Lassman et 75 

al., 2017), not all of which are inherently suited to estimate both spatial and temporal variability in PM2.5 concentrations. Even 

more complex computational and machine learning (ML) methods are also becoming increasingly common in estimating PM2.5 

(e.g. Di et al., 2016; Lightstone et al., 2017; Liu et al., 2018; Reid et al., 2015; Suleiman et al., 2019; Xi et al., 2015).  Already, 

ML methods have been shown to be more accurate at predicting PM2.5 than traditional CTM methods under certain conditions 

(Lightstone et al., 2017; Xi et al., 2015), and they can require less expertise to operationalize than CTMs. 80 

 

ML represents a range of computational methods that build predictive models without explicit programming and with limited 

human intervention. One of the benefits of ML methods is that most can capture complex, non-linear relationships between 

many predictors (e.g., wind speed, AOD, land use) and a target variable (in this case, PM2.5) in order to produce explicit 

predictions of the target variable. Generally, ML models find relationships between predictors and the target using a training 85 

dataset, which is then validated using an independent testing dataset. Although the training and testing process is done with 

little human interference, the complexity and flexibility of ML models must be decided beforehand, and it is difficult to know 

what model configurations will result in the highest prediction skill. Thus, models must be tuned to find optimal configurations 

that reduce the risk of overfitting or underfitting the training dataset. As ML methods become more widely used, transparency 

in the execution of these methods and how they are validated will be key for the research community to ensure the quality of 90 

results obtained. 

 

In this work, we use ML methods to investigate spatiotemporal variability in wintertime Denver. This work uses low-cost 

sensor measurements from the Citizen Enabled Aerosol Measurements for Satellites (CEAMS) project in addition to regulatory 

PM2.5 measurements. The CEAMS project has (1) developed a low-cost monitor that can capture sub-hourly coincident PM2.5 95 

and AOD measurements and (2) trained citizen scientists to deploy them to study fine-scale spatiotemporal variability in the 

relationship between PM2.5 and AOD. The CEAMS team conducted a deployment of these monitors during the winter of 2019-

2020 in Denver, Colorado, United States (hereafter just “Denver''). To our knowledge, this was the first high-density network 

of low-cost, coincident sub-hourly AOD and PM2.5 sensors deployed in a single city. We investigate the potential drivers of 
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fine-scale PM2.5 spatiotemporal variability in wintertime Denver by incorporating meteorological and geographical variables 100 

into a random forest (RF) ML regression framework (Breiman, 2001). We use a permutation metric to assess the relative 

importance of different predictor variables. We test whether co-located AOD measurements are identified as an important 

predictor of PM2.5 and whether they increase the overall RF prediction skill compared to RFs that only used geographic and 

meteorological variables. The RF method was used here because it has been used to skillfully estimate PM2.5 in past studies 

(Reid et al., 2015; Considine et al., 2021). We also compare our analysis of CEAMS PM2.5 with results using reference PM2.5 105 

measurements from the Environmental Protection Agency (EPA). Finally, we discuss our RF methods in detail and discuss 

how decisions made during data processing and model configuration may have influenced our results and the subsequent 

interpretation. 

2 Methods 

2.1 Data Sources 110 

2.1.1 CEAMS PM2.5 and AOD dataset 

The CEAMS team developed two generations of low-cost monitors called the Aerosol Mass and Optical Depth (AMOD) 

monitors (Wendt et al., 2021). The AMODs used in this study are second-generation instruments  (i.e., AMOD-v2) but, as the 

first version is no longer in use, we simply refer to the devices as AMODs herein.  The CEAMS team trained citizen scientists 

to deploy AMODs in several different campaigns in northern Colorado (e.g. Ford et al., 2019). Here we analyze data from the 115 

CEAMS deployment during the winter of 2019-2020 in Denver (Fig. 1). Thirty-two participants were recruited from across 

Denver through collaboration with the Community Collaborative Rain, Hail and Snow (CoCoRaHS) citizen scientist network 

(Cifelli et al., 2005) and other media outreach. Participants were trained by CEAMS researchers to set up devices using a 

mobile application (Quinn et al., 2019) and replace aerosol filters once a week. Measurements were taken from 14 November 

2019 to 20 January 2020. 120 
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Figure 1:  Map of elevation (Amante and Eakins, 2009) over Denver, CO, with locations of CEAMS Aerosol and Mass Optical Depth 
(AMOD) monitors (purple), EPA reference PM2.5 monitors (red), outlines of the GEOS-FP grid-boxes (black), and outlines of the 
greater Denver-Aurora area (blue; based on cartographic files from 2015 TIGER/Line Shapefiles).  

The AMOD is a low-cost (~ $1,200 manufacturing cost) PM2.5 and AOD monitor that measures PM2.5 in two ways: (1) real-125 

time measurements using an inexpensive light-scattering sensor and (2) time-integrated measurements by collecting particles 

onto a filter using a size-selective cyclone separator and an ultrasonic pumping system (Volckens et al., 2017; Wendt et al., 

2019, 2021). The real-time PM2.5 sensor is the Plantower PMS5003, which has been widely deployed by networks such as 

PurpleAir, and validated in past work (Bulot et al., 2019; Sayahi et al., 2019). The AMOD also measures AOD at four discrete 

wavelengths (440, 500, 675, and 870 nm) using optically filtered photodiodes. The AMOD uses a solar tracking procedure 130 

that allows for automated AOD measurements throughout the day (Wendt et al., 2021). When AMODs were co-located with 

Aerosol Robotics Network (AERONET) AOD monitors in a series of validation experiments, the mean absolute error was 

0.057 over AOD values ranging from 0.030 to 1.51 (Wendt et al., 2021). Real-time PM2.5 and AOD can be sent to a central 

server by the AMOD over Wi-Fi every 20-minutes. The real-time PM2.5 values used in this study were an average of 

instantaneous 1s values reported every 15-seconds over a period of 2.5 minutes (after a 30 second warm up period), taken 135 

every 20 minutes. 
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The real-time PM2.5 data were quality controlled for possible sources of error and bias. First, any real-time PM2.5 measurement 

reported over 500 𝜇g m-3 was removed based on the manufacturer's guidance, similar to (Lu et al., 2021). Second, the AMOD 

PM2.5 measurements were aggregated in two different temporal resolutions: 1-hour and 24-hour averages. The 24-hour 140 

averaged PM2.5 measurements were only used if there were measurements for at least ¾ of the day to ensure it was 

representative of the entire day. Third, to correct for known biases of Plantower data tied to relative humidity (RH), we applied 

the following simple additive model in Eq. (1) tested by the US EPA (Barkjohn and Clements, 2020): 

𝑃𝑀$.& = 0.524	 × 𝐴𝑀𝑂𝐷123 − 0.0862 × 𝑅𝐻 + 575        (1) 

The Plantower reports multiple PM2.5 values based on different corrections, but AMODCF1 refers to PM2.5 reported by the 145 

Plantower that was not corrected by the manufacturer's built-in atmospheric correction. The RH values used to correct each 

PM2.5 data point were taken from the Plantower sensor as well. The Barkjohn and Clements (2020) model was developed 

specifically for the low-cost PurpleAir PM monitoring network, which uses either the PMS5003 or PMS7001 Plantower 

sensors. In this study, the Plantower PM2.5 data were not corrected using the time-integrated filter measurements of PM2.5 taken 

by the AMODs as in Ford et al., (2019). 150 

 

The AMOD 500 nm AOD data were quality controlled based on a procedure previously described by Ford et al., (2019) that 

is based on similar methods used by AERONET. As long as the sun is greater than 10 degrees above the horizon (estimated 

by the solar tracking algorithm), the device will attempt to take 3 AOD measurements, or a triplet, within a 1-minute period at 

the start of each 20-minute interval. We did not require that AOD was measured over ¾ of the day, as we did with PM2.5, since 155 

successful AOD measurements were less frequent and similar measurements from satellites only capture 1-2 times per day. 

Quality control and cloud screening were then applied in post-processing on each triplet at each wavelength. If less than 2 

measurements per triplet attempt were taken or the range of AOD values was too large (>0.02) at any wavelength, then no 

measurements from that interval were used in this analysis. AOD was also filtered to remove measurements with air mass 

factors > 5 or an Ångström exponent < 0. The Angstrom exponent was measured between the 440 nm and 875 nm wavelengths. 160 

Finally, we assumed that 500 nm AOD values that were outside of the range 0-1 were likely the result of measurement errors, 

such as cloud contamination, though we acknowledge this may be wrong for dust or smoke-impacted scenes (which are 

uncommon in wintertime Denver). 

2.1.2 EPA PM2.5 measurements 

We used 24-hour averaged PM2.5 measurements from the Environmental Protection Agency’s (EPA) Air Quality System 165 

(AQS) network from eight sites based in Denver (https://aqs.epa.gov/aqsweb/airdata.html) as shown in Figure 1. We limited 

our analysis to the eight sites that use federal reference methods or federal equivalent methods for PM2.5 and report local 

conditions (EPA parameter code 88101). We show in Table S1 the characteristics of each EPA monitoring site used in this 
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study. Since EPA AQS PM2.5 data is available for multiple years, we analyze data from November 1st - January 31st for the 

winters of 2017-2018, 2018-2019, 2019-2020. In Section 3, we choose to show results using the three years of data rather than 170 

limiting to the time period of the CEAMS deployment. However, we did the analysis for both time periods, and as we will 

discuss, the EPA RF results are similar, though noisier, if we limit EPA data to the time period of the CEAMS deployment. 

2.1.3. Spatiotemporal ML predictor datasets 

We used meteorological data (Table 1) from the Goddard Earth Observing System forward-processing dataset (GEOS-FP) 

provided by the Global Modeling and Assimilation Office. GEOS-FP is produced with a native resolution of 0.25° (longitude) 175 

x 0.3125° (latitude) (~25 km horizontal resolution) with 72 hybrid vertical layers . The GEOS-FP data used were hourly or 3-

hourly time averaged, depending on the variable. The 3-hourly data were linearly interpolated to hourly time resolution. 

Finally, all of the GEOS-FP variables were linearly interpolated spatially to the CEAMS and EPA monitor locations to better 

relate PM2.5 observations with the environment for RF predictions. 

2.1.4. Spatial-only ML predictor datasets 180 

We used multiple spatially varying datasets to describe each CEAMS and EPA monitoring location. Elevation information at 

each monitor location was extracted from the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) provided 

by the U.S. Geological Survey (USGS) and the National Geospatial-Intelligence Agency (NGA) (Danielson and Gesch, 2011). 

The GMTED2010 data used in this analysis were at a 15-arc second (450 meters) horizontal resolution, which provides a 

unique elevation value for each CEAMS AMOD and EPA site. The slope of the terrain at the dataset resolution was calculated 185 

from GMTED’s elevation data using QGIS. Additionally, we considered two predictors that have been found to be significant 

in land use regression (LUR) modeling: population density and travelled miles. We used census tract population density 

estimates from the Colorado Department of Public Health and Environment (CDPHE) (https://data-

cdphe.opendata.arcgis.com/) as a predictor in our RF models. Population density estimates on the CDPHE site, measured in 

population density per square mile of land area within the given census tract, are directly from the 2013-2017 American 190 

Community Survey. Finally, we also incorporated traffic and road density data into our RF PM2.5 predictions. We used model-

assigned 2020 All-day Traffic Volumes from the Denver travel model, “Focus” (Model Cycle: RTP-2020 and Focus 2.3; 

https://drcog.org/services-and-resources/data-maps-and-modeling/travel-modeling) developed by the Denver Regional 

Council of Governments. This data includes shapefiles of large, medium, and small (i.e., arterial, collector, and local) road 

segments and a model estimate of annual average traffic volumes on each segment, which is measured in vehicles that traveled 195 

on each segment per year. We determined the length of each road segment within a 500 buffer (i.e., intersection length) around 

each CEAMS and EPA monitor and then multiplied the intersection lengths by the traffic volumes of each segment, thereby 

producing an estimate of miles traveled by vehicles per year within 500 m of each monitor. As will be shown later, both 

population density and traveled miles were not found to be significant in estimating variability in PM2.5 and hence we decided 
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not to include any more LUR predictors in our model. A more comprehensive dataset of LUR predictors could be used in 200 

conjunction with geographical and meteorological predictors in future RF modeling. 

2.2. Random Forest Models 

2.2.1.  Random Forest set-up and predictors 

To investigate the complex relationships between meteorology, geography, and air quality as well as the value that AOD can 

add to predicting air quality, we used RF ML regression models. RF models are made up of a group of unique and weakly 205 

correlated decision trees that are leveraged together to make a prediction. A decision tree begins with a random subset of the 

training data at the first node (i.e., the root node) and successively splits the data into branch nodes (Figure 2). Here, a mean 

value of PM2.5 is predicted to represent all the samples in each node and the mean squared error is found. The data samples are 

then split at each branch node using a true or false question about one of the predictors (e.g., “is the temperature > 290 K?”), 

which is chosen to reduce the mean squared error of the samples in the following nodes. This process continues until the 210 

decision tree reaches its termination criterion, such as when there are not enough samples to form a new branch node or the 

tree depth (i.e., number of branches) reaches some maximum set beforehand. At this point leaf nodes are formed with final 

predictions. These trees are built during the training process and then the testing data will follow the split nodes until they 

arrive at leaf nodes, which provide predictions for each value. This process is repeated using each tree in the forest, and the 

final prediction for each testing sample is given as an average of the predictions across all of the trees. The strength of RF 215 

models is that they leverage predictions from many weakly correlated decision trees, which helps protect the model against 

biases. The RF ensures that decision trees are weakly correlated and unique by giving a random subset of the samples and 

predictors to each decision tree, and another random subset of the predictors to choose from at each branch node during the 

training process. In this study, we created RF models with the scikit-learn Python package (Pedregosa et al., 2011) to predict 

the spatial and temporal variability of PM2.5 using the predictors in Table 1. 220 
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Figure 2. Example schematic of a random forest decision tree. The root and branch nodes are in blue, while the leaf nodes, which 
hold the final predictions, are in green. The black lines represent a splitting of a branch node into two more nodes. 

In addition to investigating the relative importance of all of the different variables to predicting wintertime Denver PM2.5, we 

also wanted to specifically test the skill that AOD adds to the prediction of PM2.5. Thus, we created 3 subsets of both hourly 225 

and 24-hour CEAMS data, resulting in 6 datasets. The first subset, called the “Full Dataset,” used all hourly or 24-hour CEAMS 

PM2.5 data points and the co-located meteorological and geographic variables; however, it did not use the CEAMS AOD as a 

predictor. The second subset, called “Test - AOD,” only used hourly or 24-hour CEAMS PM2.5 at times and sites where 

CEAMS AOD was also available. However, similar to the first subset, the second subset did not use AOD as a predictor. 

Finally, the third subset, called “Test + AOD,” is the same as the second, but CEAMS AOD was used as an additional predictor. 230 

Using these 3 subsets allowed for the investigation of three questions: 1) What is the change in prediction skill of our models 

if we limit the data to locations and days where AOD is available but we do not use AOD as a predictor? 2) When we use 

AOD as an additional predictor, how important is it for predicting PM2.5 over wintertime Denver using the permutation metric? 

3) How does the overall RF model skill change for predicting PM2.5 after AOD is included as a predictor? Using models with 

both hourly and 24-hour data allowed us to analyze the relationships among air quality, meteorological and geographical 235 

factors, and the prediction skill of AOD measurements at different timescales. 

 

To compare the CEAMS RF results to reference measurements, an additional RF model was created to predict 24-hour 

averaged EPA PM2.5. We used the same predictors in our EPA RF model as we did with the CEAMS data, except for AOD as 

the EPA monitors do not have co-located AOD monitors. While there are fewer EPA monitors, they provide three full winters 240 

of data, allowing us to test whether our conclusions are robust when applied to a longer time period. 
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Table 1. Predictor variables used in our RF models. A check-mark indicates when a predictor was used in a given model. The number 
of data points used for the training and testing of each RF model is listed at the bottom. A dash is used to indicate that AOD was not 
used as a predictor or that a column is not applicable. 

Predictor Description Units 
Data 

Source 

CEAMS 

Full 

dataset 

CEAMS 

Test - 

AOD 

CEAMS 

Test + 

AOD 

EPA 

model 

Temp☨ 
Surface skin 

temperature 
Kelvin GEOS-FP ✓ ✓ ✓ ✓ 

RH☨ Relative humidity % GEOS-FP ✓ ✓ ✓ ✓ 

Wind 

Speed☨ 

Wind speed at 10 

meters height 
m s-1 GEOS-FP ✓ ✓ ✓ ✓ 

U*☨ Friction velocity m s-1 GEOS-FP ✓ ✓ ✓ ✓ 

Precip☨ Precipitation total inches GEOS-FP ✓ ✓ ✓ ✓ 

Cloud 

Frac☨ 
Cloud total fraction N/A GEOS-FP ✓ ✓ ✓ ✓ 

LWGNT☨ 
Longwave net 

radiation 
W m-2 GEOS-FP ✓ ✓ ✓ ✓ 

SWGDN☨ 
Shortwave 

downwelling radiation 
W m-2 GEOS-FP ✓ ✓ ✓ ✓ 

PBLH☨ 
Planetary boundary 

layer height 
meters GEOS-FP ✓ ✓ ✓ ✓ 

Elevation 
Elevation above sea 

level 
meters 

GMTED 

1 km grid 
✓ ✓ ✓ ✓ 

Slope Slope of terrain degrees 

calculated 

from 

GMTED 

✓ ✓ ✓ ✓ 

Pop 

density 
Population density 

People per 

square miles 
US Census ✓ ✓ ✓ ✓ 

Traveled 

miles 

Annual average miles 

traveled within 500 

meters of monitor 

miles year-1 
Focus 2.3 

model 
✓ ✓ ✓ ✓ 

CEAMS 

AOD 

Daily mean 500nm 

AOD 
dimensionless 

CEAMS 

AMODs 
- - ✓ - 
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Number of data points in 24-hour models: 634 307 307 2411 

Number of data points in hourly models: 18969 1043 1043 - 

☨ Daytime (11am-3pm) and nighttime (11pm-3am) averages of these variables were used as separate predictors when using the 24-hour 245 
averaged PM2.5 from the CEAMS and EPA dataset. For hourly data, these predictors were taken from the same location and hour of the 
PM2.5 data they are matched with. One exception is that nighttime-averaged SWGDN was not used as there is no shortwave downwelling 
radiation at night. 

2.2.2. Model configuration and tuning 

When implementing a ML technique, such as RFs, models must be appropriately tuned. Tuning is the process for configuring 250 

the structure and assumptions of the model. For RF models specifically, the tuning process generally controls the number and 

complexity of the decision trees that make up the random forest, the way in which data are sampled, and the number of 

predictors that should be considered at each split in each tree (i.e., hyperparameters). Tuning is necessary to ensure that the 

model does not underfit or overfit the training data. For an RF model, overfitting the training data occurs when the decision 

trees begin fitting onto the noise that exists in the training dataset. As a consequence, the RF could skillfully re-create the PM2.5 255 

values of the training dataset if fed the same predictor values associated with those training values (i.e., the same combination 

of meteorology, geography, etc.) because it learned to predict even the noise of the training data. However, if this same RF 

model was given an unseen set of PM2.5 values and their associated predictors, such as PM2.5 from a different time period or a 

different monitor, it could perform poorly. Overfitting can go unnoticed if there is data leakage between the testing and training 

data, which could occur if the data in both sets are autocorrelated. Underfitting, on the other hand, is more straightforward; it 260 

occurs when the decision trees are too simple and fail to capture the relationships that exist between the predictor and target 

variables. Typically, to ensure against over or underfitting, the data are split into separate tuning, training, and testing datasets. 

However, since our dataset spans only a couple months, we tuned, trained, and tested our RF models using a cross validation 

(CV) method. 

 265 

As ML methods become popular in air-quality research, we hope that transparency about our tuning process allows for 

reproducibility and serves as a guide for future work. We used a k-fold cross validation method to tune each model over a 

selection of hyperparameters (Table 2) using the scikit-learn package GridSearchCV (Pedregosa et al., 2011). GridSearchCV 

automatically trains and validates an RF model for every combination of hyperparameters given to it (Table 2) over k number 

of folds (in our case, 5 folds for each hyperparameter combination). A k-fold CV entails chunking the data into k number of 270 

equally sized groups, using k-1 number of folds for training the RF model, validating that RF model using the remaining fold, 

and then repeating that process until every fold has been used for validation. We chose the final hyperparameters for our 6 

CEAMS RF models and our EPA RF model based on the best MSE for each combination of hyperparameters in each model. 

However, if a similar MSE was found for a hyperparameter selection that allowed for simpler tree structures (shallower depth, 

fewer trees, etc.), the simpler model was chosen instead of the more complex model. For example, Figure S1a shows that RF 275 

model skill when using 120 trees or 90 trees result in very similar distributions of model skill. Thus, while tuning the RF model 
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that used the 24-hour CEAMS Full Dataset, we chose 90 trees to limit the complexity of the model without losing performance. 

Similarly, we also chose a maximum depth of 15, 2 samples needed to form a leaf, and 5 samples needed to split a branch 

node. More information about the hyperparameters chosen for each RF model is in the Supplement (Fig. S1-S7). 

 280 
Table 2.  Hyperparameters tested during the tuning of each random forest model. 

Hyperparameter in scikit-learn Description Values Tested 

n_estimators Number of trees 20, 30, 40, 50, 60, 70, 90, 120 

max_depth Maximum depth of each tree Varies with different models 

min_samples_split 
Minimum samples needed to split an 

internal node 
1, 2, 5 

min_samples_leaf 
Minimum samples needed to split at a 

leaf node 
1, 2, 4 

max_features 
Maximum number of predictors to 

consider for each split 
‘Sqrt’, ‘Auto’ 

bootstrap 
Each decision tree will be built with a 

bootstrapped sample of the dataset 
True, False 

2.2.3. Validation and bootstrapping methodology 

Once the final model hyperparameters were chosen, the models were trained and tested over another 5-fold CV. Although the 

CV method was used in both our tuning and testing methodology, each was done using a different random shuffling of the 

data. See Figure S8 for an example of a comparison between CEAMS 24-hour PM2.5 and the RF prediction after validating 285 

against 1 testing fold. We estimated the uncertainty in our RF model predictions by calculating 95% confidence intervals for 

the performance metrics of each RF model using a bootstrapping method. Bootstrapping entailed taking random samples of 

the model predictions and the associated PM2.5 measurements, with replacement, and finding the errors statistics (e.g. the root 

mean squared error [RMSE] and the coefficient of determination [R2]) of each random sample. This process was repeated until 

a distribution of each error statistic was created. Then the error statistics were sorted into ascending order and the values at the 290 

2.5% and 97.5% percentiles represented the 95% confidence interval. Finally, to investigate the relative importance of each 

predictor for the RF predictions, a permutation importance metric was used, which tests the change in model prediction skill 

after randomly shuffling one predictor of the validation data at a time. Thus, the higher the permutation importance, the greater 

loss of prediction skill if that predictor was randomized.  To test the robustness of each permutation importance score, the 

metric was calculated 100 times for each predictor for each of the 5 iterations of the 5-fold CV, resulting in a distribution of 295 

500 permutation importance scores per predictor. 
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2.2.4. The impact of autocorrelation in RF methods 

The CEAMS and EPA PM2.5 measurements were autocorrelated at both hourly and 24-hour timescales. This lack of 

independence can result in information being shared between the training and testing datasets. This information sharing makes 

it much easier for the RF models to predict PM2.5 from the testing dataset because it looks very similar to the data the models 300 

were trained on. Thus, the RF models’ prediction skills can be inflated. In our models, this information sharing occurred when 

the PM2.5 and predictor variables were randomly shuffled before we chunked the data into k-folds (i.e., “shuffled k-folds”), 

which is the default behavior of many k-fold CV procedures because they assume each value is an independent sample. 

Alternatively, data can be chunked into consecutive k-folds, which reduces information sharing between testing and training 

datasets (Fig. 3).  305 

 

To understand the impact of autocorrelation on our models, we present results from training and validation with shuffled and 

consecutive k-folds in the Results and SI, respectively. Our analysis of the CEAMS data, which was limited to several weeks 

of measurements, showed larger differences between results using shuffled data and results using consecutive k-folds 

compared to our EPA analysis, as discussed in Section 3.4. This is likely due to the greater noise, residual RH bias of the 310 

Plantower sensors, and inconsistent sampling pattern of the citizen science deployment (Fig. S9), which limited the 

predictability of CEAMS PM2.5. Thus, the CEAMS RF models using consecutive folds often performed poorly and our 

confidence in the chosen predictors was low. Hence, while the consecutive method is preferable for long, comprehensive data 

sets, we present here the CEAMS results of our RF models using shuffled data because we found that, even though their 

predictive ability appears inflated for unseen data due to the autocorrelation, they still allow for useful interpretations of 315 

meteorological, geographical, and other predictors of PM2.5. 
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Figure 3. Example of CEAMS 24-hour data split into 5 randomly shuffled folds (a) and 5 consecutive (i.e., chunked in time) folds (b) 
used in the RF model training and testing process. During a 5-fold CV, 4 of these folds are used to train a model and the remaining 
fold is used to validate the model, which is repeated iteratively until each fold has been used for validation. 320 

3. Results 

3.1. CEAMS Denver Deployment Data  

During the CEAMS pilot deployment in wintertime Denver our AMODs retrieved over 18,000 hourly averaged quality-

controlled PM2.5 measurements (𝝁 = 8.2 µg m-3; 𝝈 = 12.6 µg m-3) and over 1000 hourly averaged quality-controlled AOD 

measurements (𝝁 = 0.06; 𝝈 = 0.05) (Table 1). There were only a few periods of significantly elevated PM2.5 (24-hour means 325 

> 10 µg m-3) during the deployment (Fig. 4a), and they did not often coincide with a proportional increase in daytime AOD 

(Fig. 4b). Thus, there was a low correlation between PM2.5 and AOD (Fig. 4c). The days with elevated 24-hour averaged PM2.5 

tended to be driven by late afternoon and overnight buildup of air pollution potentially caused by automobile emissions and 
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residential heating during stable winter nighttime conditions over Denver (Fig. S10). There were also strong sub-city gradients 

of concentrations during some periods as shown in Figure S11. 330 

 
Figure 4. (a) CEAMS AMODs’ 24-hour averaged PM2.5 measurements taken in Denver, CO by 32 citizen scientists between 
November 14th, 2019, and January 20th, 2020. EPA reference measurements of 24-hour PM2.5 from 8 sites are also shown for the 
same period. (b) CEAMS AMODs daily averaged AOD measurements taken by the same devices shown in panel a. (c) The 
relationship between 24-hour time averaged PM2.5 and daily averaged AOD taken by the same CEAMS AMODs. 335 

To enhance our understanding of the potential drivers of PM2.5 over wintertime Denver, prior to creating ML models, we 

investigated the relationship between our CEAMS 24-hour PM2.5 measurements and different spatial and spatiotemporal 

predictors (Fig. 5). This analysis helps set expectations for potentially important predictors in the ML models. We found that 
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24-hour PM2.5 was negatively correlated with daytime and nighttime planetary boundary layer heights (PBLH), friction 

velocity (U*), wind speed, and nighttime temperature (all of which are positively correlated with each other). The correlation 340 

between our PM2.5 measurements and these meteorological predictors is likely due to wintry conditions in Denver that lead to 

stagnant air, thermal inversions, and low boundary layers, which can all serve to slow the ventilation and downwind transport 

of urban air pollution. We also hypothesize that wintry conditions also may have led to increased wood burning for residential 

heat, which would enhance PM2.5 build up, especially overnight. However, this temperature-emission connection is a 

hypothesis that we do not test here. PM2.5 tended to be elevated during higher RH conditions as well, which may be due to a 345 

combination of the physical connection between PM2.5 and meteorological conditions, as well as remaining RH bias in the 

measurements that was not removed using the Barkjohn and Clements (2020) correction. We explore this RH connection more 

in our discussion of variable importance in our CEAMS and EPA RF models. The spatial-only predictors (elevation, slope, 

population density, and vehicle travelled miles) were only weakly correlated with PM2.5 because temporal variability 

dominated over spatial variability in our dataset; however, these spatial predictors may still provide information to refine the 350 

ML estimates. Figure 5 shows that PM2.5 likely has a complicated and nonlinear relationship with local meteorology during 

our deployment. However, it is difficult to interpret which variables or combinations of variables are more useful for predicting 

PM2.5 which is why we chose to use RF models to quantitatively determine predictors of spatiotemporal variability of PM2.5 

in wintertime Denver.  
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 355 
Figure 5. Correlation matrix of CEAMS 24-hour PM2.5 data and all RF model predictors used in each 24-hour model. The “(D)” 
and “(N)” represent daytime (11am-3pm) and nighttime (11pm-3am) averages, respectively, of each meteorological predictor. The 
predictors are in order from greatest to least corresponding to the absolute value of the spearman rank correlation. The size of each 
box also corresponds to the absolute value of the spearman rank correlation between each variable so that the least important 
predictors have the smallest boxes. The same predictors are used in the RF models that predict hourly PM2.5 but hourly averaged 360 
meteorological factors were used instead of daytime and nighttime averages. 

3.2. Random Forest model skill  

In Figure 6, we present the 95% confidence intervals of the performance metrics for each RF model using shuffled k-folds. 

We found that, of the RF models predicting 24-hour PM2.5 measurements, the model using the CEAMS Full Dataset showed 

the highest coefficient of determination, lowest RMSE, and a slope nearest to 1 between predictions and PM2.5 measurements. 365 
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The 95% confidence intervals of the Full Dataset model overlapped with the Test - AOD and Test + AOD RF models, which 

implies that limiting the CEAMS data to locations and days where AOD was available did not result in a significant reduction 

in model skill for 24-hour PM2.5 prediction. We did see a small reduction in skill for hourly PM2.5 predictions (Fig. 6e-g) after 

limiting the dataset to only locations and hours where AOD was also taken. The 24-hour CEAMS Full Dataset model also 

showed similar skill to the EPA model for all metrics (Fig. 6a-d). However, results for the RF models using consecutive k-370 

folds showed a significant decrease in prediction skill, especially for the CEAMS Full Dataset, while the EPA model results 

showed a less substantial decrease in skill (Fig. S12). We also found that the RF models were better at capturing temporal 

variability than spatial variability during the CEAMS deployment. The hourly PM2.5 observations showed an average spatial 

standard deviation of ~2.5 𝝁g m-3 while the RF model predictions showed an average spatial standard deviation of ~1.5 𝝁g m-

3 for shuffled k-folds (Fig. S13) and only ~0.6 for consecutive k-folds (Fig. S14) . 375 

 

By comparing the CEAMS Test - AOD and the CEAMS Test + AOD model performance metrics, we investigated the change 

in model performance if AOD was used as an additional predictor of PM2.5. We found that the confidence intervals of the Test 

- AOD and Test + AOD models almost entirely overlapped for 24-hour PM2.5 predictions (Fig. 6a-d), which shows that the 

daily averaged AOD did not add to the overall prediction skill of the RF models. We found a small increase in mean model 380 

skill when comparing hourly PM2.5 predictions between the Test - AOD and Test + AOD, indicated by the increased R2, 

decreased RMSE, and a slope nearer to 1 for the Test + AOD model, but the confidence intervals overlap, which indicates that 

the difference between models had low statistical significance. This finding may be because AOD can be disconnected from 

PM2.5 in a variety of ways. For example, daytime-only measurements such as AOD would be unable to capture evening buildup 

of PM2.5 that we often saw in the Denver pilot deployment. Furthermore, PM2.5 and AOD share a nonlinear relationship that 385 

can be altered by the aerosol hygroscopicity, aerosol vertical profile, size distribution, and chemical composition. However, 

AOD would likely provide greater predictive skill in the spatial variability of long-term averages in PM2.5 (Hu et al., 2014; Liu 

et al., 2005; van Donkelaar et al., 2010) and locations where PM2.5 is driven by daytime variability (van Donkelaar et al., 2011). 
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Figure 6. The 95% confidence interval of the error metrics for all of the CEAMS RF models (Full Dataset, Test - AOD, and Test + 390 
AOD) in predicting both 24-hour and hourly PM2.5 and the error metrics for the 24-hour EPA model. The 95% confidence intervals 
show an estimate of the uncertainty range and, thus, if the intervals of two different models overlap, any difference in their error 
metrics are likely not statistically significant. The error metrics for each 24-hour PM2.5 RF model includes (a) the coefficient of 
determination (R2) (b) root mean squared error (RMSE), (c) mean bias, (d) and slope of the linear regression. Plots (e), (f), (g), and 
(h) show analogous results but for the hourly PM2.5 predictions, which we did not predict for the EPA dataset. The size of each 24-395 
hour and hourly dataset, before being split into k-folds, is shown in the bottom left corner of plot (a) and (e). 

3.3. Variable importance for spatiotemporal PM2.5 predictions  

We use our RF models not only to estimate PM2.5 concentrations but also to investigate the variables importance in predicting 

PM2.5 for wintertime in Denver. We show distributions of permutation importance for the top 10 predictors, ranked by their 

median permutation importance, of each RF model that predicted CEAMS and EPA PM2.5 concentrations (Fig. 7). We found 400 

that the meteorological predictors vary largely between 24-hour (Fig. 7a-d) and hourly (Fig. 7e-g) models of PM2.5. The 

daytime (11am-3pm) averaged PBLH and RH were consistently strong predictors in each CEAMS 24-hr RF model (Fig. 7a-

c) and daytime PBLH was the strongest predictor in the EPA model (Fig. 7d). It was not surprising that PBLH was a strong 

predictor of PM2.5, though we expected nighttime PBLH to be a stronger predictor than daytime PBLH because high PM2.5 

usually occurs during the late evening to early morning hours (Fig. S10). However, it may be that low daytime PBLH values 405 

were better correlated with periods where PM2.5 was elevated for extended periods of time, because ventilation of air pollution 

was hampered by stagnant air masses. Additionally, day and night PBLH are correlated so day PBLH may act to predict 
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nighttime PM2.5 buildup (Fig. 5). The strength of daytime-averaged RH in our CEAMS RF models may be due to physical 

connections between PM2.5 and RH, because high RH is tied to colder conditions (Fig. 5), which is subsequently correlated 

with boundary layer heights (Fig. 5). However, this may also be due to residual bias of the Plantower measurements for which 410 

the Barkjohn and Clements (2020) correction was unable to account. The nighttime (11pm-3am) averaged cloud fraction was 

the third most important predictor in the CEAMS Full Dataset while daytime longwave net radiation was the third most 

important for the CEAMS Test - AOD and Test + AOD models. As expected, since we saw no change in prediction skill 

between the CEAMS Test - AOD and Test + AOD 24-hour predictions (Fig. 6a-d), AOD also did not have high permutation 

importance in the 24-hour CEAMS Test + AOD model. 415 

 

 
Figure 7. Box-and-whisker plots of the distribution of 500 permutation importance measurements from the top 10 predictors of each 
model. The 500 permutation importance values are taken from 100 repeats of permutation importance from each of the 5 testing 
folds. The whiskers of each box are the 10th and 90th percentile of the permutation importance distribution. The edges of each box 420 
represent the 25th and 75th percentile and, finally, the centerline of each box represents the median of the permutation importance 
distribution. (a) The 24-hour PM2.5 predictions of the CEAMS Full Dataset, (b) The 24-hour PM2.5 predictions of the CEAMS Test 
- AOD dataset, (c) The 24-hour PM2.5 predictions of the CEAMS Test + AOD dataset. Plots (d), (e), and (f) are analogous to the 
CEAMS 24-hour PM2.5 RF models in plots (a), (b), and (c) but for hourly averaged PM2.5 and associated predictors. The permutation 
importance of every predictor used for each model is in the Supplement (Fig. S15-S16). 425 
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The hourly RF models relied more on different meteorological variables than the 24-hour models (Fig. 7e-g). The most 

important predictor for all three hourly models was hourly averaged RH. We hypothesize that RH is the strongest predictor 

because the RH correction factor that we applied to our hourly-averaged PM2.5 data is based on Barkjohn and Clements (2020), 

which used 24-hour averaged PM2.5. Thus, the importance of RH in our model may be more reflective of the RH bias in the 430 

sensor measurement than the physical connection between PM2.5 and RH. Unlike the 24-hour CEAMS models, hourly-

averaged AOD was the second strongest predictor in our Test + AOD model, and we saw improvement in mean prediction 

skill of this model compared to the hourly Test - AOD model (Fig. 7e-h). This result implies that hourly AOD added some 

skill in predicting hourly PM2.5 data. The increased importance of AOD in the hourly models relative to the 24-hour models is 

likely because the AOD is co-located in time (within the hour) with the PM2.5 measurement but not with most of the 24-hour 435 

period (as AOD is only available during daylight hours).  

 

Finally, we expected spatial predictors such as elevation, vehicle miles traveled, and population density to be more important 

for all of the RF models, because we hypothesized that air pollution would pool at low elevations during the winter in Denver, 

as late evening traffic and residential wood burning emissions were trapped over Denver by stagnant air. Instead, we found 440 

that their permutation importance was near zero for all of these variables in the CEAMS models (Fig. S15-S18). However, our 

EPA model results indicated that elevation was a moderately important predictor when we used shuffled k-folds (Fig. 7d) and 

the 2nd most important when we used consecutive k-folds (Fig. S19). Vehicle miles traveled and population density are 

generally not important predictors in our RF models, which may be due to temporal variability being larger than spatial 

variability in our dataset as well as these predictors having no correlation with PM2.5 (Figure 5). 445 

3.4. Sensitivity of Results to Data Processing and RF Setup Decisions 

 One critical caveat to our CEAMS data analysis is that there is strong autocorrelation in daily, and especially hourly, PM2.5. 

Thus, when we shuffle the PM2.5 data and their associated predictors before splitting the data into k-folds for training and 

testing, information will be shared between the training and testing datasets. We tested the potential impact of autocorrelation 

on our model skill by repeating the CEAMS and EPA analyses without shuffling the data before splitting it into k-folds. We 450 

saw a significant decrease in skill for the CEAMS RF models, especially hourly (Fig. S12), and a decrease in the consistency 

of predictor ranking (Fig. S17-S18). Our analysis of the EPA RFs, however, showed a smaller decrease in predictive skill 

when we compared the results from models trained and tested using shuffled vs. consecutive k-folds. For example, the upper 

bound of the 95% confidence intervals decreased by 0.5 and 0.3 for the CEAMS Full Dataset and EPA 24-hour models, 

respectively, when we used consecutive k-folds. Furthermore, the meteorological and geographical predictors remained more 455 

consistent in the EPA model when we used consecutive k-folds (Fig. S19). To test whether these results were due to the 

increased length of the EPA dataset, we repeated the analysis only using EPA measurements from 15 November 2019 - 15 

January 2020, the same time period as our CEAMS deployment, and found similar results for both shuffled (Fig. S20) and 
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consecutive (Fig. S21) k-folds. Thus, the sharp decrease in CEAMS RF skill may be due to the quality of the Plantower sensor 

measurements and/or the inconsistent sampling patterns of the CEAMS AMOD citizen science deployment, which means that 460 

the model would not be able to train itself appropriately to compare well to unseen data. Furthermore, as we mentioned in our 

discussion of Figure 2, there are only a few short periods of significantly elevated PM2.5 during the CEAMS deployment, 

which led to consistent under-prediction of high PM2.5 in the RF models (Fig. 7d and 7h), especially in those that used 

consecutive k-folds (Fig. S12). However, even though we do not have confidence that our CEAMS model would have 

predictive skill for new time periods, we do have more confidence that our interpretation of the top meteorological and 465 

geographical relationships is valid under the conditions of the CEAMS campaign. 

 

In addition to the impact of autocorrelation and shuffling on our results, we found that various decisions made in processing 

our data could lead to variations in the predictive skill of our models and the order of variable importance’s. For example, we 

found that using a linear interpolation method instead of nearest neighbor for co-locating the GEOS-FP meteorological data to 470 

the CEAMS monitors affected which predictors were considered most important (not shown here), likely because the linear 

interpolation method introduced greater spatial variability among predictors when comparing PM2.5 from monitors in the same 

grid-box. We also saw that our results were sensitive to the use of an RH correction for the CEAMS PM2.5 because the relative 

importance of RH variables decreased after the RH correction was applied in the 24-hour CEAMS RF models. Finally, we 

found it useful to tune our models on a greater selection of hyperparameters than the maximum depth and the number of trees. 475 

We recommend that future investigations of PM2.5 with machine learning (RF in particular) carefully consider the decisions 

described above. 

4. Conclusions 

The CEAMS pilot campaign provided a novel high-spatial-density, low-cost network of citizen-scientist-deployed monitors 

that captured coincident sub-hourly PM2.5 and AOD measurements in Denver. For the measurements gathered in this work in 480 

Denver over wintertime, PM2.5 concentrations varied much more with time than in space. This finding, that PM2.5 varies less 

with space than time within an urban environment, is generally consistent with recent PM2.5 measurements made in other US 

cities including Oakland, CA (e.g. Shah et al., 2018) and Pittsburgh, PA (Gu et al., 2018).  

 

To understand potential drivers of PM2.5 over wintertime Denver, we analyzed the importance of various meteorological and 485 

geographical features in predicting spatiotemporal variability of PM2.5 from both the CEAMS low-cost and EPA reference 

networks. We found that daytime-averaged (11am-3pm) PBLH was the strongest predictor of intra-city spatiotemporal 

variability for both low-cost and reference measurements of 24-hour averaged PM2.5. The ranking of less important predictors 

in our CEAMS and EPA RF models differed, however. For example, nighttime-averaged PBLH and friction velocity were 

strong predictors of EPA 24-hour averaged PM2.5, while daytime-averaged RH was a strong predictor of CEAMS 24-hour 490 
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averaged PM2.5. We also found that hourly averaged RH was the strongest predictor of CEAMS hourly-averaged PM2.5. 

However, we expect that the RFs’ reliance on RH for CEAMS 24-hour and hourly PM2.5 prediction was likely due, in part, to 

residual RH bias in the Plantower measurements of PM2.5, especially since RH was not one of the top 3 predictors in our EPA 

RF model.  

 495 

Spatial variables such as population density and number of vehicle miles traveled were consistently unimportant predictors in 

our RF models, although elevation was important in our multi-year EPA model. Perhaps due to the lack of importance placed 

on spatial variables, our RF models were unable to fully capture the extent of the spatial variability of PM2.5 seen over Denver 

(Fig. S12-S13). Historically, most LUR modeling has relied on spatial variables to explain differences in PM2.5 concentrations 

and discounted temporal variability since the objective is usually to quantify the average PM2.5 exposure over a time period of 500 

interest (e.g., seasonal, annual). In cases where studies have developed spatiotemporal LUR models because there is an interest 

in quantifying the time-resolved PM2.5 exposure (Martenies et al., 2021), they do not appear to use meteorological variables 

directly. This work suggests that LUR modeling can benefit from using meteorological variables (e.g., PBLH) in addition to 

spatial and geographical variables in estimating PM2.5.  

 505 

Finally, we tested whether coincident AOD measurements added predictive skill to hourly and 24-hour averaged PM2.5 

predictions beyond what was achievable using only geographical and meteorological information in wintertime Denver, as 

may be possible with satellite AOD retrievals. We found that daily-averaged AOD measurements did not improve RF model 

predictions of CEAMS 24-hour PM2.5, nor was AOD identified as a strong predictor of 24-hour PM2.5 based on the permutation 

metric. The lack of skill added by AOD to 24-hour PM2.5 prediction is likely because 24-hour PM2.5 in wintertime Denver is 510 

largely driven by evening and overnight build-up of air pollution, which daytime-only measurements such as AOD cannot 

capture. However, when incorporating CEAMS AOD as a predictor in our RF model of hourly-averaged PM2.5, we found an 

increase in average prediction skill, and the hourly averaged AOD was the second strongest predictor based on a permutation 

importance metric  (although the 95% confidence intervals overlapped, which implies that the increase in model skill had low 

statistical significance). This implies that AOD retrieved from geostationary satellites may be a better predictor of PM2.5 than 515 

AOD from polar-orbiting satellites, because they may help capture more of the diurnal cycle of aerosols. We also expect 

AMOD AOD to be a better predictor of daily and hourly averaged PM2.5 in other seasons or locations where enhanced PM2.5 

is not driven as strongly by nighttime conditions. 

 

The CEAMS deployment in Denver for the winter of 2019-2020 was hampered by inconsistencies in sampling locations, 520 

sampling times, and machine errors, which resulted in a limited dataset. Despite these setbacks, this deployment provided a 

novel dataset that informed us about possible interactions between meteorological and geographical variables, as well as the 

potential for low-cost AOD measurements to aid in the prediction of high-resolution spatiotemporal variability in PM2.5.  We 

recommend that future work mostly concerned about predicting high PM2.5 days in cities consider using classification RF 
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models that only work to predict “low” and “high” PM2.5 days. This may provide more insight into how different spatiotemporal 525 

predictors play a role in elevated PM2.5 events. We also recommend that future work incorporate a more thorough list of spatial 

predictors or use a hybrid approach that combines traditional LUR techniques and ML, such as Considine et al. (2021), to 

improve predictions of spatial variability for sub-city PM2.5. 

Acknowledgements 

This research was supported by the National Aeronautics and Space Administration (NASA) grant number 80NSSC18M0120 530 

and NASA Health and Air Quality Applied Sciences Team grant number 80NSSC21K0429. We are grateful for the CEAMS 

citizen scientists who participated in gathering the data used in this study as well as to Katelyn O’Dell, John Mehaffy, and the 

CSU Stats Helpdesk for their assistance in preparing data for Random Forest model analysis. The GEOS-FP data used in this 

study/project have been provided by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight 

Center. 535 

Code/Data Availability 

All air quality data collected and used for this study during the CEAMS Denver, CO deployment are available at the following 

URL: https://hdl.handle.net/10217/233884 

References 

Amante, C. and Eakins, B. W.: ETOPO1 Global Relief Model converted to PanMap layer format, 540 

https://doi.org/10.1594/PANGAEA.769615, 2009. 

Anenberg, S. C., Achakulwisut, P., Brauer, M., Moran, D., Apte, J. S., and Henze, D. K.: Particulate matter-attributable 

mortality and relationships with carbon dioxide in 250 urban areas worldwide, Sci Rep, 9, 11552, 

https://doi.org/10.1038/s41598-019-48057-9, 2019. 

Barkjohn, K. K. and Clements, A. L.: Development and Application of a United States wide correction for PM2.5; data collected 545 

with the PurpleAir sensor, Aerosols/In Situ Measurement/Validation and Intercomparisons, https://doi.org/10.5194/amt-2020-

413, 2020. 

Bi, J., Belle, J. H., Wang, Y., Lyapustin, A. I., Wildani, A., and Liu, Y.: Impacts of snow and cloud covers on satellite-derived 

PM2.5 levels, Remote Sensing of Environment, 221, 665–674, https://doi.org/10.1016/j.rse.2018.12.002, 2019. 

Bi, J., Wildani, A., Chang, H. H., and Liu, Y.: Incorporating Low-Cost Sensor Measurements into High-Resolution PM 2.5 550 

Modeling at a Large Spatial Scale, Environ. Sci. Technol., 54, 2152–2162, https://doi.org/10.1021/acs.est.9b06046, 2020. 

Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 

https://doi.org/10.5194/acp-2021-751
Preprint. Discussion started: 29 October 2021
c© Author(s) 2021. CC BY 4.0 License.



25 
 

Bulot, F. M. J., Johnston, S. J., Basford, P. J., Easton, N. H. C., Apetroaie-Cristea, M., Foster, G. L., Morris, A. K. R., Cox, S. 

J., and Loxham, M.: Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban 

environment, Sci Rep, 9, 7497, https://doi.org/10.1038/s41598-019-43716-3, 2019. 555 

Burkhardt, J., Bayham, J., Wilson, A., Carter, E., Berman, J. D., O’Dell, K., Ford, B., Fischer, E. V., and Pierce, J. R.: The 

effect of pollution on crime: Evidence from data on particulate matter and ozone, Journal of Environmental Economics and 

Management, 98, 102267, https://doi.org/10.1016/j.jeem.2019.102267, 2019. 

Cifelli, R., Doesken, N., Kennedy, P., Carey, L. D., Rutledge, S. A., Gimmestad, C., and Depue, T.: The Community 

Collaborative Rain, Hail, and Snow Network: Informal Education for Scientists and Citizens, 86, 1069–1077, 2005. 560 

Considine, E. M., Reid, C. E., Ogletree, M. R., and Dye, T.: Improving accuracy of air pollution exposure measurements: 

Statistical correction of a municipal low-cost airborne particulate matter sensor network, Environmental Pollution, 268, 

115833, https://doi.org/10.1016/j.envpol.2020.115833, 2021. 

Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation data 2010 (GMTED2010), 

https://doi.org/10.3133/ofr20111073, 2011. 565 

Dechezleprêtre, A., Rivers, N., and Stadler, B.: The economic cost of air pollution: Evidence from Europe, 2019. 

Delp, W. W. and Singer, B. C.: Wildfire Smoke Adjustment Factors for Low-Cost and Professional PM2.5 Monitors with 

Optical Sensors, Sensors, 20, 3683, https://doi.org/10.3390/s20133683, 2020. 

Di, Q., Kloog, I., Koutrakis, P., Lyapustin, A., Wang, Y., and Schwartz, J.: Assessing PM 2.5 Exposures with High 

Spatiotemporal Resolution across the Continental United States, Environ. Sci. Technol., 50, 4712–4721, 570 

https://doi.org/10.1021/acs.est.5b06121, 2016. 

van Donkelaar, A., Martin, R. V., and Park, R. J.: Estimating ground-level PM2.5 using aerosol optical depth determined from 

satellite remote sensing, 111, https://doi.org/10.1029/2005JD006996, 2006. 

van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., and Villeneuve, P. J.: Global Estimates of 

Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application, 575 

Environ Health Perspect, 118, 847–855, https://doi.org/10.1289/ehp.0901623, 2010. 

van Donkelaar, A., Martin, R. V., Levy, R. C., da Silva, A. M., Krzyzanowski, M., Chubarova, N. E., Semutnikova, E., and 

Cohen, A. J.: Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the 

Moscow fires in 2010, Atmospheric Environment, 45, 6225–6232, https://doi.org/10.1016/j.atmosenv.2011.07.068, 2011. 

van Donkelaar, A., Martin, R. V., Pasch, A. N., Szykman, J. J., Zhang, L., Wang, Y. X., and Chen, D.: Improving the Accuracy 580 

of Daily Satellite-Derived Ground-Level Fine Aerosol Concentration Estimates for North America, Environ. Sci. Technol., 

46, 11971–11978, https://doi.org/10.1021/es3025319, 2012. 

van Donkelaar, A., Martin, R. V., Spurr, R. J. D., Drury, E., Remer, L. A., Levy, R. C., and Wang, J.: Optimal estimation for 

global ground-level fine particulate matter concentrations, 118, 5621–5636, https://doi.org/10.1002/jgrd.50479, 2013. 

https://doi.org/10.5194/acp-2021-751
Preprint. Discussion started: 29 October 2021
c© Author(s) 2021. CC BY 4.0 License.



26 
 

Engel-Cox, J. A., Hoff, R. M., and Haymet, A. D. J.: Recommendations on the Use of Satellite Remote-Sensing Data for Urban 585 

Air Quality, Journal of the Air & Waste Management Association, 54, 1360–1371, 

https://doi.org/10.1080/10473289.2004.10471005, 2004. 

Ford, B. and Heald, C. L.: Exploring the uncertainty associated with satellite-based estimates of premature mortality due to 

exposure to fine particulate matter, Atmos. Chem. Phys., 16, 3499–3523, https://doi.org/10.5194/acp-16-3499-2016, 2016. 

Ford, B., Pierce, J. R., Wendt, E., Long, M., Jathar, S., Mehaffy, J., Tryner, J., Quinn, C., van Zyl, L., L’Orange, C., Miller-590 

Lionberg, D., and Volckens, J.: A low-cost monitor for measurement of fine particulate matter and aerosol optical depth – Part 

2: Citizen-science pilot campaign in northern Colorado, Atmos. Meas. Tech., 12, 6385–6399, https://doi.org/10.5194/amt-12-

6385-2019, 2019. 

Forouzanfar, M. H., Afshin, A., Alexander, L. T., Anderson, H. R., Bhutta, Z. A., Biryukov, S., Brauer, M., Burnett, R., Cercy, 

K., Charlson, F. J., Cohen, A. J., Dandona, L., Estep, K., Ferrari, A. J., Frostad, J. J., Fullman, N., Gething, P. W., Godwin, 595 

W. W., Griswold, M., Hay, S. I., Kinfu, Y., Kyu, H. H., Larson, H. J., Liang, X., Lim, S. S., Liu, P. Y., Lopez, A. D., Lozano, 

R., Marczak, L., Mensah, G. A., Mokdad, A. H., Moradi-Lakeh, M., Naghavi, M., Neal, B., Reitsma, M. B., Roth, G. A., 

Salomon, J. A., Sur, P. J., Vos, T., Wagner, J. A., Wang, H., Zhao, Y., Zhou, M., Aasvang, G. M., Abajobir, A. A., Abate, K. 

H., Abbafati, C., Abbas, K. M., Abd-Allah, F., Abdulle, A. M., Abera, S. F., Abraham, B., Abu-Raddad, L. J., Abyu, G. Y., 

Adebiyi, A. O., Adedeji, I. A., Ademi, Z., Adou, A. K., Adsuar, J. C., Agardh, E. E., Agarwal, A., Agrawal, A., Kiadaliri, A. 600 

A., Ajala, O. N., Akinyemiju, T. F., Al-Aly, Z., Alam, K., Alam, N. K. M., Aldhahri, S. F., Aldridge, R. W., Alemu, Z. A., 

Ali, R., Alkerwi, A., Alla, F., Allebeck, P., Alsharif, U., Altirkawi, K. A., Martin, E. A., Alvis-Guzman, N., Amare, A. T., 

Amberbir, A., Amegah, A. K., Amini, H., Ammar, W., Amrock, S. M., Andersen, H. H., Anderson, B. O., Antonio, C. A. T., 

Anwari, P., Ärnlöv, J., Artaman, A., Asayesh, H., Asghar, R. J., Assadi, R., Atique, S., Avokpaho, E. F. G. A., Awasthi, A., 

Quintanilla, B. P. A., Azzopardi, P., et al.: Global, regional, and national comparative risk assessment of 79 behavioural, 605 

environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global 

Burden of Disease Study 2015, The Lancet, 388, 1659–1724, https://doi.org/10.1016/S0140-6736(16)31679-8, 2016. 

Gao, M., Cao, J., and Seto, E.: A distributed network of low-cost continuous reading sensors to measure spatiotemporal 

variations of PM2.5 in Xi’an, China, Environmental Pollution, 199, 56–65, https://doi.org/10.1016/j.envpol.2015.01.013, 2015. 

Gu, P., Li, H. Z., Ye, Q., Robinson, E. S., Apte, J. S., Robinson, A. L., and Presto, A. A.: Intracity Variability of Particulate 610 

Matter Exposure Is Driven by Carbonaceous Sources and Correlated with Land-Use Variables, Environ. Sci. Technol., 52, 

11545–11554, https://doi.org/10.1021/acs.est.8b03833, 2018. 

Gupta, P., Doraiswamy, P., Levy, R., Pikelnaya, O., Maibach, J., Feenstra, B., Polidori, A., Kiros, F., and Mills, K. C.: Impact 

of California Fires on Local and Regional Air Quality: The Role of a Low-Cost Sensor Network and Satellite Observations, 2, 

172–181, https://doi.org/10.1029/2018GH000136, 2018. 615 

Hammer, M. S., van Donkelaar, A., Li, C., Lyapustin, A., Sayer, A. M., Hsu, N. C., Levy, R. C., Garay, M. J., Kalashnikova, 

O. V., Kahn, R. A., Brauer, M., Apte, J. S., Henze, D. K., Zhang, L., Zhang, Q., Ford, B., Pierce, J. R., and Martin, R. V.: 

https://doi.org/10.5194/acp-2021-751
Preprint. Discussion started: 29 October 2021
c© Author(s) 2021. CC BY 4.0 License.



27 
 

Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998–2018), Environ. Sci. Technol., 54, 

7879–7890, https://doi.org/10.1021/acs.est.0c01764, 2020. 

Hennig, F., Quass, U., Hellack, B., Küpper, M., Kuhlbusch, T. A. J., Stafoggia, M., and Hoffmann, B.: Ultrafine and Fine 620 

Particle Number and Surface Area Concentrations and Daily Cause-Specific Mortality in the Ruhr Area, Germany, 2009–

2014, Environ Health Perspect, 126, 027008, https://doi.org/10.1289/EHP2054, 2018. 

Hoogh, K. de, Gulliver, J., Donkelaar, A. van, Martin, R. V., Marshall, J. D., Bechle, M. J., Cesaroni, G., Pradas, M. C., 

Dedele, A., Eeftens, M., Forsberg, B., Galassi, C., Heinrich, J., Hoffmann, B., Jacquemin, B., Katsouyanni, K., Korek, M., 

Künzli, N., Lindley, S. J., Lepeule, J., Meleux, F., de Nazelle, A., Nieuwenhuijsen, M., Nystad, W., Raaschou-Nielsen, O., 625 

Peters, A., Peuch, V.-H., Rouil, L., Udvardy, O., Slama, R., Stempfelet, M., Stephanou, E. G., Tsai, M. Y., Yli-Tuomi, T., 

Weinmayr, G., Brunekreef, B., Vienneau, D., and Hoek, G.: Development of West-European PM2.5 and NO2 land use 

regression models incorporating satellite-derived and chemical transport modelling data, Environmental Research, 151, 1–10, 

https://doi.org/10.1016/j.envres.2016.07.005, 2016. 

Hu, X., Waller, L. A., Lyapustin, A., Wang, Y., and Liu, Y.: 10-year spatial and temporal trends of PM 2.5 concentrations in 630 

the southeastern US estimated using high-resolution satellite data, Atmos. Chem. Phys., 14, 6301–6314, 

https://doi.org/10.5194/acp-14-6301-2014, 2014. 

Jena, C., Ghude, S. D., Kumar, R., Debnath, S., Govardhan, G., Soni, V. K., Kulkarni, S. H., Beig, G., Nanjundiah, R. S., and 

Rajeevan, M.: Performance of high resolution (400 m) PM 2.5 forecast over Delhi, Sci Rep, 11, 4104, 

https://doi.org/10.1038/s41598-021-83467-8, 2021. 635 

Jin, X., Fiore, A. M., Curci, G., Lyapustin, A., Civerolo, K., Ku, M., van Donkelaar, A., and Martin, R. V.: Assessing 

uncertainties of a geophysical approach to estimate surface fine particulate matter distributions from satellite-observed aerosol 

optical depth, Atmos. Chem. Phys., 19, 295–313, https://doi.org/10.5194/acp-19-295-2019, 2019. 

Just, A. C., Wright, R. O., Schwartz, J., Coull, B. A., Baccarelli, A. A., Tellez-Rojo, M. M., Moody, E., Wang, Y., Lyapustin, 

A., and Kloog, I.: Using High-Resolution Satellite Aerosol Optical Depth to Estimate Daily PM2.5 Geographical Distribution 640 

in Mexico City, Environ Sci Technol, 49, 8576–8584, https://doi.org/10.1021/acs.est.5b00859, 2015. 

Kirwa, K., Szpiro, A. A., Sheppard, L., Sampson, P. D., Wang, M., Keller, J. P., Young, M. T., Kim, S.-Y., Larson, T. V., and 

Kaufman, J. D.: Fine-Scale Air Pollution Models for Epidemiologic Research: Insights From Approaches Developed in the 

Multi-ethnic Study of Atherosclerosis and Air Pollution (MESA Air), Curr Environ Health Rep, 

https://doi.org/10.1007/s40572-021-00310-y, 2021. 645 

Koelemeijer, R. B. A., Homan, C. D., and Matthijsen, J.: Comparison of spatial and temporal variations of aerosol optical 

thickness and particulate matter over Europe, Atmospheric Environment, 40, 5304–5315, 

https://doi.org/10.1016/j.atmosenv.2006.04.044, 2006. 

Krebs, B., Burney, J., Zivin, J. G., and Neidell, M.: Using Crowd-Sourced Data to Assess the Temporal and Spatial 

Relationship between Indoor and Outdoor Particulate Matter, Environ. Sci. Technol., 55, 6107–6115, 650 

https://doi.org/10.1021/acs.est.0c08469, 2021. 

https://doi.org/10.5194/acp-2021-751
Preprint. Discussion started: 29 October 2021
c© Author(s) 2021. CC BY 4.0 License.



28 
 

Lassman, W., Ford, B., Gan, R. W., Pfister, G., Magzamen, S., Fischer, E. V., and Pierce, J. R.: Spatial and temporal estimates 

of population exposure to wildfire smoke during the Washington state 2012 wildfire season using blended model, satellite, and 

in situ data, 1, 106–121, https://doi.org/10.1002/2017GH000049, 2017. 

Lelieveld, J., Klingmüller, K., Pozzer, A., Pöschl, U., Fnais, M., Daiber, A., and Münzel, T.: Cardiovascular disease burden 655 

from ambient air pollution in Europe reassessed using novel hazard ratio functions, 40, 1590–1596, 

https://doi.org/10.1093/eurheartj/ehz135, 2019. 

Lightstone, S. D., Moshary, F., and Gross, B.: Comparing CMAQ Forecasts with a Neural Network Forecast Model for PM2.5 

in New York, 8, 161, https://doi.org/10.3390/atmos8090161, 2017. 

Liu, Y., Park, R. J., Jacob, D. J., Li, Q., Kilaru, V., and Sarnat, J. A.: Mapping annual mean ground-level PM2.5 concentrations 660 

using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States, 109, 

https://doi.org/10.1029/2004JD005025, 2004. 

Liu, Y., Sarnat, J. A., Kilaru, V., Jacob, D. J., and Koutrakis, P.: Estimating Ground-Level PM2.5 in the Eastern United States 

Using Satellite Remote Sensing, Environ. Sci. Technol., 39, 3269–3278, https://doi.org/10.1021/es049352m, 2005. 

Liu, Y., Cao, G., Zhao, N., Mulligan, K., and Ye, X.: Improve ground-level PM2.5 concentration mapping using a random 665 

forests-based geostatistical approach, Environmental Pollution, 235, 272–282, https://doi.org/10.1016/j.envpol.2017.12.070, 

2018. 

Lu, Y., Giuliano, G., and Habre, R.: Estimating hourly PM2.5 concentrations at the neighborhood scale using a low-cost air 

sensor network: A Los Angeles Case Study, Environmental Research, 110653, https://doi.org/10.1016/j.envres.2020.110653, 

2021. 670 

Lyapustin, A., Wang, Y., Korkin, S., and Huang, D.: MODIS Collection 6 MAIAC algorithm, Atmos. Meas. Tech., 11, 5741–

5765, https://doi.org/10.5194/amt-11-5741-2018, 2018. 

Marlier, M. E., Jina, A. S., Kinney, P. L., and DeFries, R. S.: Extreme Air Pollution in Global Megacities, Curr Clim Change 

Rep, 2, 15–27, https://doi.org/10.1007/s40641-016-0032-z, 2016. 

Martenies, S. E., Keller, J. P., WeMott, S., Kuiper, G., Ross, Z., Allshouse, W. B., Adgate, J. L., Starling, A. P., Dabelea, D., 675 

and Magzamen, S.: A Spatiotemporal Prediction Model for Black Carbon in the Denver Metropolitan Area, 2009–2020, 

Environ. Sci. Technol., 55, 3112–3123, https://doi.org/10.1021/acs.est.0c06451, 2021. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., 

Dubourg, V., Vanderplas, J., Passos, A., and Cournapeau, D.: Scikit-learn: Machine Learning in Python, 6, 2011. 

Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., and Thurston, G. D.: Lung cancer, cardiopulmonary 680 

mortality, and long-term exposure to fine particulate air pollution, JAMA, 287, 1132–1141, 

https://doi.org/10.1001/jama.287.9.1132, 2002. 

Quinn, C., Ford, B., and Volckens, J.: Mobilizing the Low-Cost Sensor Revolution with Smartphones and Citizen Science, 5, 

2019. 

https://doi.org/10.5194/acp-2021-751
Preprint. Discussion started: 29 October 2021
c© Author(s) 2021. CC BY 4.0 License.



29 
 

Reid, C. E., Jerrett, M., Petersen, M. L., Pfister, G. G., Morefield, P. E., Tager, I. B., Raffuse, S. M., and Balmes, J. R.: 685 

Spatiotemporal Prediction of Fine Particulate Matter During the 2008 Northern California Wildfires Using Machine Learning, 

Environ. Sci. Technol., 49, 3887–3896, https://doi.org/10.1021/es505846r, 2015. 

Saha, P. K., Hankey, S., Marshall, J. D., Robinson, A. L., and Presto, A. A.: High-Spatial-Resolution Estimates of Ultrafine 

Particle Concentrations across the Continental United States, Environ. Sci. Technol., 55, 10320–10331, 

https://doi.org/10.1021/acs.est.1c03237, 2021. 690 

Sayahi, T., Butterfield, A., and Kelly, K. E.: Long-term field evaluation of the Plantower PMS low-cost particulate matter 

sensors, Environmental Pollution, 245, 932–940, https://doi.org/10.1016/j.envpol.2018.11.065, 2019. 

Schwartz, J., Dockery, D. W., and Neas, L. M.: Is Daily Mortality Associated Specifically with Fine Particles?, 46, 927–939, 

https://doi.org/10.1080/10473289.1996.10467528, 1996. 

Shah, R. U., Robinson, E. S., Gu, P., Robinson, A. L., Apte, J. S., and Presto, A. A.: High-spatial-resolution mapping and 695 

source apportionment of aerosol composition in Oakland, California, using mobile aerosol mass spectrometry, Atmos. Chem. 

Phys., 18, 16325–16344, https://doi.org/10.5194/acp-18-16325-2018, 2018. 

Snider, G., Weagle, C. L., Martin, R. V., van Donkelaar, A., Conrad, K., Cunningham, D., Gordon, C., Zwicker, M., Akoshile, 

C., Artaxo, P., Anh, N. X., Brook, J., Dong, J., Garland, R. M., Greenwald, R., Griffith, D., He, K., Holben, B. N., Kahn, R., 

Koren, I., Lagrosas, N., Lestari, P., Ma, Z., Vanderlei Martins, J., Quel, E. J., Rudich, Y., Salam, A., Tripathi, S. N., Yu, C., 700 

Zhang, Q., Zhang, Y., Brauer, M., Cohen, A., Gibson, M. D., and Liu, Y.: SPARTAN: a global network to evaluate and 

enhance satellite-based estimates of ground-level particulate matter for global health applications, Atmos. Meas. Tech., 8, 505–

521, https://doi.org/10.5194/amt-8-505-2015, 2015. 

Snider, G., Weagle, C. L., Murdymootoo, K. K., Ring, A., Ritchie, Y., Stone, E., Walsh, A., Akoshile, C., Anh, N. X., 

Balasubramanian, R., Brook, J., Qonitan, F. D., Dong, J., Griffith, D., He, K., Holben, B. N., Kahn, R., Lagrosas, N., Lestari, 705 

P., Ma, Z., Misra, A., Norford, L. K., Quel, E. J., Salam, A., Schichtel, B., Segev, L., Tripathi, S., Wang, C., Yu, C., Zhang, 

Q., Zhang, Y., Brauer, M., Cohen, A., Gibson, M. D., Liu, Y., Martins, J. V., Rudich, Y., and Martin, R. V.: Variation in global 

chemical composition of PM 2.5 :emerging results from SPARTAN, Atmos. Chem. Phys., 16, 9629–9653, 

https://doi.org/10.5194/acp-16-9629-2016, 2016. 

Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. S. W., Shelow, D., Hindin, D. A., 710 

Kilaru, V. J., and Preuss, P. W.: The Changing Paradigm of Air Pollution Monitoring, Environ. Sci. Technol., 47, 11369–

11377, https://doi.org/10.1021/es4022602, 2013. 

Song, W., Jia, H., Huang, J., and Zhang, Y.: A satellite-based geographically weighted regression model for regional PM2.5 

estimation over the Pearl River Delta region in China, Remote Sensing of Environment, 154, 1–7, 

https://doi.org/10.1016/j.rse.2014.08.008, 2014. 715 

Southerland, V. A., Anenberg Susan C., Harris Maria, Apte Joshua, Hystad Perry, van Donkelaar Aaron, Martin Randall V., 

Beyers Matt, and Roy Ananya: Assessing the Distribution of Air Pollution Health Risks within Cities: A Neighborhood-Scale 

https://doi.org/10.5194/acp-2021-751
Preprint. Discussion started: 29 October 2021
c© Author(s) 2021. CC BY 4.0 License.



30 
 

Analysis Leveraging High-Resolution Data Sets in the Bay Area, California, Environmental Health Perspectives, 129, 037006, 

https://doi.org/10.1289/EHP7679, 2021. 

Suleiman, A., Tight, M. R., and Quinn, A. D.: Applying machine learning methods in managing urban concentrations of traffic-720 

related particulate matter (PM10 and PM2.5), Atmospheric Pollution Research, 10, 134–144, 

https://doi.org/10.1016/j.apr.2018.07.001, 2019. 

Volckens, J., Quinn, C., Leith, D., Mehaffy, J., Henry, C. S., and Miller-Lionberg, D.: Development and evaluation of an 

ultrasonic personal aerosol sampler, 27, 409–416, https://doi.org/10.1111/ina.12318, 2017. 

Wang, X. (Richard) and Oliver Gao, H.: Exposure to fine particle mass and number concentrations in urban transportation 725 

environments of New York City, Transportation Research Part D: Transport and Environment, 16, 384–391, 

https://doi.org/10.1016/j.trd.2011.03.001, 2011. 

Wendt, E. A., Quinn, C. W., Miller-Lionberg, D. D., Tryner, J., L&amp;apos;Orange, C., Ford, B., Yalin, A. P., Pierce, J. R., 

Jathar, S., and Volckens, J.: A low-cost monitor for simultaneous measurement of fine particulate matter and aerosol optical 

depth - Part 1: Specifications and testing, Atmos. Meas. Tech., 12, 5431–5441, https://doi.org/10.5194/amt-12-5431-2019, 730 

2019. 

Wendt, E. A., Quinn, C., L’Orange, C., Miller-Lionberg, D. D., Ford, B., Pierce, J. R., Mehaffy, J., Cheeseman, M., Jathar, S. 

H., Hagan, D. H., Rosen, Z., Long, M., and Volckens, J.: A low-cost monitor for simultaneous measurement of fine particulate 

matter and aerosol optical depth - Part 3: Automation and design improvements, 1–25, https://doi.org/10.5194/amt-2021-73, 

2021. 735 

Xi, X., Wei, Z., Xiaoguang, R., Yijie, W., Xinxin, B., Wenjun, Y., and Jin, D.: A comprehensive evaluation of air pollution 

prediction improvement by a machine learning method, in: 2015 IEEE International Conference on Service Operations And 

Logistics, And Informatics (SOLI), 2015 IEEE International Conference on Service Operations And Logistics, And 

Informatics (SOLI), 176–181, https://doi.org/10.1109/SOLI.2015.7367615, 2015. 

 740 

https://doi.org/10.5194/acp-2021-751
Preprint. Discussion started: 29 October 2021
c© Author(s) 2021. CC BY 4.0 License.


