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Supplementary Tables 

Table S1. Description of Environmental Protection Agency’s (EPA) monitoring sites located around Denver, CO, USA. 

EPA AQS-ID 
Latitude, 

Longitude 

Sampling 

Frequency 
Sample Collection Method 

Sample Analysis 

Method 

08-001-0010 39.83, -104.94 24 hour 
R & P Model 2025 PM-2.5 Sequential Air 

Sampler w/VSCC 
Gravimetric 

08-031-0028 39.79, -104.99 1 hour GRIMM EDM Model 180 with naphion dryer 
Laser Light 

Scattering 

08-031-0026 39.78, -105.01 1 hour Teledyne T640 at 5.0 LPM 
Broadband 

spectroscopy 

08-031-0002 39.75, -104.99 24 hour 
R & P Model 2025 PM-2.5 Sequential Air 

Sampler w/VSCC 
Gravimetric 

08-031-0027 39.73, -105.02 24 hour 
R & P Model 2025 PM-2.5 Sequential Air 

Sampler w/VSCC 
Gravimetric 

08-031-0013 39.74, -104.94 1 hour Teledyne T640 at 5.0 LPM 
Broadband 

spectroscopy 

08-005-0005 39.60, -105.02 24 hour 
R & P Model 2025 PM-2.5 Sequential Air 

Sampler w/VSCC 
Gravimetric 

08-035-0004 39.53, -105.07 24 hour 
R & P Model 2025 PM-2.5 Sequential Air 

Sampler w/VSCC 
Gravimetric 
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Supplementary Figures 

 
Figure S1. (a) The probability distribution, smoothed using a kernel function, of mean squared errors of model skill for predicting 15 
CEAMS 24-hour PM2.5 grouped by the number of trees used in each Random Forest model run. The spread of the distribution is 
due to how the other hyperparameters are changing (see Table 2 for full list) as well as randomness introduced during the cross-
validation. Similarly, the other plots show the kernel density distribution of mean squared errors of model skill grouped by (b) the 
maximum depth of the trees, (c) minimum samples allowed to form a leaf (end of a branch), and (d) minimum samples needed to 
split an internal node of a tree. 20 
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Figure S2 -  (a) The probability distribution, smoothed using a kernel function, of mean squared errors of model skill for 
predicting the “Test - AOD” CEAMS 24-hour PM2.5 grouped by the number of trees used in each Random Forest model run. The 
spread of the distribution is due to how the other hyperparameters are changing (see Table 2 for full list) as well as randomness 
introduced during the cross-validation. Similarly, the other plots show the kernel density distribution of mean squared errors of 25 
model skill grouped by (b) the maximum depth of the trees, (c) minimum samples allowed to form a leaf (end of a branch), and (d) 
minimum samples needed to split an internal node of a tree. 
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Figure S3 -  (a) The probability distribution, smoothed using a kernel function, of mean squared errors of model skill for 30 
predicting the “Test + AOD” CEAMS 24-hour PM2.5 grouped by the number of trees used in each Random Forest model run. The 
spread of the distribution is due to how the other hyperparameters are changing (see Table 2 for full list) as well as randomness 
introduced during the cross-validation. Similarly, the other plots show the kernel density distribution of mean squared errors of 
model skill grouped by (b) the maximum depth of the trees, (c) minimum samples allowed to form a leaf (end of a branch), and (d) 
minimum samples needed to split an internal node of a tree. 35 
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Figure S4 -  (a) The probability distribution, smoothed using a kernel function, of mean squared errors of model skill for 
predicting the “Full dataset” CEAMS hourly PM2.5 grouped by the number of trees used in each Random Forest model run. The 
spread of the distribution is due to how the other hyperparameters are changing (see Table 2 for full list) as well as randomness 40 
introduced during the cross-validation. Similarly, the other plots show the kernel density distribution of mean squared errors of 
model skill grouped by (b) the maximum depth of the trees, (c) minimum samples allowed to form a leaf (end of a branch), and (d) 
minimum samples needed to split an internal node of a tree. 
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 45 
Figure S5 -  (a) The probability distribution, smoothed using a kernel function, of mean squared errors of model skill for 
predicting the “Test - AOD” CEAMS hourly PM2.5 grouped by the number of trees used in each Random Forest model run. The 
spread of the distribution is due to how the other hyperparameters are changing (see Table 2 for full list) as well as randomness 
introduced during the cross-validation. Similarly, the other plots show the kernel density distribution of mean squared errors of 
model skill grouped by (b) the maximum depth of the trees, (c) minimum samples allowed to form a leaf (end of a branch), and (d) 50 
minimum samples needed to split an internal node of a tree. 
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 55 
Figure S6 -  (a) The probability distribution, smoothed using a kernel function, of mean squared errors of model skill for 
predicting the “Test + AOD” CEAMS 24-hour PM2.5 grouped by the number of trees used in each Random Forest model run. The 
spread of the distribution is due to how the other hyperparameters are changing (see Table 2 for full list) as well as randomness 
introduced during the cross-validation. Similarly, the other plots show the kernel density distribution of mean squared errors of 
model skill grouped by (b) the maximum depth of the trees, (c) minimum samples allowed to form a leaf (end of a branch), and (d) 60 
minimum samples needed to split an internal node of a tree. 
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Figure S7 -  (a) The probability distribution, smoothed using a kernel function, of mean squared errors of model skill for 
predicting the EPA 24-hour PM2.5 grouped by the number of trees used in each Random Forest model run. The spread of the 65 
distribution is due to how the other hyperparameters are changing (see Table 2 for full list) as well as randomness introduced 
during the cross-validation. Similarly, the other plots show the kernel density distribution of mean squared errors of model skill 
grouped by (b) the maximum depth of the trees, (c) minimum samples allowed to form a leaf (end of a branch), and (d) minimum 
samples needed to split an internal node of a tree. 

 70 
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Figure S8. RF 24-hour PM2.5 predictions from 1 testing fold during the 5-fold cross validation versus the CEAMS 24-hour PM2.5 
measurements. The mean bias (MB), mean absolute error (MAE), root mean squared error (RMSE), and coefficient of 
determination (R2) are given. 

 75 
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Figure S9. Time series of the number of AMODs operating per hour of the CEAMS deployment in Denver. CO. 

 

 
Figure S10. Median hourly averaged diurnal cycles of weekend (blue) and weekday (black) PM2.5 from the Denver, CO wintertime 80 
CEAMS deployment. PM2.5 measurements from major holidays were removed. The range between the 25th and 75th percentile of 
each hourly average is shown for the weekend (blue shading) and weekday (grey shading) averages. 
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Figure S11. Map of elevation (Amante and Eakins, 2009) and 24-hour PM2.5 averages (points) from the 22 CEAMS low-cost 85 
sensors on December 6th, 2019, in Denver, CO. The greater Denver-Aurora area is outlined in blue (based on cartographic files 
from 2015 TIGER/Line Shapefiles). 

 
 
 90 
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Figure S12. RF model performance metrics for PM2.5 measurements using unshuffled or “consecutive” k-folds (24-hour in the top 
row and hourly in the bottom row). The 95% confidence interval of the error metrics for all of the CEAMS RF models (Full 
Dataset, Test - AOD, and Test + AOD) in predicting both 24-hour and hourly PM2.5 and the error metrics for the 24-hour EPA 
model. The 95% confidence intervals show an estimate of the uncertainty range and, thus, if the intervals of two different models 95 
overlap, any difference in their error metrics are likely not statistically significant. The error metrics for each 24-hour PM2.5 RF 
model includes (a) the coefficient of determination (R2) (b) root mean squared error (RMSE), (c) mean bias, (d) and slope of the 
linear regression. Plots (e), (f), (g), and (h) show analogous results but for the hourly PM2.5 predictions, which we did not predict 
for the EPA dataset. The size of each 24-hour and hourly dataset, before being split into k-folds, is shown in the top left corner of 
plot (a) and (e). 100 
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Figure S13. Time series that shows the standard deviation of the hourly PM2.5 for each hour of observations (light blue squares) 
and CEAMS RF predictions (dark blue circles) for hours that had at least 10 monitors operating at the same time. This plot shows 
results from RF models that used shuffled k-folds. 105 

 

 
Figure S14. The same as Figure S13 but when unshuffled k-folds were used during the training and validation of the RF models 
predicting CEAMS hourly PM2.5. 

 110 
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Figure S15. Box-and-whisker plots of 500 permutation importance values for all of the predictors in the RF models that predict 
CEAMS 24-hour PM2.5. The 500 permutation importance values are taken from 100 repeats of permutation importance from each 
of the 5 testing folds. The whiskers of each box are the 10th and 90th percentile of the permutation importance distribution. The 115 
edges of each box represent the 25th and 75th percentile and, finally, the centerline of each box represents the median (i.e., 50th 
percentile) of the permutation importance distribution. (a) The 24-hour PM2.5 predictions of the CEAMS “Full dataset”, which 
contained all of the available 24-hour PM2.5 averages regardless of whether daily AOD was available from each location and day. 
(b) The 24-hour PM2.5 predictions of the CEAMS “Test - AOD'' dataset, which only contained 24-hour PM2.5 averaged and the 
associated predictors at locations and days where daily AOD was also available, but we did not use AOD as a predictor for this 120 
model. (c) The 24-hour PM2.5 predictions of the CEAMS “Test + AOD'' dataset, which only contained PM2.5 data where AOD was 
available and we used AOD as an additional predictor to the meteorological and geographical predictors. 
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 125 
Figure S16. Box-and-whisker plots of 500 permutation importance values for all of the predictors in the RF models that predict 
CEAMS hourly PM2.5. The 500 permutation importance values are taken from 100 repeats of permutation importance from each 
of the 5 testing folds. The whiskers of each box are the 10th and 90th percentile of the permutation importance distribution. The 
edges of each box represent the 25th and 75th percentile and, finally, the centerline of each box represents the median (i.e., 50th 
percentile) of the permutation importance distribution. (a) The hourly PM2.5 predictions of the CEAMS “Full dataset”, which 130 
contained all of the available 24-hour PM2.5 averages regardless of whether daily AOD was available from each location and hour. 
(b) The hourly PM2.5 predictions of the CEAMS “Test - AOD'' dataset, which only contained 24-hour PM2.5 averaged and the 
associated predictors at locations and days where daily AOD was also available, but we did not use AOD as a predictor for this 
model. (c) The hourly PM2.5 predictions of the CEAMS “Test + AOD'' dataset, which only contained hourly PM2.5 data where 
AOD was available and we used AOD as an additional predictor to the meteorological and geographical predictors. 135 
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Figure S17. The same as Figure S14 but when unshuffled k-folds were used during the training and validation of the RF models 
predicting CEAMS 24-hour PM2.5. 140 

 

 
Figure S18. The same as Figure S16 but when unshuffled k-folds were used during the training and validation of the RF models 
predicting CEAMS hourly PM2.5. 
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Figure S19.  Box-and-whisker plots of 500 permutation importance values for all of the predictors in the RF models that predict 
EPA 24-hour PM2.5 using consecutive k-folds. The 500 permutation importance values are taken from 100 repeats of permutation 
importance from each of the 5 testing folds. The whiskers of each box are the 10th and 90th percentile of the permutation 
importance distribution. The edges of each box represent the 25th and 75th percentile and, finally, the centerline of each box 150 
represents the median (i.e., 50th percentile) of the permutation importance distribution. 
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Figure S20. (a) All points from the testing folds of the 5-fold CV for the EPA 24-hour RF model for only one winter (Dec. 15 - Jan. 155 
15, 2019) and shuffled k-folds. (b) Box-and-whisker plots of the distribution of 100 permutation importance metrics for the top 10 
ranked predictors of the 24-hour EPA PM2.5 for one winter (Dec. 15 - Jan. 15, 2019) and shuffled k-folds. 

 

 
Figure S21. (a) All points from the testing folds of the 5-fold CV for the EPA 24-hour RF model  for one winter (Dec. 15 - Jan. 15, 160 
2019) and consecutive k-folds. (b) Box-and-whisker plots of the distribution of 100 permutation importance metrics for the top 10 
ranked predictors of the 24-hour EPA PM2.5 for one winter (Dec. 15 - Jan. 15, 2019) and consecutive k-folds. 


