
We thank the referees for their insightful comments (italic black), which have allowed us 
to produce a stronger manuscript. Our responses to the major and minor comments are given below 
in black. Changes to the original manuscript text are in orange and text reproduced from the first 
submission is in blue. We’ve included a Microsoft Word document that tracks all the changes that 
we’ve made in response to the reviewer comments. Many changes in the document were made to 
limit the manuscript to the required word count instead of in direct response to the reviewers and 
thus, are not listed here. Line numbers in the following document are associated with the Word 
document. 
 
Reviewer 1: This paper uses the machine learning (ML) method to investigate the spatiotemporal 
variability of PM2.5 in winter over Denver. Although this is an interesting attempt, I found the 
methodology of this study has not been clearly stated, so that I can’t confirm the results are 
scientifically sound under current conditions. 
 
Reviewer 1’s Comments: 

1. Comment: Section 2.1.3. Question on the spatial resolution of the meteorological inputs. 
The meteorological inputs for the RF model are derived from the GESO-FP data with a 
coarse resolution of 25 km. According to fig.1, almost 2/3 of the sites are located in one 
grid. You mention that the data were interpolated spatially to the CEAMS and EPA sites, 
but no detailed information is given. What method do you use to downscale the areal data 
into point data? How do you check the accuracy of the interpolation results? 

 
Response: Yes, the GEOS-FP data have a resolution of 25 km and many of our sites were in one 
grid. We spatially interpolated the meteorological inputs using a linear interpolation function 
(SciPy griddata). We also tested our model using a nearest-neighbor interpolation of the inputs, 
which showed similar conclusions. The major difference using nearest-neighbor interpolation 
instead of linear, was that nighttime cloud fraction was more important in the CEAMS 24-hour 
Full Dataset RF model and CEAMS AOD was less important in the CEAMS Test + AOD hourly 
RF model. Those results are now shown in the supplement (Figure S23-S24). We updated the text 
in Section 2.1.3: “Finally, all of the GEOS-FP variables were linearly interpolated spatially from 
the gridpoint centers to the CEAMS and EPA monitor locations using the SciPy griddata function 
(Virtanen et al., 2020) to better relate PM2.5 observations with the environment for RF predictions. 
To show the impact of different spatial interpolation techniques, we repeated our analysis using 
nearest-neighbor interpolation, which resulted in similar conclusions in the Supplement.” We also 
updated the text in Section 3.4: “For example, we found that using a linear interpolation method 
instead of nearest-neighbor for co-locating the GEOS-FP meteorological data to the CEAMS 
monitors resulted in minor changes to the order of predictors, such as a decreased importance of 
nighttime cloud fraction for the CEAMS 24-hour Full Dataset RF model (Figure S23-S24). These 
changes are likely because the linear interpolation method introduced greater spatial variability 
among predictors when comparing PM2.5 from monitors in the same grid-box.” 
 
 

2. Comment: Section 2.2.3 and figure 6. Question on the validation process of the ML model. 
As far as I understand, you use the whole dataset to tune the RF model with k-fold cross 
validation method, and then use the same dataset to validate the model performance with 



k-fold cross validation method and bootstrapping. In my opinion, to give unbiased 
evaluation on the robustness of the ML model, the validation dataset should never be used 
in the training process. Otherwise, the accuracy of the ML model is certain to be high since 
the model has already learned the pattern. Please clarify if my understanding is wrong.  
 
Line 464-466: “However, even though we do not have confidence that our CEAMS model 
would have predictive skill for new time periods, we do have more confidence that our 
interpretation of the top meteorological and geographical relationships is valid under the 
conditions of the CEAMS campaign.” 
 
I do not agree with this sentence. A well-developed ML model should be able to work on 
new datasets. This is why we test the model’s ability with new datasets in the model 
validation process. If the model can only work well on the training dataset, it may have an 
overfitting problem. 

 
Response: The reviewer makes an excellent point here. Due to our limited dataset and the unique 
goals of this project (determining the main drivers/predictors of air pollution events in Denver as 
opposed to building the best model for prediction), we did use the whole dataset for tuning, training 
and validation. However, we have taken the reviewer’s suggestion and changed our methods. We 
use the first 30% of our dataset just for model tuning, and then we use the other 70% of the dataset 
for training and cross validation testing. This processing method had little impact on the 
conclusions of the paper, though it did change the order of some of the predictors. To highlight 
this, we removed the following line from the original text: “Typically, to ensure against over or 
underfitting, the data are split into separate tuning, training, and testing datasets. However, since 
our dataset spans only a couple months, we tuned, trained, and tested our RF models using a cross 
validation (CV) method.” We then replaced it with this line: ”We tuned our model to determine 
the optimal hyperparameters using a cross validation method on the first 30% of each dataset. The 
following 70% of each dataset was used to train and test the models using a separate (CV) 
method.”  
 
We have also updated the results (Fig. 6-7) in the manuscript to reflect the changes in the data 
processing and several figures in the Supplement. Changing our data processing methods had some 
impact on the relative skills of each of our models resulting in a change to Figure 6 in the main 
text: 
  



Original Figure 6 from the manuscript: 

 
 
Updated Figure 6: 

 



The changes to our model skill in Figure 6 resulted in the following text changes in Section 3.2: 
“The 95% confidence intervals of the R2 and slope metrics from the Full Dataset model did not 
overlap with the Test - AOD and Test + AOD RF models, which implies that limiting the 
CEAMS data to locations and days where AOD was available did result in a small reduction in 
model skill for 24-hour PM2.5 prediction. We also saw a small reduction in skill for hourly PM2.5 
predictions (Fig. 6e-g) after limiting the dataset to only locations and hours where AOD was also 
taken. The 24-hour CEAMS models showed similar skill to the EPA model for most metrics 
(Fig. 6a-d). However, results for the RF models using consecutive k-folds showed a significant 
decrease in prediction skill while the EPA model results showed a less substantial decrease in 
skill (Fig. S12).” There were other small changes to the text about model skill that can be seen 
clearly in the tracked changes document. 
 
Our changes in the tuning-training methodology resulted in small changes to the order of some our 
predictors. Thus, we have also updated Figure 7 as follows: 
 
Original Figure 7 from the manuscript: 

 
 
  



Updated Figure 7: 

 
 
To account for the changes in the order of the predictors, we have updated the text in Section 3.3: 
“The nighttime (11pm-3am) averaged cloud fraction was the third most important predictor in the 
CEAMS Full Dataset while nighttime PBLH was the third most important for the CEAMS Test - 
AOD and Test + AOD models. As expected, since we saw no change in prediction skill between 
the CEAMS Test - AOD and Test + AOD 24-hour predictions (Fig. 6a-d), AOD also did not have 
high permutation importance in the 24-hour CEAMS Test + AOD model. 

The hourly RF models relied more on different meteorological variables than the 24-hour 
models such as hourly-averaged temperature and longwave radiation (Fig. 7e-g). However, RH 
was in the top three predictors for all three hourly models and PBLH was important for the Test - 
AOD and Test + AOD models. We hypothesize that RH is a strong predictor because the RH 
correction factor that we applied to our hourly-averaged PM2.5 data is based on Barkjohn and 
Clements (2020), which used 24-hour averaged PM2.5.” There are similar changes in the text 
throughout in our discussion of predictor variables that can be seen clearly in the tracked-changes 
document.  
 
 

3. Comment: Question on the temporal resolution of the inputs and outputs. In the 24-hour 
RF model case, the model inputs and outputs are not of the same temporal resolution. The 
output/prediction is 24-hour PM2.5. But the meteorology inputs, separated into daytime 
(11am-3pm) group and nighttime (11pm-3am) group, only cover the information of these 
8 hours of a day. This method is valid if you can prove that the 8-hour data is enough to 
represent the whole day. Since these comments are related to the fundamental methodology 



of the study, I cannot recommend this study for publication before these questions are 
explained. 

 
Response: We agree that the reasoning was not clearly stated in the manuscript for using these 
variables with different temporal resolutions. PM2.5 is regulated as a 24-hour average, which is 
why our model predicts a 24-hour average. However, PM2.5 emissions do not have a constant 
emission rate, and instead have substantial diurnal variability which can interact with the 
meteorological variables that also have diurnal variability. For examples see the figure below, 
where we plot the average diurnal cycles of 3 GEOS-FP variables co-located to the site of one of 
our AMODs: 

 
Thus, our goal was not to show that an 8-hour average of data represents the whole day, but to 
determine if the meteorological variables during certain periods of the day are better predictors of 
air quality than a daily average. Many of the meteorological variables have strong diurnal cycles 
in wintertime (for example, temperature, boundary layer height) which may impact average PM2.5 
concentrations. Using the two 4-hour averages allows us to investigate separate daytime and 
nighttime conditions instead of smoothing out the predictors with a 24-hour mean. For example, 
we are interested in understanding if the height of the boundary layer during the night (i.e., trapping 
pollution) is a better predictor of the PM2.5 concentrations than the height of the boundary layer 
during the day (i.e., mixing out of pollution). We have added the following sentences to Section 
2.2.1 to provide better motivation for our temporal resolution: “In this study, we created RF models 



with the scikit-learn Python package (Pedregosa et al. 2011) to predict the spatial and temporal 
variability of PM2.5 using the predictors in Table 1. As shown in Table 1, we used separate daytime 
(11am-3pm) and nighttime (11pm-3am) averages of many of our meteorological predictors. Many 
meteorological variables have strong diurnal cycles in wintertime (e.g., temperature, boundary 
layer height), which may impact average PM2.5. Thus, using two 4-hour averages allows us to 
investigate the separate daytime and nighttime conditions, and their relation to 24-hour PM2.5, 
instead of smoothing out the predictors using a 24-hour mean.”  
 

4. The target of this study is to “investigate the potential drivers of fine-scale PM2.5 
spatiotemporal variability in wintertime Denver…” (line 93). However, you pay a lot of 
attention on testing the importance of including co-located AOD measurements in the RF 
model. What is the reason of picking this specific variable out of all factors that could 
contribute to the spatiotemporal variation of PM2.5? The motivation sounds weak 
especially when your conclusion is that adding co-located AOD data makes very little 
improvements to model prediction (line 508-509 and line 514-515).  

Response: Aerosol Optical Depth has been used to predict surface PM2.5 concentrations 
extensively in the literature, both for air pollution and health studies (including the Global Burden 
of Disease). The device used in this study (AMOD) was specifically developed to collect more 
colocated PM2.5 and AOD measurements that could be used to analyze the types of questions we 
pose here about the suitability of using AOD to predict PM2.5 concentrations at finer scales.  We 
have added the following lines to the introduction to further emphasize the importance of testing 
AOD as a predictor for PM2.5: “AOD data is commonly used to aid in global PM2.5 predictions 
(i.e., Hammer et al., 2020; Liu et al., 2004, 2005; van Donkelaar et al., 2006, 2010, 2013), however, 
fewer studies have assessed how PM2.5 and AOD are related at finer spatial and temporal 
resolution.  In this study, we test whether co-located AOD measurements are identified as an 
important predictor of PM2.5 and whether they increase the overall RF prediction skill compared 
to RFs that only used geographic and meteorological variables.” 

 

5. 2) Line 149-150: “In this study, the Plantower PM2.5 data were not corrected using the 
time-integrated filter measurements of PM2.5 taken by the AMODs as in Ford et al., 
(2019)”. Did you compare the real-time measurement with time-integrated filter 
measurements? Are they in good agreement? The word “corrected” sounds that the real-
time measurement is not so reliable as the filter measurements. Please rewrite it. 

Response: In our previous study, we found good agreement between the filter and Plantower 
measurements when the filter mass was above the detection limit (as discussed in Ford et al., 2019). 
However, for this wintertime deployment in Denver, the PM2.5 mass on the filter was often below 
the limit of detection. Additionally, many of the filters had been compromised (mishandled by 
participants) before the mass could be estimated. Thus, we did not use them to correct the low-
cost PM2.5 sensor. We have removed this line in the manuscript, as it is not relevant to our analysis. 
However, we do discuss our method of correcting the Plantower measurements in Section 2.1.1, 
which relies on the correction method in Barkjohn et al., 2021, which has been used widely in the 
literature (e.g., O’Dell et al., 2022). 



 

6. Line 372-373: “We also found that the RF models were better at capturing temporal 
variability than spatial variability during the CEAMS deployment.” Is Figure S13 the 
average results of all available monitoring sites? If so, I can only see the model's ability 
on temporal variability but not on spatial variability. Please give more explanation on this 
finding. 

Response: We agree that we did not clarify Figure S13 enough in the main text. Figure S13 is 
showing the standard deviation across all sites for each hour that had at least 10 monitors active, 
as opposed to each individual site. Thus, this figure shows that predicted spatial variability of PM2.5 
across sites was consistently lower than measured variability, especially when PM2.5 was elevated. 
We have updated the text in Section 3.2: “The hourly PM2.5 observations showed an average spatial 
standard deviation of ~2.8 𝝁g m-3 when we found the standard deviation across all sites for hours 
with at least 10 monitors simultaneously taking measurements. Contrastingly, RF model 
predictions showed an average spatial standard deviation of ~1.7 𝝁g m-3 for shuffled k-folds (Fig. 
S13) and only ~0.7 for consecutive k-folds (Fig. S14).” 

 
 
  



Reviewer 2: The authors propose a Random Forest model to predict sub-city-scale PM2.5 
concentrations. The studied case is wintertime in Denver, captured by CEAMS low-cost sensor 
network on the one hand, and EPA’s reference monitors on the other.  A permutation metric is 
applied to conclude predictor importance, with a special interest in AOD. While this is an 
interesting approach to quantify the influence of various drivers, I would like to point out some 
insufficiently discussed choices in applying the methods that might compromise the results. 
 
Reviewer 2’s Comments: 

1. Comment: From line 283 I conclude that the model was trained and tested on the same 
dataset that was used to tune the hyperparameters beforehand. Therefore, the test data 
can’t strictly be considered unseen. The extent to which this limits the detection of 
overfitting and therefore validity of the results should at least be discussed. Potential 
overfitting is also implied by the authors’ lack of confidence in the predictive skills of their 
model for new data (lines 464-466). 

Response: Reviewer 1 made the same comment and both are greatly appreciated. Due to our 
limited dataset and the unique goals of this project (determining the main drivers/predictors of air 
pollution events in Denver as opposed to building the best model for prediction), we did use the 
whole dataset for tuning, training and validation. However, we have taken the reviewers’ 
suggestions and changed our methods. We use the first 30% of our dataset just for model tuning, 
and then we use the other 70% of the dataset for training and cross validation testing. This change 
in methodology had little impact on the conclusions of the paper, though it did change the order 
of some of the predictors. To highlight this, we removed the following line from the original text: 
“Typically, to ensure against over or underfitting, the data are split into separate tuning, training, 
and testing datasets. However, since our dataset spans only a couple months, we tuned, trained, 
and tested our RF models using a cross validation (CV) method.” We then replaced it with this 
line: ”We tuned our model to determine the optimal hyperparameters using a cross validation 
method on the first 30% of each dataset. The following 70% of each dataset was used to train and 
test the models using a separate (CV) method.” We have updated all the results figures (Figures 6-
7), several supplementary figures, and made changes to the text to reflect the changes in the data 
processing. For example: 

 
 
  



Original Figure 6 from the manuscript: 

 
 
Updated Figure 6: 

 



The changes to our model skill in Figure 6 resulted in the following text changes in Section 3.2: 
“The 95% confidence intervals of the R2 and slope metrics from the Full Dataset model did not 
overlap with the Test - AOD and Test + AOD RF models, which implies that limiting the CEAMS 
data to locations and days where AOD was available did result in a small reduction in model skill 
for 24-hour PM2.5 prediction. We also saw a small reduction in skill for hourly PM2.5 predictions 
(Fig. 6e-g) after limiting the dataset to only locations and hours where AOD was also taken. The 
24-hour CEAMS models showed similar skill to the EPA model for most metrics (Fig. 6a-d). 
However, results for the RF models using consecutive k-folds showed a significant decrease in 
prediction skill while the EPA model results showed a less substantial decrease in skill (Fig. S12).” 
There were other small changes to the text about model skill that can be seen clearly in the tracked 
changes document. 
 
 
The changes in our tuning-training methodology also had small impacts on the order of predictors 
seen in Figure 7 of the main text. Thus, see below the original Figure 7 from the manuscript: 

 
 
  



Updated Figure 7: 

 
 
To account for the changes in the order of the predictors, we have updated the text in Section 3.3: 
“The nighttime (11pm-3am) averaged cloud fraction was the third most important predictor in the 
CEAMS Full Dataset while nighttime PBLH was the third most important for the CEAMS Test - 
AOD and Test + AOD models. As expected, since we saw no change in prediction skill between 
the CEAMS Test - AOD and Test + AOD 24-hour predictions (Fig. 6a-d), AOD also did not have 
high permutation importance in the 24-hour CEAMS Test + AOD model. 

The hourly RF models relied more on different meteorological variables than the 24-hour 
models such as hourly-averaged temperature and longwave radiation (Fig. 7e-g). However, RH 
was in the top three predictors for all three hourly models and PBLH was important for the Test - 
AOD and Test + AOD models. We hypothesize that RH is a strong predictor because the RH 
correction factor that we applied to our hourly-averaged PM2.5 data is based on Barkjohn and 
Clements (2020), which used 24-hour averaged PM2.5.” There are similar changes in the text 
throughout in our discussion of predictor variables that can be seen clearly in the tracked-changes 
document.  

 
2. Caveats in the analysis of predictor importance. A citation introducing and discussing the 

permutation metric seems to be missing. To my knowledge, the current gold standard to 
deduce predictor importance are Shapley-value based methods, due to their favorable 
theoretical properties. Therefore, it would be nice to justify the choice (presumably 
computational cost?). Especially the presence of a competitor like RH, that apparently got 
an unfair advantage by the correction factor (lines 428-430), seems to call for a metric 
where subsets of predictors are left out in the training. It is also questionable how well 



models trained on highly autocorrelated data are suited for the importance analysis, as 
stated in lines 314-316. Further justification is needed. 

Response: We thank the reviewer for this comment. To be clear, the correction factor was added 
to reduce to the bias from the low-cost CEAMS PM monitor, which has been shown to have an 
RH bias if uncorrected. We have added a reference for permutation importance into the following 
line: “Finally, to investigate the relative importance of each predictor for the RF predictions, a 
permutation importance metric was used, which tests the change in model prediction skill after 
randomly shuffling one predictor of the validation data at a time (Breiman et al., 2001).” 

We also repeated the analysis with Shapely values and found similar results. We indicate this by 
adding the following lines:  “To test the robustness of each permutation importance score, the 
metric was calculated 100 times for each predictor for each of the 5 iterations of the 5-fold CV, 
resulting in a distribution of 500 permutation importance scores per predictor. Furthermore, we 
estimated predictor importance using Shapley values, a method based on cooperative game theory 
(Lundberg and Lee, 2017), which were in general agreement with the permutation metric and 
shown in the Supplement.”  

We also added the following lines to the results in Section 3.3: Vehicle miles traveled and 
population density are generally not important predictors in our RF models, according to the 
permutation importance metric, which may be due to temporal variability being larger than spatial 
variability in our dataset as well as these predictors having no correlation with PM2.5 (Figure 5). 
In contrast, Shapley values indicate that elevation was the most important feature in the EPA 
shuffled k-fold model, while vehicle miles traveled and population density were moderately 
important (Figure S.20). This difference is likely because Shapley estimates are based on the model 
attribution of various predictors instead of change in total skill. Thus, the magnitude of elevation 
had a relatively large impact on the predicted magnitude of the PM2.5, even if it didn’t have a large 
impact on model skill. Other than the increased importance of elevation for the EPA model, the 
Shapley values largely agreed with the top predictors found using the permutation metric for all 
models. 

 

3. Comment: Further investigation of the impact of interpolating the data could be insightful. 

Response: Reviewer #1 had a similar comment which we address above by adding results to the 
supplement using nearest neighbor interpolation instead of Linear interpolation (Figure S23-S24). 
Using nearest-neighbor interpolation resulted in similar conclusions as linear interpolation, except 
nighttime cloud fractions was considered more important in the 24-hour CEAMS Full Dataset RF 
model and CEAMS AOD was considered less important in the hourly Test + AOD model. 

 

4. Comment: To me, the main purpose of the paper is partly unclear. While transparency 
about the training and tuning process is important, the extensive explanation of Random 
Forests, cross validation and parameter tuning seems a bit convoluted for a paper whose 
foremost goal is to investigate the impact of different factors on the spatiotemporal 
variability of PM5, and not necessarily to serve as a guide on applying RF models. 



Response: We appreciate the reviewers comment here and we agree that the objectives of the paper 
were not clear enough. We wrote this manuscript with the intention that it could also serve as a 
guide to aid others using Random Forest models to study air pollution. We added the following 
lines to the end of the introduction to clarify the primary objectives of this paper: “Finally, we 
discuss our RF methods in detail and discuss how decisions made during data processing and 
model configuration may have influenced our results and the subsequent interpretation. Thus, our 
objectives in this study are threefold: 1) investigate meteorological and geographic drivers of sub-
city PM2.5; 2) quantify any skill added by using AOD as an additional predictor; and, 3) provide a 
guide for using random forests to investigate air quality measurements and share lessons we’ve 
learned.” 

 

5. Comment: Line 160: consistency in use of special characters in “Angstrom.” 

Response: We corrected this so that all examples use special character Angström 

 

6. Comment: Line 262: missing hyphen in “over- or underfitting” 

Response:  This sentence was removed. 

 

7. Comment: Line 278: “depth of 15, 2 samples needed” – as far as I know, starting a clause 
with a symbol is considered bad style and also interrupts the reading flow here 

Response: Thank you for pointing this out. The line now reads as: “Similarly, we chose a maximum 
depth of 15 for each tree, required 2 samples to form a leaf, and required 5 samples to split a branch 
node”  

 

8. Comment: Table 2: The explanation for min_samples_leaf seems misleading, since leaf 
nodes aren’t split. Do you mean the minimum samples stored in a leaf? 

Response: Thank you, this is a good point. It has been re-written as follows: “Minimum samples 
needed to store in a leaf node” 

9. Comment: Line 289: “This process was repeated until a distribution of each error statistic 
was created” makes it sounds as if there was an absolute threshold on how often to repeat 
a process before you can apply statistics. Maybe rather something like: “…repeated to 
create a distribution…”? 

Response: The line now reads as “This process was repeated to create distributions of each error 
statistic” 



10. Comment: It seems counterintuitive that the shuffled folds entail more autocorrelation than 
the consecutive ones. A very brief explanation or some numbers in the supplementary 
material could be helpful. On a positive note, I appreciate the topic is addressed at all. 

Response: When the data are shuffled before being chunked into k-folds, each fold has some 
information about the entire time series because the meteorological values and PM2.5 data are 
correlated in time. As a result, validation scores are boosted due to autocorrelation between the 
validation fold and the training folds. Thus, we present results using shuffled and consecutive k-
folds to illustrate the difference. However, we have confidence in the predictors we identified as 
important despite the autocorrelation, since our analysis of the EPA PM2.5 monitors largely agreed 
with the top predictors in our other models (even when we used consecutive k-folds). We have 
added to the discussion of the k-folds in Section 2.2.4: “Alternatively, data can be chunked into 
consecutive k-folds, which reduces information sharing between testing and training datasets. To 
illustrate this, we show the CEAMS PM2.5 time-series over Denver separated into 5 folds with 
shuffling (Fig 3a) and without shuffling (Fig. 3b). We see in Figure 3 that each shuffled fold 
contains some information about the entire time series, unlike the consecutive folds.” 

 
 
 


