
                          Responses to reviewer 2 
In this manuscript the authors explore one aspect of the known connection between meteorology 
and pollution, focusing on statistical correlations between anti-cyclone wave activity (AWA) and 
fine particulate matter (PM2.5). This is a useful topic, and one which has attracted a great deal of 
attention in recent years in the hopes of better understanding variability in observed pollution 
levels as well as improving and constraining projections of future climate impacts on pollution. 
While I see some promising steps and interesting results here, I also see serious omissions that 
make it hard for me to understand and accept the final conclusions being drawn. I would like to 
see significant improvement and clarification in several areas before I can recommend publication 
in ACP. 
Response：We would like to thank the reviewer for the positive and constructive comments about 
the manuscript. The improper expressions and figures that the reviewer mentioned have been 
carefully revised. The updates are listed in the following responses and all are completed in the 
manuscript in yellow. 
  
General questions and comments 
PM2.5 speciation 
Unlike ozone, previously explored by the authors using a similar methodology, PM2.5 is composed 
of a wide array of compounds derived from many different precursors. The treatment of PM2.5 
here, though, seems to completely ignore this detail and handles all particles as identical. Without 
any individual treatment of speciated PM2.5, or even discussion of how variability in composition 
across the United States may be affecting relevant formation/loss mechanisms or final correlations, 
it's very difficult to accept any of the results or conclusions. This aspect of the analysis needs 
serious work to address this dimension. 
Response:  

We acknowledge your point. We don’t currently have the output on the speciation. There are 
not many measurements of the PM2.5 speciation as correct as just of PM2.5 itself. Furthermore, 
PM2.5 is regulated quantity in the US with health implications. Considering these points, this study 
focus on the importance of the anti-cyclone wave activity in PM2.5 changes across the US and the 
role of anti-cyclone wave activity in predicting future PM2.5. How major components of PM2.5 react 
to wave activity using IMPROVE and available model output could be studied in the future, 
including the discussion of how variability in composition affecting relevant formation/loss 
mechanisms or final correlations across the US. 
 
PM2.5/AWA mechanisms and correlation with other local meteorological metrics 
While at times it is mentioned that AWA has ties to local meteorological variables such as 
temperature and stagnancy, these correlations are never shown, quantified, nor discussed in any 
detail, and their potential covariance is crucial in terms of explaining the mechanisms underpinning 
the presented relationships. If it is being argued that variability in AWA can explain "up to 75% of 
interannual PM2.5 variability across the US", it behooves the authors to go into greater detail on 
the exact mechanisms from which this predictive power stems. Are higher temperature driving 
increased emissions? Is it transport related? Absence of wet deposition? As it stands this open 
question is the elephant in the room of this manuscript's discussion and conclusions, and needs to 
be addressed (ideally with conclusive and quantitative analytical tools). 



Response:  
There is a substantial literature between AWA and local meteorology. The connections between 

AWA and local meteorology are included in Introduction section (in lines 55-59) as follows:   
In addition, temperature extremes are more likely to connect with wave events through the 

large-amplitude troughs and ridges (Pfahl and Wernli, 2012; Chen et al., 2015; Martineau et al., 
2017). Shen and Mickley (2017) identify the association between warm tropical Atlantic sea surface 
temperatures and enhanced subsidence, reduced precipitation and increased temperatures 
through stationary wave propagation in the Eastern US. 

We agree and add more information on the AWA relationship with meteorology. Future 
changes (GCM2100-GCM2000) in JJA 500 hPa geopotential height anomaly are shown to explain 
the interannual PM2.5 variability resulting from variability in AWA. Future changes in JJA 
geopotential height anomaly at 500 hPa between the future period (GCM2100 simulation) relative 
to the current period (GCM2000 simulation) are shown in Figure S1. The 500 hPa geopotential 
height increases everywhere by approximately 25–55 m over the entire US. These strengthened 
geopotential height can be explained by mid-to-high latitude warming in the future climate. The 
increased geopotential height at higher latitudes is consistent with other model projections (Yue 
et al., 2015; Vavrus et al., 2017). The change in 500 hPa height which shows a distinct anticyclonic 
pattern centering over the western US and the adjacent ocean is consistent with changes in a suite 
of atmospheric variables related to regional air quality (Meehl et al., 2004). These conditions 
include warmer temperature (2–4℃), more downward solar radiation (up to 15 W/m2), less 
frequent rainfall (up to 8 days less per season), more frequent stagnation (up to 15 days more per 
season), and reduced ventilation (up to 2 more unvented hours per day) (Leung et al., 2005). 
Changing these meteorological parameters strongly affect changes in PM2.5 concentrations (Porter 
et al., 2015). The spatially variable response of total PM2.5 to temperature changes reflected the 
combined responses of nitrate and sulfate, while the simulation-long average PM2.5 concentration 
over land grid cells decreased with increasing wind speed by 50 ngm−3 %−1 (0.77%%−1) and 
increased with water vapor concentration by 20 ngm−3 %−1 (0.29%%−1) in July (Dawson et al., 2007). 
In addition, PM2.5 concentrations are on average 2.6 μg m-3 higher on stagnant vs. non-stagnant 
days (Tai et al., 2010). 

A short explanation for the PM2.5 variability resulting from changes in AWA is included in lines 
346-352 in section 3.4 as follows: 

Future changes in 500 hPa JJA geopotential height anomaly between the future simulation 
(GCM2100) relative to the current simulation (GCM2000) (shown in Figure S2) can account for the 
PM2.5 variability resulting from changes in AWA. The 500 hPa geopotential height increases 
everywhere by approximately 25-55 m over the entire US. These strengthened geopotential height 
can be explained by mid-to-high latitude warming in the future climate. The increased geopotential 
height at higher latitudes is consistent with other model projections (Vavrus et al., 2017). The 
increase in 500 hPa height which shows a distinct anticyclonic pattern centering over the western 
US and the adjacent ocean is consistent with changes in a suite of atmospheric variables related to 
changes in PM2.5 concentrations (Dawson et al., 2007; Tai et al., 2010; Porter et al., 2015). 
 



 
Figure S2. JJA-simulated difference for 500 hPa geopotential height (m) between the GCM2100 and 
the GCM2000.  
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Specific section questions and comments 



Section 2.1: Unless I am misunderstanding some key detail, 1000 observations between 1988 and 
2014 seems like a very low threshold for data availability, with potentially very significant biases 
due to missing data. Were these observations counted year round, or only from summers? Were 
there any notable biases or differences between selected stations in terms of whether the 
observations occurred early or late in the temporal domain? Also, why does this year range (1988-
2014) differ from the date ranges used in other data sources (for example 1991-2010 for ERA-
Interim data)? 
Response:  

For this study we focus on data with longer time periods, and just for the summer time. In order 
to make the results robust, those sites with short observational period are omitted. A total of 233 
observational sites starting from 1988 for PM2.5 is in IMPROVE 
(http://views.cira.colostate.edu/fed/QueryWizard/Default.aspx). Only those sites with 
observational period less than 6 years are omitted, such as AMBL1 (starting from 2003 and ending 
2004), BALT1(starting from 2004 and ending 2006) and DOLA1 (starting from 1994 and ending 1999) 
and so on. In order to avoid biases, all stations for summer (June, July, August, JJA hereafter) with 
at least 1000 valid PM2.5 values between 1988 and 2014 are collected in this study, totaling 150 
stations. Only 28 observational data of 150 starts from 1988 and ends 2014. 40 observational data 
of 150 stations starts between 1990 and 1999. 81 observational data of 150 stations starts between 
2000 and 2009. In order to avoid biases by including observational data as much as possible and 
covering domain as large as possible, the data period between 1988 and 2014 is selected. 

The descriptions of the 150 observational sites used in this study are included in the online 
supplement Table S1. 

Table S1. The descriptions of the 150 observational sites used in this study are included in the 
online supplement.  

 

 
 
Section 2.2: I'm concerned about the inclusion and comparison between free running and specified 
dynamics model output, as these two types can differ in very significant ways, even for otherwise 
identical years. In particular, Figure 3 (and related analysis) shows a very strong difference between 
REFC1SD and GCM2000. How much of that difference could be an artifact of the differing dynamics? 
Do the overlapping years between them (2006-2010) show good agreement in AWA? If not, this 
has major consequences for the interpretation of 3b and 3d. 
Response: 

Site Code StateLatitudeLongitudeElevationStartDateEndDate Number of observations
Acadia NP ACAD1 ME 44.38 -68.26 157 198803 201412 3050
Addison PinnacleADPI1 NY 42.09 -77.21 512 200104 201006 1125
Agua Tibia AGTI1 CA 33.46 -116.97 507 200011 201412 1709
Arendtsville AREN1 PA 39.92 -77.31 267 200104 201012 1187
Badlands NP BADL1 SD 43.74 -101.94 736 198803 201412 3050
Mount Baldy BALD1 AZ 34.06 -109.44 2508 200002 201412 1798
Bandelier NM BAND1 NM 35.78 -106.27 1988 198803 201412 3051
Big Bend NP BIBE1 TX 29.30 -103.18 1066 198803 201412 3051
North BirminghamBIRM1 AL 33.55 -86.81 175 200404 201412 1320



The difference between free-running models and reanalyses-forced is very interesting, and 
explicitly considered in this paper. The model years in the GCM2000 are arbitrary (and the dates 
removed in the new version, as per the request of the other author, so other readers are not 
similarly confused), since the model is free running, and should not be considered equivalent to 
2006-2010. The reanalyses-forced runs will hopefully do a better job matching the interannual 
variability, but cannot be used as a control for a future climate run, so we include a current climate 
control run to use for comparison with the future. Because we consider 20 years the climatologies 
can be compared however, which is why we use long time periods. Thus it is possible to contrast 
the free running model and the reanalyses in figures 3b and 3d.    
 
 
Section 2.6: This description needs some serious clarification. I was not able to clearly understand 
this description of "composite methodology" until piecing it together from later sections and 
figures. 
Response:  

The characteristics and references for the composite methodology are included in lines 205-
208 in section 2.6 as follows: 

We use a composite methodology which is based around the most polluted (>90th percentile) 
daily PM2.5 and the corresponding anomalies at every station. Composite 500 hPa geopotential 
height and AWA for daily values of PM2.5 larger than 90th percentile are produced by separately 
averaging all daily anomaly values of the corresponding 500 hPa geopotential height and AWA. The 
composite methodology can average out much of the variability. Composite Madden–Julian 
Oscillation cycles of precipitation and ozone for each phase are examined by averaging together all 
daily anomaly values for the given quantity separately (Sun et al., 2014). In addition, the 
meteorological conditions conductive to a high ozone event are investigated by compositing about 
the first day of each high ozone event in the Northeastern region (Sun et al., 2017). 
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Figure 2: With exclusive focus on summer conditions in this paper, what is the relevance of 
including full annual cycles of PM2.5? Furthermore, what is the relevance of agreement between 
monthly average values year round (9 months of which are completely ignored in the rest of the 
paper) rather than daily values within the chosen JJA domain? Far more useful, (and legible) in my 
view, would be box or column plots showing summertime means/ranges for each of the different 
sources of data or model output, with correlation statistics provided for daily comparison to 
observations. 
Response:  

Although boxplot can display the spatial and temporal PM2.5 data variations by visualizing much 



information such as the maximum, upper quantile, median, lower quantile and minimum, Figure 2  
can set the summer values within a broader context. There are some reasons for selecting Figure 
2 in this study. Initially, the full annual cycle of PM2.5 is used to show that PM2.5 concentrations are 
largest during summer across months at the three sites. So that we can focus on summer months 
in this study. Furthermore, the significant correlation between observations and simulations is 
demonstrated using Figure 2. A statistically significant correlation (r>0.80, p<0.01; Figure 2) for 
current PM2.5 is found between observations and simulations of monthly mean climatological 
averages (REFC1SD and GCM2000) at three representative sites. The highest correlation 
coefficients between model and observations (0.93) are seen at SIPS1 perhaps due to the large 
seasonal variation in PM2.5 concentrations (Figure 2b). Finally, the correlation coefficients between 
future and current PM2.5 is demonstrated using Figure 2. The future PM2.5 concentrations are 
increased in GCM2100 under current emissions compared with current climate PM2.5 simulations. 
There is a strong decease in climatological mean for future PM2.5 at AREN1 under future emissions 
and meteorology (REFC2), while the climatological average for future PM2.5 has no significant 
change under future emissions at SIPS1 and LAVO1. Such differences in the monthly mean averages 
for PM2.5 suggests that emission changes are more important than climate changes at AREN1, but 
it is not clear which is more important at SIPS1 or LAVO1. 
 
Section 3, site selection: The LAVO1 site seems like a problematic choice, relative to the other two. 
Not only is PM2.5 not particularly high during the summer, there appears to be a very high degree 
of variability during those months. Is there a reason for its selection? Also, considering the final 
conclusions focused on the importance of the AWA in the Midwest and Great Plains regions, 
wouldn't it be beneficial to have at least one site within one or both of them? 
Response:  

There are two reasons for the representativeness of the three selected stations. 
(1) In order to make the results robust, the three representative sites are from the reference 

(Sun et al., 2017). The three sites here correspond to the three sites in Northeast, Southeast and 
Western region respectively, which has differing impacts of meteorological persistence on the 
distribution and extremes of ozone in Sun et al. (2017) to allow comparison to that study here. 
AREN1 (39.92°N, 77.31°W) matches with the site PSU106 (40.72°N, 77.93°W, in the Northeast 
region) which has a well-known association between high ozone and stagnation. SIPS1 (34.34°N, 
87.34°W) matches with the site SND152 (34.29°N, 85.97°W, in the Southeast region) which is least 
sensitive to the length of a stagnation event for ozone in the Southeast (ozone increases by ∼0.06 
standard deviation per day on average). LAVO1 (40.54°N, 121.58°W) matches with the site LAV410 
(40.54°N, 121.58°W, in the Western region) which is noted for the fewest number of days between 
cyclones of 4 days or longer. Furthermore, LAVO1 is considered to be a clean air site in California 
where anthropogenic influence is at a minimum (Vancure et al., 2002). LAVO1 is a higher elevation 
(1.76 km) site in Northern California that has also been used to quantify baseline ozone 
concentrations due to its relatively isolated location (Parrish et al., 2012). In addition, the long 
range transport from Asia and meteorology are dominant drivers of pollutants at LAVO1 by 
distinguishing among local, distant North American, and Asian sources of particulate matter (PM2.5) 
and O3 (Vancure et al., 2015). 

(2) The three sites of different part of the country differ from each other climatologically (Figure 
2). The climatological average for PM2.5 is greater in the Eastern than in the Western sites. The 



highest correlation coefficients between model and observations (0.93) are seen at SIPS1 perhaps 
due to the large seasonal variation in PM2.5 concentrations. Emission changes are more important 
than climate changes at AREN1, but it is not clear which is more important at SIPS1 or LAVO1. 

(3) The more detailed information regarding the representativeness of the three selected 
stations are included in lines 97-106 as follows: 

We chose three representative stations in different parts of the country to investigate the 
relation between AWA and PM2.5 in detail. The IMPROVE station names are AREN1 (Arendtsville, 
Pennsylvania; 39.92 °N, 77.31°W; in the Northeast), SIPS1 (Sipsey Wilderness, Alabama; 34.34°N, 
87.34°W; in the Southeast) and LAVO1 (Lassen Volcanic NP, California; 40.54°N, 121.58°W; in the 
West), which are shown with the red dots in Figure 1. They match with the site PSU106 (40.72°N, 
77.93°W, in the Northeast), SND152 (34.29°N, 85.97°W, in the Southeast) and LAV410 (40.54°N, 
121.58°W, in the West) respectively, which has differing impacts of meteorological persistence on 
the distribution and extremes of ozone in Sun et al. (2017) to allow comparison between the ozone 
and PM2.5 response to AWA. Long range transport from Asia and meteorology are dominant drivers 
of pollutants at LAVO1, where anthropogenic influence is at a minimum as a clean air site in 
California (Vancure et al., 2015). 
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Figure 4: What is the meaning of the contour lines in this figure? 
Response: Thank you for pointing out this was not explained well: the contour lines are composite 
500 hPa geopotential height anomaly (positive values are represented by solid green lines and 
negative values by dashed magenta lines). They are described in caption for Figure 4 as follows: 

Figure 4. (Contour) composite 500 hPa geopotential height anomaly (positive values are 
represented by solid green lines and negative values by dashed magenta lines) and (shaded) 
regression coefficients between daily AWA and PM2.5 at site (denoted by the black dots) (a, d, g) 
AREN1, (b, e, h) SIPS1 and (c, f, i) LAVO1 in the study domain for daily JJA time series of current 
climates. The top row are results using IMPROVE PM2.5 and reanalysis AWA, the middle row uses 
the reanalysis driven simulated PM2.5 (REFC1SD) and reanalysis AWA, and the bottom row uses 
current climate simulated PM2.5 and AWA (GCM2000). Stippling indicates the regions that are 
statistically significant at the 95% confidence level. Unit: 10−8 μ g m−3 /m2 for regression coefficients. 
 
Section 3.1: "averaging together all AWA corresponding to daily PM2.5 above the 90th quantile 
shows a similar strong correlation between PM2.5 and AWA" Unless I'm missing something, I don't 
think "correlation" is the correct word here (and elsewhere in this section). It suggested to me that 
an additional regression was being performed for days with PM2.5 > 90th percentile, but I don't 
think that is correct. Please clarify -- without additional information on behavior of other PM2.5 



percentiles, we can't really define correlation from this subset of daily conditions. 
On a related note, I don't really see the benefit of including/discussing both regressions (Fig 4) and 
high PM2.5 filtered subset (Fig 5). What is gained from this comparison, beyond noting that they 
are somewhat consistent? It seems neither surprising nor useful to me. 
Response:  

(1) Thank you for pointing that this could be confused. Here ‘correlation’, ‘correlate’ are revised 
as ‘connection’ and ‘connect’, respectively, in discussion for Figure 5 in lines 251-253, 258-259 as 
follows: 

The composite AWA calculated by averaging together all AWA corresponding to daily PM2.5 
above the 90th quantile shows a similar strong connection between PM2.5 and AWA as that seen 
for the average (Figure 4 vs. 5).  

Overall, the composite AWA for PM2.5 also shows that the daily PM2.5 above its 90th quantile 
connects strongly with AWA during summer. 

(2) The composite AWA for PM2.5 larger than its quantiles ranging from 30th to 90th is shown in 
Figure S2 as follows. The pattern for the composite AWA corresponding to daily PM2.5 above the 
90th quantile is most similar to regression coefficients between daily AWA and PM2.5. So we can say 
that the composite AWA calculated by averaging together all AWA corresponding to daily PM2.5 
above the 90th quantile shows a similar strong connection between PM2.5 and AWA as that seen 
for the average.   

We show both approaches to show that they are similar in their spatial distribution, thus 
suggesting a robust metric. The reason for choosing 90th quantile is included in line 249-251 as 
follows: 

The pattern for the composite AWA corresponding to daily PM2.5 above the 90th quantile is most 
similar to regression coefficients between daily AWA and PM2.5 by comparing different quantiles 
(Figure S1). The composite AWA calculated by averaging together all AWA corresponding to daily 
PM2.5 above the 90th quantile shows a similar strong connection between PM2.5 and AWA as that 
seen for the average (Figure 4 vs. 5). 
 

     

(a) (b) 

(c) (d) 



     

     

      

Figure S1. (Shaded) composite AWA for PM2.5 larger than (a) 30th quantile, (b) 40th quantile, (c) 50th 
quantile, (d) 60th quantile, (e) 70th quantile, (f) 80th quantile and (g)90th quantile; (h) (shaded) 
regression coefficients between daily AWA and PM2.5 at site AREN1. Unit: 108 m2 for AWA and 10−8 
μ g m−3 /m2 for regression coefficients. 
 
Figures 6 and 7b: The diverging colorbar used in these figures does not appear to be appropriate, 
as the neutral/lighter shades and color split does not occur around zero. The choice creates an 
artificial split dividing the maps between red and blue that does not seem to have any purpose. 
Please change to a single color option, or equivalent. Figure 7b also needs more work and cleanup, 
especially with its legend and units. 
Response:  

Figure 6. In order to keep consistency in color with Figure 4 and Figure 5, the colorbar for Figure 
6 is selected to between red and blue. The colorbar is a little bit sudden if it is in other colors as 
follows.  

(e) (f) 

(g) (h) Regression coefficients 
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Figure 6. The maximum of the composite AWA distribution for PM2.5 larger than 90th 
quantile(Shaded) (a, c, e, g, i), and the centers of the spatial regression coefficient distribution 
between PM2.5 and AWA (b, d, f, h, j): observations (Obs, first row), current climate from the 
reanalysis driven simulation (REFC1SD, second row), current climate from the coupled model 
simulation (GCM2000, third row), future climate with current emission (GCM2100, fouth row) and 
future climate with future emission (REFC2, bottom row). At each grid point, the highest composite 
AWA anywhere in the domain based on the PM2.5 larger than 90th quantile and the highest 
regression coefficient between AWA and PM2.5 are shown. In a) and b), the thee representative sites 
are denoted by the black dots. In a) and b) the different shapes (circle or triangle) indicate the 
number of values for every grid that are statistically significant (at the 95% confidence level) is more 
than 30% or not. The different colors indicate different highest composite AWA and regression 
coefficients as indicated in the legend. In c) through j) the number of values for every grid that are 
statistically significant at the 5% confidence level are shown (in black contours). 

Figure 7b was replotted with a smaller difference in legend based on 5% significance level 
between 90th and 50th percentile. 

 

Figure 7. (b) The subtraction of 50th percentile quantile regression slope from 90th percentile 
quantile regression slope between PM2.5 and impact region’s average AWA across all 150 sites in 
the US (at the 5% significance level). 
 
Section 3.3, quantile regression: The increasing sensitivity for higher percentiles is interesting and 
potentially important, but it is also important to acknowledge the huge range and overall poor 
predictive power in this correlation. An r of 0.36 implies that the vast majority (nearly 90%) of all 
variability is being driven by factors other than AWA at the AREN1 site. Alongside the examination 
of increasing quantile sensitivities, it must be noted that this lack of overall correlation implies 
other (and likely MUCH more important) drivers of PM2.5 variability at sites such as this. This is 
one area in particular where introducing PM2.5 speciation may prove crucial for understanding 
differences in bulk aerosol behavior. 
Response:  

The linear regression (r of 0.36) implies that the vast majority (nearly 90%) of all variability is 
being driven by factors other than AWA at the AREN1 site, which is consistent with the very small 
R2 at this site in Figure 8. 



There are no data on speciation of PM2.5 in the model runs in this study. The relationship 
between PM2.5 speciation and AWA using IMPROVE and available model runs will be examined 
particularly at AREN1 in future to understand differences in bulk aerosol behavior. 

The explanation for the r between JJA deseasonalized PM2.5 and impact region’s average AWA 
at the AREN1 site is included in line 298-300 as follows:  

The correlation coefficient of 0.36 between JJA deseasonalized PM2.5 and impact region’s 
average AWA implies that the vast majority of all variability is being driven by factors other than 
AWA at the AREN1 site. It must be noted that this lack of overall correlation implies other drivers 
of PM2.5 variability at sites like this. 
            
Section 3.3, quantile regression differences: This comparison and examination of Figure 7b seems 
a little unclear and potentially misleading, as a very high fraction of sites are in the [0 1) bin, 
suggesting a very small (and potentially insignificant) difference between 50th and 90th percentiles. 
A better choice of colors is needed to distinguish tiny differences (of either sign). More robust tools 
to evaluate and compare quantile regression coefficients are available, and should be used to 
establish significance here. 
Response:  

A small difference based on the 5% significance level between 90th and 50th percentile is used 
in Figure 7b as follows. The numbers for '<=0', '[0 0.5)', '[0.5 1)', '[1 1.5)', '[1.5 2)', '[2 2.5)', '>=2.5' 
are 5, 18, 34, 25, 26, 18 and 24, respectively.  

A Z-test is used to compare two quantile regression slopes for 90th and 50th percentile at the 5% 
significance level between PM2.5 and impact region’s average AWA across all 150 sites in the US. 
The formula for this statistical test (see Paternoster et al., 1998 and Clogg et al., 1995 for more 
discussion) is:  

Z =
𝑏ଵ − 𝑏ଶ

ඥ(𝑆𝐸௕ଵ
ଶ + 𝑆𝐸௕ଶ

ଶ )
          (1)  

Where b1 and b2 are quantile regression slopes for 90th and 50th percentile, SEb1 and SEb2 are 
standard errors for b1 and b2. Calculate the value of Z for every grid using equation (1). The 
difference between 90th percentile quantile regression slope and 50th percentile quantile 
regression slope is significant at the 5% significance level if Z is great than +/-1.96 across all 150 
sites in the US.   

 



Figure 7. (b) The subtraction of 50th percentile quantile regression slope from 90th percentile 
quantile regression slope between PM2.5 and impact region’s average AWA across all 150 sites in 
the US (at the 5% significance level). 
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Section 3.4: This section all became very hand-wavey to me. I'm not clear on many of the decisions, 
methods, and conclusions being made here, and more explanation and discussion would be 
appropriate. In particular, I don't understand the switch to "interannual variance", nor how that 
was calculated. Previous examinations looked at daily variability -- why the switch to interannual? 
How many years were included in this calculation? 75% explained variability seems VERY high to 
my eye, given previous figures and results. I would need to see more time devoted to explaining 
how this regression was put together before I could accept it at face value. The spatial inconsistency 
with other studies is also of concern. How robust can we assume this result to be, given the 
apparent inconsistencies? What does it mean to say "where meteorology dominates", and how is 
this defined? 
Response:  

(1) “interannual variance”: 
We calculated daily and interannual variability, respectively. Applying daily change in PM2.5 and 

AWA, the coefficient of determination (R2) is up to 0.56. While the coefficient of determination (R2) 
is up to 0.75 using interannual variability in PM2.5 and AWA. So here we focused on interannual 
variability in PM2.5 and AWA. 

(2) “The years and calculation process”:  
The coefficient of determination (R2) is calculated from the linear regression model (equation 

(6) : 𝑃𝑀ଶ.ହ = 𝛽 ∙ 𝑝 + 𝛼) using simulated PM2.5 and AWA for the present climate (GCM2000, 2006-
2025, 20 years). The change of PM2.5 (denoted by ΔPM2.5) in the future (GCM2100, 2106-2125, 20 
years) due to the change in AWA (GCM2100-GCM2000) is calculated using the equation ((7): 
∆𝑃𝑀ଶ.ହ = 𝛽[(𝐴𝑊𝐴തതതതതതത

௙ − 𝐴𝑊𝐴തതതതതതത
௣) ∙ 𝑆] ), where β  and S are calculated from the values for the 

present climate (GCM2000, 2006-2025, 20 years). 
   (3) "where meteorology dominates":  

Figure 2 shows that emission changes are not more important than climate changes at LAVO1 
(in western US). So here the western US is the area where meteorology dominates. 

(4) In order to make this section more clear, the period is included in line 315 as follows:  
The strong association between PM2.5 concentrations and AWA in the current climate prompts 

us to investigate the extent to which we can utilize a linear regression model to predict changes in 
PM2.5 concentrations from AWA change in future climate. Employing daily present-day 
summertime concentrations of PM2.5 and AWA for current climate from the coupled model 
simulation (GCM2000, 2006-2025) and equation (5)-(6), we derive that how much of PM2.5’s 
interannual variance can be explained by the projection of JJA AWA anomalies onto the daily PM2.5-



AWA regression coefficients pattern. The coefficient of determination (R2) of the linear regression 
model using simulated PM2.5 and AWA for the present climate varies from 0 to 0.75 depending on 
gridbox (Figure 8). This means that the projected value (using only AWA changes) captures up to 
75% of the interannual variability in PM2.5 over Great Plains and West. Wise and Comrie (2005) 
similarly determined R2 values of 0.1-0.5 for associations of PM with atmospheric variables across 
sites in the Southwest. Because of the high correlation coefficients (75%) this suggests that the 
regression results reveal the broad population instead of a small number of influential outliers 
(Cook, 1979). The R2 measures the part of variance of PM2.5 that can be explained by the linear 
regression model (Kutner et al., 2004). 
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