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Abstract. Modelling atmospheric dispersal of volcanic ash and aerosols is becoming increasingly valuable for assessing the

potential impacts of explosive volcanic eruptions on buildings, air quality, and aviation. Management of volcanic risk and re-

duction of aviation impacts can strongly benefit from quantitative forecasting of volcanic ash. However, an accurate prediction

of volcanic aerosol concentrations using numerical modelling relies on proper estimations of multiple model parameters which

are prone to errors. Uncertainties in key parameters such as eruption column height, physical properties of particles or meteo-5

rological fields, represent a major source of error affecting the forecast quality. The availability of near-real-time geostationary

satellite observations with high spatial and temporal resolutions provides the opportunity to improve forecasts in an operational

context by incorporating observations into numerical models. Specifically, ensemble-based filters aim at converting a prior en-

semble of system states into an analysis ensemble by assimilating a set of noisy observations. Previous studies dealing with

volcanic ash transport have demonstrated that a significant improvement of forecast skill can be achieved by this approach.10

In this work, we present a new implementation of an ensemble-based Data Assimilation (DA) method coupling the FALL3D

dispersal model and the Parallel Data Assimilation Framework (PDAF). The FALL3D+PDAF system runs in parallel, supports

online-coupled DA and can be efficiently integrated into operational workflows by exploiting high-performance computing

(HPC) resources. Two numerical experiments are considered: (i) a twin experiment using an incomplete dataset of synthetic

observations of volcanic ash and, (ii) an experiment based on the 2019 Raikoke eruption using real observations of SO2 mass15

loading. An ensemble-based Kalman filtering technique based on the Local Ensemble Transform Kalman Filter (LETKF) is

used to assimilate satellite-retrieved data of column mass loading. We show that this procedure may lead to nonphysical solu-

tions and, consequently, conclude that LETKF is not the best approach for the assimilation of volcanic aerosols. However, we

find that a truncated state constructed from the LETKF solution approaches the real solution after a few assimilation cycles,

yielding a dramatic improvement of forecast quality when compared to simulations without assimilation.20
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1 Introduction

Volcanoes encompass a range of hazardous phenomena that precede, accompany, and follow volcanic eruptions. Fragmented

magma and gases released during explosive eruptions raise up to a neutral buoyancy level where volcanic aerosols and ash can

be transported thousands of kilometres by upper-level winds. Specifically, volcanic ash clouds jeopardise flight safety, whereas

the subsequent ash fallout can affect buildings (e.g., causing structural damage due to excessive ash loading), communication25

networks, airports, power plants, and water and energy distribution networks (Sulpizio et al., 2012; Wilson et al., 2014; Clark-

son et al., 2016). Management of volcanic risk and related strategies for reducing its impacts on aerial navigation can benefit

from accurate forecasts of volcanic dispersal produced by Volcanic Ash Transport and Dispersion (VATD) models (e.g., Folch,

2012). For example, operational institutions like the Volcanic Ash Advisory Centers (VAACs) rely on VATD models to deliver

volcanic ash forecasts to aviation stakeholders, civil protection agencies, and governmental bodies (e.g., Beckett et al., 2020).30

VATD models aim at simulating the main processes involved in the life cycle of atmospheric ash and gas species released

during volcanic eruptions: emission, atmospheric transport, and ground deposition.

The accuracy of forecasts depends on multiple factors involving model spatial resolution, under-laying meteorological driver,

model physics and related parameterisations, or uncertainties on Eruption Source Parameters (ESP), e.g., column height, mass

eruption rate, particle size distribution, and vertical mass distribution. In fact, uncertainties in ESP are known to be first-order35

contributors to model errors (Costa et al., 2016b; Poulidis and Iguchi, 2021). Additionally, in order to properly define the

emission source term for complex plume dynamics, models require time-varying ESP (e.g., Suzuki et al., 2016b), which are

typically poorly constrained during eruptive scenarios.

It is long recognised that forecasting of volcanic clouds using VATD models can benefit from remote sensing observations

(Bonadonna et al., 2012). The emergence of near-real-time geostationary satellite measurements with high spatial and temporal40

resolutions provides the opportunity to improve the accuracy of operational forecasts. With last-generation satellite instrumen-

tation, observations can be available every 10–15 minutes at 2–4 km pixel size. For example, the Spinning Enhanced Visible

and Infra-Red Imager (SEVIRI) on board of the Meteosat Second Generation (MSG) platform provides observations of the full

disk with 3 km resolution at the sub-satellite point for all channels (except for the high-resolution visible channel) in observa-

tion intervals of 15 minutes for full disk (Schmetz et al., 2002). Similarly, the Advanced Himawari Imager (AHI) instrument45

aboard the Himawari-8 geostationary satellite (Bessho et al., 2016) samples the Earth’s full disk every 10 minutes with a spatial

resolution of 2 km at the sub-satellite point for the infrared channels.

Numerous attempts have been made to determine the eruptive source using inverse modelling techniques and satellite re-

trievals (e.g. Eckhardt et al., 2008; Kristiansen et al., 2010; Zidikheri and Lucas, 2020, 2021a). Typically, inversion techniques

consider a simple formulation of the source term suitable to represent a single discrete eruptive event. However, multi-phase50

volcanic eruptions with complex emission patterns and varying temporal and spatial scales cannot be described in terms of just

a few source parameters. In cases where eruption source parameters are highly uncertain, data insertion becomes an interesting

alternative to include information from satellite retrievals in numerical models (Wilkins et al., 2015, 2016b,a; Prata et al., 2021).

In this case, instead of defining the volcanic source, numerical models are initialised directly from an initial state derived from
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satellite observations. Unfortunately, satellite retrievals also contain errors and missing data because of the limitations related55

to retrieval methods and measurement techniques. The inclusion of retrievals errors in numerical models is one of the major

drawbacks of data insertion since errors will be propagated forward in time.

Sequential data assimilation (DA) is one of the most effective ways to reduce forecast errors through the incorporation

of observation data into numerical models (e.g., Kalnay, 2003). In an assimilation step, a forecast is used as first guess to

obtain an improved estimate of the system state by incorporating the available observations along with the corresponding60

measurement errors. The estimate of an initial state to start a forecast system applying DA techniques is a well-established

practice in numerical weather prediction, widely used in research (e.g., Anderson et al., 2009) and operations (e.g., Whitaker

et al., 2008; Kleist et al., 2009; Bonavita et al., 2016). Specifically, the Ensemble Kalman filter (EnKF) has been widely used

in oceanographic and atmospheric sciences for performing 4D data assimilation (Evensen, 2003). Ensemble data assimilation

attempts to represent the error statistics using an ensemble of model states instead of storing the full covariance matrix (e.g.,65

Carrassi et al., 2018).

Previous work has already demonstrated that a substantial improvement of quantitative ash forecasts can be achieved by

using ensemble-based data assimilation methods. Broadly speaking, two types of approaches have been proposed: ensemble

Kalman filter methods (Fu et al., 2015, 2016, 2017b,a; Osores et al., 2020; Pardini et al., 2020) and ensemble particle filter

methods (Zidikheri and Lucas, 2021a,b). Additionally, four-dimensional variational data assimilation (4D-Var) methods have70

been proposed for the reconstruction of the vertical profile of volcanic eruptions (Lu et al., 2016a,b).However, transfer of DA

techniques into operational environments is yet limited, partly because these approaches require of multiple model runs to

generate an ensemble of forecasts, making high-resolution modelling challenging under time-constrained operational contexts,

particularly if computational resources are limited.

Recently, the FALL3D code (Folch et al., 2009) has been redesigned and rewritten in the framework of the EU Center of75

Excellence for Exascale in Solid Earth, ChEESE. The code version 8.0 (Folch et al., 2020; Prata et al., 2021) is tailored to

extreme-scale computing requirements and presents substantial improvements on code scalability, computational efficiency,

memory management, and overall capability to handle much larger problems. In addition, the code version 8.1 (Folch et al.,

2021) implemented ensemble forecast capabilities and validation metrics. New developments have led to improved quality of

forecasts, enabled the quantification of model uncertainties, and laid the foundations for the incorporation of ensemble-based80

DA techniques into future releases of FALL3D.

This work presents a new data assimilation system based on the coupling between FALL3D and the Parallel Data Assimila-

tion Framework (PDAF, Nerger et al., 2005, 2020), available in the last code release (version 8.2) of FALL3D. The proposed

methodology can be efficiently implemented in operational environments by exploiting High Performance Computing (HPC)

resources. The FALL3D+PDAF system can run in parallel and supports online-coupled DA, which allows an efficient data85

transfer management through parallel communications among the ensemble members. The main objective of this paper is to

present and validate an ensemble-based data assimilation system suitable for efficient implementation in operational workflows

by exploiting HPC capabilities. The proposed methodology aims at producing a substantial improvement in quantitative fore-

casting of volcanic aerosols taking advantage of high-resolution retrievals from the new generation of satellite instrumentation.

3



The evaluation of the DA system comprises two numerical experiments using the Local Ensemble Transform Kalman Filter90

(LETKF, Ott et al., 2004; Hunt et al., 2007). Firstly, we propose a twin experiment using a dataset of synthetic observations

based on an idealised volcanic eruption. In this case, the observational dataset is defined using noisy mass loading (i.e., to-

tal column mass per unit area) data of volcanic ash. Secondly, we simulate the 2019 Raikoke volcanic eruption considering

satellite-retrieved mass loading of SO2 for assimilation purposes.

The manuscript is organised as follows. Section 2 gives an overview of the different ensemble-based data assimilation95

methods and some fundamental definitions are introduced. A description of the FALL3D+PDAF modelling system is outlined

in Sect. 3. The numerical experiments conducted to evaluate the performance of the modelling system are described in Sect. 4

and the results obtained under different configurations are presented. Results of the experiments are discussed in Sect. 5 and

recommendations are made concerning future studies. Conclusions are drawn in the final Sect. 6.

2 Background100

Data assimilation (DA) techniques are extensively used to study and forecast geophysical systems and can be applied to a broad

range of operational and research scenarios (Carrassi et al., 2018). Generally speaking, DA techniques aim at obtaining an op-

timal state of a dynamical system by combining model forecasts with observations using sequential or variational methods.

In sequential schemes, the assimilation process is characterised by a sequence of steps involving a forecast step and a subse-

quent analysis in which the a posteriori estimate is obtained from the a priori forecast state by incorporating observational105

information.

The Kalman Filter (KF), for example, is a sequential DA method that provides an optimal solution for linear models and

linear observation operators under certain assumptions (Kalman, 1960). In addition to linearity, the KF also assumes Gaussian

distributions for model errors and observation noise. As a result, the multivariate Gaussian prior density function is described

by two moments, i.e., a mean vector and a covariance matrix. The original KF provides algebraic formulas for the update of the110

mean and the covariance matrix (see Appendix A). If the background (i.e., the prior estimate of the state of a physical system)

is represented by a mean vector xb of size n and the error covariance matrix associated with this background is Pb ∈ Rn×n,

the analysis step of the KF consists on determining an analysis state estimate xa and its associated covariance matrix Pa given

a vector of observations y ∈ Rp (see Appendix A for further details).

The Ensemble Kalman Filter (EnKF) is a family of methods providing a practical method to deal with high-dimensional115

geophysical problems by means of a low-dimensional approximation of the background error covariance. The state estimate

of the system is represented by an ensemble of system states that actually provide a Monte Carlo approximation of the KF

(Evensen, 1994). A forward model is used to generate an ensemble of trajectories of the model dynamics. One of the most

important practical advantages of ensemble-based techniques is the independence of the filter algorithm on the specific forward

model. Given an ensemble of size m, consisting of m model realisations (ensemble members) characterised by the vectors xi120
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(i= 1, . . . ,m) at a certain time, the state estimate in the EnKF is given by the ensemble mean

x =
1

m

m∑
i=1

xi (1)

and the original covariance matrix is replaced by the ensemble-based covariance matrix Pe ∈ Rn×n:

Pe = XXᵀ (2)

which is expressed here in terms of the matrix of (normalised) ensemble perturbations X ∈ Rn×m defined as125

X =
1√
m− 1

[x1−x, . . . ,xm−x] (3)

Given an ensemble of background states {xb
i : i= 1,2, . . . ,m} sampled from the prior PDF and a set of observations

represented by the vector y ∈ Rp, the analysis step consists on determining an ensemble of analyses {xa
i : i= 1,2, . . . ,m} in

consistence with the original KF equations but formulated in terms of the ensemble-based mean and covariance matrix. In this

work, the ensemble mean is updated using the ensemble-based matrix for the Kalman gain, Ke:130

xa = xb + Ke(y−Hxb) (4)

where H ∈ Rp×n is the observation operator that translates a model state x into the observation space, and tha Kalman gain is

given by

Ke = XbYᵀ(YYᵀ + R)−1 (5)

where we defined Y = HXb and R ∈ Rp×p is the observation error covariance matrix. In this way, the best estimate of the135

current state is determined in the analysis step through a weighted linear combination of the prior ensemble perturbations.

Different EnFK methods vary depending on how the ensemble analysis is defined. Most formulations can be divided into

two major categories, the stochastic (e.g., the perturbed observations-based EnKF formulation from Burgers et al., 1998)

and the deterministic approaches (Houtekamer and Zhang, 2016). The latter group includes the so-called square-root filters

that uses deterministic algorithms to generate the analysis ensemble (Nerger et al., 2012). The Ensemble Transform Kalman140

Filter (ETKF, Bishop et al., 2001) is a popular square-root filter formulation that will be considered in this work. A detailed

description of this method is provided in Appendix A.

The application of ensemble filters in geophysical systems can lead to spurious correlations and underestimations of the

ensemble spread due to a limited size of the ensemble, sampling errors, and model errors (Anderson and Anderson, 1999).

The problem of variance underestimation (filter collapse) is usually addressed by using inflation methods, whereas localisation145

is adopted to suppress spurious correlations. In particular, we consider a multiplicative factor λ > 1 to inflate the covariance

matrix Pe→ λ2Pe, which is equivalent to multiplying Xb by λ. This inflation-controlling parameter has to be experimentally

tuned.

The localised version of the ETKF (i.e., LETKF) proposed by Hunt et al. (2007) is a practical method for data assimilation

suitable for high-dimensional systems, relatively easy to implement and computationally efficient. A step-by-step procedure to150
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implement the LETKF algorithm can be found in Hunt et al. (2007). In this case, a local analysis is performed by computing

a separate analysis for each local domain and considering only observations within a defined radius, as explained in detail in

Sect. 3. The localisation radius is denoted by LR and referred to as local radius or local range throughout this work. This is an

input parameter required by the data assimilation algorithm.

Both ETKF and LETKF methods have been implemented in the FALL3D+PDAF modelling system. However, LETKF is a155

more general and powerful approach as ETKF represents a particular case of LETKF in which the localisation radius is large,

i.e., LR→∞. This work focuses exclusively on the LETKF technique, which provides more realistic results than its global

counterpart ETKF for volcanic aerosols, as shown in Sect. 4.1.1.

3 Data Assimilation System

An online DA system has been implemented in the latest version release of FALL3D (v8.2), an open-source code with an active160

community of users worldwide. FALL3D is an Eulerian model for atmospheric passive transport and deposition based on the

so-called Advection-Diffusion-Sedimentation (ADS) equation (Folch et al., 2020). The code has been redesigned and rewritten

from scratch in the framework of the EU Center of Excellence for Exascale in Solid Earth (ChEESE) in order to overcome

legacy issues and allow for successive optimisations in the preparation towards extreme-scale computing. The new versions

include significant improvements from the point of view of model physics, numerical algorithmic methods, and computational165

efficiency. In addition, the capabilities of the model have been extended by incorporating new features such as the possibility

of running ensemble forecasts and dealing with multiple atmospheric species (i.e., volcanic ash and gases, mineral dust, and

radionuclides). Efforts to implement ensemble capabilities on the previous release of FALL3D (v8.1) not only made it possible

to quantify model uncertainties and improve forecast quality (Folch et al., 2021) but also paved the way for efficient integration

of ensemble-based data assimilation techniques into subsequent versions of FALL3D.170

3.1 FALL3D+PDAF

The new release of FALL3D includes ensemble-based DA techniques based on a sequential scheme. Figure 1 shows a diagram

of the steps involved in the modelling workflow when data assimilation is enabled. Initially, model parameters, such as emission

source parameters (ESP), and input data (e.g., meteorological fields) are sampled from a given Probability Density Function

(PDF) in order to define an ensemble of model instances. In the first step, initial model conditions are defined through a set175

of state vectors: {xi : i= 1,2, . . . ,m}, being m the ensemble size. Initial conditions can be arbitrarily defined (e.g., using

data insertion). However, in this paper simulations are assumed to be started from a zero initial concentration (xi = 0). For

each assimilation cycle, the analysis step requires a background ensemble {xb
i : i= 1,2, . . . ,m}. The background states are

produced by means of a forward model by evolving the ensemble of system states until a time with valid observations. At this

point, a dataset of observations (including error observations) are incorporated to produce an ensemble of analyses {xa
i : i=180

1,2, . . . ,m}. The corresponding analysis for each ensemble member is used as the model initial condition for the next cycle

and the forward model is restarted from the observation time. Finally, the assimilation cycle is repeated until the end of the
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Figure 1. Diagram of the modelling workflow used by FALL3D+PDAF when data assimilation (DA) is enabled. Assimilation is performed

by means of an ensemble-based DA technique based on a sequential scheme.

simulation. It should be noted that model parameters are defined before simulation starts and these parameters are not resampled

during subsequent assimilation cycles.

In this work, the model state for each ensemble member is propagated by the FALL3D dispersal model. The DA system185

builds upon an efficient implementation by coupling FALL3D and the Parallel Data Assimilation Framework (PDAF), an open-

source software environment for ensemble data assimilation providing fully implemented and optimised data assimilation

algorithms, including ensemble Kalman filters (KF) such as EnKF, ETKF, and LETKF (Nerger et al., 2005, 2020, see also

Sect. 2). PDAF supports an efficient use of parallel computers and facilitates its implementation by combining an existing

numerical model with a group of DA algorithms with minimal changes in the model code. We used the PDAF version 1.14190

that, in addition to KF algorithms, includes also an ensemble square root filter for nonlinear data assimilation, referred to as

the nonlinear ensemble transform filter (NETF, Tödter and Ahrens, 2015), and a Particle Filter (PF, e.g., Gordon et al., 1993).
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Figure 2. Scheme of the ensemble-based data assimilation system implemented in the FALL3D dispersal model. The system builds upon an

efficient implementation by coupling FALL3D and the Parallel Data Assimilation Framework (PDAF) and uses a two-level parallelisation

scheme based on MPI (Message Passing Interface).

The FALL3D+PDAF system can be run in parallel and supports online-coupled DA, enabling the workflow to be executed

in a single step and with an efficient data transfer management through parallel communications. This avoids the creation of

extremely large files that would be required to store the full system state in case of an off-line approach. The implementation195

uses a two-level parallelisation scheme based on MPI (Message Passing Interface) and can benefit from high-performance

computing (HPC) resources. The two-level parallelisation scheme is sketched in Fig. 2. During the ensemble forecast phase,

m instances of FALL3D, referred to as model tasks, run concurrently as an embarrassingly (or perfectly) parallel workflow to

evolve the member states in time (level 1). In other words, the problem is separated into a number of parallel tasks running

independently that require no communication or dependency between ensemble members. In turn, each model task is executed200

by a single parallel instance of FALL3D, which uses a three-dimensional domain decomposition with nx, ny , and nz sub-

domains along each direction (level 2). Consequently, the ensemble forecast requires a total ofm×nx×ny×nz MPI processes.

Multiple intra-member (level 1) communications are required during each assimilation step in order to collect and distribute the

state vectors between different parallel tasks. Specifically, model tasks communicate with the master model task (i.e., the 1st

model task in Fig. 2) during the analysis stage and filter operations required to produce the analyses are performed exclusively205

by the MPI processes corresponding to the master model task.

3.2 Data assimilation setting

Two ensemble Kalman filter algorithms have been implemented in the FALL3D+PDAF system: ETKF and LETKF. As stated

in Sect. 2, we will focus exclusively on the localised version of the ETKF proposed by Hunt et al. (2007), i.e., LETKF.
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Localisation in LETKF is performed by partitioning the state vector into a number of local domains defined by the vertical210

column corresponding to a single cell of the horizontal model grid, and includes all bin species contributing to the observed

column mass. Local analysis is performed by computing a separate analysis for each local domain and considering only

observations within a volume defined by a cylinder of radius LR. No vertical localisation is used since observations are column

integrated (see Sect. 3.4). A separate analysis is then generated for each model grid point in the local domain. By default,

a uniform weight (unit weight) is assumed for all observations contributing to the local analysis. Alternatively, the influence215

of observations can also decay exponentially with the distance r from the analysis location according to a weight with the

dependency exp(−r/LSR), where the exponential decay radius, LSR, is a user-defined input.

Table 1 lists the parameters required by the FALL3D input file to configure the data assimilation system. In addition to

start/end time and frequency of assimilation, local range (LR) and inflation factor (λ) can be defined in this block (see Sect. 2).

Note that the covariance inflation factor is expressed here in terms of the so-called forgetting factor, defined as ρ= λ−1 ≤ 1220

(Nerger et al., 2012). Other parameters include satellite filename, type of observation weighting and cut-off diameter for

volcanic ash (i.e., maximum particle diameter to compute mass loading). The parameter TRANSFORMATION specifies how

the Λ matrix, defined in Appendix A by Eq. (A7), is computed conforming to two possible transformation options: iden-

tity matrix (DETERMINISTIC) or random rotation (RANDOM_ROTATION). As explained below in Sect. 3.3, the parameter

SQRT_TRANSFORMATION allows the user to specify whether a nonlinear transformation should be applied to the model state225

variable.

Alternative ensemble-based techniques provided by PDAF, such as PF and NETF (see Sect. 3.1), will be implemented in

future releases of FALL3D. While the ensemble Kalman filters implicitly assume that the prior state and the observation errors

are Gaussian, NETF and PF methods are not restricted by the assumptions of linearity or Gaussian noise. In contrast, PF and

NETF are exposed to weight collapse due to the so-called curse of dimensionality (e.g., Carrassi et al., 2018). In addition,230

Kalman filters are expected to outperform NETF and PF in a linear and Gaussian problem (e.g., see Tödter and Ahrens, 2015).

FALL3D solves an almost linear problem with weak non-linearity effects (e.g., due to gravity current, wet deposition, or

aggregation). However, as discussed next, the Gaussian hypothesis is not fulfilled, leaving open the question of which is the

best approach to deal with the assimilation of volcanic aerosols.

3.3 Model state235

The DA algorithm requires a model state vector x ∈ Rn which is corrected in the analysis step. The state vector is constructed

from the three-dimensional concentrations Ci(x,y,z, t) at the assimilation time t for the bin species i (i= 1,2, . . . ). As con-

centration is a positive-semidefinite variable, the prior PDF associated with the ensemble forecast tends to show a right-skewed

distribution. To illustrate this aspect, the two-dimensional histogram in Fig. 3a shows the skewness µ̃3 (i.e., µ3/σ
3, the third

standardised moment) of the prior PDF computed for each grid cell at the first assimilation time for the Raikoke experiment240

(see Sect. 4.2). Note that a positive skewness (µ̃3 > 0) predominates in all points, with the most probable value (µ̃3 ≈ 11)

occurring when the mean-to-sigma ratio (i.e., µ/σ, the mean to standard deviation ratio) approaches to zero. Interestingly, the

relationship µ̃3 = σ/µ (solid red line) defines a lower boundary which is satisfied for almost all points (µ̃3 > σ/µ). The skew-
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Table 1. List of input parameters required by the data assimilation block in the FALL3D input configuration file

Parameter Options Description

ASSIMILATION ON/OFF Enable assimilation

FILTER ETKF/LETKF Type of filter

ASSIMILATION_START Float value Assimilation start time

ASSIMILATION_END Float value Assimilation end time

FREQUENCY Float value Assimilation frequency in hours

FORGETTING_FACTOR Float value Forgetting factor ρ ∈ (0,1]

LOCAL_RANGE Float value Local radius for observations (LR)†

TRANSFORMATION DETERMINISTIC/RANDOM_ROTATION Type of ensemble transformation

WEIGHTING UNIFORM/EXPONENTIAL Observation weighting

SUPPORT_RANGE Float value Exponential decay radius (LSR)†

SATELLITE_FILE Filename Input file with observations in netCDF format

SATELLITE_DICTIONARY_FILE Filename Input table with netCDF variables

ASSIMILATED_TRACER TEPHRA/SO2/H2O Species to assimilate

DIAMETER_CUT_OFF Float value Cut-off diameter for volcanic ash in µm

IGNORE_ZEROS YES/NO Ignore non-positive observations

SQRT_TRANSFORMATION YES/NO Apply a square root transformation to x

† LR and LSR are defined in units of the model grid size

ness of the a prior PDF tends to the expected value for a normal distribution (µ̃3 = 0) only for large values of µ/σ. However,

values of µ/σ above 0.5 are extremely unlikely to occur and, in general, skewness values satisfy µ̃3 > 2. This has important245

implications, as the Gaussian hypothesis assumed by the Kalman filter theory is not satisfied. As a result, the analysis step can

yield an unrealistic posterior estimate, including negative concentrations.

This is illustrated in Fig. 3b, which shows the two-dimensional histogram plot for the posterior distributions resulting from

the LETKF. Clearly, the statistics of the analysis ensemble tend to become Gaussian and, as a result, the algorithm generates

an unrealistic ensemble which is not consistent with the non-Gaussian Bayes’s theorem, introducing artificial negative values250

for both ensemble mean and skewness.

In this work, we follow a simple approach to partially fix this problem by removing negative concentrations (a zero value

is assigned). This truncated state is no longer a solution of the original Kalman filter problem and the ability of this method

to produce an improved state should be explicitly demonstrated. The probability of obtaining nonphysical solutions increases

with the local radius for observations (LR) and with the number of observations close to zero. For these reasons, global filters255

such as ETKF are not considered here. On the other hand, only observations with positive column mass exceeding a given

threshold, related to the detection limit of satellite sensors, are assimilated.
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Figure 3. Two-dimensional histogram plot for the prior (top) and analysis (bottom) distributions showing the probability density for skewness

(µ̃3) and mean-to-sigma ratio (µ/σ) values, where µ refers to ensemble mean and σ to standard deviation. Results correspond to the first

assimilation cycle of the Raikoke experiment.

In addition to removing negative data, we also explored an alternative definition of the vector state x in terms of some

nonlinear transformation x = T (C), so that background concentration values close to zero are stretched out. A logarithmic

function or the square root are two obvious options for T . In this way, the filtering process occurs in the transformed space and,260

after the analysis, concentration can be recovered by applying the inverse transformation, i.e., C = T−1(x). This “transformed

state" approach failed with a logarithmic mapping due to the existence of few outliers leading to extremely large concentrations

when the inverse transformation was applied. In contrast, the square root transformation resulted in reasonable results and a

stable filter. In practice, the square root transformation can be enabled by the user through the FALL3D input parameter

SQRT_TRANSFORMATION, as indicated in Table 1.265
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3.4 Observation operator

The DA system supports assimilation of satellite-retrieved mass loading (i.e., the vertical column mass per unit area) of volcanic

ash and gases (SO2 and H2O). As a consequence, the objective is to reconstruct the three-dimensional concentration Ci(x,y,z)

field of each specie i from a two-dimensional observational dataset. The observation operator H, which projects a model state

x ∈ Rn onto the observation space, entails a vertical integration of concentration, a sum over different species (if multi-species270

observations are being assimilated) and, finally, the interpolation to the observation coordinates. Note that, if the vector state

x represents mass concentration, H is a linear operator. This is the main advantage of focusing on mass loading rather than on

other observable, e.g., aerosol optical depth, which would lead to a nonlinear observation operator.

The observation operator acting over the analysis vector defines a vector ya ∈ Rp of analysed mass loading:

ya = Hxa (6)275

where xa is the assimilated state vector (analysis). In order to facilitate the visualisation and enable a direct comparison with

observations, the analysed mass loading, ya, will be shown in the following figures. However, if not explicitly stated otherwise,

the full analysis state, i.e., xa, will be used to compute the evaluation metrics (see Sect. 3.7).

3.5 Ensemble generation

In order to generate a set of m background states, FALL3D automatically perturbs Eruption Source Parameters (ESP) and280

horizontal wind components from a reference value using either uniform or truncated normal distributions (Folch et al., 2021).

A Latin Hypercube Sampling (LHS, McKay et al., 1979) is used to efficiently sample the parameter space. Table 2 lists the

perturbed parameters in the twin and Raikoke DA experiments that are considered in this work (see Sect. 4).

3.6 Satellite retrievals

The satellite retrievals used for the Raikoke DA experiment are SO2 mass loading retrievals derived from AHI/Himawari-8285

measurements. Details of the retrieval method are described in Appendix B of Prata et al. (2021). The retrieval is based on the

strong absorption of SO2 near the 7.3 µm wavelength and is generally only sensitive to upper-level (& 4 km) SO2 due to the

masking effect of water vapour absorption at lower levels in the atmosphere (Prata et al., 2004). A conservative estimate of the

relative uncertainty on these mass loading retrievals is 30%.

3.7 Evaluation metrics290

When the true state xtr ∈ Rn is known (e.g., experiments with synthetic observations as in Sect. 4.1), the difference between

the ensemble mean and the truth can be directly quantified using the average root-mean-square error:

RMSE =

√
‖x−xtr‖22

n
(7)
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Table 2. Ensemble configuration for the twin and Raikoke experiments. In order to generate the ensemble, eruption source parameters (ESP)

and wind components were perturbed around a reference value using either uniform or truncated normal distributions. The Latin Hypercube

Sampling (LSH) method is used to sample the parameter space. The perturbed ESP are: eruption start time (Ti), source duration (∆T ),

eruption column height (H), mass emission rate (MER), parameters As and λs of the Suzuki vertical mass distribution, and top-hat thickness

(∆Z).

Parameter Reference value Distribution Sampling range

True state for Twin Experiment

H 12-14 km† - -

Ash MER Estimated‡ - -

As 6 - -

λs 4 - -

∆T 6 h - -

U wind WRF-ARW - -

V wind WRF-ARW - -

Ensemble for Twin Experiment

H 10 km Uniform ±40%

Ash MER 107 kg/s Fixed -

As 6 Gaussian ±25%

λs 4 Gaussian ±25%

∆T 6 h Fixed -

U wind WRF-ARW∗ Gaussian ±25%

V wind WRF-ARW∗ Gaussian ±25%

Ensemble for Raikoke Experiment

H 12.5 km Uniform ±3 km

SO2 MER 2× 105 kg/s Uniform ±20%

∆Z 2 km Uniform ±1 km

Ti 00 UTC§ Uniform ±6 h

∆T 2 h Uniform ±1 h

U wind GFS Uniform ±25%

V wind GFS Uniform ±25%

† Variable column height as in Fig. 4; ‡ Parameterisation from Degruyter and

Bonadonna (2012); § On 22 June 2019; ∗ Weather Research and

Forecasting-Advanced Research WRF

In contrast, for the case involving real observations (see Sect. 4.2), the root-mean-square error is computed in the observation

space according to:295

RMSEo =

√
‖y−ya‖22

p
(8)
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where y ∈ Rp represents a vector with p observations and ya is the analysed mass loading vector defined by Eq. (6).

A measure of the uncertainty of the ensemble is given by the ensemble spread, σe. The domain-averaged spread can be

defined in terms of the ensemble-based covariance matrix as:

σe =

√
tr(Pe)

n
(9)300

where Pe is the ensemble-based matrix for the covariance defined by Eq. (2) and tr(Pe) denotes the trace of Pe. Note that the

true state is not involved in this definition, meaning that this metric is independent of xtr.

Additionally, we consider also categorical metrics defined for model and observations from the exceedance (or not) of a

given threshold. For example, in the case of categorical metrics for the total column mass loading, a true positive means that

both model and observation exceed a given threshold value. The True Positive Rate or Probability of Detection (POD) is defined305

as the number of True Positives (TP) divided by the number of False Negatives (FN) plus True Positives (TP):

POD =
TP

FN+TP
(10)

The POD ranges from 0 to 1 (optimal) and, geometrically, it can be interpreted as the area of the intersection between the

modelled and observed column mass contours, normalised by the area of the observation contour (Folch et al., 2021).

4 Numerical experiments310

This section presents results from two numerical experiments aiming at evaluating the performance of the FALL3D+PDAF

DA system under different filter configurations. The first experiment (twin experiment) is described in Sect. 4.1 and the second

experiment (Raikoke experiment) is described in Sect. 4.2. Table 3 summarises the model configuration defined for each

experiment.

A critical aspect in operational workflows is the computational cost required by the ensemble forecasting system. FALL3D315

has been proved to have a good strong scalability (above 90% of parallel efficiency) up to several thousands of processors (Folch

et al., 2020). As the ensemble forecasting task is embarrassingly parallel, major constraints on computing time probably come

from the analysis step. Simulations were conducted on the Joliot-Curie supercomputer at the CEA’s Very Large Computing

Center (TGCC, France) using 1152 processors for the twin experiment (ensemble size: 48) and 3072 processors for the Raikoke

experiment (ensemble size: 128). The typical computing times were of around 200 s (twin experiment) and 375 s (Raikoke320

experiment).

4.1 Twin experiment

Twin experiments are commonly used to evaluate DA methods. In this case, the truth state is generated by a model run in

order to obtain a reference vector state. Synthetic observations are generated by adding random perturbations to the true

state, which represent non-correlated observation errors. An ensemble forecast is then produced by perturbing a state estimate325

(different from the truth) and synthetic observations are assimilated. The performance of the ensemble filter can be evaluated

by comparing the assimilation results with the true state.
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Table 3. Model configuration parameters for the numerical experiments considered in this work.

Parameter Twin experiment Raikoke experiment

Ensemble size 48 128

Resolution 0.1◦× 0.1◦ 0.2◦× 0.2◦

Number of grid points 195×155×50 300×150×50

Species 4 ash bins SO2

TGSD§ Estimated† -

Run time 36 h 72 h

Emission source Suzuki source‡ Top-hat source

Assimilation frequency 3 h 3 h

Assimilation start time 6 h 18 h

† Costa et al. (2016a)
‡ Pfeiffer et al. (2005)
§ Total Grain Size Distribution

The twin case study considers a fictitious eruption from Etna driven by WRF-ARW meteorological data in order to produce

realistic atmospheric conditions. As stated in Table 3, a 36-h numerical simulation was performed considering an eruption

lasting 6 h with a mass emission rate (MER) estimated from the eruptive column height (H) according to Degruyter and330

Bonadonna (2012). The (synthetic) time evolution of column height is shown in Fig. 4. In a previous study including several
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Figure 4. Time evolution of the eruption column height used to define the twin experiment true state. The 6-h duration eruption is charac-

terised by multiple eruptive phases with duration of 20 minutes and column height randomly sampled within the range 12–14 km above the

vent.
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cases, Costa et al. (2016b) found a maximum column height variability of 30% for weak plumes and 10% for strong plumes.

Moreover, Suzuki et al. (2016a,b) showed that a variability of up to ∼ 20% can simply be due to internal plume dynamics.

Correspondingly, the twin experiment in this work considers multiple eruptive phases with a duration of 20 minutes and a

column height sampled from a uniform probability distribution within the range 12–14 km above the vent (15.3–17.3 km above335

sea level). Such a time-varying source term can result in complex cloud dynamics and represents a challenge for dispersion

models and DA. The Suzuki plume option was adopted for the vertical distribution of mass (Pfeiffer et al., 2005), and the

total grain size distribution was estimated from the time-varying column height following the parameterisation proposed by

Costa et al. (2016a) assuming a magma viscosity of η = 105 Pa-s. The computational domain has an horizontal resolution

of 0.1◦ and a domain size of nx×ny ×nz = 195× 155× 50 grid cells. Simulations involve four fine ash bins (nb = 4) with340

particle diameters d < 10 µm and, consequently, the dimension of the state vector x used in the assimilation cycle is n=

nx×ny ×nz ×nb ≈ 6× 106.

Synthetic observations were generated by adding a Gaussian noise to the column mass loading computed from the true

state. As in Pardini et al. (2020), a conservative relative error of 40% is considered for both the synthetic observations and

the Raikoke SO2 retrievals. In order to represent a realistic scenario where the range of valid measurements is restricted by345

the instrumental detection limit, we assume mass loading observations are above a given threshold. For example, Prata and

Prata (2012) suggested a detection limit of 0.2 g m−2, approximately, for SEVIRI retrievals of ash mass loading. On the other

hand, Mingari et al. (2020) found a good correlation between MODIS airborne ash detection products and the 0.1-g m−2 mass

loading contours simulated by FALL3D. In this work, synthetic observations were defined assuming a mass loading threshold

of 0.15 g m−2.350

The twin experiment considers a 48-member ensemble and two types of simulations: (i) a free run without assimilation and,

(ii) a set of LETKF runs, where observations were incorporated with an assimilation frequency of 3 h beginning at t= 6 h after

the simulation start (the total simulation time was 36 h). To generate the ensemble, the column height was uniformly sampled

around a reference value of 10 km with a perturbation range of 40% and assuming a fixed mass flow rate of 107 kg s−1 (see

Table 2). Since both eruption column height and eruption rate are assumed to be constant here, no single member can actually355

reproduce the true state by itself because the control run was defined from a time-varying source term (Fig. 4). Furthermore,

the ensemble central column height (H = 10 km) tends to underestimate the true column height. Consequently, the ensemble

was not optimally constructed to mimic a realistic situation in an operational forecasting workflow in which the exact column

height is unknown.

4.1.1 Twin experiment results360

The spatial distribution of mass loading is shown in Fig. 5 at simulation time t= 18 h after the eruption start time according to

the true state (Fig. 5a), synthetic observations (Fig. 5b), ensemble free run without assimilation (Fig. 5c), and LETKF analysis

(Fig. 5d). In all cases, the ash cloud for this idealised eruption is transported eastwards by upper-level winds. As expected,

the free run case shows a broader spatial distribution than the true state due to the ensemble spread. Moreover, the free run
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Figure 5. Spatial distribution of ash mass loading for the twin experiment at t= 18 h after eruption start. The true state (a) given by a single

run assumes a time-varying emission. Synthetic observations (b) are generated from the truth by adding a Gaussian noise and assuming an

observation error variance of 40%. The impact of the LTEKF DA becomes evident by comparing results from the free ensemble run without

assimilation (c) with the analysed mass loading (d).

incorrectly predicts the location of the column mass maximum occurring over the northern region of the cloud. In contrast, the365

analysed mass loading field approaches the true state after a few assimilation cycles (Fig. 5d).

To quantify the impact of DA, the RMSE and ensemble spread were computed using Eqs. (7) and (9). Figure 6a shows the

time-averaged (over the whole simulated period) RMSE for different localisation radius and 2 multiplicative inflation factors

of λ= 1 (black triangles) and λ= 1.2 (red circles). Simulations were repeated three times to inspect the impact of the random

noise, and the resulting metrics averaged (solid lines). Despite the large scattered data, optimal localisation radius seems to be370

between LR = 2◦ and LR = 4◦ (20 to 40 grid cells), with a notorious degradation of performance for LR < 2◦ (see Fig. 6a).

Increasing the inflation factor from λ= 1.0 to λ= 1.2 resulted in slightly smaller RMSE in most of the ensemble realisations

(Fig. 6a). Hourly time series of the evaluation metrics are shown in Fig. 6b for the free and LETKF runs (analysis times
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are indicated by star symbols). The optimal parameters LR = 4◦ and λ= 1.2 were used here to configure the LETKF run.

As expected for a diffusive process without sources, the RMSE decreases from t= 6 h, when the eruption ends. Clearly, the375

LETKF simulation outperforms the free run. The impact of DA becomes more apparent by looking at the relative RMSE, i.e.,

the LETKF-to-free ratio of RMSE. In the first assimilation cycle at t= 6 h, the relative RMSE decreases abruptly from 1 down

to ∼ 0.2. During successive assimilation cycles this ratio decreases further, suggesting that the analysis is converging to the

true state.
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Figure 6. Evaluation metrics used for the twin experiment: (a) Time-averaged RMSE computed for different filter configurations and three

ensemble realisations. Best performance was obtained for localisation radius, LR, in the range 2–4◦and an inflation factor of λ= 1.2; (b)

Temporal evolution of ensemble spread and RMSE for the FREE and LETKF runs; and (c) Time series of LETKF-to-FREE ratio of RMSE.

Assimilation times are stated by star symbols.
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The ensemble spread should be close to the analysis error since under-dispersive ensembles are prone to filter divergence.380

As depicted in Fig. 6b, a steep decrease in spread occurs at each assimilation time, which is compensated by the ensemble

variability introduced during each forecast period. The 3-h assimilation frequency turned out to be sufficient to keep spread

just above the RMSE during each assimilation cycle, meaning that uncertainties are correctly represented by the ensemble.

In conclusion, the twin experiment shows that it is possible to reconstruct the original 3D model state of concentration field

from an incomplete dataset of 2D measurements subject to uncertainty. A good filter performance was achieved despite the385

fact that column mass data below 0.15 g m−2 were discarded, i.e., that only a fraction of the available column mass data was

actually assimilated.

4.2 The 2019 Raikoke eruption

On 21 June 2019, the Raikoke volcano (48.292◦ N, 153.25◦ E) in the Kuril Islands (Russia) had a significant eruption that dis-

rupted major flight routes across the North Pacific (Prata et al., 2021). The eruption injected ash and gases into the atmosphere390

in a sequence of around 10 eruptive pulses, from the initial explosive phase at 18:00 UTC on 21 June until 10:00 UTC on 22

June (Muser et al., 2020). The eruption sequence was captured by the Himawari-8 satellite at both IR and visible wavelengths.

A remarkable amount of SO2 was injected into the atmosphere during these explosive phases, producing a long-range transport

of SO2 that could be detected by satellite instrumentation.

In order to simulate this event, the FALL3D computational domain was configured using an horizontal resolution of 0.2◦395

and a domain size of nx×ny ×nz = 300× 150× 50 grid cells. In this case, the state vector x includes only SO2 and has a

size of n≈ 2× 106. For this experiment, 72-h numerical simulations were conducted starting on 21 June 2019 at 18:00 UTC

using 128 ensemble members. A free run without DA and several LETKF runs were performed for comparative purposes.

Assimilation starts on 22 June 2019 at 12:00 UTC with a frequency of 3 h for the successive assimilation cycles. The top-

hat option was adopted for the vertical mass distribution in the source term, i.e., the source term is defined by a uniform400

mass distribution along a layer of thickness ∆Z and top at height H . Both parameters were perturbed with central values of

∆Z = 2 km and H = 12.5 km above sea level. In addition, mass emission rate (MER), start time and duration of eruption,

and wind components were also perturbed. Specifically, the emission start time was uniformly sampled between 18:00 UTC on

21 June and 06:00 UTC on 22 June, assuming a duration of ∆T = 2± 1 h for each ensemble member. Note that the eruption

total time for Raikoke was around of 14 h, meaning that each ensemble member represents a possible eruptive phase lasting405

a fraction of the total eruption time. This approach was adopted in order to reproduce a multi-phase eruptive scenario with a

complex time-varying emission source term. In this case, the real state involves a mixture of multiple ensemble members with

weights to be determined by the analysis step.

The list of model parameters used to generate the ensemble are detailed in Table 2 and Table 3 summarises the general

model configuration used in the Raikoke experiment. The dispersal model was driven by meteorological data from the Global410

Forecast System (GFS) model instead of using reanalysis data in order to replicate an operational forecasting environment.
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4.2.1 Raikoke experiment results

Figure 7 compares the spatial distribution of SO2 mass loading according to the satellite retrievals (left panel), free run (central

panel), and analysis (right panel) at three time instants. On 22 June, the volcanic plume is influenced by upper-level zonal

winds and moves eastwards crossing the 180th meridian. From 23 June, the plume of sulphur dioxide gets trapped within the415

cyclonic circulation of the Aleutian low causing the airborne material to spiral counterclockwise for several days (Kloss et al.,

2021).

In order to assess the filter performance, two quantitative metrics defined in Sect. 3.7 will be considered below. First, the root-

mean-square error (RMSEo) is computed in the observation space using Eq. (8). Figure 8a shows the RMSEo for all the analysis

states using different localisation radius (LR = 2◦, 4◦ and 6◦). Despite the occurrence of nonphysical solutions (grid cells with420

negative concentrations) during the first assimilation cycle, the truncated LETKF solutions outperform the free run in all cases.

After successive assimilation cycles, the ensemble analysis becomes closer to a Gaussian distribution and the probability of

obtaining nonphysical solutions diminishes. Results in Fig. 8 also show that RMSEo decreases with the localisation radius.

Specifically, the time-averaged RMSEo (Fig. 8b) decreased from 1.08 g m−2 (LR = 6◦) to 0.87 g m−2 (LR = 2◦). Overall, the

analysis errors were decreased by more than 50% relative to the free run errors. However, it is important to highlight that it is425

not possible to infer the filter performance was improved by decreasing the localisation radius as no true state is now available

to compute the actual RMSE (see Sect. 4.1). Finally, Fig. 8b also shows results for the LETKF (sqrt) simulations, where the

option SQRT_TRANSFORMATION was enabled (see Sect. 3.3), meaning the vector state was constructed from the square root

of the concentration. This approach resulted in a slightly smaller RMSEo, but the impact does not appear to be significant.

While the free run results show a very poor correlation between observed and modelled SO2 mass loading, a clear correlation430

emerges after a few assimilation cycles in the LETKF simulations. As an example, Fig. 9 shows a comparison between the

observed and analysed mass loading at the fourth assimilation cycle. A systematic bias, likely caused by the characteristics

of the ensemble distribution, was found at each assimilation cycle and analysis tends to underestimate observations. In this

particular cycle, for instance, an average bias of 0.41 g m−2 was found.

The spatial distribution of observed and analysed mass loading for the SO2 cloud on 23 June at 12:00 UTC are shown435

in Fig. 10 along with the cloud top height derived from the analysed state. A complete sequence of the temporal evolution

for this figure can be found in the supplementary material. The cloud top height is defined as the upper height of a given

iso-concentration contour (50 µg m−3 was assumed here). The model can correctly capture the position of the SO2 plume for

mass loading contours above 1 g m−2. However, no observations are available below 0.5 g m−2 (e.g., see Fig. 9), making

challenging the comparison for low mass loading values. Specifically, the analysed mass loading indicates the existence of a440

low-level cloud in the southern region that could not be detected by the satellite retrievals.

Finally, we computed categorical metrics based on the 1-g m−2 contour of SO2 mass loading. The resulting maps are shown

in Fig. 11 for three time instants. The complete time sequence can be found in the supplementary material. The plume dynamics

according to the free run (top panel) follows a similar pattern to that found in previous simulations by Prata et al. (2021).

Specifically, the free run (solid red line) and observed contours (green shaded area) diverge after a few time steps. In contrast,445
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Figure 7. Spatial distribution of SO2 mass loading at different time instants: (A-C) 22 June at 15:00 UTC, (D-F) 23 June at 00:00 UTC, and

(G-I) 23 June at 09:00 UTC. The column panels show: observations (left panel), free run (central panel), and analysed mass loading (right

panel). Panels in central and right columns correspond to ensemble means.

the contours corresponding to simulations with data assimilation evolve concurrently with observations for all simulated times

(Fig. 11, bottom panel). The performance of the simulations can be quantified through the POD categorical metric (Eq. 10),

which can be interpreted geometrically as the ratio between the intersection area delimited by both the observation and model

contours and the total area of the observation contour. Figure 12 shows the temporal evolution of the POD. After a forecast time
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Figure 8. RMSEo computed in the observation space for the Raikoke experiment: (a) time series of RMSEo at analysis times for the free

(red line) and LETKF runs for different localisation radius (LR = 2◦, LR = 4◦ and LR = 6◦) and (b) same with time-averaged values.

of around t= 18 h, this metrics tends to decrease monotonically for the free run, whereas it remains close to the optimal value450

(POD=1) along all time steps when data assimilation is enabled. A sudden increase in this metric occurs at each assimilation

cycle (square symbols), clearly visible from Fig. 12, which prevents this metric from degrading significantly. In conclusion,

POD remains in the range around 0.8–0.9.

5 Discussion

In this work, a localised version of the ensemble Kalman filter LETKF has shown to be a promising alternative for assimi-455

lation of volcanic aerosols. Despite the limitations of this method, resulting in suboptimal filter performance, our findings do

nevertheless show that a significant improvement of evaluation metrics was achieved.

Ensemble Kalman Filters give an optimal state estimate under the following implicit assumptions: (i) the distribution of

the background is Gaussian, (ii) the observational error has Gaussian distribution, and (iii) the forward model and observation

operator are linear. FALL3D is a dispersal model with weak nonlinear terms and modelling complex multi-phase eruptions460

entails the contribution of multiple ensemble members to properly represent the model state. However, in this work it has been
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Figure 9. Comparison of SO2 mass loading observations and the analysis state at the fourth assimilation cycle. In general, analysis underes-

timates observations. In this case, an average bias of 0.41 g m−2 was found.

Figure 10. SO2 cloud for the 2019 Raikoke eruption on 23 June at 12:00 UTC. Observed (a) and modelled (b) mass loading are compared at

the same instant of time. In addition, the cloud top height (c) derived from the analysed state is also shown. The LETKF run was configured

assuming a localisation radius of LR = 2◦ and an assimilation frequency of 3 h, starting on 22 June 2019 at 12:00 UTC.

shown that skewness is a significant issue and the condition (i) is largely violated resulting in suboptimal behavior from the

EnKF.

Different approaches have been proposed for dealing with non-Gaussianity, including variable transformations (e.g., Zhou

et al., 2011; Amezcua and Van Leeuwen, 2014) and Bayesian approaches, such as particle filter (e.g., van Leeuwen and Ades,465

2013) or the nonlinear ensemble transform filter (NETF, Tödter and Ahrens, 2015). Unfortunately, these methods suffer from

a series of pitfalls. For instance, variable transformation applied to skewed prior distributions would require highly nonlinear

transformations to obtain state variables fulfilling the Gaussianity conditions, again leading to suboptimal states. On the other
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(a) (b) (c)

1

Figure 11. Maps of 1 g m−2 contour of SO2 mass loading according to observations (green shaded area) and model (solid red line) for

different instants of time: (a) 00:00 UTC on 23 June 2019, (b) 18:00 UTC on 23 June 2019, and (c) 12:00 UTC on 24 June 2019. Model

results corresponding to the free run (top panel) and the analysis (bottom panel) are compared. A localisation radius of LR = 2◦ was defined

for the data assimilation method.

hand, particle filters and NETF are exposed to weight collapse due to the so-called curse of dimensionality which would result

in a poor performance in complex eruptive scenarios with stochastic time-varying emission source parameters. In addition,470

although the aforementioned methods may be suitable for problems involving highly nonlinear processes, ensemble-based

Kalman filters are expected to work better for linear and Gaussian problems (e.g., Tödter and Ahrens, 2015). In consequence,

it is not clear which of these methods would result in a better performance for linear (or weakly nonlinear) and non-Gaussian

problems.

Promising results obtained in this work using LETKF suggest that the natural approach for dealing with assimilation of vol-475

canic aerosols in future research should focus on ensemble Kalman filters in which the Gaussian assumption is not made at all.

For example, Bishop (2016) proposed an ensemble Kalman filtering for highly skewed non-negative uncertainty distributions.

This approach allows the EnKF to be generalised with few coding changes and little additional computational expense. Finally,

higher-order EnKFs have also been proposed (e.g., Hodyss, 2012; Hodyss and Campbell, 2013) and could potentially address

the aforementioned issues.480
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Figure 12. Temporal evolution of the Probability of Detection (POD) metrics according to the free and data assimilation runs for the Raikoke

experiment. A localisation radius of LR = 2◦ was defined for the data assimilation simulation.

6 Conclusions

A detailed study has been conducted in order to assess the feasibility of using ensemble-based Kalman filters for data assim-

ilation (DA) of volcanic aerosols. To this purpose, a new DA system based on coupling the FALL3D dispersal model with

the Parallel Data Assimilation Framework (PDAF) has been implemented in the latest release of FALL3D (v8.2). The system

supports online-coupled DA, can be run in parallel exploiting high-performance computing (HPC) resources, and is suitable for485

an operational workflow. The computing time required by the numerical simulations carried out in this work ranges between 2

(twin experiment) and 6 (Raikoke experiment) minutes.

One of the major assumptions in the (ensemble) Kalman filters is that the prior model errors and the observation noise are

Gaussian. However, ensemble forecasts of volcanic aerosols yield to a non-Gaussian prior, with positively skewed distributions.

Consequently, the ability of the assimilation technique to produce an improved model state compatible with the available490

observations require explicit verification.

We carried out two numerical experiments in which mass loading data was assimilated using the Local Ensemble Transform

Kalman Filter (LETKF). Both test cases are characterised by complex plume dynamics and time-varying eruptive source pa-

rameters (ESP) that pose a challenge to dispersion models, especially in operational environments. The complexities involved

in the definition of the source term were intentionally discarded in the prior ensemble construction in order to replicate an495

operational environment, where such variations are typically unknown. A constant eruption column height (H) and mass emis-

sion rate (MER) were assumed for each ensemble member, meaning that no member can individually reproduce the case study

correctly. In the twin experiment, the analysis converged to the true state if observations are continuously assimilated with
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a frequency of 3 h. In the second experiment, involving the SO2 plume produced by the 2019 Raikoke eruption, categorical

metrics (POD) also remain close to optimal values as long as observations are continuously assimilated every 3 h.500

Even though the results presented here are encouraging, the proposed truncated LETKF methodology is not optimal and

should be tested in broader contexts and under different scenarios. We also encourage the community to test and develop more

appropriate methodologies for positively skewed, non-Gaussian prior distributions.

Code availability. FALL3D-8.2 is available under the version 3 of the GNU General Public License (GPL) at https://gitlab.com/fall3d-distribution

(last access: 11 November 2020). The PDAF code (version 1.14 was used here) and full documentation are available at http://pdaf.awi.de505

(last access: 11 November 2020).

Appendix A: Ensemble Kalman filter

The Kalman Filter (KF) is a sequential data assimilation (DA) method that provides an optimal solution for linear models

with linear observation operators (Kalman, 1960). In addition, KF also assumes Gaussian distributions for model errors and

observation noise. If the state of a physical system can be represented by an n-dimensional vector, the analysis step of the KF510

consists on determining the a posteriori (analysis) state estimate, represented by a vector xa ∈ Rn, and its associated covariance

matrix Pa ∈ Rn×n, given a vector of observations y ∈ Rp and the a priori (background) state estimate xb along with the error

covariance matrix Pb. In the analysis step, the state estimate and covariance are updated according to the KF equations:

xa = xb + K(y−Hxb) (A1a)

Pa = Pb−KHPb (A1b)515

where H ∈ Rp×n is the observation operator that translates a model state x into the observation space, and K ∈ Rn×p is the

so-called Kalman gain matrix given by:

K = PbHᵀ(HPbHᵀ + R)−1 (A2)

where R ∈ Rp×p is the observation error covariance matrix. Note that any reference to time indices is omitted here. The Kalman

gain matrix assigns relative weights to observations. A high-gain filtering implies more weight to measurements whereas a low-520

gain filtering tends to follow the model more closely.

The Ensemble Kalman Filter (EnKF) is a family of methods in which the state estimate of the system is represented by an

ensemble of system states that actually provide a Monte Carlo approximation of the KF and replace the original covariance

matrix by a sample covariance matrix Pe computed from the ensemble (Evensen, 1994). Given an ensemble of background

states {xb
i : i= 1,2, . . . ,m}, the analysis step consists on determining an ensemble of analyses {xa

i : i= 1,2, . . . ,m} in525

agreement with Eqs. (A1a,b) but formulated in terms of the ensemble-based mean vector (Eq. 1) and covariance matrix (Eq. 2).

The ensemble mean is updated using the standard KF analysis equation, Eq. (A1a),

xa = xb + Ke(y−Hxb) (A3)
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being Ke the ensemble-based Kalman gain matrix:

Ke = XbYᵀ(YYᵀ + R)−1 (A4)530

where we have defined Y = HXb and Xb is given by Eq. (3). Note that, with respect to Eq. (A2), the ensemble-based gain

matrix Ke considers the ensemble background perturbations Xb and their projections onto the observation space through the

matrix Y ∈ Rp×m. In this way, the best estimate of the current state is determined in the analysis step through a weighted linear

combination of the prior ensemble perturbations.

Different EnFK methods vary depending on how the ensemble analysis is defined so that the update for the ensemble covari-535

ance matrix is consistent with the original KF formulation (A1b). Most formulations can be divided into two major categories,

the stochastic (e.g., the perturbed observations-based EnKF formulation from Burgers et al., 1998) and the deterministic ap-

proaches (Houtekamer and Zhang, 2016). The latter group includes the so-called square-root filters that uses deterministic

algorithms to generate the analysis ensemble (Nerger et al., 2012).

The Ensemble Transform Kalman Filter (ETKF, Bishop et al., 2001) is a popular square-root filter formulation that is540

considered in this work. A square-root filter requires a matrix W ∈ Rm×m to transform the ensemble perturbations according

to:

Xa = XbW (A5)

In order to obtain the ensemble perturbations, the covariance update is required to be consistent with the original KF formula-

tion given by Eq. (A1b), leading to (e.g., see Carrassi et al., 2018):545

(Xa)(Xa)ᵀ = (Xb)A(Xb)ᵀ (A6)

where A ∈ Rm×m is the so-called transform matrix, defined by A−1 = 1 + YᵀR−1Y (Nerger et al., 2012). If the square root

is denoted by C (i.e., CCᵀ = A), the weight matrix W is assumed to be expressed as:

W = CΛ (A7)

where Λ ∈Rm×m is any orthogonal matrix preserving the ensemble mean (see Sect. 3.1). In this work, the symmetric square550

root is used to define C according to the symmetric factorisation

C = US−1/2Uᵀ (A8)

using the singular value decomposition: USV = A−1. This definition of the root square matrix ensures that the ensemble

mean is preserved (Hunt et al., 2007).
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