Response to the reviewers — Article ACP-2021-747
Title: Data Assimilation of Volcanic Aerosols using FALLSD+PDAF

We thank the reviewers for their constructive comments, which have allowed us to improve the
quality of the manuscript. We have addressed the comments and incorporated your suggestions
in the revised manuscript. Our focus in the revised manuscript was to produce a self-contained
work. The reader no longer needs to read the Appendix to understand the methodology. Appendix
was shortened and part of it moved to a new section (Section 2) including the essential definitions
and concepts. In the following we provide a detailed response addressing your comments point by
point. Our responses are written following each comment. All page and reference numbers in our
response are based on the revised manuscript. The line and reference numbers mentioned in the
reviewers’ comments are kept intact and are based on the original manuscript. Text modified or
added to the manuscript is given in this format: added text. Removed text is given in this format:
removed text. We hope that you find the following response satisfactory.

Sincerely,
L. Mingari, A. Folch, A.T. Prata, F. Pardini, G. Macedonio, and A. Costa

Reviewer 1

General comments

Reviewer Point P 1.1 — More clarity is needed about how the details of the algorithm. In
my view Figure 1 is nice but doesn’t really help the reader understand what is actually being
done. For example, even after the reading the whole paper it was not 100% clear to me how the
ensembles were generated at each cycle. Do you initialize an ensemble of dispersion models using
prior uncertainty estimates at t0 and compute analysis at t1, then use analysis at t1 to re-initialize
the dispersion model and propagate to t2 and so on? That would mean that the initialization at
the first step (volcanic source?) is quite different from initialization at subsequent steps (distal?).
Please provide more concrete details so the reader doesn’t need to guess.

Reply: We provide more concrete details on how the ensemble is generated and initialised in
Section 2 and Section 3. In addition, a new figure (Fig. 1) was included to illustrate this point
(see also Fig. [1]in this document). For each assimilation cycle, dispersion models are initialised
using analyses at time t=t1 (actually they are restarted). These initial states are evolved in time
up to time t=t2, where observations are available. The forecast at time t2 is ingested by the
assimilation module to generate a new analysis at t=t2. Dispersion models are restarted at time
t=t2 again using the analyses and the cycle is repeated. Note that the model is restarted from
the observation time in each cycle and, therefore, initialisations are quite different from the first
time t=t0. Actually, models are initialised from a zero initial concentration fields at the first time
(t0). For example, we added the following sentence in Section 3:



Initially, model parameters, such as emission source parameters (ESP), and input data (e.g.,
meteorological fields) are sampled from a given Probability Density Function (PDF) in order to
define an ensemble of model instances. In the first step, initial model conditions are defined
through a set of state vectors: {Z; : i = 1,2,...,m}, being m the ensemble size. Initial con-
ditions can be arbitrarily defined (e.g., using data insertion). However, in this paper simulations
are assumed to be started from a zero initial concentration (Z; = 0).

For each assimilation cycle, the analysis step requires a background ensemble {a?f 5 4 =
1,2,...,m}. The background states are produced by means of a forward model by evolving
the ensemble of system states until a time with valid observations. At this point, a dataset of
observations (including error observations) are incorporated to produce an ensemble of analyses
{z¢: i=1,2,...,m}. The corresponding analysis for each ensemble member is used as the
model initial condition for the next cycle and the forward model is restarted from the observation
time. Finally, the assimilation cycle is repeated until the end of the simulation. It should be
noted that model parameters are defined before simulation starts and these parameters are not
resampled during subsequent assimilation cycles.

Reviewer Point P 1.2 — On reading, it feels like the appendix was originally part of an earlier
chapter. I would suggest that the authors either perhaps shorten the appendix and then insert it at
an earlier stage as part of the methodology section or make an effort to make sure that discussion
in Section 2 is self-contained and does not require the reader to read the appendix first. Some of
the specific comments below are related to this issue.

Reply: As suggested by Reviewer 1, Appendix was shortened and part of it moved to a new
section (Section 2) including essential concepts and definitions required to have a self-contained
manuscript. The reader no longer needs to read the Appendix to understand the methodology.

Specific comments

Reviewer Point P 1.3 — Introduction: There is a substantial body work on ‘inverse modelling’
methods using satellite retrievals of volcanic ash that has not been mentioned. See for example list
of citations in Zidikheri, Meelis J., and Chris Lucas. “Improving Ensemble Volcanic Ash Forecasts
by Direct Insertion of Satellite Data and Ensemble Filtering.” Atmosphere 12.9 (2021): 1215. It
would also be useful to mention what the DA method in this manuscript can do that these other
approaches cannot do given that these methods also use observations to improve the forecasts.

Reply: As suggested by Reviewer 1, previous works dealing with inversion techniques are now
mentioned in the Introduction. The following paragraph was included:

Numerous attempts have been made to determine the eruptive source using inverse modelling
techniques and satellite retrievals (e.g. Eckhardt et al., 2008; Kristiansen et al., 2010; Zidikheri
and Lucas, 2020, 2021a). Typically, inversion techniques consider a simple formulation of the
source term suitable to represent a single discrete eruptive event. However, multi-phase volcanic
eruptions with complex emission patterns and varying temporal and spatial scales cannot be
described in terms of just a few source parameters.
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Figure 1: Diagram of the modelling workflow used by FALL3D+PDAF when data assimilation
(DA) is enabled. Assimilation is performed by means of an ensemble-based DA technique based on
a sequential scheme.

In cases where eruption source parameters are highly uncertain, data insertion becomes an in-
teresting alternative to include information from satellite retrievals in numerical models (Wilkins
et al., 2015, 2016b,a; Prata et al., 2021). In this case, instead of defining the volcanic source,
numerical models are initialised directly from an initial state derived from satellite observations.
Unfortunately, satellite retrievals also contain errors and missing data because of the limitations
related to retrieval methods and measurement techniques. The inclusion of retrievals errors in
numerical models is one of the major drawbacks of data insertion since errors will be propagated
forward in time.

Reviewer Point P 1.4 — Lines 100-105: “Background error covariance” is mentioned in Line
105 but it wouldn’t be clear to readers unfamiliar with DA methods what the word “background”
is referring to. It would be helpful to define “background forecast” ( = “ a priori forecast”) earlier
in the paragraph. Might also be useful to mention why the error covariance is important in DA.



Reply: A new section (Section 2 in the revised manuscript) was included to address these issues.

Reviewer Point P 1.5 — Line 128: Last sentence of paragraph is hard to understand. What
do you mean “filter operations are performed exclusively by ranks...”. What “ranks”?

Reply: Ensemble modelling requires multiple instances of FALL3D running in parallel. In turn,
each FALL3D instance or model task launches multiple MPI processes. However, the analysis step
don't use all MPI processes. Only MPI processes corresponding to a single model task (referred
to as the master model task) are used to produce the analysis ensemble. This is illustrated by
Fig. 2. We replaced rank by MPI process to clarify this point. In addition, the corresponding
paragraph has been rephrased for clarity:

The FALL3D+PDAF system can be run in parallel and supports online-coupled DA, enabling
the workflow to be executed in a single step and with an efficient data transfer management
through parallel communications. This avoids the creation of extremely large files that would be
required to store the full system state in case of an off-line approach. The implementation uses a
two-level parallelisation scheme based on MPI (Message Passing Interface) and can benefit from
high-performance computing (HPC) resources. The two-level parallelisation scheme is sketched
in Fig. 2. During the ensemble forecast phase, m instances of FALL3D, referred to as model tasks,
run concurrently as an embarrassingly (or perfectly) parallel workflow to evolve the member states
in time (level 1). In other words, the problem is separated into a number of parallel tasks running
independently that require no communication or dependency between ensemble members. In
turn, each model task is executed by a single parallel instance of FALL3D, which uses a three-
dimensional domain decomposition with n;, n,, and n. sub-domains along each direction (level
2). Consequently, the ensemble forecast requires a total of m x n, x n, x n, MPI processes.
Multiple intra-member (level 1) communications are required during each assimilation step in
order to collect and distribute the state vectors between different parallel tasks. Specifically,
model tasks communicate with the master model task (i.e., the 1st model task in Fig. 2) during
the analysis stage and filter operations required to produce the analyses are performed exclusively
by the MPI processes corresponding to the master model task.

Reviewer Point P 1.6 — Line 134: Sentence stating that LETKF is “more realistic for volcanic
ash” than ETKF might need a reference (or explain why you think this would be the case). Also,
this statement is rather puzzling given that you state in the abstract that LETKF didn’t work very
well. I think a summary of the differences between ETKF and LETKF might be needed here —
including a brief discussion of the need for localisation in ensemble DA methods in general. Many
readers will probably not have the time or inclination to read the appendix in detail even those
details are available there. See also General Comment #2.

Reply: We added this phrase (last paragraph in Section 2) to justify our statement: LETKF is a
more general and powerful approach as ETKF represents a particular case of LETKF in which the
localisation radius is large, i.e., Lr — oo. This work focuses exclusively on the LETKF technique,
which provides more realistic results than its global counterpart ETKF for volcanic aerosols, as
shown in Sect. 4.1.1. In Section 4.1.1 we further support this idea by means of Fig. 6a, where it



is possible to verify that the assimilation performance degrades for large Lg.

Reviewer Point P 1.7 — Line 146: “range” —is this is the localisation radius? “inflation factor”
— needs explanation.

Reply: A new section (Section 2 in the revised manuscript) was included to introduce these
concepts. In order to define range we added: The localisation radius is denoted by Lp and
referred to as local radius or local range throughout this work.

Reviewer Point P 1.8 — Lines 164-166: I didn’t really understand this explanation for why the
ensemble forecast prior PDF forecast would be skewed. Isn’t the skewness just a consequence of
the way the prior ensemble is constructed? Could not in principle the prior uncertainty be sampled
in such a way so as to yield a more symmetric distribution?

Reply: The state variable for atmospheric dispersion models, e.g., mass concentration (C), is a
non-negative variable. The constraint imposed by C' > 0 is an intrinsic property of this problem
that necessarily leads to skewed distributions. This is especially evident for distributions close to
zero since the impossibility of having negative concentrations generates asymmetric distributions.
Consequently, regardless of the sampling strategy used, we expect high skewness values as long
as distributions satisfy /o < 1 (i.e., when the distribution is close to zero), as found in Fig. 3a.
In principle, however, a different sampling strategy could yield more symmetric distributions when
w/o 2 1. However, low mean-to-sigma ratios are extremely frequent in VATD models because,
in general, a large fraction of the computational domain is not affected (or is affected with a low
probability) by volcanic aerosols (this may not be valid for other atmospheric aerosols).

Reviewer Point P 1.9 — Line 203: the overbar needs explanation (ensemble mean?)

Reply: You are right, it refers to the ensemble mean. The Eq. (1) was added to introduce this
notation.

Reviewer Point P1.10 — Lines 212-216: Is there a reason for focussing on SO2 rather than
volcanic ash retrievals here? Ash concentrations (rather than SO2) are of more interest in practical
applications.

Reply: In this work, we focused on the assessment of the data assimilation method. The use
of SO2 retrievals allowed us to make a direct comparison with previous simulations of the SO2
plume from Raikoke's eruption based on FALL3D (Prata et al., 2021). In fact, as Prata et al.
(2021) employed a data insertion approach using the same SO2 retrieval method, we considered it
a good benchmark study to show the benefits of our methodology. However, there is no essential
reason for focussing on SO2 rather than ash retrievals.

Satellite retrievals of volcanic ash for this eruption have also been published recently (e.g., Muser



et al.,, 2020). This dataset seems to be appropriate for data assimilation purposes. We are
currently working on generating our satellite retrievals for volcanic ash and we plan to assimilate
volcanic ash in a future work as well.

References:

Prata et al., 2021; https://doi.org/10.5194/gmd-14-409-2021

Muser et al., 2020; https://doi.org/10.5194/acp-20-15015-2020

Reviewer 2

Specific comments

Reviewer Point P 2.1 — The introduction could benefit from the addition of a discussion of
inversion modelling that can be used to constrain emission rates and plume height. Also, there is
no mention of data insertion which is the simplest form of data assimilation.

Reply: As suggested by Reviewer 2, previous works dealing with inversion techniques and data
insertion are now mentioned in the Introduction. The following paragraph was included:
Numerous attempts have been made to determine the eruptive source using inverse modelling
techniques and satellite retrievals (e.g. Eckhardt et al., 2008; Kristiansen et al., 2010; Zidikheri
and Lucas, 2020, 2021a). Typically, inversion techniques consider a simple formulation of the
source term suitable to represent a single discrete eruptive event. However, multi-phase volcanic
eruptions with complex emission patterns and varying temporal and spatial scales cannot be
described in terms of just a few source parameters. In cases where eruption source parameters
are highly uncertain, data insertion becomes an interesting alternative to include information
from satellite retrievals in numerical models (Wilkins et al., 2015, 2016b,a; Prata et al., 2021).
In this case, instead of defining the volcanic source, numerical models are initialised directly from
an initial state derived from satellite observations. Unfortunately, satellite retrievals also contain
errors and missing data because of the limitations related to retrieval methods and measurement
techniques. The inclusion of retrievals errors in numerical models is one of the major drawbacks
of data insertion since errors will be propagated forward in time.

Reviewer Point P 2.2 — The authors motivate the study by citing the impacts of volcanic ash
on aviation, but the second set of experiments focus on the assimilation of sulphur dioxide. What
was the reason for this? There are satellite retrievals of ash available for this eruption or are they
too patchy? Is the fact that the satellite can only “see” the distal ash plume a problem?

Reply: In this work, we focused on the assessment of the data assimilation method. The use
of SO2 retrievals allowed us to make a direct comparison with previous simulations of the SO2
plume from Raikoke's eruption based on FALL3D (Prata et al., 2021). In fact, as Prata et al.
(2021) employed a data insertion approach using the same SO2 retrieval method, we considered it
a good benchmark study to show the benefits of our methodology. However, there is no essential
reason for focussing on SO2 rather than ash retrievals.


https://doi.org/10.5194/gmd-14-409-2021
https://doi.org/10.5194/acp-20-15015-2020

Satellite retrievals of volcanic ash for this eruption have also been published recently (e.g., Muser
et al. 2020). This dataset seems to be appropriate for data assimilation purposes. We are
currently working on generating our satellite retrievals for volcanic ash and we plan to assimilate
volcanic ash in a future work as well.

Regarding your last question, the DA method works even if only distal observations are available.
In fact, in this work we showed that it is possible to reconstruct the true state by assimilating
an incomplete dataset of observations. However, the quality of the analysis will potentially be
degraded in proximal areas if no observation are available there.

References:

Prata et al., 2021; https://doi.org/10.5194/gmd-14-409-2021

Muser et al., 2020; https://doi.org/10.5194/acp-20-15015-2020

Reviewer Point P 2.3 — I am unsure how Figure 1 enhances the readers understanding of the
method — how is the ensemble constructed? Also, does the assimilation of the satellite retrievals
take into account their uncertainty?

Reply: We provide more concrete details on how the ensemble is generated and initialised
in Section 2 and Section 3. In addition, a new figure (Fig. 1) was included to illustrate this
point (see also Fig. [1] in this document). For example, we added the following sentence in
Section 3: Initially, model parameters, such as emission source parameters (ESP), and input
data (e.g., meteorological fields) are sampled from a given Probability Density Function (PDF)
in order to define an ensemble of model instances. In the first step, initial model conditions
are defined through a set of state vectors: {Z; : ¢ = 1,2,...,m}, being m the ensemble size.
Initial conditions can be arbitrarily defined (e.g., using data insertion). However, in this paper
simulations are assumed to be started from a zero initial concentration (Z; = 0).

Observation errors are required in order to compute the observation error covariance matrix
(assumed diagonal): R € RP*P, where p is the number of observations to be assimilated. This
is clarified now in Section 2.

Reviewer Point P 2.4 — L150 You refer to something in the appendix — does this part of the
appendix to be worked into the main body of the text?

Reply: We agree with Reviewer 2. Appendix was shortened and part of it moved to a new
section (Section 2) including essential concepts and definitions required to have a self-contained
manuscript. The reader no longer needs to read the Appendix to understand the methodology.

Reviewer Point P 2.5 — The authors show that the prior pdf associated with the ensemble
forecast tends to be skewed possibly leading to the unrealistic posterior estimate as the Gaussian
assumption in Kalman filter theory is not satisfied. Can the prior pdf be modified by different
parameter sampling strategy or constructing the prior in a different way?


https://doi.org/10.5194/gmd-14-409-2021
https://doi.org/10.5194/acp-20-15015-2020

Reply: Gaussian anamorphosis methods (Bertino et al., 2003) aim to construct transformations
to turn the state vector into a Gaussian vector. For example, a nonlinear function can be applied
to the cumulative pdf in order to make it Gaussian (Chiles and Delfiner, 2012). However, the
drawback of this method is that the transformation can introduce significant nonlinearities if
distributions are highly skewed.

References:

Bertino et al., 2003; https://doi.org/10.1111/j.1751-5823.2003.tb00194.x

Chiles, J. P., & Delfiner, P. (2012). Geostatistics: Modeling spatial uncertainty.

Reviewer Point P 2.6 — Figure 6 and the comparison of observations, free run and analysis
of the Raikoke eruption — are the distributions shown for the free run and analysis the ensemble

means? In panel G, is the southern branch of ash missing due to the presence of meteorological
cloud?

Reply: You are right, they are ensemble means. This is clarified in the caption of Fig. 7 now.
The southern branch of SO2 missing in panel G is probably related to a limitation of the retrieval
method. The retrieval is based on the strong absorption of SO2 near the 7.3 pm wavelength and
is generally only sensitive to upper-level SO2 due to the masking effect of water vapour absorption
at lower levels in the atmosphere (see Section 3.6). Note that, according to our simulations, the
southern branch is a low-level cloud (Fig. 10c).

Finally, the southern branch could be detected by Muser et al. (2020) according to the SO2 mass
loading measurements derived from TROPOMI observations.

Reference:

Muser et al., 2020; https://doi.org/10.5194/acp-20-15015-2020

Reviewer Point P 2.7 — Figure 9 I really like panel C as you can see the ascent in the cyclone.
It would be nice to see a similar plot for the free running ensemble. This might help explain the
large differences between the free running simulation and observations seen in Figure 10. Can
FALL-3D represent diabatic heating which can also cause ascent?

Reply: Unfortunately, it is not possible for us to represent the diabatic heating since we are
using an offline modelling approach here. However, previous studies have shown that an online
treatment of the plume dynamics has an important impact on simulations due to the effect of
aerosol-radiation interaction (Bruckert et al, 2021).

Reference:

Bruckert et al, 2021; https://doi.org/10.5194/acp-2021-459

Reviewer Point P 2.8 — Assimilation is expensive - can anything be gained /lost from more/less
frequent assimilation?

Reply: Ideally, assimilation should be as frequent as possible. However, ensemble spread de-
creases at each assimilation time, which is compensated by the ensemble variability introduced


https://doi.org/10.1111/j.1751-5823.2003.tb00194.x
https://doi.org/10.5194/acp-20-15015-2020
https://doi.org/10.5194/acp-2021-459

during each forecast period. If assimilation frequency is too high, the ensemble could “collapse”.
The ensemble spread should be greater than the analysis error in order to avoid under-dispersive
ensembles. We shown that with an assimilation frequency of 3h the ensemble spread remained
above the RMSE during each assimilation cycle (see Fig. 6b and discussion in Sect. 3.1.1). At
least in this case, the optimal assimilation frequency was 3h.

In principle, more advanced strategies could be employed to overcome this limitation in the
frequency of assimilation. For example, additional observations could be included during each
assimilation step without the need to reduce the frequency of assimilation by assimilating mea-
surements within a given period of time or observation window. This could have some impact
on the quality of forecasts and this is an interesting topic for future research.

Technical comments

Reviewer Point P 2.9 — L2 and 25 Unsure what is meant here by “infrastructures”

Reply: Fixed. Replaced infrastructures by buildings

Reviewer Point P 2.10 — L67 Change “enabled to quantify model uncertainties” to “enabled
the quantification of model uncertainties”

Reply: Fixed

Reviewer Point P 2.11 — L123 Unsure what is meant here by “embarrassingly (or perfectly)”.
The same on L244.

Reply: This is clarified now in Section 3.1. We added: In other words, the problem is sepa-
rated into a number of parallel tasks running independently that require no communication or
dependency between ensemble members.

Reviewer Point P 2.12 — [L136 Is there a reference for the “realistic results” you mention?

Reply: We added this phrase (last paragraph in Section 2) to justify our statement: LETKF is a
more general and powerful approach as ETKF represents a particular case of LETKF in which the
localisation radius is large, i.e., Lr — oco. This work focuses exclusively on the LETKF technique,
which provides more realistic results than its global counterpart ETKF for volcanic aerosols, as
shown in Sect. 4.1.1. In Section 4.1.1 we further support this idea by means of Fig. 6a, where it
is possible to verify that the assimilation performance degrades for large Lg.

Reviewer Point P 2.13 — L146 Is the local range referred to here the same as Lr? Can you
expand on the inflation factor that is referred to?



Reply: You are right, Ly is the local range. We added a new section (Section 2) to expand on
these concepts. For example, we added: The localisation radius is denoted by Lg and referred
to as local radius or local range throughout this work.

Reviewer Point P 2.14 — Table 2 caption last line — change if to of

Reply: Fixed

Reviewer Point P 2.15 — Table 2 WRF-ARW needs to be defined

Reply: Fixed
Reviewer Point P 2.16 — Equation 4 What does tr mean? Is n the number of ensemble
members?

Reply: This is the trace of a square matrix. This is clarified now: and tr(P.) denotes the trace
of Pe

Reviewer Point P 2.17 — Table 3 Change grid size to resolution, Domain size to number of
grid points, expand TGSD

Reply: Fixed
Reviewer Point P 2.18 — Figure 3 This seems to be a very complex column height profile. Is
it representative of what might be used in operations?

Reply: These profiles are intended to be representative of a real eruptive scenario and are used
to construct the true state. However, the true state is unknown in operations (only satellite ob-
servations are available). We only need the true state to quantitatively evaluate the performance
of the data assimilation method.

Reviewer Point P 2.19 — L1279 It would be nice to remind the reader that it is a 36-hour
forecast being performed here

Reply: Done

Reviewer Point P 2.20 — L280 Why is the flow rate fixed? Could this also be perturbed or
determined from the perturbed plume height?

10



Reply: The mass flow rate, MFR, can be perturbed or computed from column height, H
(regardless of whether H was perturbed or not). However, we decided to assume a fixed MFR
in order to avoid correlations between the background ensemble and the true state (MFR was
computed from H in the definition of the true state).

Reviewer Point P 2.21 — 1,296 Is there a reference for the “notorious degradation”?

Reply: This is shown in Fig. 6a. We added the reference: (see Fig. 6a).

Reviewer Point P 2.22 — L[326 What was the motivation for using a top hat vertical mass
distribution? How was the MER and wind components perturbed?

Reply: We used a top-hat distribution because lidar measurements show a very localised distri-
bution of aerosols over upper layer of atmosphere (e.g., Muser et al., 2020).

MER and horizontal wind components were perturbed assuming uniform PDF's and using a Latin
Hypercube Sampling strategy. MER was perturbed from a central value of 2 x 10° kg/s with a
perturbation range of £20%. The U- and V-components of wind were independently perturbed
assuming a perturbation range of +25%. In this case, central values were obtained from the GFS

forecast (see Table 2 for further details).

Reviewer Point P 2.23 — L335 What was the start time of the GFS forecast that was used?

Reply: We used GFS initialised on 21 June 2019 at 18:00 UTC.

Reviewer Point P 2.24 — [.375 Change “on this metrics” to “in this metric”

Reply: Fixed

Reviewer Point P 2.25 — L376 Change “metrics” to “metric”
Reply: Fixed
Reviewer Point P 2.26 — Figure labels seem to switch between capitals and lower case — these

should be consistent.

Reply: Fixed
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