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Abstract 13 

While the burden caused by air pollution in urban areas is well documented, the origin of this 14 

pollution and therefore the responsibility of the urban areas in generating this pollution is still a 15 

subject of scientific discussion. Source Apportionment represents a useful technique to quantify 16 

the city responsibility but the approaches and applications are not harmonized, therefore not 17 

comparable, resulting in confusing and sometimes contradicting interpretations. In this work, we 18 

analyze how different source apportionment approaches apply to the urban scale and how their 19 

building elements and parameters are defined and set. We discuss in particular the options 20 

available in terms of indicator, receptor, source and methodology. We show that different 21 

choices for these options lead to very large differences in terms of outcome. In average over the 22 

150 EU large cities selected in our study, the choices made for the indicator, the receptor and the 23 

source each lead to an average factor 2 difference. We also show that temporal and spatial 24 

averaging processes applied to the air quality indicator, especially when diverging source 25 

apportionments are aggregated into a single number lead to favor strategies that target 26 

background sources while occulting actions that would be efficient at the city center. We stress 27 

that methodological choices and assumptions most often lead to a systematic and important 28 

underestimation of the city responsibility, with important implications. Indeed, if cities are seen 29 

as a minor actor, plans will target in priority the background at the expense of potentially 30 

effective local actions.  31 

 32 

Keywords: air pollution, source apportionment, particulate matter 33 

 34 

1. Introduction 35 

About 55% of the world’s population lives in urban areas nowadays, and this number is expected 36 

to increase to 68% by 2050, according to the United Nations (UN 2018). Large population 37 

growth is also projected by 2030 in most of the major European cities (Alberti et al., 2019) with 38 

predicted population growth varying in range from Berlin (15%), Paris (19%), Milan/Rome 39 

(21%), Prague (37%), London (39%), to Brussels (52%) (see 40 

https://urban.jrc.ec.europa.eu/thefutureofcities/urbanisation#the-chapter).  As a result of this 41 
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population trend, urban emissions and their associated pollution levels are expected to increase 42 

as well.  43 

 44 

According to a recent estimate (EEA, 2020), about 74 % of the EU-28 urban population are 45 

exposed to pollution of fine particulate matter (PM2.5) in concentrations above the WHO Air 46 

Quality Guidelines value, this number raises to 99% for ozone (O3) and is about 4% for nitrogen 47 

dioxide (NO2). Air pollution is a heavy burden on human health with more than 380,000 48 

premature deaths in EU-28 reported in 2017 according to the same EEA estimates. For a wide 49 

range of European cities, Khomenko et al. (2021) showed that the health burden due to air 50 

pollution varies greatly by city, with annual premature mortality reaching up to 15% for PM2.5 51 

and 7% for NO2. The highest mortality burden for PM2.5 occurs in northern Italy, southern 52 

Poland and eastern Czech Republic. De Bruyn and de Vries (2020) showed that for all 432 cities 53 

in their sample (total population: 130 million inhabitants), the social costs (e.g. hospital 54 

admissions, premature mortality) but also due to air pollution exceeded € 166 billion in 2018 for 55 

Europe (EU27 plus the UK, Norway and Switzerland). City size was shown to be a key factor 56 

contributing to the total social costs: all cities with a population over 1 million features in the 57 

Top 25 cities with the highest social costs due to air pollution. 58 

 59 

Given the health and economic burden caused by air pollution in urban areas, it is important to 60 

identify the origin of this pollution in order to reduce and control its impact. Identifying the 61 

sources of urban pollution and then assigning responsibilities enables a process to implement 62 

measures and control air pollution. Assessing the responsibility or share of cities for their 63 

pollution has important implications. For being effective, pollution reduction plans must be 64 

designed and applied to target the most polluting sectors at the relevant spatial (national, regional 65 

and/or local) and with the appropriate temporal scales. In this context, quantifying the share or 66 

the city pollutions caused by their own emissions becomes a crucial element to determine 67 

whether actions need to be applied locally or at the regional, national country or continental 68 

scales. This has important governance consequences for the effective control of air pollution. 69 

 70 

For pollutants like NO2, that mostly originate from traffic sources and have a relatively short 71 

lifetime in the atmosphere, there is a general agreement on the fact that cities are the main 72 

contributor to this pollutant concentration levels and that acting locally on traffic emissions is the 73 

most efficient way of improving NO2 concentration levels in a particular city (Tobias et al., 74 

2020). There is available European-wide information such as in Degraeuwe et al. (2019) 75 

providing overviews of the potential impact of traffic emission reductions per vehicle type in 76 

different European cities. There is also agreement regarding O3 that this secondary pollutant is 77 

most effectively reduced by implementing reduction measures at larger spatial scales, involving 78 

actions driven at the regional and even continental scales (e.g. Luo et al. 2020). For other 79 

pollutants, like PM2.5, complex physical and chemical atmospheric processes with different time 80 

scales drive its formation, involving numerous precursors themselves emitted by several sources. 81 

The sources of PM2.5 pollution range from local traffic, domestic fuel burning and industrial 82 

activities to regional sources such as agriculture in rural areas. Even though the latter emissions 83 

do not originate from cities, Thunis et al. (2018) showed that their impact on urban pollution 84 

could be important, reaching up to 30% in several European cities. Because of this complexity, 85 

there is less consensus regarding the responsibility or share of a city to its pollution when 86 
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addressing PM2.5. Because of this lack of consensus and the major burden of PM2.5 on health, we 87 

focus our analysis on this pollutant. 88 

 89 

The usual approach to assess the city share to its pollution levels (in other words the city 90 

responsibility) is source apportionment (SA). However, many SA approaches exist and many 91 

ways to parameterize them as well, leading to a variety of results and interpretations. The most 92 

widely used SA methods are the “potential impact” (or brute force), the “increment” and 93 

“tagging” aproaches.  An overview description of these methods and an evaluation of their 94 

limitations and capabilities for use can be found in Thunis et al. (2019). For the 18 million 95 

inhabitant’s city of New Delhi, Amann et al. (2017) concluded that only 40% of the PM2.5 96 

pollution was originating from local city sources, based on potential impacts SA and expressed 97 

in terms of city averaged population exposure, averaged yearly. In the context of the Copernicus 98 

programme, CAMS (Copernicus Atmosphere Monitoring Service) performs SA calculations 99 

daily with two different approaches, namely tagging and potential impacts, for a series of 100 

European cities. Results show important differences on a day-by-day basis although these 101 

differences smooth out when considering longer term averages (Pommier et al. 2020). Based on 102 

the increment approach, Kiesewetter and Amann (2014) derived SA estimates for a series of 103 

European cities and aggregated these detailed results at country levels, leading to relatively low 104 

city responsibilities (e.g. about 25% for French, German or Italian cities). Based on a potential 105 

impact approach, Thunis et al. (2018) estimated city shares for 150 cities in Europe. They 106 

highlighted their large variability across Europe and stressed the importance of the definition of 107 

the city on the results, by testing the sensitivity to different city extensions. The choice of the SA 108 

method but also the way this method is configured, can lead to very different outcomes for the 109 

city share to its pollution, ranging from cities being a major contributor to their pollution to cities 110 

having a limited responsibility. This explains why the actual city responsibility on its pollution is 111 

yet discussed, and why some authors stress the importance of local actions (Thunis et al., 2018, 112 

Wu et al. 2011, Raifman et al., 2020) when others stress the need for regional, national or even 113 

continental actions (ApSimon et al. 2021, Liu et al., 2013). This diversity of conclusions has 114 

serious consequences in terms of policy decisions. Blaming external (i.e. outside the city) 115 

pollution sources as main responsible for urban pollution is sometimes an easy argumentation for 116 

decision-makers to justify local inaction.  117 

 118 

This work aims at explaining the main causes of discrepancies between different assessments of 119 

the city emission’s impact on its pollution levels and show that these discrepancies generally lead 120 

to underestimating the city's responsibility. It proposes a specific harmonized nomenclature for 121 

source allocation approaches, and it shows how it is important to document the choices to enable 122 

correct interpretation of the results. We begin with a conceptual overview of the parameters 123 

structuring any SA approach (Section 2). This includes the definition of the key parameters to 124 

any SA study: indicator, source, receptor, and methodology to relate them. Then (Section 3) we 125 

assess the sensitivity of the urban SA results to the choices of these four parameters. In Section 126 

4, we analyze implications in terms of air quality planning and suggested strategies. We finally 127 

provide conclusions in Section 5.  128 

2. Assessing the city responsibility on air pollution: Main concepts 129 

In this section, we detail the steps required to quantify the responsibility of a city on its air 130 

pollution, through source apportionment (SA). SA is a methodology that serves to estimate the 131 
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contribution of a given source at a specific receptor for a given indicator (for example the 132 

concentration of a given pollutant like PM or NO2). It involves the following steps (Figure 1):  133 

 134 

(1) defining a relevant indicator, denoted as (I) to characterize air pollution 135 

(2) defining the receptor (R) through its spatio-temporal characteristics, i.e. the area (�̅�𝑟) 136 

and time period (𝑡�̅�) over which the indicator is averaged 137 

(3) defining the source (S) through its spatio-temporal characteristics, i.e. the city area 138 

(xs) and time period for which the city responsibility is assessed (ts) 139 

(4) selecting the source apportionment (SA) methodology to capture the processes that 140 

relate the source to the receptor.  141 

Figure 1 summarizes these steps, as well as the nomenclature and symbols used in this work. We 142 

use this new nomenclature to attach contextual information (i.e. metadata) to the source 143 

apportionment. Further explanations of the symbols are given in the subsections below.  144 

 145 

 146 
Figure 1: Schematic flow chart representing the four steps required to fully define any SA process. The red letters indicate the 147 
indicator characteristic under consideration. The general notation for the indicator (I) includes a superscript for the 148 
methodological approach (M), a subscript to inform on the source (S) and brackets to inform on the receptor (R). The spatial and 149 
temporal dimensions associated to the source and receptor are denoted by “x” and “t”, respectively. The overbar indicates an 150 
averaging process. The lowest row provides for each parameter examples used in this work.  151 

2.1 Definition of the air pollution indicator (I) 152 

The first step required to assess the role/responsibility of city emissions with respect to its air 153 

pollution, is to define an indicator that identifies the pollution aspect we are interested in. The 154 

indicator can be defined in many ways. For example, as the total concentration of a given 155 

compound (e.g. PM), or as a specific constituent of that total concentration (e.g. PM2.5 or its 156 

primary fraction, PPM), or as a composite based on a mix of different pollutants (e.g. maximum 157 

among O3, PM2.5 and NO2 concentrations as in some air quality indexes such as ATMO2003) or 158 

as population exposure (i.e. product of population and concentration). 159 
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2.2 Definition of the receptor (R) 160 

Estimating the indicator, either from a measuring instrument or from a model simulation, implies 161 

an averaging process, both in space and time. For model data, averages correspond to the spatial 162 

and temporal resolutions (e.g. the time step and grid cell size) whereas for measurement, the 163 

space-time average will depend on the instrument acquisition time and on the atmospheric 164 

dispersion characteristics at the measuring site. Regardless of these intrinsic time and space 165 

averages, indicators are generally averaged over longer spatial and temporal scales for 166 

convenience. The receptor is defined as the spatio-temporal entity over which the indicator is 167 

averaged. Both a spatial and a temporal scale (denoted by �̅�𝑟 and 𝑡�̅�, respectively) must be 168 

associated to the receptor to define it.  169 

 170 

For the temporal dimension, typical examples for PM2.5 are days (𝑡�̅� = �̅�) or years (𝑡�̅� = �̅�). 171 

Spatially, the indicator can be estimated at a specific location, e.g. the city center (�̅�𝑟 = �̅�𝑐𝑒𝑛𝑡𝑒𝑟), 172 

at the location where the maximum concentration occurs (�̅�𝑟 = �̅�𝑚𝑎𝑥) or averaged over the city 173 

(�̅�𝑟 = 𝑐𝑖𝑡𝑦̅̅ ̅̅ ̅).  For convenience, we use indifferently the following notations to refer to the 174 

receptor: 175 

 176 

 
𝑅(�̅�𝑟 , 𝑡�̅�) = 𝑅 = �̅�𝑟 , 𝑡�̅� 

 
(1) 

2.3 Definition of the source (S) 177 

The source is defined as the spatio-temporal entity for which we assess the contribution to the 178 

indicator. For the purpose of this work, the source is defined as the city, and more precisely as 179 

the emissions that originate from a given city. The source emissions (denoted by E) are indeed 180 

responsible for the pollution fraction that can be associated to the source/city at the receptor (R). 181 

These emissions are characterized by a spatial (xs = extension of the city) and a temporal scale (ts 182 

= period of time over which the source activity is assessed).  For convenience, we use 183 

indifferently the following notations to refer to the source: 184 

 185 

 𝑆(𝑥𝑠, 𝑡𝑠) = 𝑆 = 𝐸 = 𝑐𝑖𝑡𝑦 = 𝑥𝑠, 𝑡𝑠 (2) 

 186 

In this work, we analyse in particular the impact of the city extension (xs) on the apportionment 187 

outcome. For this purpose, we define cities in two ways:  188 

 189 

(1) as core cities, i.e. the local administrative units, with a population density above 190 

1500/km2 and a population above 50,000, where the majority of the population lives in an 191 

urban center and  192 

(2) as functional urban areas (OECD, 2012, denoted as “FUA”) composed as core cities plus 193 

their wider commuting zone, consisting of the surrounding travel-to-work areas where at 194 

least 15% of the employed residents work in the city.  195 

Details on the FUA and core city areas are available for 150 EU cities in the urban PM2.5 atlas 196 

(Thunis et al. 2017). Note that other city definitions exist. In the context of the CAMS source 197 

allocation analysis, city are defined as an arbitrary number of grid cells in the modelling domain 198 

(Pommier et al., 2020).  199 
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Finally, we define the city background as the sum of all contributions from sources that are not 200 

covered by the spatial (xs) and temporal (ts) scales of the city source. 201 

 202 

One main difference between sources and receptors is that for the latter, spatio-temporal 203 

characteristics are averaged. Apart from this, temporal and spatial characteristics can also differ 204 

in terms of value. For example, the source can be defined as the FUA (xs = FUA) while the 205 

receptor is a specific location (�̅�𝑟 = �̅�𝑚𝑎𝑥). Temporally, interest can be on assessing the 206 

contribution of the city weekly activity (ts = 1 week) for a given day (𝑡�̅� = �̅�) at the receptor. In 207 

the results presented here, the source and receptor temporal scales are however chosen identical 208 

for convenience.  209 

2.4 Selection of the SA methodology 210 

When the air pollution indicator and the spatio-temporal characteristics of both the receptor and 211 

the source have been selected, the next step consists in distinguishing and quantifying the 212 

fractions of the indicator related to the city source (𝐼𝑐𝑖𝑡𝑦(𝑅)) and to the background (𝐼𝑏𝑔(𝑅)) at 213 

receptor R, respectively. This decomposition is summarized by the following equation: 214 

  215 

  𝐼(𝑅) → {𝐼𝑐𝑖𝑡𝑦(𝑅), 𝐼𝑏𝑔(𝑅)} (3) 

 216 

Different SA methodologies exist to perform this operation. In this section, we describe three 217 

main approaches but only in brief, as details about each of these are discussed in other works 218 

(Clappier et al. 2017; Thunis et al., 2019, 2018; Mertens et al. 2018). As mentioned previously, 219 

we use the indicator’s superscript to refer to its calculation method [𝐼𝑐𝑖𝑡𝑦
𝑀 (𝑅)]. Methods are 220 

summarized in Table 1. 221 

 222 

Potential impacts (PI): The city contribution in this method is denoted as 𝐼𝑐𝑖𝑡𝑦
𝑃𝐼100(𝑅) and is 223 

calculated as the difference between two simulations: a base-case that includes the city 224 

[𝐼(𝑅)] and a scenario in which the city emissions are switched off [𝐼𝑐𝑖𝑡𝑦100(𝑅)]. In this notation, 225 

the source superscript (here, 100) indicates the percentage intensity by which the source 226 

emissions are reduced. Reductions are intended as percentage variations from the base-case 227 

situation.  The same approach can be used with reduction percentages that are lower than 100%. 228 

In this case the resulting difference is divided by the reduction percentage to obtain the potential 229 

impact (𝐼𝑐𝑖𝑡𝑦
𝑃𝐼𝛼 (𝑅)). A similar approach is used to calculate the background contribution, i.e. by 230 

removing or reducing partially the background emission sources. Potential impacts methods for 231 

source apportionment are widely used (Osada et al. 2009; Huang et al. 2018; Wang et al. 2014; 232 

Wang et al. 2015; Van Dingenen et al. 2018; Thunis et al. 2016; Clappier et al. 2015; Pisoni et al. 233 

2017).  234 

 235 

Increment (INC): With this methodology, the background contribution is estimated as the 236 

concentration observed/modelled at a given location “y” [𝐼𝑏𝑔
𝐼𝑁𝐶(𝑅) = 𝐼(�̅�, 𝑡�̅�)]. This location must 237 

be far enough from the source, not to feel its influence but be close enough to the source to avoid 238 

influences from other sources, external to the city. These assumptions are further described and 239 

discussed in Thunis et al. (2017). The city contribution is then obtained as the difference between 240 

the base case indicator and the background contribution [𝐼𝑐𝑖𝑡𝑦
𝐼𝑁𝐶(𝑅) = 𝐼(�̅�𝑟 , 𝑡�̅�) − 𝐼(�̅�, 𝑡�̅�)]. The 241 

increment methodology has been used e.g. by Lenschow et al. (2001), Petetin et al. (2014), 242 
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Kiesewetter et al. (2015), Squizzato et al. 2015, Timmermans et al. 2013, Keuken et al. 2013, 243 

Ortiz and Friedrich 2013 and Pey et al. 2010. 244 

 245 

Tagging (TAG): With this approach, species emitted by the city are numerically tagged and 246 

followed through the modelled transport, dispersion and chemical transformation processes. 247 

When chemical transformations take place, preserved atoms are used as tracers. For example, the 248 

nitrogen atom (N) will be used to follow the NO source emissions through its successive 249 

transformations into NO2 and HNO3 to reach its final product NO3, that will then be attributed to 250 

that source. Example of tagging applications are e.g. Kranenburg et al. 2013, Yarwood et al. 251 

2004; Wagstrom et al., 2008; Kwok et al. 2013; Bhave et al. 2007; Wang et al., 2009. Some of 252 

these approaches are implemented operationally to estimate daily city contributions on air 253 

pollution (https://topas.tno.nl/documentation/).    254 

 255 

The formulations corresponding to these three main approaches are summarized in Table 1. 256 

 257 

A few key points are worth noting. While tagging and potential impacts approaches explicitly 258 

consider city emissions in their calculations, this is not the case for increments that only refer to 259 

them implicitly. By construction, both the increment and tagging approaches are additive [i.e. 260 

𝐼(𝑅) = 𝐼𝑐𝑖𝑡𝑦(𝑅) + 𝐼𝑏𝑔(𝑅)] whereas this is not the case for potential impacts when pollutants 261 

behave non-linearly because of air transport, deposition or chemical processes (Clappier et al., 262 

2017). 263 

 264 

 265 

 City contribution Background contribution 

Potential 

Impact 𝐼𝑐𝑖𝑡𝑦
𝑃𝐼𝛼 =

𝐼(𝑅) − 𝐼𝑐𝑖𝑡𝑦𝛼(𝑅)

𝛼
 𝐼𝑏𝑔

𝑃𝐼𝛼 =
𝐼(𝑅) − 𝐼𝑏𝑔𝛼(𝑅)

𝛼
 

 

Increment 𝐼𝑐𝑖𝑡𝑦
𝐼𝑁𝐶 = 𝐼(�̅�𝑟 , 𝑡�̅�) − 𝐼(�̅�, 𝑡�̅�) 𝐼𝑏𝑔

𝐼𝑁𝐶 = 𝐼(�̅�, 𝑡�̅�) 

 

Tagging 𝐼𝑐𝑖𝑡𝑦
𝑇𝐴𝐺 = ∑ 𝐼𝐸(𝑅)

𝑐𝑖𝑡𝑦

𝐸

 𝐼𝑏𝑔
𝑇𝐴𝐺 = ∑ 𝐼𝐸(𝑅)

𝑏𝑔

𝐸

 

Table 1: Formulation of the three main methods to estimate the contribution/impact/increment of a city. The letters, I, S and R 266 
refer to the indicator, source and receptor, respectively. The indicator superscript refers to the SA method (PI for potential 267 
impacts, INC for increments and TAG for tagging) while its subscript indicates the source (city or background (bg)). α represents 268 
the percentage reduction factor applied for the source emissions in the potential impacts method. See text for additional details.    269 

3. Results  270 

Recognizing the impossibility of assessing the sensitivity of the results for all combinations of 271 

indicators, source, receptor and methodology, we focus our analysis on comparisons in which 272 
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only one parameter is changed at a time, to highlight major sensitivities. For this purpose, we use 273 

the following two main sources of data and results. 274 

 275 

 SHERPA:  SHERPA is a modelling tool, based on Source-Receptor Relationships that 276 

represent a simplified version of a Chemistry Transport Model, used to simulate the 277 

contribution to PM2.5 concentration levels by all precursor emissions (NOx, NMVOC, 278 

PPM, SO2 and NH3) from different cities in Europe (Clappier et al. 2015, Thunis et al. 279 

2016, 2018). In its current configuration, SHERPA is based on the CHIMERE model 280 

(Menut et al. 2013) covering the whole of Europe at roughly 7 km spatial resolution. In 281 

this work, we use the source apportionment results over 150 cities as reported in the 282 

PM2.5 urban atlas (Thunis et al., 2017) as well as additional SHERPA data to provide 283 

further analysis.  284 

 285 

 EMEP simulations: The EMEP model is an off-line regional transport chemistry model 286 

(Simpson et al., 2012; https://github.com/metno/emep-ctm). The model has 20 vertical 287 

levels, with the first level around 50 m. The model uses meteorological initial conditions 288 

and lateral boundary conditions from the European Centre for Medium Range Weather 289 

Forecasting (ECMWF-IFS). The meteorological year is 2015. Detailed information on 290 

the meteorological driver, land cover, model physics and chemistry are described in 291 

Simpson et al. (2012) and in the EMEP Status Report 2017 292 

(https://emep.int/publ/reports/2017/EMEP_Status_Report_1_2017.pdf). In this work, we 293 

use specific simulations where emissions have been removed partially or fully in a series 294 

of European cities. Additional details regarding these simulations are provided together 295 

with the discussion of the results.    296 

Based on these sources of information and data, we discuss hereafter the sensitivity of the SA 297 

results to the choice of the indicator (Section 3.1), to the choice of the methodology (Section 298 

3.2), to the source (Section 3.3) and finally to the receptor (Section 3.4).  299 

3.1 Sensitivity to the indicator  300 

The implications resulting from the choice of the indicator are illustrated in Figure 2 for four 301 

indicators, based on SHERPA results for 150 cities in Europe. The four indicators selected to 302 

characterize air pollution are: a) the PM2.5 concentration (top left, from Thunis et al. 2017), b) the 303 

anthropogenic fraction of PM2.5 (“PM2.5 ant”, top right), c) the primary anthropogenic fraction of 304 

PM2.5 (“PPM2.5 ant” bottom left) and d) the primary fraction of PM2.5 originating from the 305 

transport and residential sectors (“PPM2.5 oxy”, bottom left). The reference (PM2.5 total mass, top 306 

left) corresponds to the indicator currently used in legislation (e.g. European Ambient Air 307 

Quality Directive, AAQD2008) against which health impacts are correlated (WHO2005). In the 308 

second case, the indicator is limited to its anthropogenic fraction (PM25 ant), excluding therefore 309 

natural contributions (dust, marine salt…). This is motivated by the fact that policies have no 310 

impact on this component. According to this indicator, city contributions increase significantly 311 

(by about 20% in average) and in some cities where natural dust pollution is important (e.g. in 312 

Sicily), the city responsibility shifts from minor to major. If we further restrict the indicator to its 313 

primary anthropogenic fraction (“PPM2.5 ant”, bottom right) because of its suggested higher 314 

health burden (Park et al., 2018; Viana et al., 2008), the city contribution then increases 315 
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significantly in most cities. This becomes even more striking if we limit the indicator to the 316 

PPM2.5 fraction originating from the transport and residential sectors (bottom right). These two 317 

sectors have recently been shown to generate the largest burden on human health given the high-318 

oxidative potential of their emissions (Rankjar et al., 2020, Li et al. 2016). With this indicator, 319 

the majority of EU cities become main contributors to their pollution. Regarding the latter 320 

indicator, it is important to note that although the increasing adoption of electric vehicles shows 321 

rather positive impacts on health (Choma, 2020), the remaining PM emissions from road traffic 322 

like tires and brake and road wear emissions (Kole et al., 2017; EC, 2014; Ntziachristos and 323 

Boulter, 2019) will remain an issue. The calculation of various geochemical indices (enrichment 324 

factor, geo-accumulation index, pollution index and potential ecological risk) also show that road 325 

dust is extremely enriched and contaminated by elements from tire and brake wear (e.g. Sb, Sn, 326 

Cu, Bi and Zn).  327 

 328 

 329 
Figure 2: SHERPA results for 150 major cities in Europe for the overall PM2.5 concentration (top left), for its anthropogenic 330 
fraction (“PM25_ant”, top right), for its anthropogenic primary fraction (“PPM25_ant”, bottom right) and for its primary 331 
fraction originating from the transport and residential sectors (“PPM25_oxy”, bottom left). For all cities, the source is defined 332 
spatially as the FUA over which emissions are reduced over a year (Y). The receptor is defined as the city location where the 333 
concentration is maximum (�̅�𝑚𝑎𝑥) and the indicator is averaged yearly at the receptor (�̅�). All calculations are made with the 334 
same SA methodology, namely, potential impacts (PI) with city emissions reduced by 50% (PI50) 335 

3.2 Sensitivity to the SA methodology 336 

A comparison of SA methodologies is proposed in Thunis et al. (2019) where the potential 337 

impact, increment and tagging approaches are compared both on simple theoretical examples and 338 

on real data to highlight differences among methods and stress their limitations. In this section, 339 

we summarize the main findings of this work and complement it with comparisons that focus on 340 
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the apportionment of the city vs. background contributions. We also provide in the appendix a 341 

comparison of all SA methods discussed in this section, applied on a theoretical example tuned 342 

to the city scale.  343 

 344 

Increment vs. potential impacts  345 

 346 

Thunis (2017) compared increments and potential impacts with the SHERPA model for a series 347 

of European cities. They showed that increment approaches lead to important underestimations 348 

(30 to 50%) of the city responsibility for PM2.5 and NO2 with respect to potential impacts. This 349 

underestimation is explained by the non-fulfilment of the two underlying increment assumptions, 350 

related to the external location [i.e. y in 𝐼𝑏𝑔
𝐼𝑁𝐶(𝑅) = 𝐼(�̅�, 𝑡�̅�)] that must: 1) be far enough from the 351 

city, not to feel its influence but 2) close enough to the city to avoid influences from sources 352 

external to the city. The Authors show that these two assumptions are seldom fulfilled in reality.  353 

 354 

Tagging vs. potential impacts 355 

 356 

Clappier et al. (2017) discussed the concepts underlying these two SA methods and showed that 357 

important differences in terms of results arise as soon as non-linear processes are present. Belis 358 

et al. (2020) highlighted and quantified these large differences based on a real-case inter-359 

comparison exercise. Finally, Thunis et al. (2019) reviewed in their work many inter-360 

comparisons between tagging and potential impact SA results. In their application over the Po 361 

basin (Italy), they showed that differences are large for the agriculture sector (dominated by NH3 362 

emissions) but are also important for other sectors, when dealing with high temporal resolution 363 

(e.g. daily) at the receptor. Unfortunately, these examples did not address the particular case of a 364 

city scale apportionment.  365 

 366 

Full vs. partial potential impacts 367 

  368 

To analyze differences between full and partial impacts, we use a series of EMEP simulations in 369 

which we remove totally (PI100) or partly (PI20) the London FUA emissions (source) during an 370 

entire year. Figure 3 shows the differences between city contributions obtained with the two PI 371 

methods. Differences can be important (up to 25 percentage points for specific days). Although 372 

the number of high-difference days is limited (leading to a yearly average difference of few 373 

percents), these days might represent high pollution episodes for which assessing the city 374 

responsibility is important to act. In general, the higher resolution applied to the temporal and/or 375 

spatial averages at the receptor, the largest the differences are among methods. It is also 376 

interesting to note that partial potential impacts systematically underestimate full potentials (no 377 

negative values). 378 

 379 
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 380 
Figure 3: Histogram of daily city contribution differences to London PM2.5 levels between two potential impacts methods, PI100 381 
and PI20, calculated with the EMEP model. The source is defined spatially as the FUA where emissions are reduced yearly (Y 382 
subscript). The receptor is defined as the city location where the maximum yearly averaged concentration is modelled (�̅�𝑚𝑎𝑥), 383 
and temporally as daily average (�̅�). Each column represents the number of days with a specific PI difference (PI100 - PI20). The 384 
blue line provides the yearly average difference.  385 

3.3 Sensitivity to the source 386 

Figure 4 shows the comparison between SA obtained with sources defined as core cities (left) 387 

and as FUA (right). The city contribution / responsibility is multiplied by a factor 2 on average 388 

(see also Figure 8) when FUA are considered. The larger spatial extension of the FUA and its 389 

implied additional emissions explain the differences that lead some cities to become a major 390 

actor, i.e. where the city contribution dominates the background one (e.g. Athens, Warsaw, 391 

Milan, Turin and Rome).    392 

 393 

 394 
Figure 4: Maps of city contributions obtained for spatial sources defined in 2 ways: core city (CC, left) and FUA (right). Results are 395 
shown for 150 cities in Europe, based on the SHERPA-CHIMERE model using a potential impact SA method for a reduction 396 
strength of 50% (PI50). The indicator is the total PM2.5 concentration. The receptor is selected as the location where the 397 
maximum yearly average concentration occurs (�̅�𝑚𝑎𝑥) and applies yearly time average (�̅�). The source emissions are reduced 398 
over a full year (Y).  399 

3.4 Sensitivity to the receptor  400 

In this section, we discuss the spatial and temporal averages applied at the receptor. Spatially, 401 

different averaging options exist, ranging from a single location (i.e. one modelling grid cell) to 402 

more or less extended areas covering part of the source or even larger. To illustrate the 403 
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sensitivity of SA to that choice, we use the case of Paris (Figure 5) where emission have been 404 

reduced over the FUA (source) over a full year.  405 

 406 

SA varies largely from one location to another within Paris. We highlight this with bars that 407 

distinguish the city vs. background contributions for locations at different distance from the city 408 

centre. We note opposite trends, dominated by the city source (around 60%) at the city center 409 

and dominated by the background source towards the periphery (around 80%). While the SA at 410 

the city centre is representative of a single cell within the city, this is not the case for SA close to 411 

the periphery. This is highlighted by the city rings (below the X-axis) that indicate the area of 412 

representativeness of a given SA. When we average spatially an indicator (PM2.5 or population 413 

exposure) over a receptor that covers the entire FUA (all 6 rings), these areas of 414 

representativeness enter into play. The brown curve indicates the weight (in the spatial average) 415 

attached to each city ring, relatively to the city total (i.e. all rings). Weights increase fast when 416 

moving towards the periphery because of the larger ring areas. The spatial averaging process 417 

leads to over-representing the periphery, which overweight the city center SA by almost a factor 418 

40. It is interesting and counter-intuitive to note that with this averaging process, the city 419 

responsibility decreases when the city area increases. With population exposure as indicator 420 

(weights shown by red curve), the rapid population density decrease balances the ring area 421 

increase when moving outward, leading to weights that dominate for middle rings. It is 422 

interesting to note, that with average population exposure, the city center weight is yet similar to 423 

the weight obtained 28 km away. 424 

 425 

 426 
Figure 5: City rings’ source apportionment for Paris PM2.5 and associated population exposure. The city/background 427 
apportionment (bars) is represented for rings (i) progressively more distant from the city centre (X axis). The ring average 428 
concentration (Ci) and population density (Pi) relative to the city centre values are represented in blue and green, respectively. 429 
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The relative (to the FUA total, i.e. all rings) weight of each ring (i) in the city average concentration (brown) is calculated as 430 
𝐶𝑖 ∗ 𝑆𝑖 ∑ (𝐶𝑖 ∗ 𝑆𝑖)𝑖⁄  where Si is the ring area, respectively. A similar expression: 𝐶𝑖 ∗ 𝑆𝑖 ∗ 𝑃𝑖 ∑ (𝐶𝑖 ∗ 𝑆𝑖 ∗ 𝑃𝑖𝑖⁄ ) is used to determine 431 
the weight of each ring in the calculation of the average population exposure (red curve).   432 

Figure 6 compares SA for 150 cities obtained for receptors defined (1) as the location where the 433 

maximum concentration is reached within the FUA (�̅�𝑚𝑎𝑥) and (2) as the FUA spatial average 434 

(𝐹𝑈𝐴̅̅ ̅̅ ̅̅ ). In average, city impacts for a spatially averaged receptor are about 55% lower. 435 

Depending on the spatial characteristic of the receptor, some cities will be considered as minor or 436 

major actors with respect to their pollution. We discuss this issue further in Section 4. 437 

 438 

 439 
Figure 6: Comparison of potential impacts for 150 cities in Europe obtained for a receptor spatially defined as the location where 440 

the concentration is maximum in the city (�̅�𝑚𝑎𝑥 – X axis) and defined as the FUA spatial averaged (𝐹𝑈𝐴̅̅ ̅̅ ̅̅ ).  For these calculations, 441 
the source are defined as the FUA over which emissions are switched off during the whole year. The indicator is the total PM2.5 442 
mass. All results are based on the SHERPA-CHIMERE model using a potential impact SA method for a reduction strength of 50% 443 
(PI50) and are based on yearly averages at the receptor (�̅�). 444 

As seen from these results, spatial averages at the receptor significantly reduce the city 445 

responsibility, potentially leading to underestimating the city ability to reduce pollution levels 446 

via local controls. The large differences resulting from the choice of the receptor settings prevent 447 

meaningful comparisons. It is for example challenging to compare CAMS city contributions that 448 

are averaged spatially over the city area with the urban results obtained in the context of the 449 

Thematic Strategy on Air Pollution (Kiesewetter and Amann 2014) that are aggregated at 450 

country level or with SHERPA estimates based on a single grid cell receptor. It is therefore 451 

crucial to associate all SA settings (metadata) to the results in order to inform on the 452 

meaningfulness of a comparison. We discuss further this issue in the context of air quality 453 

planning in Section 4.  454 

 455 
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Similar considerations apply to temporal averages. Figure 7 compares SA obtained when the 456 

indicator at the receptor is averaged yearly and seasonally with daily single values. For a yearly 457 

average, Madrid city’s contribution is 54% but the spectra of daily contributions show variations 458 

that range from 10 to beyond 90%. Even seasonal averages show important differences with a 459 

factor 2 between summer and winter. Similarly, to spatial averages, temporal averages 460 

encompass a large spectra of SA outcome.  Indicators averaged yearly at the receptor have been 461 

used for example in SHERPA (Thunis et al. 2017), GAINS (Kiesewetter and Amann, 2014) 462 

whereas daily indicators are used in CAMS (Pommier et al., 2020).   463 

Note that spatial averages have a larger smoothing effect than temporal ones because they are 464 

bidimensional. 465 

 466 

 467 
Figure 7: Frequency histogram of daily potential impact at 100% (PI100) modelled with the EMEP model for the city of Madrid. 468 
Each column represents the number of days with a given daily PI. The blue line provides the yearly average PI. For these 469 
calculations, the source is the Madrid Functional Urban Area (FUA) over which emissions are switched off during the whole year 470 
(Y). The indicator is the total PM2.5 mass. The receptor point is the city centre location (�̅�𝑐𝑒𝑛𝑡𝑟𝑒). 471 

 472 

3.5 Assumptions and uncertainties 473 

Most SA methods rely on models and are therefore characterized by a set of common strengths 474 

and weaknesses. One of the main limitations attached to models is the spatial resolution and its 475 

potential impact on the calculation of the city contribution. While a coarse resolution might be 476 

able to capture relatively well the background (characterized by smoother fields), this will not be 477 

the case for peak concentrations within the city.  The coarser the model spatial resolution, the 478 

largest the underestimation of the city responsibility will be (De Meij et al., 2007). 479 

 480 

Uncertainties may also result from our incomplete knowledge of some model input parameters, 481 

in particular chemical processes and emission sources. Some urban emission sources are not well 482 

documented and are probably underestimated. This is the case of residential emissions for which 483 

the inclusion of condensable remains a question mark (Bessagnet and Allemand, 2020, Simpson 484 

et al., 2020) or for the resuspension of particles generated by vehicles (Amato et al., 2014). 485 

These lacking or incomplete emission sources will lead to a potential underestimation of the city 486 

responsibility as well. 487 

 488 

In the next section, we discuss the consequences of these results on policy, in particular when SA 489 

information is used to design air quality plans. 490 
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4. Implications for air quality strategies  491 

Estimating the contribution of a city to its pollution has important consequences in terms of air 492 

quality management. Indeed, an important city contribution will be a logic argument to support 493 

substantial control measures at the local level to abate pollution. The effectiveness of the control 494 

measures then relies on the relevance and accuracy of this city contribution; over- or under-495 

estimated city contributions potentially leading to inefficient measures.  496 

In previous sections, we have seen that the city contribution largely varies depending on the 497 

choices made for the SA setting parameters (definition of the indicator, source, receptor and 498 

methodology), hence the challenge to obtain a relevant and accurate estimate to support local 499 

action.  500 

Given the range of possible SA options and their impact on results, the first recommendation is 501 

obviously to report these SA setting choices together with the results to provide policymakers 502 

with the full picture and allow them to take informed decisions. This advocates for the use of the 503 

proposed nomenclature or a similar one that documents for the choices in the SA approach, 504 

providing accountability to the method and enabling correct interpretation of the results. The 505 

proposed nomenclature can be understood as a documentation of the SA metadata information. 506 

Apart from this point on the importance of documenting SA approach choices, we show below 507 

that some of the SA settings are fixed by the purpose of the study. We provide suggestions for 508 

the remaining free choices.   509 

 510 

The recommended SA method is potential impacts (PI) 511 

 512 

It is important to recall that not all SA methodologies are equally suited to support air quality 513 

planning. As mentioned by several authors (Burr and Zhang 2011, Qiao et al. 2018, Mertens et 514 

al. 2019, Clappier et al. 2017, Grewe et al. 2010, 2012; Thunis et al. 2019), potential impacts are 515 

recommended when non-linear species are involved (which is the case for PM2.5 and PM10 but 516 

also for other species like NO2 or O3). It is worth reminding that tagging or incremental 517 

approaches are yet erroneously used and believed to be suited for air quality planning purposes 518 

(Qiao et al. 2018; Guo et al. 2017; Itahashi et al. 2017; Timmermans et al. 2017; Wang et al. 519 

2015, Hendriks et al. 2013). Although challenging practical issues are attached to potential 520 

impacts and may be seen as a burden (e.g. lack of additivity, see Appendix), they only reflect the 521 

complexity of the real processes that must be accounted for. Although uncertainties associated to 522 

the PI approach (e.g. imperfect emission inventory), may lead other SA methods to perform 523 

better in some instances because methodological biases compensate uncertainties, this is 524 

however coincidental. While uncertainties can be tackled and reduced to improve the approach, 525 

this is not the case of methodological biases. These points were extensively discussed in Thunis 526 

et al. (2019).    527 

 528 

For the remaining of this section focusing on policy aspects, only potential impact results are 529 

discussed. Fixing the methodology however still leaves free options in terms of indicator, 530 

receptor and source. This is visualized in Figure 8 that summarizes the variability of the SA 531 

results presented in the previous sections (i.e. Figure 2,Figure 4 and Figure 6) for the 150 cities 532 

to these possible choices. Differences in terms of city responsibility reach a factor 2 in average 533 

for each of these remaining parameters with much larger values for some cities.  534 

      535 
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 536 
Figure 8: Box quantile diagrams summarizing the city contributions to PM2.5 levels for the 150 EU cities. All results are based on 537 
a similar method (potential impacts at 50%), a similar temporal receptor (�̅�) but for different choices of city sources (left), 538 
receptors (centre) and indicators (right). See previous sections for details. The two extremities of each vertical line represent the 539 
10th and 90th percentile contributions among the 150 cities, respectively. The box crossing horizontal line represents the median.  540 

 541 

INDICATOR: The indicator choice is driven by health and environmental objectives  542 

 543 

The choice of the indicator is generally motivated by health or environmental considerations. 544 

Currently, the WHO guidelines (WHO2005) refer to the total PM2.5 mass as the indicator 545 

correlating best with health impacts. These guidelines (or the AAQD limit values) are then the 546 

logical and most relevant indicator choice among the options presented in Section 3.1 and shown 547 

in Figure 2. As illustrated by Figure 8, evolving knowledge on health-related pollution impacts 548 

(i.e. the increased toxicity of some PM2.5 constituents like those related to the traffic and 549 

residential activities) might however, drive the choice towards more detailed indicators (e.g. 550 

PPM2.5) leading to an increased responsibility for the cities. 551 

 552 

SOURCE: Importance of matching sources with governance levels 553 

 554 

Figure 8 shows that plans limited to city cores would be significantly less efficient than if applied 555 

at the FUA scale. In average over all cities, the efficiency decreases by a factor 2 but larger 556 

differences occur in many cities. The source does however not represent a free choice in the 557 

context of policy practice. Indeed, authorities in charge of AQ plans only have power to act on 558 

the area under their responsibility, which sets where measures apply. The same applies for the 559 

source temporal characteristic, fixed as the period of time during which measures apply. A good 560 

match between the SA settings and the temporal and spatial characteristics of the source is 561 

therefore important to provide meaningful support to policy makers.  562 

 563 

RECEPTOR: Drawbacks associated to spatial and temporal averaging processes at the receptor    564 

 565 

As clearly shown in Figure 5, spatial averaging processes lead to a loss of information. In our 566 

example, a city average based SA would totally occult the city center SA. It would lead to a 567 

strategy that mostly targets the background at the expense of the city center, where the high 568 
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concentration issues would not be solved. This is well illustrated by Amann et al. (2017) who 569 

analyse the responsibility of the city of New Delhi on its air pollution, both at a city center hot-570 

spot receptor and in terms of city average population exposure. In the first case, SA suggests 571 

acting on local sources while in the second SA suggests acting on regional sources. Spatial 572 

averaging drives the balance towards regional actions that will less effective in solving the 573 

pollution issue at the city center.  The larger the city, the more important this shift will be. As 574 

illustrated by Figure 8, there is more than a factor 2 between city-averaged and hot spot 575 

indicators. Similar considerations apply to temporal averages.  Figure 7 clearly shows that yearly 576 

average values hide the potential for effective local actions during wintertime and even more on 577 

specific days.   578 

 579 

Averaging implies merging, into one single number, locations and time instants that are 580 

characterized by different and sometimes opposite SA. This may lead to strategies that will not 581 

be efficient everywhere all the time. Whenever the final objective is to reduce a temporally 582 

or/and spatially averaged indicator (e.g. average population exposure), strategies would gain in 583 

efficiency with the following process: (1) perform SA and hierarchize the raw (not averaged) SA 584 

results into homogeneous spatio-temporal clusters; (2) design strategies on the basis of these 585 

clusters; (3) assess the strategy efficiency against the averaged indicator. The key is here to 586 

design strategies on raw or clustered results rather than on averaged ones, to prevent information 587 

loss.  588 

 589 

Note that designing a unique strategy based on multiple SA results (point 2 above) does not 590 

necessarily complicate the analysis, as these different SA will likely suggest action on different 591 

sectors of activity that can be combined at the final strategy.  592 

 593 

5. Conclusions 594 

Although air quality has improved in Europe over the last decades, in great part thanks to 595 

effective measures and consistent EU-wide legislation, pollution hot spots yet remain in many 596 

European cities. The extent by which city emissions are causing these elevated urban pollution 597 

levels is however still a subject of scientific discussion. Source apportionment represents a useful 598 

technique to quantify the city responsibility but the approaches and applications are however not 599 

harmonized, therefore not comparable, resulting in confusing and sometimes contradicting 600 

interpretations.  601 

  602 

In this work, we analyzed how different SA approaches apply to the urban scale and how their 603 

building elements and parameters are defined and set. We identified the possible settings 604 

associated to four key steps in SA: indicator, receptor, source and methodology. We showed that 605 

different choices for these settings lead to very large differences in terms of results. In average 606 

over the 150 European large cities selected as example, the choices made for the indicator, the 607 

receptor, and the source each lead to an average factor 2 difference in terms of city 608 

responsibility. These various options and the large differences that result, highlight the difficulty 609 

of comparing results from different studies and stress the need to document the SA approach 610 

with its related metadata – that documents the choices made for the key four steps.  611 

 612 
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This work advocates for the use of a harmonized nomenclature to support the comparability of 613 

SA approaches. We propose the use of indexes and subindexes attached to the 4 key steps in any 614 

SA approach in a harmonized way to uniquely document the approach and enable correct 615 

interpretation of the results. We believe that the adoption of this nomenclature will provide 616 

clarity to the scientific discussion on different results and enable the correct interpretation of the 617 

results for policy applications. Even though this is applied to the specific case of PM2.5, the 618 

concepts presented here can easily be generalized to other pollutants. 619 

 620 

In the context of supporting urban air quality plans, the SA configuration and most setting 621 

parameters are driven by the purpose of the AQ plan itself and by its associated constraints. 622 

While environmental and/or health related considerations guide the choice of the indicator, the 623 

spatio-temporal characteristics of the source are strongly correlated to governance aspects. In 624 

other words, the source characteristics should reflect the governance levels to facilitate 625 

interpretation. Finally, the recommended SA method should be based on “potential impacts”, to 626 

prevent misleading interpretations in terms of expected AQ plan outcome.     627 

 628 

At the receptor level, temporal and spatial averaging processes lead to a loss of information, 629 

especially when diverging SA results are aggregated into a single number. Averaging process, in 630 

particular spatial, often lead to favor strategies that target background sources while neglecting 631 

actions that would be efficient at the city center. In our 150 cities example, the impact of spatial 632 

averaging leads to an average factor 2 difference in terms of city responsibility. Not only results 633 

differ from one city to the other, and from one location to another in a given city, they also differ 634 

through time. To cope with this variability, we recommend using non-averaged SA results for the 635 

design of AQ strategies. Once clustered in homogeneous spatio-temporal classes, these can serve 636 

to understand where and when actions are most efficient. When implemented, the efficiency of 637 

abatement measures can then be assessed via spatially and temporally averaged indicator (e.g. 638 

city average population exposure). 639 

 640 

The responsibility of a city to its pollution is obviously city dependent. But even for a given city, 641 

SA studies using different approaches and parameter settings will deliver very different 642 

outcomes. It is important to note that a departure from the methodological recommendations 643 

listed above, additional uncertainties and assumptions will most often lead to a systematic and 644 

important underestimation of the city responsibility. We showed that in average over 150 645 

European cities, departures in terms of source, receptor, and indicator may lead for each to a 646 

factor 2 underestimation. This comes with important implications: if cities are seen as a minor 647 

actor, plans will target in priority the background at the expense of potentially effective local 648 

actions.  649 

 650 

Future work will consist in comparing spatially/temporally averaged SA results with SA results 651 

that are clustered in homogeneous spatio-temporal classes and assess the implications in terms of 652 

AQ strategy.   653 
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Appendix A 905 

To illustrate the differences among SA methods, we use here the theoretical example 906 

schematically represented in Figure .  A city source (in red) emits with a Gaussian dispersion 907 

profile both primary PM (PPM) and a gas-phase precursor (NOx). The background pollution (in 908 

blue) is composed of a mix of NOx, NH3 and PPM compounds. The various chemical reactions 909 

that take place are simplified here for convenience into a single reaction. One mole of NH3 reacts 910 

with one mole of NOx to create one mole of ammonium nitrate (𝑁𝐻4
+𝑁𝑂3

−), i.e. secondary PM. 911 

(𝑁𝑂𝑥 + 𝑁𝐻3 + 𝑋 →→ 𝑁𝐻4
+𝑁𝑂3

−). We assume here that the external compounds involved in the 912 

reaction (X) are abundant and do not have a limiting effect on the formation of PM. While the 913 

city emissions (source) remain unchanged, we modify the relative importance of the three 914 

background compounds so that the background becomes in turn PPM, NOx and NH3 dominated. 915 

The PM concentration at a given location “x” is given by:  916 

 917 

 𝑃𝑀(𝑥) = 𝑃𝑃𝑀(𝑥) + 𝑚𝑖𝑛{𝑁𝑂𝑥(𝑥), 𝑁𝐻3(𝑥)}𝑚𝑜𝑙𝑒 × 𝑁𝐻4
+𝑁𝑂3

− (4) 

 918 

 919 
Figure A1: Schematic representation of the theoretical example used to compare the three SA approaches. The city source (in 920 
red) emits NOx and PPM. The background (in blue, including other cities as well as rural sources) is composed of NOx, PPM and 921 
NH3 in different relative proportions (indicated by the arrow). The “cc” and “bg” symbols represent the city centre receptor and 922 
the background location used for the increment approach, respectively. 923 

Based on the formulations provided in Table 1 and equation (4), the expressions to calculate the 924 

city and background components for the theoretical example presented above are detailed in 925 

Table . While these formulations are relatively straightforward for potential impacts and 926 

increments, it is more complex for the tagging method. The city tagging component is the sum of 927 

all PM species that are directly related to the city emissions. This includes PPM and NO3 that are 928 

related to the PPM and NOx city emissions, respectively. For the background component, it 929 

includes PPM, NOx and also NH4 that is related to the NH3 emissions. Tagging allows following 930 

the NOx and NH3 emitted compounds through their chemical processes and transformations until 931 

they create NO3 and NH4, respectively that can be attributed to their respective sources. As NOx 932 

is emitted by both sources, the total NO3 must be fractioned and attributed to each single source. 933 

https://doi.org/10.5194/acp-2021-739
Preprint. Discussion started: 13 September 2021
c© Author(s) 2021. CC BY 4.0 License.



26 

 

In our example, the NO3 fraction attributed to the city depends on the ratio of the available NOx 934 

precursor at the location of interest (𝛽 =
𝑁𝑂𝑥𝑐𝑖𝑡𝑦(𝑐𝑐)

𝑁𝑂𝑥(𝑐𝑐)
). A similar process is used to calculate the 935 

background component.     936 
 937 
This example is used to compared the increment (INC), tagging (TAG) and potential impact (PI) 938 

SA approaches. 939 

 940 

 941 

Potential Impact 

City 𝑃𝑀𝑐𝑖𝑡𝑦
𝑃𝐼𝛼 (𝑐𝑐) =

𝑃𝑀(𝑐𝑐) − 𝑃𝑀𝑐𝑖𝑡𝑦𝛼(𝑐𝑐)

𝛼
 

Background 𝑃𝑀𝑏𝑔
𝑃𝐼𝛼(𝑐𝑐) =

𝑃𝑀(𝑐𝑐) − 𝑃𝑀𝑏𝑔𝛼(𝑐𝑐)

𝛼
 

Increment 

City 𝑃𝑀𝑐𝑖𝑡𝑦
𝐼𝑁𝐶 (𝑐𝑐) = 𝑃𝑀(𝑐𝑐) − 𝑃𝑀(𝑏𝑔) 

Background 𝑃𝑀𝑏𝑔
𝐼𝑁𝐶(𝑐𝑐) = 𝑃𝑀(𝑏𝑔) 

Tagging 

City 𝑃𝑀𝑐𝑖𝑡𝑦
𝑇𝐴𝐺(𝑐𝑐) = ∑ 𝑃𝑀𝐸(𝑐𝑐)

𝑐𝑖𝑡𝑦

𝐸

= 𝑃𝑃𝑀𝐸(𝑃𝑃𝑀)𝑐𝑖𝑡𝑦
(𝑐𝑐) + 𝛽𝑁𝑂3−

𝐸(𝑁𝑂2)𝑐𝑖𝑡𝑦
(𝑐𝑐) 

Background 𝑃𝑀𝑏𝑔
𝑇𝐴𝐺 (𝑐𝑐) = ∑ 𝑃𝑀𝐸(𝑐𝑐)

𝑏𝑔

𝐸

= 𝑃𝑃𝑀𝐸(𝑃𝑃𝑀)𝑏𝑔
(𝑐𝑐) + (1 − 𝛽)𝑁𝑂3−

𝐸(𝑁𝑂2)𝑏𝑔
(𝑐𝑐) + 𝑁𝐻4+

𝐸(𝑁𝐻3)𝑏𝑔
(𝑐𝑐) 

Table A1: Formulations for the potential impacts, increments and tagging approach for the example presented in Figure . The 942 
indicator for all methods and components is the total particulate matter mass (PM). The SA method is indicated as superscript 943 
(PIα, INC or TAG) whereas the source (city or bg) is in subscript. The receptor is the city center (cc) while the rural location 944 
selected for the increment approach is denoted by “bg”. For the tagging, the source subscript is also expressed directly as 945 
emissions (E) distinguishing each compound (within brackets).  946 

Figure  shows the city and background contributions obtained with the three SA methods, 947 

differentiating two options for the PI one: 100% (PI100) and 20% reduction of the sources 948 

(PI20). The figure also distinguishes four situations characterized by different background 949 

compositions. 950 

 951 

1. No background: When no background is present (top left), the city NOx emissions do not 952 

form PM, only PPM emissions do. In such cases, all methods deliver the same response. 953 

 954 

2. PPM background: When the background is composed of PPM only (top right), no 955 

secondary species are formed. All methods agree with the exception of the increment 956 

approach. This is due to the non-fulfilment of one of its underlying assumptions, i.e. the 957 

lack of spatial homogeneity of the background which affects differently the rural and city 958 

locations (indicated by “cc” and “bg” in Figure , respectively).  959 

 960 

https://doi.org/10.5194/acp-2021-739
Preprint. Discussion started: 13 September 2021
c© Author(s) 2021. CC BY 4.0 License.



27 

 

3. SEC background with NH3 > NOx: When secondary background precursors (NOx and 961 

NH3) reach the city (bottom row), SA methods deliver different results because they 962 

manage differently non-linear processes. When NH3 is more abundant than NOx (bottom 963 

left), the PI100 method does not preserve additivity (discussed in the “concepts” section), 964 

i.e. the sum of the two components exceeds the total PM concentration. As seen from the 965 

results and also from Table , this is not the case for the increment and tagging approaches 966 

that are constructed to be additive. 967 

 968 

4. SEC background with NH3 < NOx: When NH3 is less abundant than NOx (bottom right), 969 

differences remain important between the tagging, potential impacts and increment 970 

approaches but additivity is preserved for both PI100 and PI10 that provide identical 971 

responses. 972 

 973 
Figure A2: Comparison of the city (red) and background (blue) components for 4 approaches applied on the theoretical examples 974 
described in Figure . Results are expressed for different types of background: (top left) no background; (top right) background 975 
limited to PPM; (bottom left) background limited to secondary but with NH3 > NOx and (bottom right) background limited to 976 
secondary but with NH3 < NOx.  977 
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