
1 

 

Why is the Are city’sies responsibilityle for 1 

their its air pollution often 2 

underestimated? A focus on PM2.5 3 

 4 

Philippe Thunis1, Alain Clappier2, Alexander de Meij3, Enrico Pisoni1, Bertrand Bessagnet1, 5 

Leonor Tarrason4. 6 
 7 
1 European Commission, Joint Research Centre, Ispra, Italy  8 
2 Université de Strasbourg, Laboratoire Image Ville Environnement, Strasbourg, France 9 
3 MetClim, Varese, Italy 10 
4 NILU, Norway 11 
 12 

Correspondence to: Philippe Thunis (philippe.thunis@ec.europa.eu) 13 

Abstract 14 

While the burden caused by air pollution in urban areas is well documented, the origin of this 15 

pollution and therefore the responsibility of the urban areas in generating this pollution is still a 16 

subject of scientific discussion. Source Apportionment represents a useful technique to quantify 17 

the city responsibility but the approaches and applications are not harmonized, therefore not 18 

comparable, resulting in confusing and sometimes contradicting interpretations. In this work, we 19 

analyze how different source apportionment approaches apply to the urban scale and how their 20 

building elements and parameters are defined and set. We discuss in particular the options 21 

available in terms of indicator, receptor, source and methodology. We show that different 22 

choices for these options lead to very large differences in terms of outcome. In average over 23 

theFor the 150 EU large cities selected in our study, the different choices made for the indicator, 24 

the receptor and the source each lead to an average factor 2 difference in terms of city 25 

contribution. We also show that temporal and spatial averaging processes applied to the air 26 

quality indicator, especially when diverging source apportionments are aggregated into a single 27 

number lead to favor strategies that target background sources while occulting actions that would 28 

be efficient at the city center. We stress that methodological choices and assumptions most often 29 

lead to a systematic and important underestimation of the city responsibility, with important 30 

implications. Indeed, if cities are seen as a minor actor, plans will target in priority the 31 

background at the expense of potentially effective local actions.  32 

 33 
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 35 

1. Introduction 36 

About 55% of the world’s population lives in urban areas nowadays, and this number is expected 37 

to increase to 68% by 2050, according to the United Nations (UN 2018). Large population 38 

growth is also projected by 2030 in most of the major European cities (Alberti et al., 2019) with 39 

predicted population growth varying in range from Berlin (15%), Paris (19%), Milan/Rome 40 
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(21%), Prague (37%), London (39%), to Brussels (52%) (see 41 

https://urban.jrc.ec.europa.eu/thefutureofcities/urbanisation#the-chapter).  As a result of this 42 

population trend, urban emissions and their associated pollution levels are expected to increase 43 

as well.  44 

 45 

According to a recent estimate (EEA, 2020), about 74 % of the EU-28 urban population are 46 

exposed to pollution of fine particulate matter (PM2.5) in concentrations above the WHO Air 47 

Quality Guidelines value, this number raises to 99% for ozone (O3) and is about 4% for nitrogen 48 

dioxide (NO2). Air pollution is a heavy burden on human health with more than 380,000 49 

premature deaths in EU-28 reported in 2017 according to the same EEA estimates. For a wide 50 

range of European cities, Khomenko et al. (2021) showed that the health burden due to air 51 

pollution varies greatly by city, with annual premature mortality reaching up to 15% for PM2.5 52 

and 7% for NO2. The highest mortality burden for PM2.5 occurs in northern Italy, southern 53 

Poland and eastern Czech Republic. De Bruyn and de Vries (2020) showed that for all 432 cities 54 

in their sample (total population: 130 million inhabitants), the social costs (e.g. hospital 55 

admissions, premature mortality) but also due to air pollution exceeded € 166 billion in 2018 for 56 

Europe (EU27 plus the UK, Norway and Switzerland). City size was shown to be a key factor 57 

contributing to the total social costs: all cities with a population over 1 million features in the 58 

Top 25 cities with the highest social costs due to air pollution. 59 

 60 

Given the health and economic burden caused by air pollution in urban areas, it is important to 61 

identify the origin of this pollution in order to reduce and control its impact. Identifying the 62 

sources of urban pollution and then assigning responsibilities enables a process to implement 63 

measures and control air pollution. Assessing the responsibility or share of cities for their 64 

pollution has important implications. For being effective, pollution reduction plans must be 65 

designed and applied to target the most polluting sectors at the relevant spatial (national, regional 66 

and/or local) and with the appropriate temporal scales. In this context, quantifying the share or 67 

the city pollutions caused by their own emissions becomes a crucial element to determine 68 

whether actions need to be applied locally or at the regional, national country or continental 69 

scales. This has important governance consequences for the effective control of air pollution. 70 

 71 

For pollutants like NO2, that mostly originate from traffic sources and have a relatively short 72 

lifetime in the atmosphere, there is a general agreement on the fact that cities are the main 73 

contributor to this pollutant concentration levels and that acting locally on traffic emissions is the 74 

most efficient way of improving NO2 concentration levels in a particular city (Tobias et al., 75 

2020). There is available European-wide information such as in Degraeuwe et al. (2019) 76 

providing overviews of the potential impact of traffic emission reductions per vehicle type in 77 

different European cities. There is also agreement regarding O3 that this secondary pollutant is 78 

most effectively reduced by implementing reduction measures at larger spatial scales, involving 79 

actions driven at the regional and even continental scales (e.g. Luo et al. 2020). For other 80 

pollutants, like PM2.5, complex physical and chemical atmospheric processes with different time 81 

scales drive its formation, involving numerous precursors themselves emitted by several sources. 82 

The sources of PM2.5 pollution range from local traffic, domestic fuel burning and industrial 83 

activities to regional sources such as agriculture in rural areas. Even though the latter emissions 84 

do not originate from cities, Thunis et al. (2018) showed that their impact on urban pollution 85 

could be important, reaching up to 30% in several European cities. Because of this complexity, 86 

https://urban.jrc.ec.europa.eu/thefutureofcities/urbanisation#the-chapter
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there is less consensus regarding the responsibility or share of a city to its pollution when 87 

addressing PM2.5. Because of this lack of consensus and the major burden of PM2.5 on health, we 88 

focus our analysis on this pollutant. 89 

 90 

The usual approach to assess the city share to its pollution levels (in other words the city 91 

responsibility) is source apportionment (SA). However, many SA approaches exist. The most 92 

widely used SA methods are the “potential impact” (or brute force), the “increment” and 93 

“tagging” aproaches.  An overview description of these methods and an evaluation of their 94 

limitations and capabilities for use can be found in Thunis et al. (2019). and mMoreover, many 95 

ways to parameterize them exist as well, leading to a variety of results and interpretations. The 96 

most widely used SA methods are the “potential impact” (or brute force), the “increment” and 97 

“tagging” aproaches.  An overview description of these methods and an evaluation of their 98 

limitations and capabilities for use can be found in Thunis et al. (2019). For the 18 million 99 

inhabitant’s city of New Delhi, Amann et al. (2017) concluded that only 40% of the PM2.5 100 

pollution was originating from local city sources, based on potential impacts SA and expressed 101 

in terms of city averaged population exposure, averaged yearly. In the context of the Copernicus 102 

programme, CAMS (Copernicus Atmosphere Monitoring Service) performs SA calculations 103 

daily with two different approaches, namely tagging and potential impacts, for a series of 104 

European cities. Results show important differences on a day-by-day basis although these 105 

differences smooth out when considering longer term averages (Pommier et al. 2020). Based on 106 

the increment approach, Kiesewetter and Amann (2014) derived SA estimates for a series of 107 

European cities and aggregated these detailed results at country levels, leading to relatively low 108 

city responsibilities (e.g. about 25% for French, German or Italian cities). Based on a potential 109 

impact approach, Thunis et al. (2018) estimated city shares for 150 cities in Europe. They 110 

highlighted their large variability across Europe and stressed the importance of the definition of 111 

the city on the results, by testing the sensitivity to different city extensions. The choice of the SA 112 

method but also the way this method is configured, can lead to very different outcomes for the 113 

city share to its pollution, ranging from cities being a major contributor to their pollution to cities 114 

having a limited responsibility. This explains why the actual city responsibility on its pollution is 115 

yet discussed, and why some authors stress the importance of local actions (Thunis et al., 2018, 116 

Wu et al. 2011, Raifman et al., 2020) when others stress the need for regional, national or even 117 

continental actions (Huszar et al. 2016, ApSimon et al. 2021, Liu et al., 2013). This diversity of 118 

conclusions has serious consequences in terms of policy decisions. Blaming external (i.e. outside 119 

the city) pollution sources as main responsible for urban pollution is sometimes an easy 120 

argumentation for decision-makers to justify local inaction.  121 

 122 

This work aims at explaining the main causes of discrepancies between different assessments of 123 

the city emission’s impact on its pollution levels and show that these discrepancies generally lead 124 

to underestimating the city's responsibility. It proposes a specific harmonized nomenclature for 125 

source allocation apportionment approaches, and it shows how it is important to document the 126 

choices to enable correct interpretation of the results. We begin with a conceptual overview of 127 

the parameters structuring any SA approach (Section 2). This includes the definition of the key 128 

parameters to any SA study: indicator, source, receptor, and methodology to relate them. Then 129 

(Section 3) we assess the sensitivity of the urban SA results to the choices of these four 130 

parameters. In Section 4, we analyze implications in terms of air quality planning and suggested 131 

strategies. We finally provide conclusions in Section 5.  132 
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2. Assessing the city responsibility on air pollution: Main concepts 133 

In this section, we detail the steps required to quantify the responsibility of a city on its air 134 

pollution, through source apportionment (SA). SA is a methodology that serves to estimate the 135 

contribution of a given source at a specific receptor for a given indicator (for example the 136 

concentration of a given pollutant like PM or NO2). It involves the following steps (Figure 137 

1Figure 1):  138 

 139 

(1) defining a relevant indicator, denoted as (I) to characterize air pollution 140 

(2) defining the receptor (R) through its spatio-temporal characteristics, i.e. the area (�̅�𝑟) 141 

and time period (𝑡�̅�) over which the indicator is averaged 142 

(3) defining the source (S), in our case the city, through and its spatio-temporal 143 

characteristics, i.e. the city area (xs) and time period for which the city responsibility 144 

is assessed (ts) 145 

(4) selecting the source apportionment (SA) methodology to capture the processes that 146 

relate the source to the receptor.  147 

Figure 1Figure 1 summarizes these steps, as well as the nomenclature and symbols used in this 148 

work. We use this new nomenclature to attach contextual information (i.e. metadata) to the 149 

source apportionment. Further explanations of the symbols are given in the subsections below.  150 

 151 
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152 

 153 
Figure 1: Schematic flow chart representing the four steps required to fully define any SA process. The red letters indicate the 154 
indicator characteristic under consideration. The general notation for the indicator (I) includes a superscript for the 155 
methodological approach (M), a subscript to inform on the source (S) and brackets to inform on the receptor (R). The spatial and 156 
temporal dimensions associated to the source and receptor are denoted by “x” and “t”, respectively. The overbar indicates an 157 
averaging process. The lowest row provides for each parameter examples used in this work. Some images used in this schematic 158 
flow chart are adapted from flaticon.com. 159 

2.1 Definition of the air pollution indicator (I) 160 

The first step required to assess the role/responsibility of city emissions with respect to its air 161 

pollution, is to define an indicator that identifies the pollution aspect we are interested in. The 162 

indicator can be defined in many ways. For example, as the total concentration of a given 163 

compound (e.g. PM), or as a specific constituent of that total concentration (e.g. PM2.5 or its 164 

primary fraction, PPM), or as a composite based on a mix of different pollutants (e.g. maximum 165 
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among O3, PM2.5 and NO2 concentrations as in some air quality indexes such as ATMO2003) or 166 

as population exposure (i.e. product of population and concentration). 167 

2.2 Definition of the receptor (R) 168 

Estimating the indicator, either from a measuring instrument or from a model simulation, implies 169 

an averaging process, both in space and time. For model data, averages correspond to the spatial 170 

and temporal resolutions (e.g. the time step and grid cell size) whereas for measurement, the 171 

space-time average will depend on the instrument acquisition time and on the atmospheric 172 

dispersion characteristics at the measuring site. Regardless of these intrinsic time and space 173 

averages, indicators are generally averaged over longer spatial and temporal scales for 174 

convenience. The receptor is defined as the spatio-temporal entity over which the indicator is 175 

averaged. Both a spatial and a temporal scale (denoted by �̅�𝑟 and 𝑡�̅�, respectively) must be 176 

associated to the receptor to define it.  177 

 178 

For the temporal dimension, typical examples for PM2.5 are days (𝑡�̅� = �̅�) or years (𝑡�̅� = �̅�). 179 

Spatially, the indicator can be estimated at a specific location, e.g. the city center (�̅�𝑟 = �̅�𝑐𝑒𝑛𝑡𝑒𝑟), 180 

at the location where the maximum concentration occurs (�̅�𝑟 = �̅�𝑚𝑎𝑥) or averaged over the city 181 

(�̅�𝑟 = 𝑐𝑖𝑡𝑦̅̅ ̅̅ ̅).  For convenience, we use indifferently the following notations to refer to the 182 

receptor: 183 

 184 

 
𝑅(�̅�𝑟 , 𝑡�̅�) = 𝑅 = �̅�𝑟 , 𝑡�̅� 

 
(1) 

2.3 Definition of the source (S) 185 

The source is defined as the spatio-temporal entity (e.g. city, emission macro-sector…) for which 186 

we assess the contribution to the indicator. For the purpose of this work, the source is defined as 187 

the city, and more precisely as the emissions that originate from a given city. The source 188 

emissions (denoted by E) are indeed responsible for the pollution fraction that can be associated 189 

to the source/city at the receptor (R). These emissions are characterized by a spatial (xs = 190 

extension of the city) and a temporal scale (ts = period of time over which the source activity is 191 

assessed).  For convenience, we use indifferently the following notations to refer to the source: 192 

 193 

 𝑆(𝑥𝑠 , 𝑡𝑠) = 𝑆 = 𝐸 = 𝑐𝑖𝑡𝑦 = 𝑥𝑠 , 𝑡𝑠 (2) 

 194 

In this work, we analyse in particular the impact of the city extension (xs) on the apportionment 195 

outcome. For this purpose, we define cities in two ways:  196 

 197 

(1) as core cities, i.e. the local administrative units, with a population density above 198 

1500/km2 and a population above 50,000, where the majority of the population lives in an 199 

urban center and  200 

(2) as functional urban areas (OECD, 2012, denoted as “FUA”) composed as core cities plus 201 

their wider commuting zone, consisting of the surrounding travel-to-work areas where at 202 

least 15% of the employed residents work in the city.  203 
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Details on the FUA and core city areas are available for 150 EU cities in the urban PM2.5 atlas 204 

(Thunis et al. 2017). Note that other city definitions exist. In the context of the CAMS source 205 

allocation analysis, city are defined as an arbitrary number of grid cells in the modelling domain 206 

(Pommier et al., 2020).  207 

Finally, we define the city background as the sum of all contributions from sources that are not 208 

covered by the spatial (xs) and temporal (ts) scales of the city source. 209 

 210 

One main difference between sources and receptors is that for the latter, spatio-temporal 211 

characteristics are averaged. Apart from this, temporal and spatial characteristics can also differ 212 

in terms of value. For example, the source can be defined as the FUA (xs = FUA) while the 213 

receptor is a specific location (�̅�𝑟 = �̅�𝑚𝑎𝑥). Temporally, interest can be on assessing the 214 

contribution of the city weekly activity (ts = 1 week) for a given day (𝑡�̅� = �̅�) at the receptor. In 215 

the results presented here, the source and receptor temporal scales are however chosen identical 216 

for convenience.  217 

2.4 Selection of the SA methodology 218 

When the air pollution indicator and the spatio-temporal characteristics of both the receptor and 219 

the source have been selected, the next step consists in distinguishing and quantifying the 220 

fractions of the indicator related to the city source (𝐼𝑐𝑖𝑡𝑦(𝑅)) and to the background (𝐼𝑏𝑔(𝑅)) at 221 

receptor R, respectively. This decomposition is summarized by the following equation: 222 

  223 

  𝐼(𝑅) → {𝐼𝑐𝑖𝑡𝑦(𝑅), 𝐼𝑏𝑔(𝑅)} (3) 

 224 

Different SA methodologies exist to perform this operation. In this section, we describe three 225 

main approaches but only in brief, as details about each of these are discussed in other works 226 

(Clappier et al. 2017; Thunis et al., 2019, 2018; Mertens et al. 2018). As mentioned previously, 227 

we use the indicator’s superscript to refer to its calculation method [𝐼𝑐𝑖𝑡𝑦
𝑀 (𝑅)]. Methods are 228 

summarized in Table 1. 229 

 230 

Potential impacts (PI): The city contribution in this method is denoted as 𝐼𝑐𝑖𝑡𝑦
𝑃𝐼100(𝑅) and is 231 

calculated as the difference between two simulations: a base-case that includes the city 232 

[𝐼(𝑅)] and a scenario in which the city emissions are switched off [𝐼𝑐𝑖𝑡𝑦100(𝑅)]. In this notation, 233 

the source superscript (here, 100) indicates the percentage intensity by which the source 234 

emissions are reduced. Reductions are intended as percentage variations from the base-case 235 

situation.  The same approach can be used with reduction percentages that are lower than 100%. 236 

In this case the resulting difference is divided by the reduction percentage to obtain the potential 237 

impact (𝐼𝑐𝑖𝑡𝑦
𝑃𝐼𝛼 (𝑅)). A similar approach is used to calculate the background contribution, i.e. by 238 

removing or reducing partially the background emission sources. Potential impacts methods for 239 

source apportionment are widely used (Osada et al. 2009; Huszar et al. 2016, Huang et al. 2018; 240 

Wang et al. 2014; Wang et al. 2015; Van Dingenen et al. 2018; Thunis et al. 2016; Clappier et al. 241 

2015; Pisoni et al. 2017).  242 

 243 

Increment (INC): With this methodology, the background contribution is estimated as the 244 

concentration observed/modelled at a given location “y” [𝐼𝑏𝑔
𝐼𝑁𝐶(𝑅) = 𝐼(�̅�, 𝑡�̅�)]. This location must 245 

be far enough from the source, not to feel its influence but be close enough to the source to avoid 246 
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influences from other sources, external to the city. These assumptions are further described and 247 

discussed in Thunis et al. (2017). The city contribution is then obtained as the difference between 248 

the base case indicator and the background contribution [𝐼𝑐𝑖𝑡𝑦
𝐼𝑁𝐶 (𝑅) = 𝐼(�̅�𝑟 , 𝑡�̅�) − 𝐼(�̅�, 𝑡�̅�)]. The 249 

increment methodology has been used e.g. by Lenschow et al. (2001), Petetin et al. (2014), 250 

Kiesewetter et al. (2015), Squizzato et al. 2015, Timmermans et al. 2013, Keuken et al. 2013, 251 

Ortiz and Friedrich 2013 and Pey et al. 2010. 252 

 253 

Tagging (TAG): With this approach, species emitted by the city are numerically tagged and 254 

followed through the modelled transport, dispersion and chemical transformation processes. 255 

When chemical transformations take place, preserved atoms are used as tracers. For example, the 256 

nitrogen atom (N) will be used to follow the NO source emissions through its successive 257 

transformations into NO2 and HNO3 to reach its final product NO3, that will then be attributed to 258 

that source. Example of tagging applications are e.g. Kranenburg et al. 2013, Yarwood et al. 259 

2004; Wagstrom et al., 2008; Kwok et al. 2013; Bhave et al. 2007; Wang et al., 2009. Some of 260 

these approaches are implemented operationally to estimate daily city contributions on air 261 

pollution (https://topas.tno.nl/documentation/).    262 

 263 

The formulations corresponding to these three main approaches are summarized in Table 1. 264 

 265 

A few key points are worth noting. While tagging and potential impacts approaches explicitly 266 

consider city emissions in their calculations, this is not the case for increments that only refer to 267 

them implicitly. By construction, both the increment and tagging approaches are additive [i.e. 268 

𝐼(𝑅) = 𝐼𝑐𝑖𝑡𝑦(𝑅) + 𝐼𝑏𝑔(𝑅)] whereas this is not the case for potential impacts when pollutants 269 

behave non-linearly because of air transport, deposition or chemical processes (Clappier et al., 270 

2017). 271 

 272 

 273 

 City contribution Background contribution 

Potential 

Impact 𝐼𝑐𝑖𝑡𝑦
𝑃𝐼𝛼 =

𝐼(𝑅) − 𝐼𝑐𝑖𝑡𝑦𝛼 (𝑅)

𝛼
 𝐼𝑏𝑔

𝑃𝐼𝛼 =
𝐼(𝑅) − 𝐼𝑏𝑔𝛼 (𝑅)

𝛼
 

 

Increment 𝐼𝑐𝑖𝑡𝑦
𝐼𝑁𝐶 = 𝐼(�̅�𝑟 , 𝑡�̅�) − 𝐼(�̅�, 𝑡�̅�) 𝐼𝑏𝑔

𝐼𝑁𝐶 = 𝐼(�̅�, 𝑡�̅�) 

 

Tagging 𝐼𝑐𝑖𝑡𝑦
𝑇𝐴𝐺 = ∑ 𝐼𝐸(𝑅)

𝑐𝑖𝑡𝑦

𝐸

 𝐼𝑏𝑔
𝑇𝐴𝐺 = ∑ 𝐼𝐸(𝑅)

𝑏𝑔

𝐸

 

Table 1: Formulation of the three main methods to estimate the contribution/impact/increment of a city. The letters, I, S and R 274 
refer to the indicator, source and receptor, respectively. The indicator superscript refers to the SA method (PI for potential 275 
impacts, INC for increments and TAG for tagging) while its subscript indicates the source (city or background (bg)). α represents 276 
the percentage reduction factor applied for the source emissions in the potential impacts method. See text for additional details.    277 

https://topas.tno.nl/documentation/
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3. Results  278 

Recognizing the impossibility of assessing the sensitivity of the results for all combinations of 279 

indicators, source, receptor and methodology, we focus our analysis on comparisons in which 280 

only one parameter is changed at a time, to highlight major sensitivities. For this purpose, we use 281 

the following two main sources of data and results. 282 

 283 

 SHERPA:  SHERPA is a modelling tool, based on Source-Receptor Relationships that 284 

represent a simplified version of a Chemistry Transport Model, used to simulate the 285 

contribution to PM2.5 concentration levels by all precursor emissions (NOx, NMVOC, 286 

PPM, SO2 and NH3) from different cities in Europe (Clappier et al. 2015, Thunis et al. 287 

2016, 2018). In its current configuration, SHERPA is based on the CHIMERE model 288 

(Menut et al. 2013) covering the whole of Europe at roughly 7 km spatial resolution. In 289 

this work, we use the source apportionment results over 150 cities as reported in the 290 

PM2.5 urban atlas (Thunis et al., 2017) as well as additional SHERPA data to provide 291 

further analysis.  292 

 293 

 EMEP simulations: The EMEP model is an off-line regional transport chemistry model 294 

(Simpson et al., 2012; https://github.com/metno/emep-ctm). The model has 20 vertical 295 

levels, with the first level around 50 m. The model uses meteorological initial conditions 296 

and lateral boundary conditions from the European Centre for Medium Range Weather 297 

Forecasting (ECMWF-IFS). The meteorological year is 2015. Detailed information on 298 

the meteorological driver, land cover, model physics and chemistry are described in 299 

Simpson et al. (2012) and in the EMEP Status Report 2017 300 

(https://emep.int/publ/reports/2017/EMEP_Status_Report_1_2017.pdf). In this work, we 301 

use specific simulations where emissions have been removed partially or fully in a series 302 

of European cities. Additional details regarding these simulations are provided together 303 

with the discussion of the results.    304 

Based on these sources of information and data, we discuss hereafter the sensitivity of the SA 305 

results to the choice of the indicator (Section 3.1), to the choice of the methodology (Section 306 

3.2), to the source (Section 3.3) and finally to the receptor (Section 3.4).  307 

3.1 Sensitivity to the indicator  308 

The implications resulting from the choice of the indicator are illustrated in Figure 2 for four 309 

indicators, based on SHERPA results for 150 cities in Europe. The four indicators selected to 310 

characterize air pollution are: a) the PM2.5 concentration (top left, from Thunis et al. 2017), b) the 311 

anthropogenic fraction of PM2.5 (“PM2.5 ant”, top right), c) the primary anthropogenic fraction of 312 

PM2.5 (“PPM2.5 ant” bottom left) and d) the primary fraction of PM2.5 originating from the 313 

transport and residential sectors (“PPM2.5 oxy”, bottom left). The reference (PM2.5 total mass, top 314 

left) corresponds to the indicator currently used in legislation (e.g. European Ambient Air 315 

Quality Directive, AAQD2008) against which health impacts are correlated (WHO2005). In the 316 

second case, the indicator is limited to its anthropogenic fraction (PM25 ant), excluding therefore 317 

natural contributions (dust, marine salt…). This is motivated by the fact that policies have no 318 

impact on this component. According to this indicator, city contributions increase significantly 319 

https://emep.int/publ/reports/2017/EMEP_Status_Report_1_2017.pdf
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(by about 20% in average) and in some cities where natural dust pollution is important (e.g. in 320 

Sicily), the city responsibility shifts from minor to major. If we further restrict the indicator to its 321 

primary anthropogenic fraction (“PPM2.5 ant”, bottom right) because of its suggested higher 322 

health burden (Park et al., 2018; Viana et al., 2008), the city contribution then increases 323 

significantly in most cities. This becomes even more striking if we limit the indicator to the 324 

PPM2.5 fraction originating from the transport and residential sectors (bottom right). These two 325 

sectors have recently been shown to generate the largest burden on human health given the high-326 

oxidative potential of their emissions (Rankjar et al., 2020, Li et al. 2016). With this indicator, 327 

the majority of EU cities become main contributors to their pollution. Regarding the latter 328 

indicator, it is important to note that although the increasing adoption of electric vehicles shows 329 

rather positive impacts on health (Choma, 2020), the remaining PM emissions from road traffic 330 

like tires and brake and road wear emissions (Kole et al., 2017; EC, 2014; Ntziachristos and 331 

Boulter, 2019) will remain an issue. The calculation of various geochemical indices (enrichment 332 

factor, geo-accumulation index, pollution index and potential ecological risk) also show that road 333 

dust is extremely enriched and contaminated by elements from tire and brake wear (e.g. Sb, Sn, 334 

Cu, Bi and Zn).  335 

 336 

 337 
Figure 2: SHERPA results for 150 major cities in Europe for the overall PM2.5 concentration (top left), for its anthropogenic 338 
fraction (“PM25_ant”, top right), for its anthropogenic primary fraction (“PPM25_ant”, bottom right) and for its primary 339 
fraction originating from the transport and residential sectors (“PPM25_oxy”, bottom left). For all cities, the source is defined 340 
spatially as the FUA over which emissions are reduced over a year (Y). The receptor is defined as the city location where the 341 
concentration is maximum (�̅�𝑚𝑎𝑥) and the indicator is averaged yearly at the receptor (�̅�). All calculations are made with the 342 
same SA methodology, namely, potential impacts (PI) with city emissions reduced by 50% (PI50) 343 
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3.2 Sensitivity to the SA methodology 344 

A comparison of SA methodologies is proposed in Thunis et al. (2019) where the potential 345 

impact, increment and tagging approaches are compared both on simple theoretical examples and 346 

on real data to highlight differences among methods and stress their limitations. In this section, 347 

we summarize the main findings of this work and complement it with comparisons that focus on 348 

the apportionment of the city vs. background contributions. We also provide in the appendix a 349 

comparison of all SA methods discussed in this section, applied on a theoretical example tuned 350 

to the city scale.  351 

 352 

Increment vs. potential impacts  353 

 354 

Thunis (2017) compared increments and potential impacts with the SHERPA model for a series 355 

of European cities. They He showed that increment approaches lead to important 356 

underestimations (30 to 50%) of the city responsibility for PM2.5 and NO2 with respect to 357 

potential impacts. This underestimation is explained by the non-fulfilment of the two underlying 358 

increment assumptions, related to the external location [i.e. y in 𝐼𝑏𝑔
𝐼𝑁𝐶(𝑅) = 𝐼(�̅�, 𝑡�̅�)] that must: 1) 359 

be far enough from the city, not to feel its influence but 2) close enough to the city to avoid 360 

influences from sources external to the city. The Authors show that these two assumptions are 361 

seldom fulfilled in reality.  362 

 363 

Tagging vs. potential impacts 364 

 365 

Clappier et al. (2017) discussed the concepts underlying these two SA methods and showed that 366 

important differences in terms of results arise as soon as non-linear processes are present. Belis 367 

et al. (2020) highlighted and quantified these large differences based on a real-case inter-368 

comparison exercise. Finally, Thunis et al. (2019) reviewed in their work many inter-369 

comparisons between tagging and potential impact SA results. In their application over the Po 370 

basin (Italy), they showed that differences are large for the agriculture sector (dominated by NH3 371 

emissions) but are also important for other sectors, when dealing with high temporal resolution 372 

(e.g. daily) at the receptor. Unfortunately, these examples did not address the particular case of a 373 

city scale apportionment.  374 

 375 

Full vs. partial potential impacts 376 

  377 

To analyze differences between full and partial impacts, we use a series of EMEP simulations in 378 

which we remove totally (PI100) or partly (PI20) the London FUA emissions (source) during an 379 

entire year. Figure 3 shows the differences between city contributions obtained with the two PI 380 

methods. Differences can be important (up to 25 percentage points for specific days). Although 381 

the number of high-difference days is limited (leading to a yearly average difference of few 382 

percents), these days might represent high pollution episodes for which assessing the city 383 

responsibility is important to act. In general, the higher resolution applied to the temporal and/or 384 

spatial averages at the receptor, the largest the differences are among methods. It is also 385 

interesting to note that partial potential impacts systematically underestimate full potentials (no 386 

negative values). 387 

 388 
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 389 
Figure 3: Histogram of daily city contribution differences to London PM2.5 levels between two potential impacts methods, PI100 390 
and PI20, calculated with the EMEP model. The source is defined spatially as the FUA where emissions are reduced yearly (Y 391 
subscript). The receptor is defined as the city location where the maximum yearly averaged concentration is modelled (�̅�𝑚𝑎𝑥), 392 
and temporally as daily average (�̅�). Each column represents the number of days with a specific PI difference (PI100 - PI20). The 393 
blue line provides the yearly average difference.  394 

3.3 Sensitivity to the source 395 

Figure 4 shows the comparison between SA obtained with sources defined as core cities (left) 396 

and as FUA (right). The city contribution / responsibility is multiplied by a factor 2 on average 397 

(see also Figure 8) when FUA are considered. The larger spatial extension of the FUA and its 398 

implied additional emissions explain the differences that lead some cities to become a major 399 

actor, i.e. where the city contribution dominates the background one (e.g. Athens, Warsaw, 400 

Milan, Turin and Rome).    401 

 402 

 403 
Figure 4: Maps of city contributions obtained for spatial sources defined in 2 ways: core city (CC, left) and FUA (right). Results are 404 
shown for 150 cities in Europe, based on the SHERPA-CHIMERE model using a potential impact SA method for a reduction 405 
strength of 50% (PI50). The indicator is the total PM2.5 concentration. The receptor is selected as the location where the 406 
maximum yearly average concentration occurs (�̅�𝑚𝑎𝑥) and applies yearly time average (�̅�). The source emissions are reduced 407 
over a full year (Y).  408 

3.4 Sensitivity to the receptor  409 

In this section, we discuss the spatial and temporal averages applied at the receptor. Spatially, 410 

different averaging options exist, ranging from a single location (i.e. one modelling grid cell) to 411 

more or less extended areas covering part of the source or even larger. To illustrate the 412 
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sensitivity of SA to that choice, we use the case of Paris (Figure 5) where emission have been 413 

reduced over the FUA (source) over a full year.  414 

 415 

SA varies largely from one location to another within Paris. We highlight this with bars that 416 

distinguish the city vs. background contributions for locations at different distance from the city 417 

centre. We note opposite trends, dominated by the city source (around 60%) at the city center 418 

and dominated by the background source towards the periphery (around 80%). While the SA at 419 

the city centre is representative of a single cell within the city, this is not the case for SA close to 420 

the periphery. This is highlighted by the city rings (below the X-axis) that indicate the area of 421 

representativeness of a given SA. When we average spatially an indicator (PM2.5 or population 422 

exposure) over a receptor that covers the entire FUA (all 6 rings), these areas of 423 

representativeness enter into play. The brown curve indicates the weight (in the spatial average) 424 

attached to each city ring, relatively to the city total (i.e. all rings). Weights increase fast when 425 

moving towards the periphery because of the larger ring areas. The spatial averaging process 426 

leads to over-representing the periphery, which overweight the city center SA by almost a factor 427 

40. It is interesting and counter-intuitive to note that with this averaging process, the city 428 

responsibility decreases when the city area increases. With population exposure as indicator 429 

(weights shown by red curve), the rapid population density decrease balances the ring area 430 

increase when moving outward, leading to weights that dominate for middle rings. It is 431 

interesting to note, that wWith average population exposure, the city center weight is yet similar 432 

to the weight obtained 28 km away. 433 

 434 

 435 
Figure 5: City rings’ source apportionment for Paris PM2.5 and associated population exposure. The city/background 436 
apportionment (bars) is represented for rings (i) progressively more distant from the city centre (X axis). The ring average 437 
concentration (Ci) and population density (Pi) relative to the city centre values are represented in blue and green, respectively. 438 
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The relative (to the FUA total, i.e. all rings) weight of each ring (i) in the city average concentration (brown) is calculated as 439 
𝐶𝑖 ∗ 𝑆𝑖 ∑ (𝐶𝑖 ∗ 𝑆𝑖)𝑖⁄  where Si is the ring area, respectively. A similar expression: 𝐶𝑖 ∗ 𝑆𝑖 ∗ 𝑃𝑖 ∑ (𝐶𝑖 ∗ 𝑆𝑖 ∗ 𝑃𝑖𝑖⁄ ) is used to determine 440 
the weight of each ring in the calculation of the average population exposure (red curve).   441 

Figure 6 compares SA for 150 cities obtained for receptors defined (1) as the location where the 442 

maximum concentration is reached within the FUA (�̅�𝑚𝑎𝑥) and (2) as the FUA spatial average 443 

(𝐹𝑈𝐴̅̅ ̅̅ ̅̅ ). In average, city impacts for a spatially averaged receptor are about 55% lower. 444 

Depending on the spatial characteristic of the receptor, some cities will be considered as minor or 445 

major actors with respect to their pollution. We discuss this issue point further in Section 4. 446 

 447 

 448 
Figure 6: Comparison of potential impacts for 150 cities in Europe obtained for a receptor spatially defined as the location where 449 

the concentration is maximum in the city (�̅�𝑚𝑎𝑥 – X axis) and defined as the FUA spatial averaged (𝐹𝑈𝐴̅̅ ̅̅ ̅̅ ).  For these calculations, 450 
the source are defined as the FUA over which emissions are switched off during the whole year. The indicator is the total PM2.5 451 
mass. All results are based on the SHERPA-CHIMERE model using a potential impact SA method for a reduction strength of 50% 452 
(PI50) and are based on yearly averages at the receptor (�̅�). 453 

As seen from these results, spatial averages at the receptor significantly reduce the city 454 

responsibility, potentially leading to underestimating the city ability to reduce pollution levels 455 

via local controls. The large differences resulting from the choice of the receptor settings prevent 456 

meaningful comparisons. It is for example challenging to compare CAMS city contributions that 457 

are averaged spatially over the city area with the urban results obtained in the context of the 458 

Thematic Strategy on Air Pollution (Kiesewetter and Amann 2014) that are aggregated at 459 

country level or with SHERPA estimates based on a single grid cell receptor. It is therefore 460 

crucial to associate all SA settings (metadata) to the results in order to inform on the 461 

meaningfulness of a comparison. We discuss further this issue in the context of air quality 462 

planning in Section 4.  463 

 464 
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Similar considerations apply to temporal averages. Figure 7 compares SA obtained when the 465 

indicator at the receptor is averaged yearly and seasonally with daily single values. For a yearly 466 

average, Madrid city’s contribution is 54% but the spectra of daily contributions show variations 467 

that range from 10 to beyond 90%. Even seasonal averages show important differences with a 468 

factor 2 between summer and winter. Similarly, to spatial averages, temporal averages 469 

encompass a large spectra of SA outcome.  Indicators averaged yearly at the receptor have been 470 

used for example in SHERPA (Thunis et al. 2017), GAINS (Kiesewetter and Amann, 2014) 471 

whereas daily indicators are used in CAMS (Pommier et al., 2020).  Correlating low and high 472 

city contributions to meteorological factors (cold vs warm days, windy vs calm situations…) is 473 

beyond the scope of this work. This point is however addressed in Pisoni et al. (2021). 474 

 475 

Note that spatial averages have a larger smoothing effect than temporal ones because they are 476 

bidimensional. 477 

 478 

 479 
Figure 7: Frequency histogram of daily potential impact at 100% (PI100) modelled with the EMEP model for the city of Madrid. 480 
Each column represents the number of days with a given daily PI. The blue line provides the yearly average PI. For these 481 
calculations, the source is the Madrid Functional Urban Area (FUA) over which emissions are switched off during the whole year 482 
(Y). The indicator is the total PM2.5 mass. The receptor point is the city centre location (�̅�𝑐𝑒𝑛𝑡𝑟𝑒). 483 

 484 

3.5 Methodological aAssumptions and uncertainties 485 

In addition to referring to the SA method itself (Section 2.4), other modelling parameters need to 486 

be documented as well. We list hereafter the main ones. 487 

 488 

Most SA methods rely on models and are therefore characterized by a set of common strengths 489 

and weaknesses. One of the main limitations assumption attached to models is the spatial 490 

resolution and its potential impact on the calculation of the city contribution. While a coarse 491 

resolution might be able to capture relatively well the background (characterized by smoother 492 

fields), this will not be the case for peak concentrations within the city.  The coarser the model 493 

spatial resolution, the largest the underestimation of the city responsibility will be (De Meij et al., 494 

2007). 495 

 496 

Uncertainties may also result from our incomplete knowledge of some model input parameters, 497 

in particular chemical processes and emission sources. Some urban emission sources are not well 498 

documented and are probably underestimated. This is the case of residential emissions for which 499 

the inclusion of condensable remains a question mark (Bessagnet and Allemand, 2020, Simpson 500 
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et al., 2020) or for the resuspension of particles generated by vehicles (Amato et al., 2014). On 501 

the other hand the spatial allocation for emissions can be uncertain for some sectors. These 502 

lacking or incomplete emission sources will lead to a potential underestimation misestimate of 503 

the city responsibility as well.  504 

 505 

On the meteorological side, the estimation of wind speed, PBL height and/or turbulence intensity 506 

will largely influence the dispersion of city emissions and uncertainties in these will therefore 507 

impact the calculation of city contributions. While the impact of meteorological parameterization 508 

on air quality has been extensively assessed from regional to urban cases (De Meij et al., 2009; 509 

(De Meij et al. 2015; De Meij et al, 2018; Jiang et al., 2020), only few studies assessed their 510 

importance on city contributions. One of these (Huszar et al. 2021) shows e.g. that the inclusion 511 

of an urban canopy meteorological forcing on multi-year simulations largely impacts the 512 

estimation of the city responsibility.  513 

 514 

In the next section, we discuss the consequences of these results on policy, in particular when SA 515 

information is used to design air quality plans. 516 

4. Implications for air quality strategies  517 

Estimating the contribution of a city to its pollution has important consequences in terms of air 518 

quality management. Indeed, an important city contribution will be a logic argument to support 519 

substantial control measures at the local level to abate pollution. The effectiveness of the control 520 

measures then relies on the relevance and accuracy of this city contribution; over- or under-521 

estimated city contributions potentially leading to inefficient measures.  522 

In previous sections, we have seen that the city contribution largely varies depending on the 523 

choices made for the SA setting parameters (definition of the indicator, source, receptor and 524 

methodology), hence the challenge to obtain a relevant and accurate estimate to support local 525 

action.  526 

Given the range of possible SA options and their impact on results, the first recommendation is 527 

obviously to report these SA setting choices together with the results to provide policymakers 528 

with the full picture and allow them to take informed decisions. This advocates for the use of the 529 

proposed nomenclature or a similar one that documents for the choices in the SA approach, 530 

providing accountability to the method and enabling correct interpretation of the results. The 531 

proposed nomenclature can be understood as a documentation of the SA metadata information. 532 

Apart from this point on the importance of documenting SA approach choices, we show below 533 

that some of the SA settings are fixed by the purpose of the study. We provide suggestions for 534 

the remaining free choices.   535 

 536 

The recommended SA method is potential impacts (PI) 537 

 538 

It is important to recall that not all SA methodologies are equally suited to support air quality 539 

planning. As mentioned by several authors (Burr and Zhang 2011, Qiao et al. 2018, Mertens et 540 

al. 2019, Clappier et al. 2017, Grewe et al. 2010, 2012; Thunis et al. 2019), potential impacts are 541 

recommended when non-linear species are involved (which is the case for PM2.5 and PM10 but 542 

also for other species like NO2 or O3). It is worth reminding that tagging or incremental 543 

approaches are yet erroneously used and believed to be suited for air quality planning purposes 544 

(Qiao et al. 2018; Guo et al. 2017; Itahashi et al. 2017; Timmermans et al. 2017; Wang et al. 545 
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2015, Hendriks et al. 2013). Although challenging practical issues are attached to potential 546 

impacts and may be seen as a burden (e.g. lack of additivity, see Appendix), they only reflect the 547 

complexity of the real processes that must be accounted for. Although It is true that uncertainties 548 

associated to the PI approach (e.g. imperfect emission inventory), may lead other SA methods to 549 

perform better in some instances because methodological biases compensate uncertainties, this is 550 

however coincidental. While uncertainties can be tackled and reduced to improve the approach, 551 

this is not the case of methodological biases. These points were are extensively discussed in 552 

Thunis et al. (2019).    553 

 554 

For the remaining of this section focusing on policy aspects, only potential impact results are 555 

discussed. Fixing the methodology however still leaves free options in terms of indicator, 556 

receptor and source. This is visualized in Figure 8 that summarizes the variability of the SA 557 

results presented in the previous sections (i.e. Figure 2, Figure 4 and Figure 6) for the 150 cities 558 

to these possible choices. Differences in terms of city responsibility reach a factor 2 in average 559 

for each of these remaining parameters with much larger values for some cities.  560 

      561 

 562 
Figure 8: Box quantile diagrams summarizing the city contributions to PM2.5 levels for the 150 EU cities. All results are based on 563 
a similar method (potential impacts at 50%), a similar temporal receptor (�̅�) but for different choices of city sources (left), 564 
receptors (centre) and indicators (right). See previous sections for details. The two extremities of each vertical line represent the 565 
10th and 90th percentile contributions among the 150 cities, respectively. The box crossing horizontal line represents the median.  566 

 567 

INDICATOR: The indicator choice is driven by health and environmental objectives  568 

 569 

The choice of the indicator is generally motivated by health or environmental considerations. 570 

Currently, the WHO guidelines (WHO2005) refer to the total PM2.5 mass as the indicator 571 

correlating best with health impacts. These guidelines (or the AAQD limit values) are then the 572 

logical and most relevant indicator choice among the options presented in Section 3.1 and shown 573 

in Figure 2. As illustrated by Figure 8, evolving knowledge on health-related pollution impacts 574 

(i.e. the increased toxicity of some PM2.5 constituents like those related to the traffic and 575 

residential activities) might however, drive the choice towards more detailed indicators (e.g. 576 

PPM2.5) leading to an increased responsibility for the cities. 577 

 578 
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SOURCE: Importance of matching sources with governance levels 579 

 580 

Figure 8 shows that plans limited to city cores would be significantly less efficient than if applied 581 

at the FUA scale. In average over all cities, the efficiency decreases by a factor 2 but larger 582 

differences occur in many cities. The source does however not represent a free choice in the 583 

context of policy practice. Indeed, authorities in charge of AQ plans only have power to act on 584 

the area under their responsibility, which sets where measures apply. The same applies for the 585 

source temporal characteristic, fixed as the period of time during which measures apply. A good 586 

match between the SA settings and the temporal and spatial characteristics of the source is 587 

therefore important to provide meaningful support to policy makers.  588 

 589 

RECEPTOR: Drawbacks associated to spatial and temporal averaging processes at the receptor    590 

 591 

As clearly shown in Figure 5, spatial averaging processes lead to a loss of information. In our 592 

example, a city average based SA would totally occult the city center SA. It would lead to a 593 

strategy that mostly targets the background at the expense of the city center, where the high 594 

concentration issues would not be solved. This is well illustrated by Amann et al. (2017) who 595 

analyseanalyze the responsibility of the city of New Delhi on its air pollution, both at a city 596 

center hot-spot receptor and in terms of city average population exposure. In the first case, SA 597 

suggests acting on local sources while in the second SA suggests acting on regional sources. 598 

Spatial averaging drives the balance towards regional actions that will be less effective in solving 599 

the pollution issue at the city center.  The larger the city, the more important this shift will be. As 600 

illustrated by Figure 8, there is more than a factor 2 between city-averaged and hot spot 601 

indicators. Similar considerations apply to temporal averages.  Figure 7 clearly shows that yearly 602 

average values hide the potential for effective local actions during wintertime and even more on 603 

specific days.   604 

 605 

Averaging implies merging, into one single number, locations and time instants that are 606 

characterized by different and sometimes opposite SA. This may lead to strategies that will not 607 

be efficient everywhere all the time. Whenever the final objective is to reduce a temporally 608 

or/and spatially averaged indicator (e.g. average population exposure), strategies would gain in 609 

efficiency with the following process: (1) perform SA and hierarchize the raw (not averaged) SA 610 

results into homogeneous spatio-temporal clusters; (2) design strategies on the basis of these 611 

clusters; (3) assess the strategy efficiency against the averaged indicator. The key is here to 612 

design strategies on raw or clustered results rather than on averaged ones, to prevent information 613 

loss.  614 

 615 

Note that designing a unique strategy based on multiple SA results (point 2 above) does not 616 

necessarily complicate the analysis, as these different SA will likely suggest action on different 617 

sectors of activity that can be combined at in the final strategy.  618 

 619 

5. Conclusions 620 

Although air quality has improved in Europe over the last decades, in great part thanks to 621 

effective measures and consistent EU-wide legislation, pollution hot spots yet remain in many 622 

European cities. The extent by which city emissions are causing these elevated urban pollution 623 
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levels is however still a subject of scientific discussion. This can be explained by the complex 624 

processes driving the formation of some pollutants like PM2.5, for which there is not a simple 625 

relationship between emissions and concentrations (in other words, local emissions don't always 626 

imply local responsibilities). Source apportionment represents a useful technique to quantify the 627 

city responsibility but the approaches and applications are however not harmonized, therefore 628 

not comparable, resulting in confusing and sometimes contradicting interpretations.  629 

  630 

In this work, we analyzed how different SA approaches apply to the urban scale and how their 631 

building elements and parameters are defined and set. We identified the possible settings 632 

associated to four key steps in SA: indicator, receptor, source and methodology. We showed that 633 

different choices for these settings lead to very large differences in terms of results. In average 634 

over the 150 European large cities selected as example, the choices made for the indicator, the 635 

receptor, and the source each lead to an average factor 2 difference in terms of city 636 

responsibility. These various options and the large differences that result, highlight the difficulty 637 

of comparing results from different studies and stress the need to document the SA approach 638 

with its related metadata – that documents details the choices made for the key four steps.  639 

 640 

This work advocates for the use of a harmonized nomenclature to support the comparability of 641 

SA approaches. We propose the use of indexes and sub-indexes attached to the 4 key steps in any 642 

SA approach in a harmonized way to uniquely document the approach and enable correct 643 

interpretation of the results. We believe that the adoption of this nomenclature will provide 644 

clarity to the scientific discussion on different results and enable the correct interpretation of the 645 

results for policy applications. Even though this is applied to the specific case of PM2.5, the 646 

concepts presented here can easily be generalized to other pollutants. 647 

 648 

In the context of supporting urban air quality plans, the SA configuration and most setting 649 

parameters are driven by the purpose of the AQ plan itself and by its associated constraints. 650 

While environmental and/or health related considerations guide the choice of the indicator, the 651 

spatio-temporal characteristics of the source are strongly correlated to governance aspects. In 652 

other words, the source characteristics should reflect the governance levels to facilitate 653 

interpretation. Finally, the recommended SA method should be based on “potential impacts”, to 654 

prevent misleading interpretations in terms of expected AQ plan outcome.     655 

 656 

At the receptor level, temporal and spatial averaging processes lead to a loss of information, 657 

especially when diverging SA results are aggregated into a single number. Averaging process, in 658 

particular spatial, often lead to favor strategies that target background sources while neglecting 659 

actions that would be efficient at the city center. In our 150 cities example, the impact of spatial 660 

averaging leads to an average factor 2 difference in terms of city responsibility. Not only results 661 

differ from one city to the other, and from one location to another in a given city, they also differ 662 

through time. To cope with this variability, we recommend using non-averaged SA results for the 663 

design of AQ strategies. Once clustered in homogeneous spatio-temporal classes, these can serve 664 

to understand where and when actions are most efficient. When implemented, the efficiency of 665 

abatement measures can then be assessed via spatially and temporally averaged indicator (e.g. 666 

city average population exposure). 667 

 668 
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The responsibility of a city to its pollution is obviously city dependent. But even for a given city, 669 

SA studies using different approaches and parameter settings will deliver very different 670 

outcomes. It is important to note that a departure from the methodological recommendations 671 

listed above, additional uncertainties and assumptions will most often lead to a systematic and 672 

important underestimation of the city responsibility. We showed that in average over 150 673 

European cities, departures in terms of source, receptor, and indicator may lead for each to a 674 

factor 2 underestimation. This comes with important implications: if cities are seen as a minor 675 

actor, plans will target in priority the background at the expense of potentially effective local 676 

actions.  677 

 678 

Future work will consist in comparing spatially/temporally averaged SA results with SA results 679 

that are clustered in homogeneous spatio-temporal classes and assess the implications in terms of 680 

AQ strategy.   681 
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Appendix A 957 

To illustrate the differences among SA methods, we use here the theoretical example 958 

schematically represented in Figure A1.  A city source (in red) emits with a Gaussian dispersion 959 

profile both primary PM (PPM) and a gas-phase precursor (NOx). The background pollution (in 960 

blue) is composed of a mix of NOx, NH3 and PPM compounds. The various chemical reactions 961 

that take place are simplified here for convenience into a single reaction. One mole of NH3 reacts 962 

with one mole of NOx to create one mole of ammonium nitrate (𝑁𝐻4
+𝑁𝑂3

−), i.e. secondary PM. 963 

(𝑁𝑂𝑥 + 𝑁𝐻3 + 𝑋 →→ 𝑁𝐻4
+𝑁𝑂3

−). We assume here that the external compounds involved in the 964 

reaction (X) are abundant and do not have a limiting effect on the formation of PM. While the 965 

city emissions (source) remain unchanged, we modify the relative importance of the three 966 

background compounds so that the background becomes in turn PPM, NOx and NH3 dominated. 967 

The PM concentration at a given location “x” is given by:  968 

 969 

 𝑃𝑀(𝑥) = 𝑃𝑃𝑀(𝑥) + 𝑚𝑖𝑛{𝑁𝑂𝑥(𝑥), 𝑁𝐻3(𝑥)}𝑚𝑜𝑙𝑒 × 𝑁𝐻4
+𝑁𝑂3

− (4) 

 970 

 971 
Figure A1: Schematic representation of the theoretical example used to compare the three SA approaches. The city source (in 972 
red) emits NOx and PPM. The background (in blue, including other cities as well as rural sources) is composed of NOx, PPM and 973 
NH3 in different relative proportions (indicated by the arrow). The “cc” and “bg” symbols represent the city centre receptor and 974 
the background location used for the increment approach, respectively. 975 

Based on the formulations provided in Table 1 and equation (4), the expressions to calculate the 976 

city and background components for the theoretical example presented above are detailed in 977 

Table A1. While these formulations are relatively straightforward for potential impacts and 978 

increments, it is more complex for the tagging method. The city tagging component is the sum of 979 

all PM species that are directly related to the city emissions. This includes PPM and NO3 that are 980 

related to the PPM and NOx city emissions, respectively. For the background component, it 981 

includes PPM, NOx and also NH4 that is related to the NH3 emissions. Tagging allows following 982 

the NOx and NH3 emitted compounds through their chemical processes and transformations until 983 

they create NO3 and NH4, respectively that can be attributed to their respective sources. As NOx 984 

is emitted by both sources, the total NO3 must be fractioned and attributed to each single source. 985 
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In our example, the NO3 fraction attributed to the city depends on the ratio of the available NOx 986 

precursor at the location of interest (𝛽 =
𝑁𝑂𝑥𝑐𝑖𝑡𝑦(𝑐𝑐)

𝑁𝑂𝑥(𝑐𝑐)
). A similar process is used to calculate the 987 

background component.     988 
 989 
This example is used to compared the increment (INC), tagging (TAG) and potential impact (PI) 990 

SA approaches. 991 

 992 

 993 

Potential Impact 

City 𝑃𝑀𝑐𝑖𝑡𝑦
𝑃𝐼𝛼 (𝑐𝑐) =

𝑃𝑀(𝑐𝑐) − 𝑃𝑀𝑐𝑖𝑡𝑦𝛼(𝑐𝑐)

𝛼
 

Background 𝑃𝑀𝑏𝑔
𝑃𝐼𝛼(𝑐𝑐) =

𝑃𝑀(𝑐𝑐) − 𝑃𝑀𝑏𝑔𝛼(𝑐𝑐)

𝛼
 

Increment 

City 𝑃𝑀𝑐𝑖𝑡𝑦
𝐼𝑁𝐶 (𝑐𝑐) = 𝑃𝑀(𝑐𝑐) − 𝑃𝑀(𝑏𝑔) 

Background 𝑃𝑀𝑏𝑔
𝐼𝑁𝐶(𝑐𝑐) = 𝑃𝑀(𝑏𝑔) 

Tagging 

City 𝑃𝑀𝑐𝑖𝑡𝑦
𝑇𝐴𝐺(𝑐𝑐) = ∑ 𝑃𝑀𝐸(𝑐𝑐)

𝑐𝑖𝑡𝑦

𝐸

= 𝑃𝑃𝑀𝐸(𝑃𝑃𝑀)𝑐𝑖𝑡𝑦
(𝑐𝑐) + 𝛽𝑁𝑂3−

𝐸(𝑁𝑂2)𝑐𝑖𝑡𝑦
(𝑐𝑐) 

Background 𝑃𝑀𝑏𝑔
𝑇𝐴𝐺 (𝑐𝑐) = ∑ 𝑃𝑀𝐸(𝑐𝑐)

𝑏𝑔

𝐸

= 𝑃𝑃𝑀𝐸(𝑃𝑃𝑀)𝑏𝑔
(𝑐𝑐) + (1 − 𝛽)𝑁𝑂3−

𝐸(𝑁𝑂2)𝑏𝑔
(𝑐𝑐) + 𝑁𝐻4+

𝐸(𝑁𝐻3)𝑏𝑔
(𝑐𝑐) 

Table A1: Formulations for the potential impacts, increments and tagging approach for the example presented in Figure A1. The 994 
indicator for all methods and components is the total particulate matter mass (PM). The SA method is indicated as superscript 995 
(PIα, INC or TAG) whereas the source (city or bg) is in subscript. The receptor is the city center (cc) while the rural location 996 
selected for the increment approach is denoted by “bg”. For the tagging, the source subscript is also expressed directly as 997 
emissions (E) distinguishing each compound (within brackets).  998 

Figure  A2 shows the city and background contributions obtained with the three SA methods, 999 

differentiating two options for the PI one: 100% (PI100) and 20% reduction of the sources 1000 

(PI20). The figure also distinguishes four situations characterized by different background 1001 

compositions. 1002 

 1003 

1. No background: When no background is present (top left), the city NOx emissions do not 1004 

form PM, only PPM emissions do. In such cases, all methods deliver the same response. 1005 

 1006 

2. PPM background: When the background is composed of PPM only (top right), no 1007 

secondary species are formed. All methods agree with the exception of the increment 1008 

approach. This is due to the non-fulfilment of one of its underlying assumptions, i.e. the 1009 

lack of spatial homogeneity of the background which affects differently the rural and city 1010 

locations (indicated by “cc” and “bg” in Figure Figure A2, respectively).  1011 

 1012 
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3. SEC background with NH3 > NOx: When secondary background precursors (NOx and 1013 

NH3) reach the city (bottom row), SA methods deliver different results because they 1014 

manage differently non-linear processes. When NH3 is more abundant than NOx (bottom 1015 

left), the PI100 method does not preserve additivity (discussed in the “concepts” section), 1016 

i.e. the sum of the two components exceeds the total PM concentration. As seen from the 1017 

results and also from Table Table A1, this is not the case for the increment and tagging 1018 

approaches that are constructed to be additive. 1019 

 1020 

4. SEC background with NH3 < NOx: When NH3 is less abundant than NOx (bottom right), 1021 

differences remain important between the tagging, potential impacts and increment 1022 

approaches but additivity is preserved for both PI100 and PI10 that provide identical 1023 

responses. 1024 

 1025 
Figure A2: Comparison of the city (red) and background (blue) components for 4 approaches applied on the theoretical examples 1026 
described in Figure A1. Results are expressed for different types of background: (top left) no background; (top right) background 1027 
limited to PPM; (bottom left) background limited to secondary but with NH3 > NOx and (bottom right) background limited to 1028 
secondary but with NH3 < NOx.  1029 
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