

1 **Measurement report: Long-term measurements of aerosol precursor concentrations in the Finnish sub-**
2 **Arctic boreal forest**

3 Tuija Jokinen^{1,2*}, Katrianne Lehtipalo^{1,3}, Roseline Cutting Thakur¹, Ilona Ylivinkka¹, Kimmo Neitola¹, Nina
4 Sarnela¹, Totti Laitinen¹, Markku Kulmala¹, Tuukka Petäjä¹ and Mikko Sipilä¹

5 ¹Institute for Atmospheric and Earth System Research (INAR) / Physics, Faculty of Science, University of
6 Helsinki, P.O. Box 64, Helsinki, 00014 University of Helsinki

7 ²Climate & Atmosphere Research Centre (CARE-C), The Cyprus Institute, P.O. Box 27456, Nicosia, CY-
8 1645, Cyprus

9 ³Finnish Meteorological Institute, Helsinki, Finland

10 *correspondence to t.jokinen@cyi.ac.cy

11 **Abstract:**

12 Aerosol particles form in the atmosphere by clustering of certain atmospheric vapors. After growing to larger
13 particles by condensation of low volatile gases, they can affect the Earth's climate by scattering light and by
14 acting as cloud condensation nuclei (CCN). Observations of low-volatility aerosol precursor gases have been
15 reported around the world but longer-term measurement series and any Arctic data sets showing seasonal
16 variation are close to non-existent. In here, we present ~7 months of aerosol precursor gas measurements
17 performed with the nitrate based chemical ionization mass spectrometer (CI-APi-TOF). We deployed our
18 measurements ~150 km North of the Arctic Circle at the continental Finnish sub-Arctic field station, SMEAR
19 I (Station for Measuring Ecosystem – Atmosphere Relations), located in Värrö strict nature reserve. We report
20 concentration measurements of the most common new particle formation (NPF) related compounds; sulfuric
21 acid (SA), methane sulfonic acid (MSA), iodic acid (IA) and a total concentration of highly oxygenated organic
22 molecules (HOMs). At this remote measurement site, SA is originated both from anthropogenic and biological
23 sources and has a clear diurnal cycle but no significant seasonal variation. MSA shows a more distinct seasonal
24 cycle with concentrations peaking in the summer. Of the measured compounds, IA concentrations are the most
25 stable throughout the measurement period, except in April, when the concentration of IA is significantly higher
26 than during the rest of the year. Otherwise, IA has almost identical daily maximum concentrations in spring,
27 summer and autumn, and on NPF event or non-event days. HOMs are abundant during the summer months
28 and low in the autumn months. Due to the low autumn concentrations and their high correlation with ambient
29 air temperature, we suggest that most of HOMs are products of biogenic emissions, most probably
30 monoterpene oxidation products. NPF events at SMEAR I happen under relatively low temperatures (1–8 °C)
31 with a fast temperature rise in the early morning hours, lower and decreasing relative humidity (RH, 55% vs.
32 80%) during the NPF days compared to non-event days. NPF days have clearly higher global irradiance values
33 (~450 m⁻² vs. ~200 m⁻²) and about 10 ppbv higher ozone concentrations than non-event days. During NPF
34 days, we have on average higher SA concentration peaking at noon, higher MSA concentrations in the
35 afternoon and slightly higher IA concentration than during non-event days. All together, these are the first long
36 term measurements of aerosol forming vapors from the SMEAR I in the sub-arctic region, and the results help
37 us to understand atmospheric chemical processes and aerosol formation in the rapidly changing Arctic.

38 **1. Introduction:**

39 The climate of sub-Arctic region is characterized with some of the most extreme temperature variations on
40 Earth. We expect that during the course of the 21st century, the boreal forest is to experience the largest increase
41 in temperatures of all forest biomes (IPCC, 2013), making it the most vulnerable to climate change. The boreal
42 forest (taiga) covers most of the sub-Arctic and encompasses more than 30% of all forests on Earth, being one
43 of the largest biome in the world (Brandt et al., 2013). The expected rate of changes, may overwhelm the
44 resilience of forest ecosystems and possibly lead to significant biome-level changes (Reyer et al., 2015). The

46 forest-atmosphere systems are closely interlinked to one another. The forest stores carbon and water in the
47 peat, soil and as biomass while at the same time vegetation emits volatile organic compounds (VOC) into the
48 atmosphere (Bradshaw and Warkentin, 2015). In the Arctic, summer is short, but solar radiation is abundant
49 and extends the daylight hours all the way to midnight and beyond. On the other hand, during the polar night
50 air pollutants accumulate in the atmosphere due to cold and stable atmosphere, while turbulent mixing is
51 inhibited, and the lack of removal processes lead to the formation of Arctic haze (Stohl, 2006). These features
52 make the Arctic an interesting study region for photochemistry of reduced atmospheric compounds. Oxidation
53 processes that dominantly occur in the summer time control the processes removing VOCs and other traces
54 gases, such as SO_2 and NO_x , from the atmosphere in the Arctic. Detailed understanding of atmospheric
55 processes leading to aerosol precursor formation and gas-to-particle conversion and their role in feedback
56 mechanisms help in assessing the future climate.

57 Aerosol and trace gas measurements in the sub-Arctic field station SMEAR I, go back to the 90s (Ahonen et
58 al., 1997; Kulmala et al., 1998; Mäkelä et al., 1997). Trace gas and aerosol measurements at SMEAR I started
59 in 1992 making them one of the longest continuous measurements of aerosol particle number and size
60 distributions in the sub-Arctic (Ruuskanen et al., 2003). These long-term measurements show that aerosol
61 particles regularly form and grow from very small sizes (< 8 nm diameter) with the highest frequency in the
62 spring, between March and May (Dal Maso et al., 2007; Vehkamäki et al., 2004). It is suggested that spring
63 promotes NPF because of the awakening of biological processes after the winter. At SMEAR I the snow only
64 melts away in May-June and thus, many biological processes (photosynthesis) activate while the snow is still
65 deep. This makes the Arctic spring a very complex environment for atmospheric chemistry with possible
66 emission sources from melting snow, ice, melt water, vegetation and transport from other areas. At SMEAR I,
67 most of the observed NPF events are either connected to clean air arriving from the Northern sector (originating
68 from The Arctic Ocean and transported over boreal forest, Dal Maso et al., 2007) or the polluted air masses
69 from the Eastern sector (Kyrö et al., 2014; Sipilä et al., 2021). Annually, around 30-60 NPF events are recorded
70 at SMEAR I, of which around half could be initiated by anthropogenic air pollutants from the Kola Peninsula
71 (Kyrö et al., 2014; Pirjola et al., 1998; Sipilä et al., 2021) leaving half of the events occurring from natural
72 sources. The trend of NPF occurrence in Väriö is decreasing, as the anthropogenic sulfur dioxide emissions
73 are decreasing in Russia (Kyrö et al., 2014).

74 Formation and growth of new particles at SMEAR I usually happen during daylight, highlighting the
75 importance of photochemical activities. However, unlike most other locations, NPF is also observed during
76 nighttime or polar night (Kyrö et al., 2014; Vehkamäki et al., 2004). Formation and growth processes of
77 aerosols seem not to be correlated with each other at SMEAR I (Vehkamäki et al., 2004). Earlier literature
78 reports that the formation rate (J) has no clear seasonal trend, while the growth rates (GR) of small particles
79 clearly peak during summer (Ruuskanen et al., 2007). This indicates that different chemistry drives the initial
80 cluster formation and the subsequent growth processes. From the observed nucleation rates it has been
81 proposed that NPF at SMEAR I could be due to SA –ammonia (-water) nucleation (Napari et al., 2002) likely
82 dominated by ion-induced channel at least during winter months (Sipilä et al., 2021). Kyrö et al., (2014)
83 concludes that 20-50% of the condensational growth can also be explained by SA in Väriö. Other studies
84 speculate about the possibility of different organic compounds participating in NPF in the sub-Arctic. Tunved
85 et al., (2006) studied the air masses arriving to SMEAR I and concluded that the aerosol mass increased linearly
86 with time that the air masses travelled over land. The concentration of condensing gases over the boreal forest
87 was concluded to be high and most likely consisting mainly of oxidation products of terpenes (VOCs) that are
88 emitted by the forest. At SMEAR II station in Hyytiälä, approximately 700 km South-West of Väriö, oxidized
89 organics mostly explain the growth of newly formed particles (Bianchi et al., 2017; Ehn et al., 2014). However,
90 direct measurements of the aerosol forming and growing vapor species are still lacking from SMEAR I except
91 during wintertime without biogenic activity when SA has been shown to be primarily responsible on formation
92 and growth (Sipilä et al., 2021). In Väriö, the role of NPF is critical in forming of CCN, since measurements
93 show that the number of CCN can increase up to 800 % as a result of NPF (Kerminen et al., 2012). In other
94 locations in the boreal forest and Arctic, some measurements shed light into the possible chemical components
95 that could be forming particles in Väriö. Currently, the closest continuous measurements with the nitrate based

96 CI-APi-TOF are conducted in Hyytiälä at the SMEAR II-station (Jokinen et al., 2012, 2017; Kulmala et al.,
97 2013). In Hyytiälä there is direct evidence on the key role of the photochemical production of SA and HOMs
98 maintaining atmospheric NPF (Bianchi et al., 2017; Ehn et al., 2014; Jokinen et al., 2017; Kulmala et al.,
99 2013).

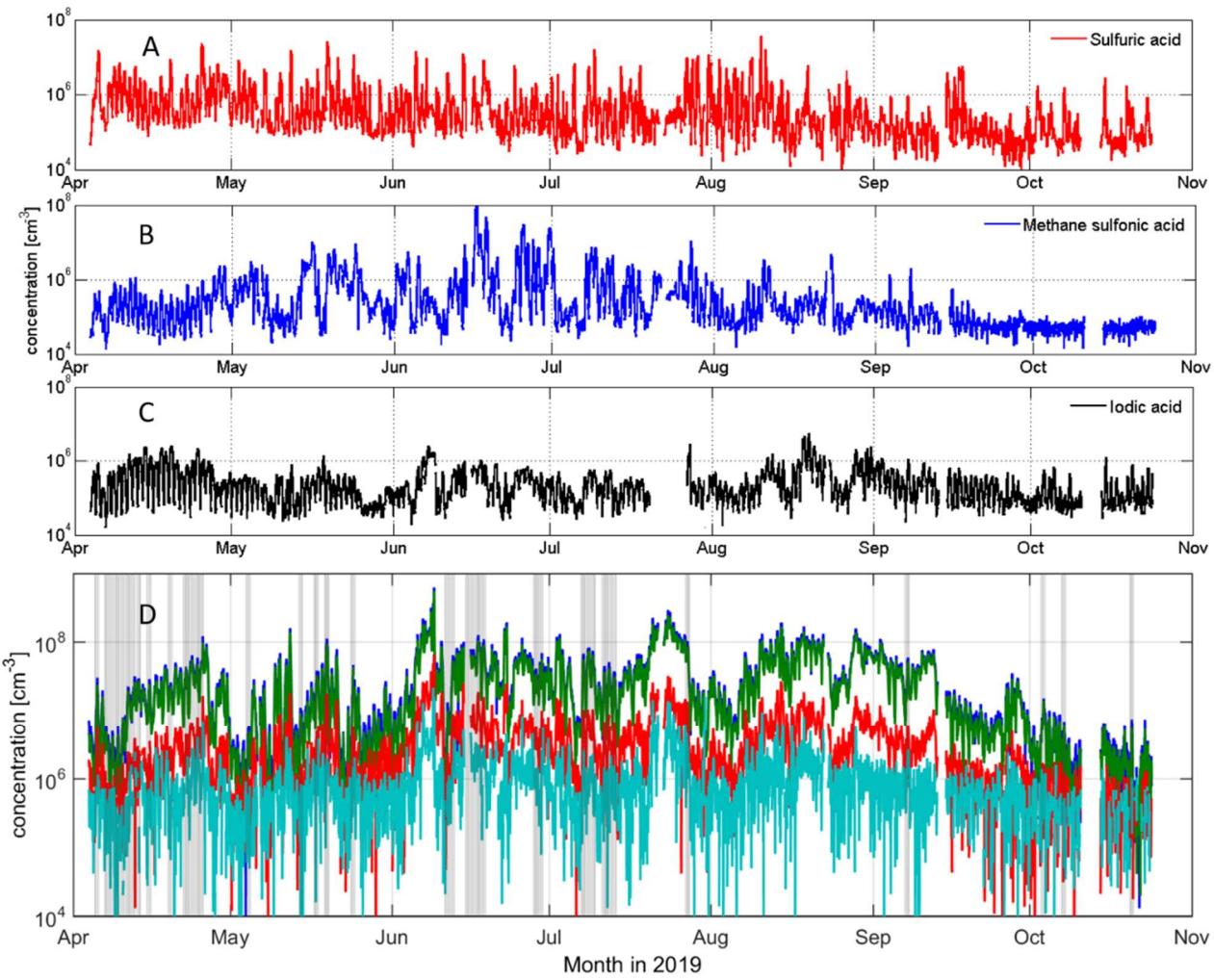
100 Other chemical composition measurements of aerosol precursors have been conducted only in a few locations
101 in the High-Arctic and over the Arctic Ocean (Baccarini et al., 2020; Beck et al., 2021; He et al., 2021; Sipilä
102 et al., 2016). These studies show that in the Arctic, the marginal ice zone and the coast of the Arctic Ocean is
103 a source of atmospheric IA that is efficiently forming new particles. SA and MSA concentrations were also
104 reported (Beck et al., 2021), but they were much lower in concentration than IA (Baccarini et al., 2020).
105 However, the chemistry behind NPF is not that simple, even in the pristine Arctic air. The clean air above the
106 Arctic Ocean is abundant in dimethyl sulfide (DMS) emitted by phytoplankton that rapidly oxidizes into SA
107 and MSA on sunny days and consequently forms CCN (Charlson et al., 1987; Park et al., 2018). Beck et al.,
108 (2021) report that in Svalbard in the Arctic Ocean, SA and MSA contribute to the formation of secondary
109 aerosol. They also observed that these compounds formed particles large enough to contribute to some extent
110 to CCN. This is supported by measurements of aerosol chemical composition from the Arctic that commonly
111 report MSA in particulate matter (Dall Osto et al., 2018; Kerminen et al., 1997). According to Beck et al.
112 (2021) the initial aerosol formation in the high Arctic occurs via ion-induced nucleation of SA and ammonia
113 and subsequent growth by mainly SA and MSA condensation during springtime and HOM during
114 summertime. By contrast, in an ice-covered region around Villum, Greenland, Beck et al. (2021) observed
115 NPF driven by IA, but the particles remained small and did not grow to CCN sizes due to insufficient
116 concentration of condensing vapors. Since the Arctic CCN number concentrations are low in general,
117 formation of new particles is a very sensitive process affecting the composition of the aerosol population and
118 CCN numbers in the area.

119 In this article, we present the measurements of aerosol precursor molecules from the continental SMEAR I
120 station, ~150 km North of the Arctic Circle and ~150 km from the Arctic Ocean. We measured SA, MSA, IA
121 and HOM concentrations with a SA calibrated CI-APi-TOF (Jokinen et al., 2012; Kürten et al., 2012) to
122 determine their levels in the sub-Arctic boreal forest and to understand whether these species are connected
123 with the aerosol formation process in the area.

124 2. Methods, measurement site and instrumentation:

125 The core of this work is measurements of gas phase aerosol precursors. We use the nitrate chemical ionization
126 atmospheric pressure interface time-of-flight mass spectrometer (CI-APi-ToF) that has been operational at the
127 SMEAR I-station (N67°46, E29°36) in Eastern-Lapland since the early spring of 2019. Measurements were
128 done on top of Kotovaara hill (390 m a.s.l.), close to ground level in an air-conditioned small log wood cottage.
129 The cottage is surrounded by ~65-year-old Scots pine forest. More details about the station can be found in
130 earlier publications (Hari et al., 1994; Kyrö et al., 2014). The mass spectrometric measurements are designed
131 to start a long-term measurement series of atmospheric aerosol forming trace gases in the Finnish Lapland and
132 the measurements are ongoing to this day. We measure e.g. SA, IA, HOMs and MSA with high time resolution
133 and precision. The measurements are running in Finnish winter time (UTC+2) throughout the year.

134 We calibrated the CI-APi-TOF twice during the measurement period and run the instrument with the same
135 settings for the whole measurement period reported in this paper. We calibrated the instrument using a SA
136 calibrator described in Kürten et al. (2012). The calibration factor from the two separate calibrations were 1)
137 $7 \cdot 10^9$ and 2) $8 \cdot 10^9$ and we use the average $7.5 \cdot 10^9$ in our study calculate the concentrations of all reported
138 compounds. This factor includes the loss parameter due to the ~1 m long unheated inlet tube (3/4" stainless
139 steel). HOMs and IA have been estimated to be charged similarly at the kinetic limit as SA (Ehn et al., 2014;
140 Sipilä et al., 2016), so the calibration factor for them should be similar, but please note that the concentration
141 of other compounds than SA can be highly uncertain due to different ionizing efficiencies, sensitivities and
142 other unknown uncertainties. If MSA, IA or HOMs do not ionize at the kinetic limit these concentrations could
143 be underestimated and thus, the concentrations reported in here should be taken as low limit values. The SA,


144 IA and MSA data presented in this study are all results of high-resolution peak fitting of the CI-APi-TOF, in
145 order to avoid inaccurate identification of compounds and to separate overlapping peaks. The HOM data is a
146 sum of mass-to-charge ratios from 300 to 400 Th, representing the monomer HOM range (C_{10} compound
147 range), 401 to 500 Th for the slightly larger HOMs (C_{15} compound range) and 501 to 600 Th for the dimer
148 species (C_{20} compound range). We also give the sum of these all (from 300 to 600 Th). The goal of this article
149 is not to specify different HOM compounds or to study NPF in mechanistic details but to give an overview of
150 general seasonal trends and variations of these selected species. Note that since this is a sum of all peaks in the
151 selected mass range, we cannot assure that all the compounds included are HOMs. However, the investigation
152 in laboratory conditions show that the nitrate-Cl-APi-TOF is highly selective and sensitive towards HOMs
153 with $O > 5$ (Riva et al., 2019) and with hydroperoxide (-OOH) functionalities (Hyttinen et al., 2015). All data
154 obtained from the Cl-APi-TOF we analyzed using tofTools program described in (Junninen et al., 2010) and
155 averaged over an hour. The original data time resolution is 5 sec. The uncertainty range of the measured
156 concentrations reported in this study is estimated to be $-50\% / +100\%$ and the limit of detection, LOD,
157 $4 \cdot 10^4$ molecules cm^{-3} (Jokinen et al., 2012).

158 To classify NPF events recorded during the measurement period, we used the data measured by a Differential
159 Mobility Particle Sizer (DMPS). Condensation sink was also calculated using the DMPS data. The DMPS
160 instrument and earlier statistics of NPF events in Väriö has been documented by (Dal Maso et al., 2007; Vana
161 et al., 2016; Vehkamäki et al., 2004). The NPF events were classified according to Maso et al., (2005). Total
162 aerosol particle number concentration was measured with a Condensation Particle Counter (CPC, TSI 3776)
163 in the size range of 3 – 800 nm. Air ion size distributions were measured with the Neutral cluster and Air Ion
164 Spectrometer, NAIS (Kulmala et al., 2007; Manninen et al., 2016; Mirme and Mirme, 2013) that measures
165 negative and positive ions in the size range of 0.8 – 42 nm in mobility diameter and total particle size
166 distribution between ~ 2 and 42 nm.

167 3. Results and discussion:

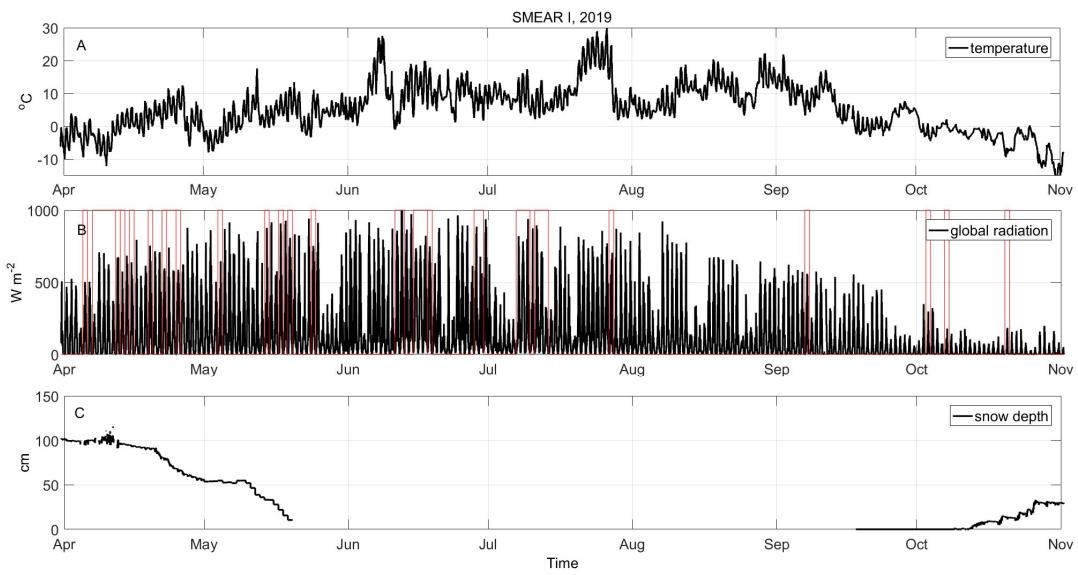
168 3.1. Overview of the whole measurement period:

169 You can see a time series of the most common aerosol precursor compounds; SA, MSA, IA and sums of
170 different HOM groups in Figure 1. This figure depicts the whole measurement period from April 4 to October
171 27 in 2019. Overall, we succeeded to measure the whole 7 month period almost uninterruptedly. Only a few
172 short power cuts stopped our measurements during this time. IA data is missing from late July since its peak
173 could not be separated well enough from overlapping peaks in the spectra during this time. This was due to
174 poor resolution (low signal of IO_3^- close to another peak) that makes peak integration to give negative, unreal
175 values and we thus decided to flag them out. After late October, the instrument malfunctioned and stopped our
176 measurements. In this particular article, we present data from spring (Apr-May), summer (Jun-Jul-Aug) and
177 autumn (Sep-Oct) 2019. More about the SMEAR I winter observations can be read in Sipilä et al., 2021 were
178 they report observations of polar night pollution events from Väriö after the Cl-APi-TOF was fixed.

179

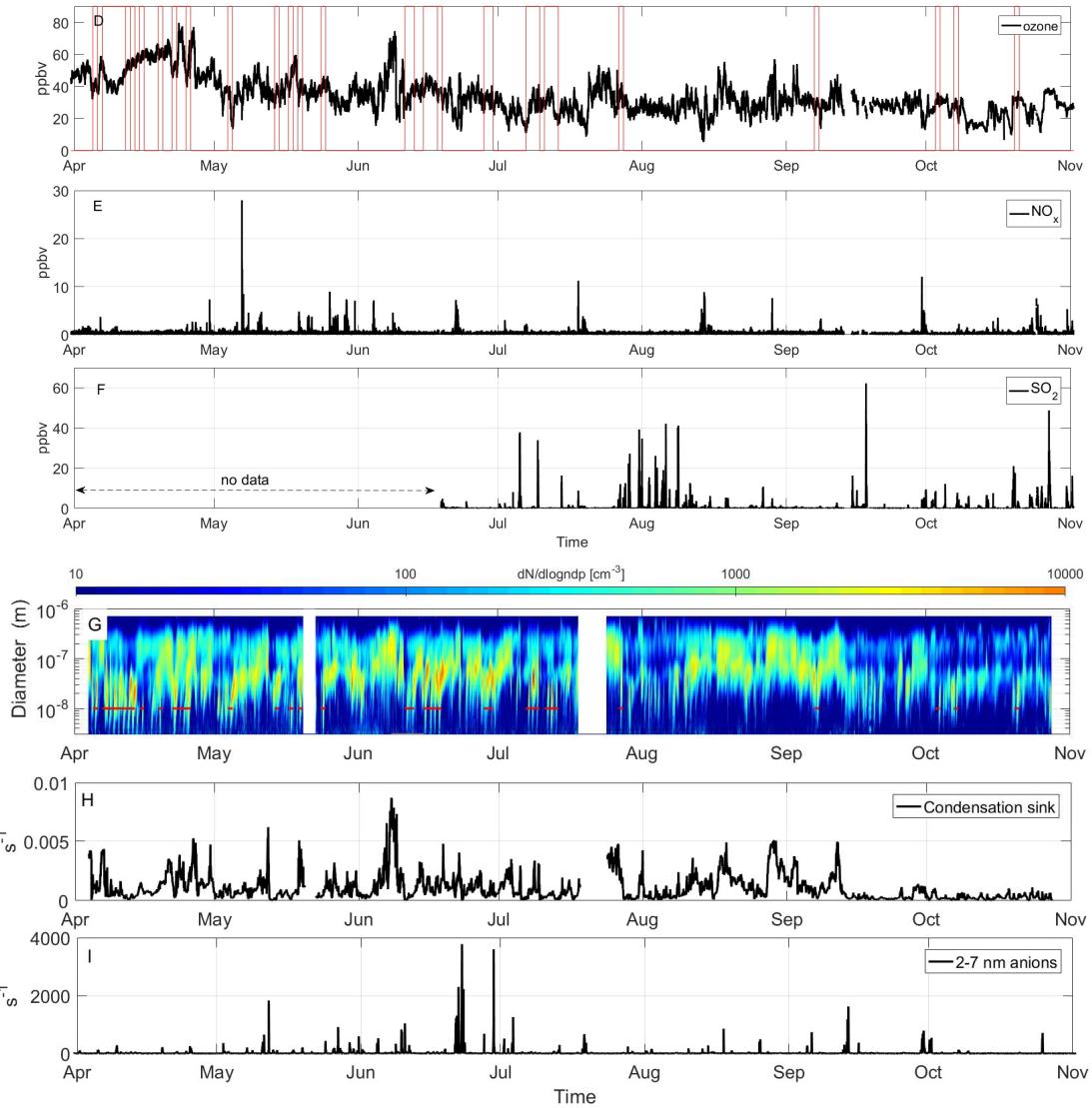
180 **Figure 1.** Overview of sulfuric (A), methane sulfonic (B) and iodic acid (C), as well as HOM (D)
 181 concentrations at SMEAR I in April to October 2019. NPF days are depicted in grey shading in panel D. All
 182 data in panels A-C are resulting from high-resolution peak fitting. HOM data are sums of certain mass ranges;
 183 from 300 to 400 Th in green, representing C10 or HOM monomer compounds, from 401 to 500 Th in red,
 184 representing C15 compound and from 501 to 600 Th on light blue, representing C20 or HOM dimer
 185 compounds. The sum of HOM (darker blue) is a sum of the aforementioned mass ranges. The sum of HOMs
 186 is approximately one order of magnitude higher than SA, MSA or IA concentrations during this measurement
 187 period.

188 In Figure 2 we show some of the most interesting environmental and meteorological parameters that influence
 189 the atmospheric gas composition during the measurements period; temperature, global radiation and snow
 190 depth, ozone, NO_x and SO_2 mixing ratios. There are some special features in year 2019; the summer had two
 191 heat waves, when the air temperature rose up to 29.2 °C in early June and to almost the same values in late
 192 July. These episodes are getting more common in Lapland due to climate change. These warmer conditions
 193 will probably change the emissions of trace gases including the composition and abundance of aerosol
 194 precursors in the future Arctic environment (Schmale et al., 2021). However, heat wave conditions are likely
 195 not favorable conditions to NPF since condensation of low-volatility gases is favored in colder temperatures
 196 (via the vapor pressure decrease due to lower temperatures), but they may affect the oxidation chemistry of
 197 VOCs by promoting dimer formation.


198 From Figure 2, we also see that the snow covered period ended in 2019 in late May and snow started to
 199 accumulate again in mid-October. Solar radiation (Figure 2A) is intense in Värrö during springtime and gives

200 Värriö favorable photo-oxidizing conditions, effectively removing air pollutants and trace gases from the
 201 atmosphere. Photochemical activity in presence of NO_x (Figure 2E), produces ozone in springtime and this is
 202 visible in very high ozone mixing ratios at the site (Figure 2D). Median ozone mixing ratios were around 55
 203 ppbv in April and decreased to ~ 30 ppbv in the late summer and autumn. The spring ozone mixing ratio in
 204 2019 was significantly higher than the previous reports from the years 1992 to 2001, when monthly mean
 205 values of ozone varied between 25 – 40 ppbv (Ruuskanen et al., 2003).

206 The springtime diurnal solar cycle is clearly visible with all studied compounds. All measured aerosol
 207 precursor compounds are abundant even during the period when snow covers the ground in the spring. The
 208 HOM concentrations follow the increasing solar radiation and rising temperature. MSA has a stronger diurnal
 209 cycle before the snow melt than after it. This may be due to rain and cloudy conditions that are more common
 210 in the summer. SA and IA do not have such strong seasonal variation than HOMs and MSA. The aerosol
 211 precursor concentrations are discussed in more detail in the following sections.


212 3.2. Seasonal and monthly variation of SA, MSA, IA and HOM concentrations

213 We present the diurnal variation of aerosol precursors; SA, MSA, IA and highly oxygenated molecules,
 214 concentrations separately for different seasons accompanied with solar radiation and total aerosol number
 215 concentrations in Figure 3. Strong seasonality is most evident in SA and HOM concentrations. SA is at its
 216 highest in the spring, decreasing toward summer and autumn while HOMs reach their maximum in the
 217 summer. We detect an increase in total aerosol number concentration on the spring evenings that is likely due
 218 to more frequent NPF events taking place at SMEAR I. The increase in HOMs in the summer at SMEAR I is
 219 linked to the increased emissions of VOCs from vegetation that oxidize into HOMs via ozonolysis (Ehn et al.,
 220 2014) and OH-radical reactions (Berndt et al., 2016; Jokinen et al., 2014, 2017; Wang et al., 2018). The overall
 221 lowest aerosol precursor concentrations and aerosol number concentration we detect during autumn (winter
 222 data was missing from this study, see Sipilä et al. 2021, for winter time observations made promptly after the
 223 period reported here). MSA shows very similar concentrations during spring and summer, and drops down to
 224 the limit of detection level for autumn. IA acts very differently than the other compounds. We observe IA to
 225 have a similar level of concentration throughout the measurement period and seems that the concentration
 226 reaches a steady state during daylight hours. This daytime maximum stays at the same level about 5 hours
 227 longer during spring than in the autumn. The day length getting shorter towards the autumn explains this
 228 behavior. The maximum hourly median concentrations for the measured compounds are $\sim 2 \cdot 10^6 \text{ cm}^{-3}$ for SA
 229 (spring), $\sim 5 \cdot 10^5 \text{ cm}^{-3}$ for MSA (summer), $\sim 3 \cdot 10^5 \text{ cm}^{-3}$ for IA (all seasons) and $\sim 5 \cdot 10^7 \text{ cm}^{-3}$ for the sum of
 230 HOMs (summer, mass range from 300 to 600 Th).

231

232

233

234

235

236

237

238

Figure 2: Observations of temperature (A), global radiation (B), snow depth (C), ozone (D), NO_x (E) and SO₂ (F) mixing ratios, number size distribution (G), condensation sink (H) and concentration of 2-7 nm anions (I) at SMEAR I during the measurement period. SO₂ data is missing until mid-June due to instrumental malfunction. NPF event times are depicted in red in subplots (B), (D) and (G).

239

240

241

242

243

244

245

246

247

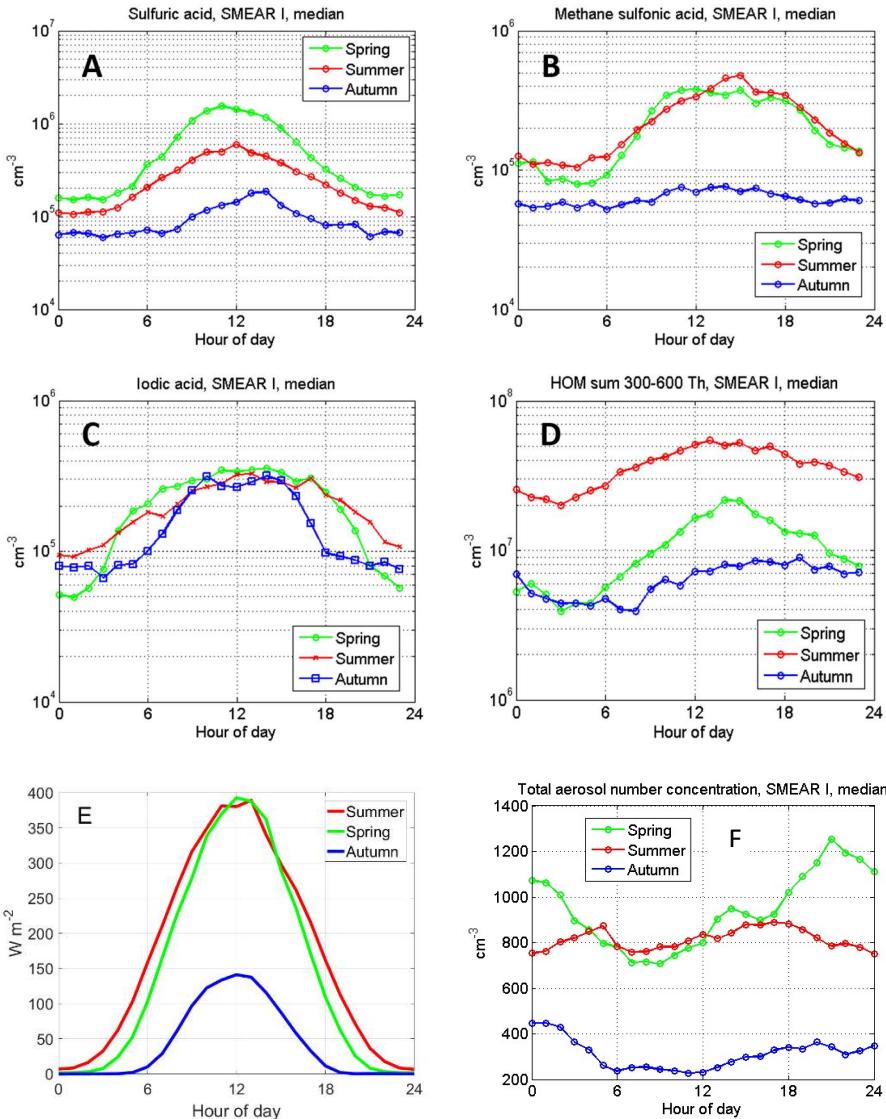
248

249

250

251

252

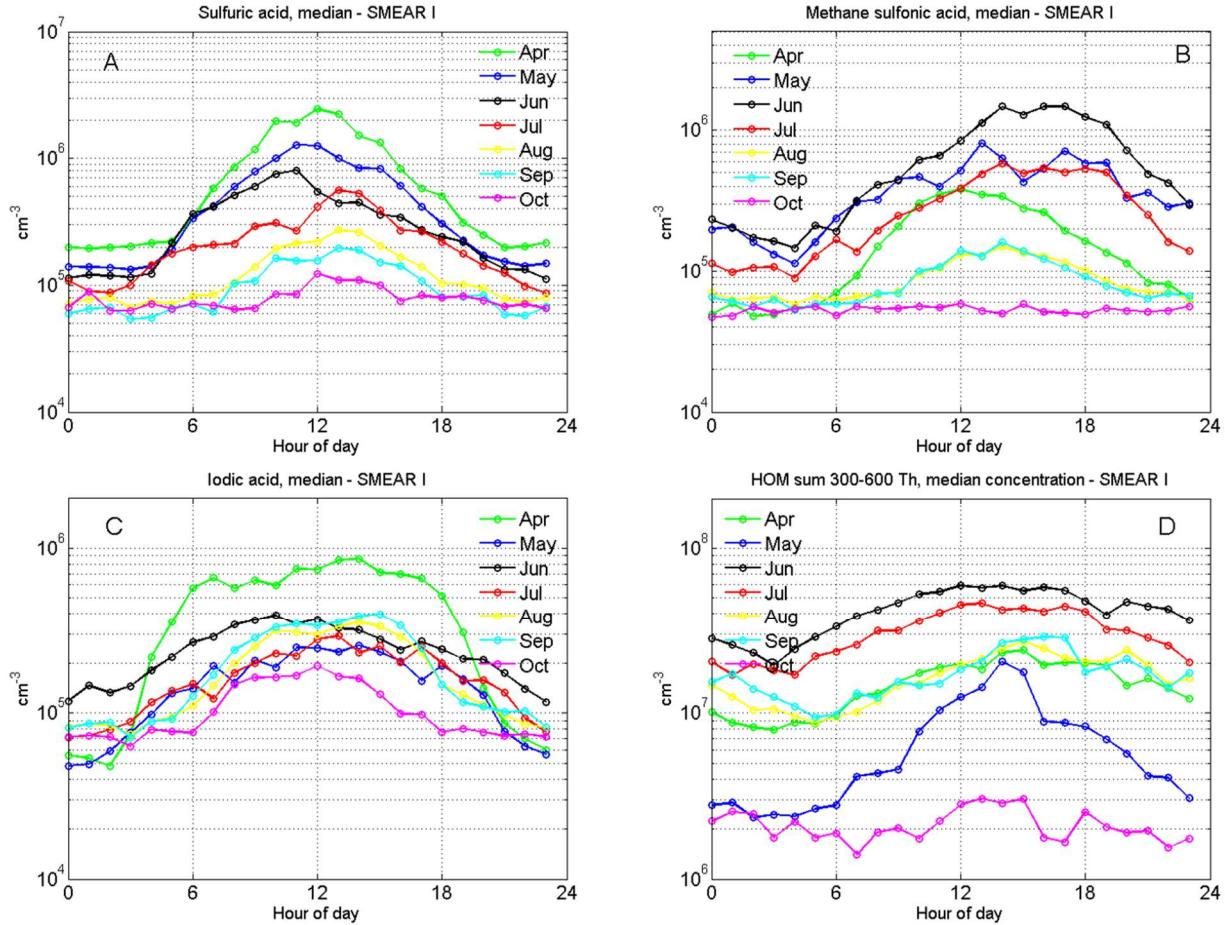

253

254

We can compare these numbers to SMEAR II long-term (5-year median concentration) observations, where the median peak SA concentrations are $\sim 1.5 \cdot 10^6 \text{ cm}^{-3}$, $\sim 1 \cdot 10^6 \text{ cm}^{-3}$ and $\sim 3 \cdot 10^5 \text{ cm}^{-3}$ for spring, summer and autumn, respectively (Suló et al., 2021). These measured concentrations are very similar to SMEAR I observations except a slightly higher summer and autumn SA concentration at SMEAR II. However, it should be noted that the springtime measurements from SMEAR I do not include March data, which makes the springtime comparison somewhat uncertain. The SMEAR II data set that includes March data cannot be expected to be perfectly comparable with our data. However, as reported by Sipilä et al., 2021 the March data from the following year seems very similar concentration levels what we report in here for spring (max. $\sim 2 \cdot 10^6 \text{ cm}^{-3}$ and daily averages peak around $0.5 \cdot 10^6 \text{ cm}^{-3}$). We expect that the SA concentrations are only marginally affected by the lack of March data, but that the level of HOMs or MSA or IA could be affected more due to very different meteorological conditions between the stations in springtime (SMEAR II is $\sim 700 \text{ km}$ more South than SMEAR I). There is also a difference in the timing of the peak SA concentration in the summer. At SMEAR I the peak concentration is reached at noon and at SMEAR II it can be found some hours earlier, already around eight o'clock in the morning (Suló et al., 2021). In the case of HOMs, we cannot compare the concentrations directly to Suló et al. (2021) as they calculated the sum of HOMs differently, only taking into account the most abundant signals and separating nitrate and non-nitrate HOMs. However, we take the liberty

255 to compare diurnal and seasonal variations. Both at SMEAR I and II, observations show the highest HOM
 256 concentrations during summer, while the autumn concentrations are one order of magnitude lower. The
 257 comparison between these sites reveals a different diurnal variation of HOMs. At SMEAR I, the HOMs have
 258 a maximum around noon, spanning to the afternoon (Figure 3). At SMEAR II, HOMs have two maxima, one
 259 at noon and another one in the early evening. From these, the latter is connected to non-nitrate monomer and
 260 dimer HOMs and nitrate dimer HOMs. At SMEAR I the lack of an evening maximum could indicate that
 261 HOM dimer formation is less dominant at SMEAR I compared to SMEAR II due to lower air temperatures,
 262 or due to the different diurnal cycle of oxidants due to longer hours of solar radiation North of the Arctic Circle.

263


264

265

266 **Figure 3.** Diurnal variation of aerosol precursor gas median concentrations in different seasons: A) sulfuric
 267 acid, B) methane sulfonic acid, C) iodic acid and D) the sum of HOMs in the 300 to 600 Th mass range. Panel
 268 E) depicts the seasonal variation of global radiation and F) the total aerosol number concentration N_{tot} . The
 269 small (false) offset ($6-7 \text{ W m}^{-2}$) in summer data is due to 24 h sunlight hours at Värrö.

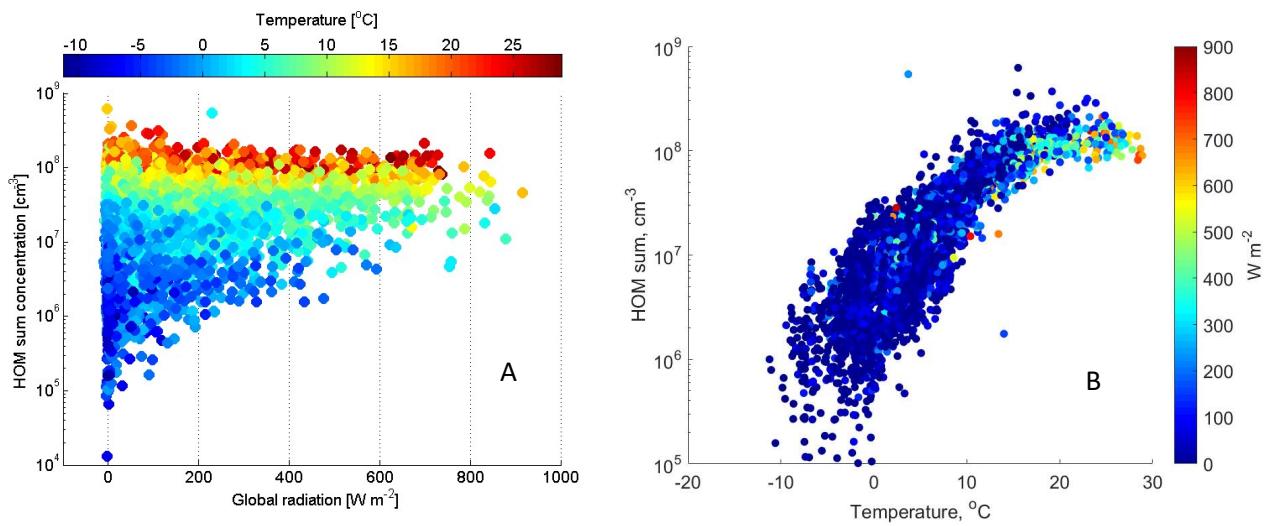
270 When analyzing the monthly aerosol precursor profiles in Figure 4, we observe that the springtime atmosphere
 271 is abundant in SA and IA that have the highest median concentrations in April. MSA and HOMs concentrations
 272 peak in June. The MSA behavior is likely connected to the algae blooms in the Arctic Ocean that peak around
 273 midsummer. The marine emissions of DMS oxidize in the atmosphere to sulfur dioxide, SA and to MSA (e.g.
 274 Park et al., 2018). However, SA has more sources, since SO_2 , has also anthropogenic sources. At SMEAR I

275 we cannot distinguish these sources precisely (more discussion about this in Sect 3.3.). It is notable that the
 276 peak concentration of MSA is earlier in the day in April, around 12 o'clock noon, than it is later in the year
 277 when the peak concentration is reached in the late afternoon (from 13:00 to 18:00 o'clock). There are no
 278 previous MSA concentration reports from the SMEAR stations but some gas phase MSA results from
 279 Antarctica show maximum of $1 \cdot 10^5 \text{ cm}^{-3}$ to $1 \cdot 10^7 \text{ cm}^{-3}$ concentrations (Jokinen et al., 2018; Mauldin et al.,
 280 2010, 2004). In the Arctic, around half a year measurement series from Villum in Greenland show MSA
 281 concentrations $<10^6 \text{ cm}^{-3}$ (Mar – Sep) and from 10^5 cm^{-3} to 10^7 cm^{-3} with the highest concentrations in June in
 282 Ny-Ålesund (Beck et al., 2021). Our measurements from the SMEAR I fall in between these extremes.

283

284 **Figure 4.** Monthly median concentrations of A) sulfuric acid, B) methane sulfonic acid, C) iodic acid and d)
 285 the sum of HOMs in the 300 to 600 Th mass range.

286 These are also the first reported results of IA measurements from SMEAR I and they represent a continental
 287 location, the White Sea coast being ~ 130 km South East and the Barents Sea ~ 230 km to the North East. IA,
 288 iodine and iodic oxoacid emissions are commonly connected to coastal or marine environments (Baccarini et
 289 al., 2020; McFiggans et al., 2010; O'dowd et al., 2002; Sipilä et al., 2016; Yu et al., 2019) due to the fact that
 290 the ocean surface is a major source of iodine (Carpenter et al., 2013). While it is not precisely known how IA
 291 forms in the gas phase, its formation requires oxidation of the initial precursors (IO_x species) by ozone and the
 292 last steps of its formation is potentially driven by reaction with OH (Chameides and Davis, 1980).

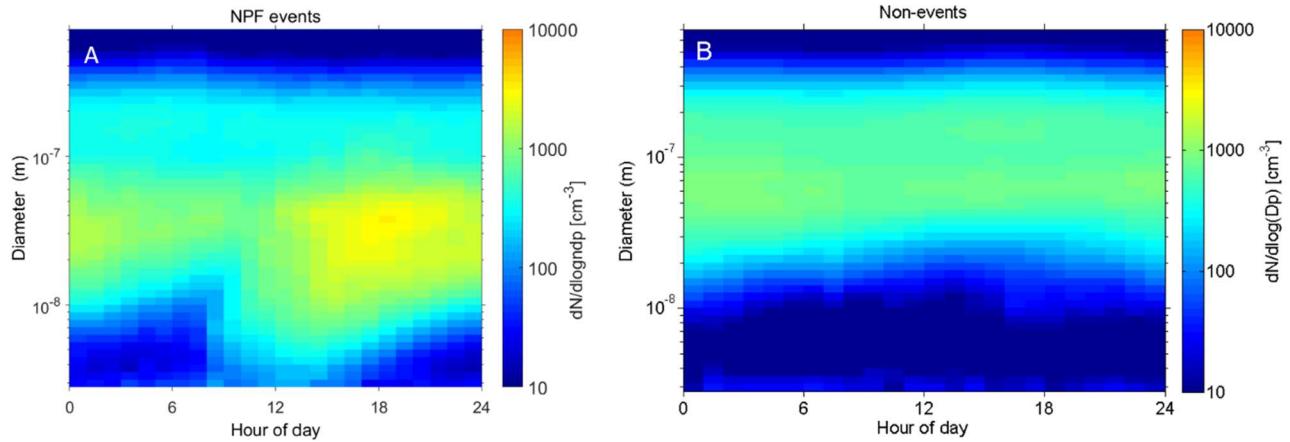

293 Compared to the other precursor compounds, IA has the most stable concentration between seasons, with a
 294 long increasing period in April during the snow-melting season. This is likely due to the simultaneously
 295 increasing ozone mixing ratios (Figure 2D) and solar radiation. In contrast to measurements from the Arctic
 296 Ocean (Baccarini et al., 2020), we did not observe a clear increase in IA concentration in the autumn due to
 297 freezing. We find that September had only marginally higher concentrations compared to August or July

298 (Figure 4). Winter measurements would be necessary to estimate the effect of freezing in the concentration of
299 IA.

300 The source of IA on a continental site like the SMEAR I is an interesting subject to speculate. The observed
301 HIO₃ peak in April could indicate that there could be an influence from air masses exposed to Arctic marine
302 environment. The increasing temperature in the spring induce a higher activity of phytoplankton in the nearby
303 Barents Sea and Norwegian Sea that remains ice free, even during the winter, and could result in the higher
304 emission of precursors for IA (Lai et al., 2011). Higher temperature would also result in more efficient
305 advection, which would transport species faster from emission points to SMEAR I. The calculated back
306 trajectories support the idea that iodine-rich air masses arrive from the West or northwest to SMEAR I
307 (discussed in details in Sect 3.3. and Figure 10). This would be the hypothesis of the long-range transport for
308 source of IA in SMEAR I. On the contrary, the strong diurnal variation on IA concentration seen as one order
309 of magnitude difference between noon and midnight, suggests fast on-site chemistry, which is not consistent
310 with long-range transport of IA, but its precursor such as CH₃I (Bell et al., 2002). Also, IA life time against
311 condensational loss is expected to be short with the condensation sink at the site (Figure 2H), in the range of
312 ~15 minutes, this suggests that HIO₃ is formed close to or at the site of measurements. Land vegetation is a
313 source of methyl iodide (CH₃I) that could be the source of IA at SMEAR I at least during summer (Sive et al.,
314 2007).

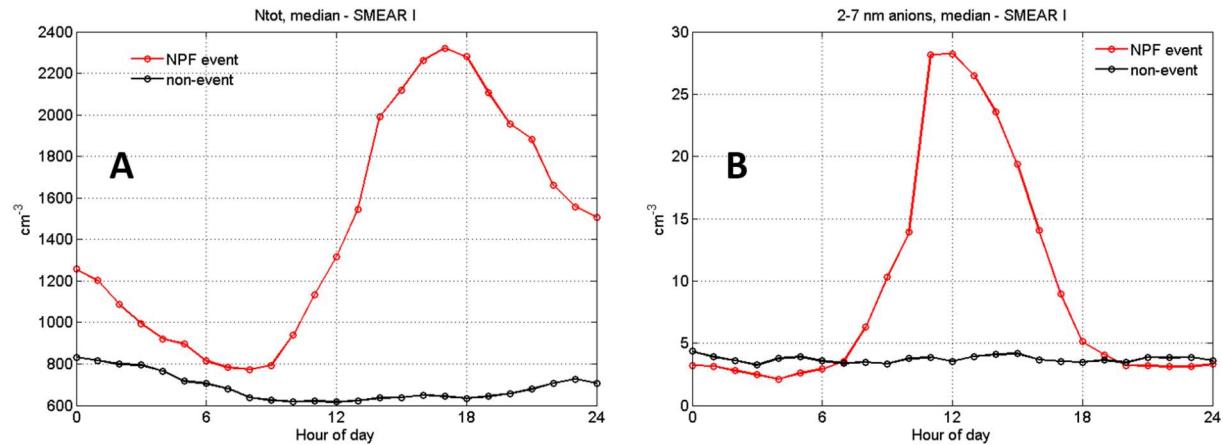
315 Most interestingly, we seem to have an emission source of iodine during all seasons. There are no reports on
316 iodine emissions from continental snow, but we hypothesize that one possible source of iodine in SMEAR I
317 during spring is the snowpack. This is possible due to the deposition of sea salts on snow particularly during
318 dark periods that activate during the spring and are re-emitted to the atmosphere through heterogeneous
319 photochemistry of iodide, and iodate ions (Raso et al., 2017; Spolaor et al., 2019). There are also possible
320 forest emissions of iodinated organics, similar to New England growing season (Raso et al., 2017) that might
321 be enhanced by higher temperature or high ozone concentrations. This type of emissions of iodinated gases,
322 or their implications, have not been studied before but these observations might direct research into emission
323 studies at SMEAR I, since our findings indicate that vegetation could be an emission source of iodine.

324 The sum of HOMs at SMEAR I reaches up to a median $\sim 5 \cdot 10^7 \text{ cm}^{-3}$ concentration in the summer. This is
325 about one order of magnitude lower than the concentrations reported from the SMEAR II station in Hyytiälä
326 (Yan et al., 2016) about 700 km south, where HOMs are at a maximum of $\sim 6 \cdot 10^8 \text{ cm}^{-3}$ during spring daytime.
327 It is striking how well the concentration of HOMs follow the air temperature (Figure 5) but seem to level above
328 circa 18°C. From the temperature dependency, we can speculate that most VOCs emitted by vegetation close
329 to Väriö could be monoterpenes due to their strong temperature dependency. This is supported by emission
330 rate measurements of VOCs showing that in northern Finland 60 to 85 % are accounted by α - and β -pinene
331 emissions (Tarvainen et al., 2004). However, sesquiterpene emissions from nearby wetlands could contribute
332 to HOMs since their emissions are also temperature dependent and they are emitted by the boreal wetlands
333 (Hellén et al., 2020; Seco et al., 2020). As HOMs are oxidation products of VOCs, it is evident that the HOM
334 concentration will increase in SMEAR I in the future with the increasing VOC emissions, including isoprene,
335 monoterpenes and sesquiterpenes, due to temperature rise (Ghirardo et al., 2020; Tiiva et al., 2008; Valolahti
336 et al., 2015).


338 **Figure 5.** HOM concentration (cm^{-3}) measured at SMEAR I (sum of mass range from 300 to 600 Th) as a
 339 function of global radiation (W m^{-2}) in panel A and as a function of temperature in panel B. The color bar
 340 represents air temperature in $^{\circ}\text{C}$ (A) and global radiation (B). The plot includes all data measured from April
 341 to October 2019.

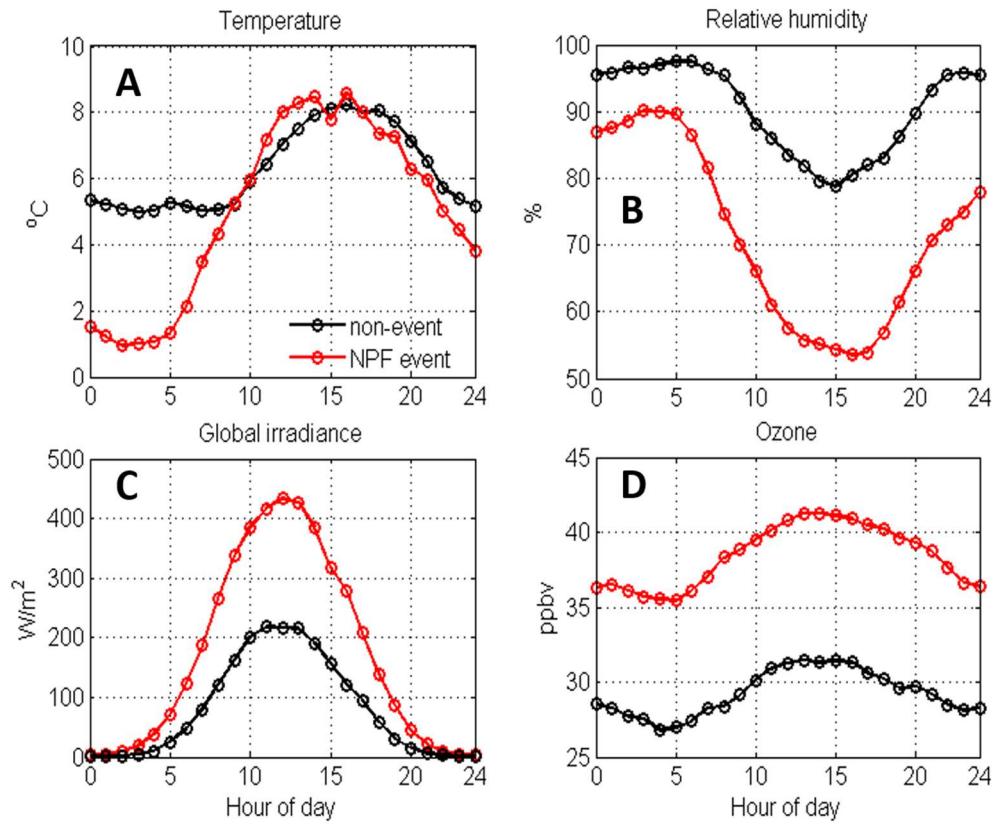
342 3.3. New particle formation events;

343 During the measurement period from 4 April 2019 to 27 October 2019, we observed 36 regional NPF events
 344 in total and our CI-APi-TOF data covers 33 of these NPF days. During the same period, we observed 75 non-
 345 event days without clear signs of particle formation (Maso et al., 2005). Rest of the days during our
 346 measurement period were defined as undefined, bad data or partly bad data days and these were excluded from
 347 our analysis. In this chapter, we focus on trace gases, meteorological parameters and detected aerosol precursor
 348 gases during NPF days and compare them to non-event days.


349 We plot NPF and non-event days median average number size distribution of aerosol particles (from 3 to 800
 350 nm) in Figure 6, and the total number concentration and the 2–7 nm air ion concentrations in Figure 7. The
 351 whole measurement period is represented already in Figure 2. In figure 6, in the case of NPF event days we
 352 see a distinct “banana” plot, where small < 10 nm, particles are forming and growing with time. The DMPS
 353 data is plotted from 2.82 nm to 708 nm but note that the channels below ~ 5 nm have much larger uncertainties
 354 than those above. The median event start time is located around noon and the growth of particles continues
 355 steadily until midnight. However, when looking at individual days, there is a large variation in the start-times
 356 of the particle formation, some events start early in the morning or even in the night, while some start in late
 357 afternoon. Non-event days show very few particles in the < 10 nm size bins.

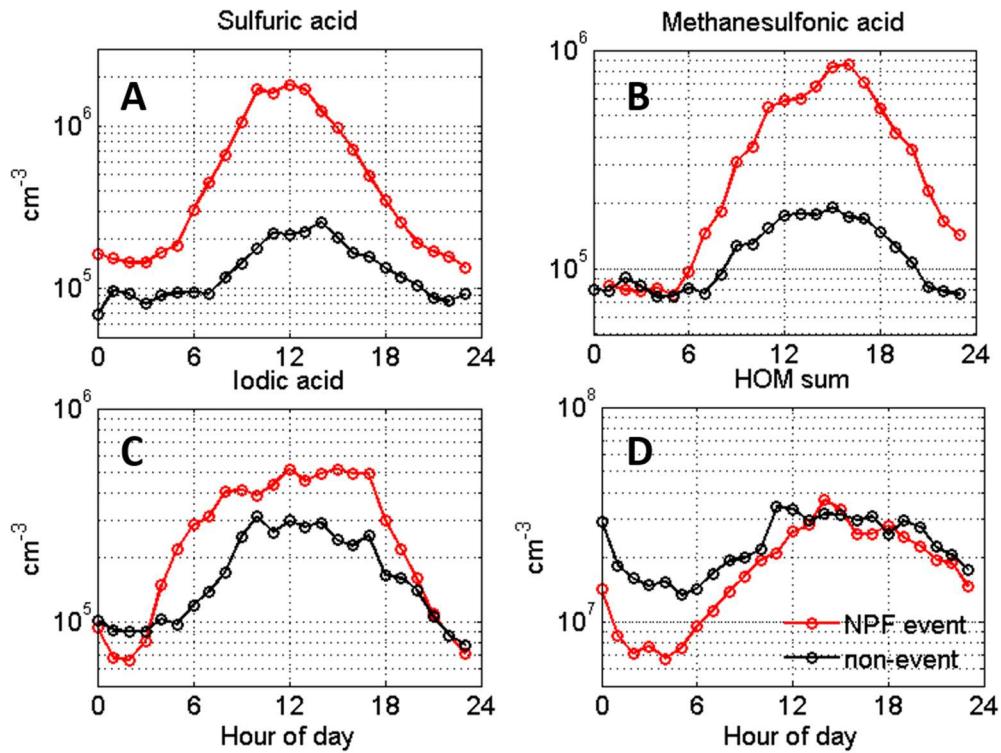
358 The total number of particles measured at the site during NPF events rises up to $\sim 2400 \text{ cm}^{-3}$ reaching the
 359 maximum concentration at ~ 17 o’clock in the evening. This shows that NPF is an important source of aerosol
 360 particles in Värrö as previously reported (Vehkamäki et al., 2004). Non-event days have clearly lower particle
 361 concentrations throughout the day, staying lower than 1000 cm^{-3} on average. The measured 2–7 nm anion
 362 concentrations stay very low during non-event days. As intermediate ions form mainly during NPF, their
 363 concentrations are used as indicator of NPF events in boreal environments (Leino et al., 2016). On NPF days,
 364 we see a peak in the anion concentration at noon, the concentration being about six times higher than during
 365 non-event days. This indicates that negative ions may play a role in SMEAR I particle formation events.

366


367 **Figure 6.** This figure depicts the median number size distribution during all observed NPF events ($n = 33$)
 368 and non-events ($n = 75$) during our measurement period. The data is collected with a DMPS and size bins from
 369 2.82 to 708 nm are plotted.

370

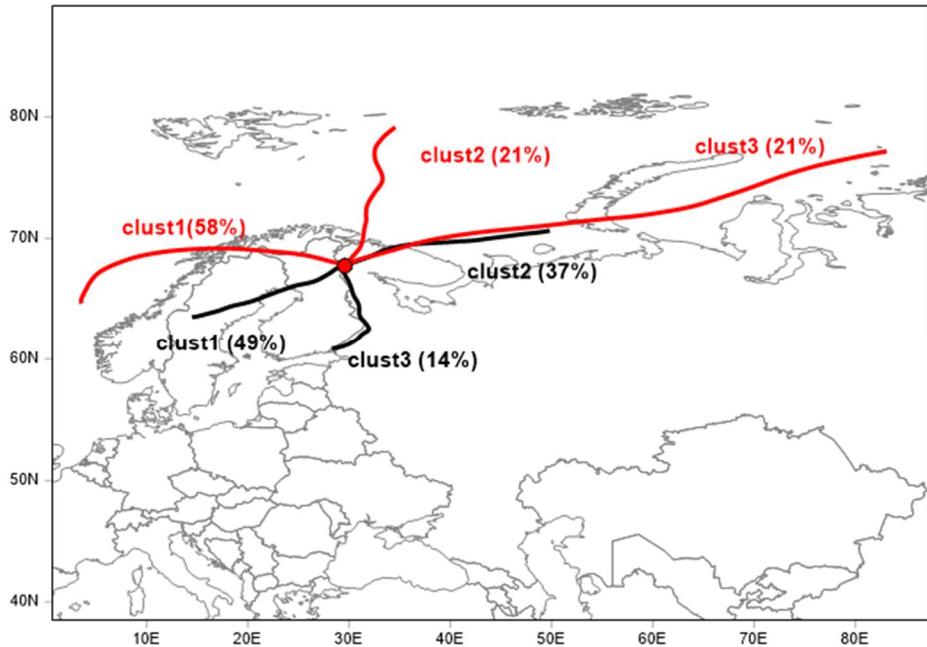
371 **Figure 7.** Median total particle concentration (N_{tot}) in A) and 2-7 nm negative ion concentrations in B) at
 372 SMEAR I during NPF event (red, $n = 33$) and non-event days (black, $n = 75$). The total particle number
 373 concentration is recorded with a CPC and air ion concentrations with a NAIS.


374 Figure 8 shows the differences in temperature, RH, global radiation and ozone mixing ratios between NPF
 375 event days (in red) and non-event days (black). In Värrö, NPF events preferably happen in relatively low
 376 temperatures (1 – 8 °C) with a fast temperature rise in the early morning hours, lower and decreasing RH,
 377 dropping from 90% to ~55 %, during the NPF days compared to non-event days. NPF days have clearly higher
 378 global irradiance values (~450 m^{-2} vs. ~200 m^{-2}) and about 10 ppbv higher ozone concentrations than non-
 379 event days. The meteorological conditions favor NPF are thus similar than at the SMEAR II station in Hyytiälä,
 380 where sunny clear sky days with low RH and condensation sink along with wind directions from the cleaner
 381 northerly sector are forecasting NPF events (Niemi et al., 2014).

382

383 **Figure 8.** Average temperature ($^{\circ}\text{C}$) in panel A), relative humidity (%) in B), global radiation (W m^{-2}) in C)
 384 and ozone concentration (ppbv) in D), all measured at SMEAR I during NPF event (red, $n = 33$) and non-event
 385 days (black, $n = 75$).

386 Next, we show the concentrations of aerosol precursor compounds during NPF and non-event days in figure
 387 9. The SA concentrations closely follow the solar irradiation profile (Figure 8C). Similarly to the results
 388 obtained from the high Arctic, Svalbard, also MSA is elevated during NPF events, especially during summer,
 389 and could possibly contribute aerosol growth (Beck et al., 2021). We observe close to an order of magnitude
 390 higher MSA concentration between the events and non-events days, highlighting the dominant role of sulfur
 391 species to nucleation and growth in general at this site. In order to attribute the source of sulfur species and IA
 392 during the event and non-event days we performed a cluster analysis using a geographical information system
 393 (GIS) based software, Trajstat (Wang et al., 2009). The NCEP/NCAR reanalysis data was used as
 394 meteorological input for the model (Kalnay et al., 1996). The simulations were performed at an arrival height
 395 of 250 m. a.g.l. SMEAR I station is located approximately at similar height (390 m a.s.l), thus representing the
 396 air masses arriving at the station even during strong temperature inversions (Sipilä et al., 2021).


397

398 **Figure 9.** Aerosol precursor gases in SMEAR I during NPF (red, $n = 33$) and non-event days (black, $n = 75$).
 399 The data is hourly median average.

400 Higher concentrations of aerosol precursors SA, MSA and IA are connected to the air masses that arrive to
 401 SMEAR I from the Arctic Ocean (Figure 10). Cluster analysis of air mass back trajectories arriving to Värrö
 402 during NPF days clearly shows that most NPF events occur when the air mass was exposed to marine
 403 environments within the last 72 hours. In our case, mainly the Norwegian Sea in the West (58 %) or the Barents
 404 (21 %) and Kara Seas (21 %) in the Arctic Ocean. This seems relevant to our results since the marine
 405 environment in the North is emitting large amounts of DMS, a precursor for SA and MSA (Levasseur, 2013)
 406 and iodine species that further oxidize to IA (Baccarini et al., 2020; Sherwen et al., 2016). A fraction of air
 407 masses that are connected to both NPF (21 %) and non-event days (37 %) are coming to SMEAR I from the
 408 Kola peninsula that is connected to high SO_2 emissions, higher particle number concentrations and winter time
 409 NPF events (Sipilä et al., 2021). Most non-event air masses arrive to Värrö from South-West (49 %) crossing
 410 northern Finland and Sweden.

411 In addition from Figure 9 we observe that we cannot rule out the contribution of IA in NPF in SMEAR I, but
 412 with the recorded concentration, it usually is not enough to initiate NPF (He et al., 2021). Although IA
 413 concentrations are slightly larger on NPF days than non-event days, the rise in concentration happens already
 414 early in the morning, clearly before the average event start-time. The possible source of IA was discussed
 415 earlier in Sect 3.2 and we hypothesize that the source of iodine at SMEAR I could be both; i) the long distance
 416 transport from the Arctic Ocean combined to ii) the local emissions from the snow pack and vegetation. The
 417 hypothesis of vegetation emitted iodine species is supported by the minor difference between NPF (mostly
 418 marine) and non-event day (mostly continental) concentrations. At SMEAR I, HOMs are the only species that
 419 are at a (marginally) lower level during non-event than NPF days indicating that the total HOM concentration
 420 does not determine when NPF events occur. However, this does not exclude the possible participation of
 421 certain HOMs in NPF together with sulfur compounds (Lehtipalo et al., 2018) or at later stages of the NPF
 422 process, especially during particle growth. However, pure biogenic nucleation involving ions and HOMs
 423 (Kirkby et al., 2016) seems not to be a major NPF pathway in Värrö.

424 Our measurements do not unveil the detailed mechanism of nucleation or growth of particles. We lack
 425 measurements of ambient bases that are needed to stabilize SA clusters in ambient conditions (e.g. Almeida et
 426 al., 2013; Jen et al., 2014; Kirkby et al., 2011; Kürten et al., 2014; Myllys et al., 2018). With the given
 427 observations comparing NPF days with non-event days it is likely that most regional NPF events require SA,
 428 but the NPF process can involve other compounds as well, especially IA and MSA, which show higher
 429 concentrations on NPF days, very similarly that the results reported from Ny-Ålesund (Beck et al., 2021).

430

431 **Figure 10.** Trajectory cluster analysis of 72-hour back trajectories simulated at arrival height of 250 m a.g.l
 432 and the NCEP/NCAR reanalysis data used as meteorological input. Red = NPF event, black = non-NPF

433 4. Conclusions:

434 We report ~7 months of nitrate-based CI-APi-TOF measurements of SA, MSA, IA and HOM from a remote
 435 sub-Arctic field station SMEAR I in Finland. The measurements aim to increase our understanding of the
 436 Arctic aerosol forming precursors and atmospheric chemistry in more details. The reason for measuring these
 437 compounds ~150 km north of the Arctic Circle is simple; the Arctic is warming twice the speed as the planet
 438 on average. Lapland is already facing environmental changes when e.g. woody plants disperse further north
 439 and influence the tundra ecosystem (Aakala et al., 2014; Kemppinen et al., 2021). These changes will in turn
 440 affect the emissions of aerosol precursor gases, which may have feedback effects on to the climate (e.g.
 441 Kulmala et al., 2020; Paasonen et al., 2013).

442 The area surrounding SMEAR I station has snow cover for almost 8 months a year. Accumulating snow during
 443 the autumn is a good reservoir to e.g. halogens, similarly than in the high Arctic (and Arctic Ocean)
 444 environment. The snow pack also acts as a cover for biogenic emissions entering the atmosphere from the
 445 ground. Any changes in the temperature and snow cover in the sub-Arctic regions will effect on atmospheric
 446 chemistry and composition that are undeniably changing the way aerosol particles form and what their number
 447 concentration is in the region.

448 In this study, we report seasonal and monthly variations of SA, MSA, IA and HOM concentrations and find
 449 all these compounds abundant in springtime. SA has a peak concentration in the spring, decreasing for the rest
 450 of the seasons. We detect high concentrations of MSA and IA that are usually connected to marine and coastal
 451 environments, although Värrö is located ~130 km from the nearest coast of the White Sea. While MSA is
 452 abundant in the spring, summer and decreases to limit of detection levels for autumn, IA continues at the same

453 concentration throughout the seasons. It seems likely that these two compounds are connected to emissions
454 from phytoplankton or the Arctic ice pack and arrive to SMEAR I by long transport routes. In the case of IA,
455 we suggest that the source of iodine emissions is a combination of transport and local emission from the
456 continental snow pack and vegetation at the site. Further work is needed to confirm this hypothesis.

457 The most striking correlation we found in HOM concentrations and ambient air temperature. The vegetation
458 at SMEAR I is the source of VOCs even in the snow covered spring season and these volatile gases are oxidized
459 into HOMs with different reaction rates depending on the oxidant. In the case of such strong temperature
460 controlled HOM concentrations, we conclude that HOMs in the mass range of 300 – 600 Th are most likely
461 products of monoterpene oxidation.

462 We also studied the abundance of these aerosol precursors separately during NPF and non-event days. We
463 observed that new particles at SMEAR I preferably form in relatively low temperatures (< 10°C), low RH that
464 decreases with rising temperature during the day (to a minimum of ~55%), ~10 ppbv higher ozone mixing
465 ratio than during non-event days, high SA concentration in the morning and high MSA concentrations in the
466 afternoon. Cluster analysis of air masses show that NPF usually happens in marine air masses travelling to the
467 site from North West – West. All together, these are the first long term measurements of aerosol forming
468 precursor from the sub-arctic region helping us to understand atmospheric chemical processes and aerosol
469 formation in the rapidly changing Arctic.

470 **Data availability:**

471 All meteorological parameters, trace gas concentrations and aerosol data we downloaded directly from
472 smartSMEAR open access database (<https://smear.avaa.csc.fi/>). Mass spectrometric data, event analysis,
473 condensation sink and anion concentration data are available on Zenodo,
474 <https://doi.org/10.5281/zenodo.5879549>.

475 **Author contribution:**

476 TJ, MS, TP and MK designed the experiments at SMEAR I and MS, NS, KN and TL carried them out. IY
477 made the NPF event analysis and RT calculated the back trajectories. TJ and KL wrote the manuscript with
478 contributions from all co-authors.

479 **Competing interests:**

480 Markku Kulmala is editor of ACP. Tuukka Petäjä is editor of ACP.

481 **Acknowledgements:**

482 We would like to thank the technical staff in Kumpula and Väriö, who keep the long-term measurements
483 going and helped with data collection, instrument calibrations, logistics and in data quality control and
484 assurance during the year. We acknowledge the important role our collaborators have in scientific discussion
485 and a special thanks goes to Alfonso Saiz-Lopez for IA related discussion that helped to draft this article. We
486 thank the ACTRIS CiGas-UHEL unit for mass spectrometer calibration support and the tofTools team for data
487 analysis software.

488 **Financial support:**

489 The Academy of Finland via Center of Excellence in Atmospheric Sciences (project no. 272041) and European
490 Research Council via ATM-GTP 266 (742206), GASPARCON (714621) and Flagship funding (grant no.
491 337549) funded this work. We also received funding from the Academy of Finland (project no. 1235656,
492 296628, 316114, 315203, 307537, 325647, 33397, 334792 and 334514) “Quantifying carbon sink,
493 CarbonSink+ and their interaction with air quality” and Academy professorship (grant no. 302958). This work
494 was further supported by the European Commission via via project iCUPE (Integrative and Comprehensive
495 Understanding on Polar Environments, No 689443), the EMME-CARE project which received funding from
496 the European Union's Horizon 2020 Research and Innovation Programme, under grant agreement no. 856612,

497 Regional Council of Lapland (Väriön tutkimusaseman huippututkimus hyödyntämään Itä-Lapin
498 elinkeinoelämää, VÄRI, A74190) and Aatos Erkko Foundation.

499 **References:**

500 Aakala, T., Hari, P., Dengel, S., Newberry, S. L., Mizunuma, T. and Grace, J.: A prominent stepwise
501 advance of the tree line in north-east Finland, *J. Ecol.*, 102(6), 1582–1591, doi:10.1111/1365-2745.12308,
502 2014.

503 Ahonen, T., Aalto, P., Rannik, Ü., Kulmala, M., Nilsson, E. D., Palmroth, S., Ylitalo, H. and Hari, P.:
504 Variations and vertical profiles of trace gas and aerosol concentrations and CO₂ exchange in eastern
505 Lapland, *Atmos. Environ.*, 31(20), 3351–3362, doi:10.1016/S1352-2310(97)00151-9, 1997.

506 Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K., Kupiainen-Määttä, O., Praplan, A. P., Adamov, A.,
507 Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M., Downard, A., Dunne,
508 E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M.,
509 Henschel, H., Jokinen, T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurtén, T.,
510 Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppä, J., Loukonen, V., Makhmutov, V.,
511 Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F., Riipinen, I.,
512 Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld,
513 J. H., Simon, M., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J., Tsagkogeorgas, G.,
514 Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H.,
515 Williamson, C., Wimmer, D., Ye, P., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger,
516 U., Worsnop, D. R., Vehkamäki, H. and Kirkby, J.: Molecular understanding of sulphuric acid-amine
517 particle nucleation in the atmosphere, *Nature*, 502(7471), 359–363, doi:10.1038/nature12663, 2013.

518 Baccarini, A., Karlsson, L., Dommen, J., Duplessis, P., Vüllers, J., Brooks, I. M., Saiz-Lopez, A., Salter, M.,
519 Tjernström, M., Baltensperger, U., Zieger, P. and Schmale, J.: Frequent new particle formation over the high
520 Arctic pack ice by enhanced iodine emissions, *Nat. Commun.*, 11(1), doi:10.1038/s41467-020-18551-0,
521 2020.

522 Beck, L. J., Sarnela, N., Junninen, H., Hoppe, C. J. M. M., Garmash, O., Bianchi, F., Riva, M., Rose, C.,
523 Peräylä, O., Wimmer, D., Kausiala, O., Jokinen, T., Ahonen, L., Mikkilä, J., Hakala, J. J., He, X.-C. C.,
524 Kontkanen, J., Wolf, K. K. E. E., Cappelletti, D., Mazzola, M., Traversi, R., Petroselli, C., Viola, A. P.,
525 Vitale, V., Lange, R., Massling, A., Nøjgaard, J. K., Krejci, R., Karlsson, L., Zieger, P., Jang, S. S., Lee, K.,
526 Vakkari, V., Lampilahti, J., Thakur, R. C., Leino, K., Kangasluoma, J., Duplissy, E.-M. M., Siivola, E.,
527 Marbouti, M., Tham, Y. J., Saiz-Lopez, A., Petäjä, T., Ehn, M., Worsnop, D. R., Skov, H., Kulmala, M.,
528 Kerminen, V.-M. M., Sipilä, M., Nøjgaard, J., Krejci, R., Karlsson, L., Zieger, P., Jang, S. S., Lee, K.,
529 Vakkari, V., Lampilahti, J., Thakur, R. C., Leino, K., Kangasluoma, J., Duplissy, E.-M. M., Siivola, E.,
530 Marbouti, M., Tham, Y. J., Saiz-Lopez, A., Petäjä, T., Ehn, M., Worsnop, D. R., Skov, H., Kulmala, M.,
531 Kerminen, V.-M. M. and Sipilä, M.: Differing Mechanisms of New Particle Formation at Two Arctic Sites,
532 *Geophys. Res. Lett.*, 48(4), e2020GL091334, doi:10.1029/2020GL091334, 2021.

533 Bell, N., Hsu, L., Jacob, D. J., Schultz, M. G., Blake, D. R., Butler, J. H., King, D. B., Lobert, J. M. and
534 Maier-Reimer, E.: Methyl iodide: Atmospheric budget and use as a tracer of marine convection in global
535 models, *J. Geophys. Res. Atmos.*, 107(D17), ACH 8-1, doi:10.1029/2001JD001151, 2002.

536 Berndt, T., Richters, S., Jokinen, T., Hyttinen, N., Kurtén, T., Otkjær, R. V., Kjaergaard, H. G., Stratmann,
537 F., Herrmann, H., Sipilä, M., Kulmala, M. and Ehn, M.: Hydroxyl radical-induced formation of highly
538 oxidized organic compounds, *Nat. Commun.*, 7, 13677, doi:10.1038/ncomms13677, 2016.

539 Bianchi, F., Garmash, O., He, X., Yan, C., Iyer, S., Rosendahl, I., Xu, Z., Rissanen, M. P., Riva, M., Taipale,
540 R., Sarnela, N., Petäjä, T., Worsnop, D. R., Kulmala, M., Ehn, M. and Junninen, H.: The role of highly
541 oxygenated molecules (HOMs) in determining the composition of ambient ions in the boreal forest, *Atmos.*
542 *Chem. Phys.*, 17(22), 13819–13831, doi:10.5194/acp-17-13819-2017, 2017.

543 Bradshaw, C. J. A. and Warkentin, I. G.: Global estimates of boreal forest carbon stocks and flux, *Glob.*
544 *Planet. Change*, 128, 24–30, doi:10.1016/j.gloplacha.2015.02.004, 2015.

545 Brandt, J. P., Flannigan, M. D., Maynard, D. G., Thompson, I. D. and Volney, W. J. A.: An introduction to
546 Canada's boreal zone: Ecosystem processes, health, sustainability, and environmental issues1, *Environ. Rev.*,
547 21(4), 207–226, doi:10.1139/er-2013-0040, 2013.

548 Carpenter, L. J., MacDonald, S. M., Shaw, M. D., Kumar, R., Saunders, R. W., Parthipan, R., Wilson, J. and
549 Plane, J. M. C.: Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine, *Nat.*
550 *Geosci.*, 6(2), 108–111, doi:10.1038/ngeo1687, 2013.

551 Chameides, W. L. and Davis, D. D.: Iodine: Its possible role in tropospheric photochemistry, *J. Geophys.*
552 *Res. Ocean.*, 85(C12), 7383–7398, doi:10.1029/JC085IC12P07383, 1980.

553 Charlson, R. J., Lovelock, J. E., Andreae, M. O. and Warren, S. G.: Oceanic phytoplankton, atmospheric
554 sulphur, cloud albedo and climate, *Nature*, 326(6114), 655–661, doi:10.1038/326655a0, 1987.

555 Dal Maso, M., Sogacheva, L., Aalto, P. P., Riipinen, I., Komppula, M., Tunved, P., Korhonen, L., Suur-Uski,
556 V., Hirsikko, A., KurtéN, T., Kerminen, V.-M. M., Lihavainen, H., Viisanen, Y. Y., Hansson, H.-C. C.,
557 Kulmala, M., Maso, M. D., Sogacheva, L., Aalto, P. P., Riipinen, I., Komppula, M., Tunved, P., Korhonen,
558 L., Suur-Uski, V., Hirsikko, A., KurtéN, T., Kerminen, V.-M. M., Lihavainen, H., Viisanen, Y. Y., Hansson,
559 H.-C. C., Kulmala, M., Dal Maso, M., Sogacheva, L., Aalto, P. P., Riipinen, I., Komppula, M., Tunved, P.,
560 Korhonen, L., Suur-Uski, V., Hirsikko, A., KurtéN, T., Kerminen, V.-M. M., Lihavainen, H., Viisanen, Y.
561 Y., Hansson, H.-C. C., Kulmala, M.: Aerosol size distribution measurements at four Nordic field stations:
562 Identification, analysis and trajectory analysis of new particle formation bursts, *Tellus, Ser. B Chem. Phys.*
563 *Meteorol.*, 59(3), 350–361, doi:10.1111/j.1600-0889.2007.00267.x, 2007.

564 Dall Osto, M., Geels, C., Beddows, D. C. S., Boertmann, D., Lange, R., Nøjgaard, J. K., Harrison, R. M.,
565 Simo, R., Skov, H. and Massling, A.: Regions of open water and melting sea ice drive new particle formation
566 in North East Greenland., *Sci. Rep.*, 8(1), 6109, doi:10.1038/s41598-018-24426-8, 2018.

567 Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F.,
568 Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I.-H. H., Rissanen, M., Jokinen, T.,
569 Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén, T., Nielsen, L. B., Jørgensen, S.,
570 Kjaergaard, H. G., Canagaratna, M., Maso, M. D., Berndt, T., Petäjä, T., Wahner, A., Kerminen, V.-M. M.,
571 Kulmala, M., Worsnop, D. R., Wildt, J. and Mentel, T. F.: A large source of low-volatility secondary organic
572 aerosol, *Nature*, 506(7489), 476–479, doi:10.1038/nature13032, 2014.

573 Ghirardo, A., Lindstein, F., Koch, K., Buegger, F., Schloter, M., Albert, A., Michelsen, A., Winkler, J. B.,
574 Schnitzler, J.-P. and Rinnan, R.: Origin of volatile organic compound emissions from subarctic tundra under
575 global warming, *Glob. Chang. Biol.*, 26(3), 1908–1925, doi:10.1111/GCB.14935, 2020.

576 Hari, P., Aalto, P., Hämeri, K., Kulmala, M., Lahti, T., Luoma, S., Palva, L., Pohja, T., Pulliainen, E.,
577 Siivola, E. and Vesala, T.: Air pollution in eastern Lapland: challenge for an environmental measurement
578 station, *Silva Fenn.*, 28(1), 29–39, doi:10.14214/SF.A9160, 1994.

579 He, X.-C., Tham, Y. J., Dada, L., Wang, M., Finkenzeller, H., Stolzenburg, D., Iyer, S., Simon, M., Kürten,
580 A., Shen, J., Rörup, B., Rissanen, M., Schobesberger, S., Baalbaki, R., Wang, D. S., Koenig, T. K., Jokinen,
581 T., Sarnela, N., Beck, L. J., Almeida, J., Amanatidis, S., Amorim, A., Ataei, F., Baccarini, A., Bertozi, B.,
582 Bianchi, F., Brilke, S., Caudillo, L., Chen, D., Chiu, R., Chu, B., Dias, A., Ding, A., Dommen, J., Duplissy,
583 J., Haddad, I. El, Carracedo, L. G., Granzin, M., Hansel, A., Heinritzi, M., Hofbauer, V., Junninen, H.,
584 Kangasluoma, J., Kemppainen, D., Kim, C., Kong, W., Krechmer, J. E., Kvashin, A., Laitinen, T.,
585 Lamkaddam, H., Lee, C. P., Lehtipalo, K., Leiminger, M., Li, Z., Makhmutov, V., Manninen, H. E., Marie,
586 G., Marten, R., Mathot, S., Mauldin, R. L., Mentler, B., Möhler, O., Müller, T., Nie, W., Onnela, A., Petäjä,
587 T., Pfeifer, J., Philippov, M., Ranjithkumar, A., Saiz-Lopez, A., Salma, I., Scholz, W., Schuchmann, S.,
588 Schulze, B., Steiner, G., Stozhkov, Y., Tauber, C., Tomé, A., Thakur, R. C., Väisänen, O., Vazquez-Pufleau,
589 M., Wagner, A. C., Wang, Y., Weber, S. K., Winkler, P. M., Wu, Y., Xiao, M., Yan, C., Ye, Q., Ylisirniö,
590 A., Zauner-Wieczorek, M., Zha, Q., Zhou, P., Flagan, R. C., Curtius, J., Baltensperger, U., Kulmala, M.,
591 Kerminen, V.-M., Kurtén, T., et al.: Role of iodine oxoacids in atmospheric aerosol nucleation, *Science* (80-
592), 371(6529), 589–595, doi:10.1126/SCIENCE.ABE0298, 2021.

593 Hellén, H., Schallhart, S., Praplan, A., Tykkä, T., Aurela, M., Lohila, A. and Hakola, H.: Terpenoid

594 measurements at a Northern wetland revealed a strong source of sesquiterpenes, *Atmos. Chem. Phys.*
595 *Discuss.*, 1–20, doi:10.5194/ACP-2019-1154, 2020.

596 Hyttinen, N., Kupiainen-Määttä, O., Rissanen, M. P., Muuronen, M., Ehn, M. and Kurtén, T.: Modeling the
597 Charging of Highly Oxidized Cyclohexene Ozonolysis Products Using Nitrate-Based Chemical Ionization, *J.*
598 *Phys. Chem. A*, 119(24), 6339–6345, 2015.

599 IPCC, F. assessment report: Fifth Assessment Report - Climate Change 2013, IPCC, Fifth Assess. Rep. -
600 Clim. Chang. [online] Available from: <http://www.ipcc.ch/report/ar5/wg1/>, 2013.

601 Jen, C. N., McMurry, P. H. and Hanson, D. R.: Stabilization of sulfuric acid dimers by ammonia,
602 methylamine, dimethylamine, and trimethylamine, *J. Geophys. Res. Atmos.*, 119(12), 7502–7514,
603 doi:10.1002/2014JD021592, 2014.

604 Jokinen, T., Sipilä, M., Junninen, H., Ehn, M., Lönn, G., Hakala, J., Petäjä, T., Mauldin, R. L., Kulmala, M.
605 and Worsnop, D. R.: Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF,
606 *Atmos. Chem. Phys.*, 12(9), 4117–4125, doi:10.5194/acp-12-4117-2012, 2012.

607 Jokinen, T., Sipilä, M., Richters, S., Kerminen, V.-M. M., Paasonen, P., Stratmann, F., Worsnop, D.,
608 Kulmala, M., Ehn, M., Herrmann, H. and Berndt, T.: Rapid autoxidation forms highly oxidized RO₂ radicals
609 in the atmosphere, *Angew. Chemie Int. Ed.*, 53(52), 14596–14600, doi:10.1002/anie.201408566, 2014.

610 Jokinen, T., Kontkanen, J., Lehtipalo, K., Manninen, H. E., Aalto, J., Porcar-Castell, A., Garmash, O.,
611 Nieminen, T., Ehn, M., Kangasluoma, J., Junninen, H., Levula, J., Duplissy, J., Ahonen, L. R., Rantala, P.,
612 Heikkilä, L., Yan, C., Sipilä, M., Worsnop, D. R., Bäck, J., Petäjä, T., Kerminen, V.-M. and Kulmala, M.:
613 Solar eclipse demonstrating the importance of photochemistry in new particle formation., *Sci. Rep.*, 7,
614 45707, doi:10.1038/srep45707, 2017.

615 Jokinen, T., Sipilä, M., Kontkanen, J., Vakkari, V., Tisler, P., Duplissy, E. M., Junninen, H., Kangasluoma,
616 J., Manninen, H. E., Petäjä, T., Kulmala, M., Worsnop, D. R., Kirkby, J., Virkkula, A. and Kerminen, V. M.:
617 Ion-induced sulfuric acid–ammonia nucleation drives particle formation in coastal Antarctica, , 4(11),
618 eaat9744, doi:10.1126/SCIADV.AAT9744, 2018.

619 Junninen, H., Ehn, M., Petäjä, T., Luosujärvi, L., Kotiaho, T., Kostiainen, R., Rohner, U., Gonin, M., Fuhrer,
620 K., Kulmala, M. and Worsnop, D. R.: A high-resolution mass spectrometer to measure atmospheric ion
621 composition, *Atmos. Meas. Tech.*, 3(4), 1039–1053, doi:10.5194/amt-3-1039-2010, 2010.

622 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L. and E. Kalnay M. Kanamitsu R.
623 Kistler W. Collins D. Deaven L. Gandin M. Iredell S. Saha G. White J. Woollen Y. Zhu M. Chelliah W.
624 Ebisuzaki W. HE. Kalnay M. Kanamitsu R. Kistler W. Collins D. Deaven L. Gandin M. Iredell S. Saha G.
625 White, and D. J.: The NCEP/NCAR 40-Year Reanalysis Project, *Bull. Am. Meteorol. Soc.*, 437–472,
626 doi:[https://doi.org/10.1175/1520-0477\(1996\)077<0437:TNYRP>2.0.CO;2](https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2), 1996.

627 Kemppinen, J., Niittynen, P., Virkkula, A.-M., Happonen, K., Riihimäki, H., Aalto, J. and Luoto, M.: Dwarf
628 Shrubs Impact Tundra Soils: Drier, Colder, and Less Organic Carbon, *Ecosyst.* 2021, 1–15,
629 doi:10.1007/S10021-020-00589-2, 2021.

630 Kerminen, V.-M., Paramonov, M., Anttila, T., Riipinen, I., Fountoukis, C., Korhonen, H., Asmi, E., Laakso,
631 L., Lihavainen, H., Swietlicki, E., Svenningsson, B., Asmi, A., Pandis, S. N., Kulmala, M. and Petäjä, T.:
632 Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing
633 literature and new results, *Atmos. Chem. Phys.*, 12(24), 12037–12059, doi:10.5194/acp-12-12037-2012,
634 2012.

635 Kerminen, V., Aurela, M., Hillamo, R. E. and Virkkula, A.: Formation of particulate MSA: deductions from
636 size distribution measurements in the Finnish Arctic, *Tellus B*, 49(2), 159–171, doi:10.1034/j.1600-
637 0889.49.issue2.4.x, 1997.

638 Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., Franchin, A., Gagné, S., Ickes, L.,
639 Kürten, A., Kupc, A., Metzger, A., Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas, G.,
640 Wimmer, D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Downard, A., Ehn, M.,

641 Flagan, R. C., Haider, S., Hansel, A., Hauser, D., Jud, W., Junninen, H., Kreissl, F., Kvashin, A., Laaksonen,
642 A., Lehtipalo, K., Lima, J., Lovejoy, E. R., Makhmutov, V., Mathot, S., Mikkilä, J., Minginette, P., Mogo,
643 S., Nieminen, T., Onnela, A., Pereira, P., Petäjä, T., Schnitzhofer, R., Seinfeld, J. H., Sipilä, M., Stozhkov,
644 Y., Stratmann, F., Tomé, A., Vanhanen, J., Viisanen, Y., Vrtala, A., Wagner, P. E., Walther, H.,
645 Weingartner, E., Wex, H., Winkler, P. M., Carslaw, K. S., Worsnop, D. R., Baltensperger, U. and Kulmala,
646 M.: Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation., *Nature*,
647 476(7361), 429–433, doi:10.1038/nature10343, 2011.

648 Kirkby, J., Duplissy, J., Sengupta, K., Frege, C., Gordon, H., Williamson, C., Heinritzi, M., Simon, M., Yan,
649 C., Almeida, J. J., Trostl, J., Nieminen, T., Ortega, I. K., Wagner, R., Adamov, A., Amorim, A.,
650 Bernhammer, A.-K. K., Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X., Craven, J., Dias, A., Ehrhart,
651 S., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Hakala, J., Hoyle, C. R., Jokinen, T., Junninen, H.,
652 Kangasluoma, J., Kim, J., Krapf, M., Kurten, A., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S.,
653 Molteni, U., Onnela, A., Perakyla, O., Piel, F., Petaja, T., Praplan, A. P., Pringle, K., Rap, A., Richards, N.
654 A. D. D., Riipinen, I., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeld, J.
655 H., Sipila, M., Steiner, G., Stozhkov, Y., Stratmann, F., Tomé, A., Virtanen, A., Vogel, A. L., Wagner, A. C.,
656 Wagner, P. E., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Zhang, X., Hansel, A., Dommen, J.,
657 Donahue, N. M., Worsnop, D. R., Baltensperger, U., Kulmala, M., Carslaw, K. S., Curtius, J., Tröstl, J.,
658 Nieminen, T., Ortega, I. K., Wagner, R., Adamov, A., Amorim, A., Bernhammer, A.-K. K., Bianchi, F.,
659 Breitenlechner, M., Brilke, S., Chen, X., Craven, J., Dias, A., Ehrhart, S., Flagan, R. C., Franchin, A., Fuchs,
660 C., Guida, R., Hakala, J., Hoyle, C. R., Jokinen, T., et al.: Ion-induced nucleation of pure biogenic particles,
661 *Nature*, 533(7604), 521–526, doi:10.1038/nature17953, 2016.

662 Kulmala, M., Toivonen, A., Mäkelä, J. M. and Laaksonen, A.: Analysis of the growth of nucleation mode
663 particles observed in Boreal forest, *Tellus B*, 50(5), 449–462, doi:10.1034/j.1600-0889.1998.t01-4-00004.x,
664 1998.

665 Kulmala, M., Riipinen, I., Sipilä, M., Manninen, H. E., Petäjä, T., Junninen, H., Dal Maso, M., Mordas, G.,
666 Mirme, A., Vana, M., Hirsikko, A., Laakso, L., Harrison, R. M., Hanson, I., Leung, C., Lehtinen, K. E. J. and
667 Kerminen, V. M.: Toward direct measurement of atmospheric nucleation, *Science* (80-.), 318(5847), 89–92,
668 2007.

669 Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E., Nieminen, T., Petäjä, T., Sipilä,
670 M., Schobesberger, S., Rantala, P., Franchin, A., Jokinen, T., Järvinen, E., Äijälä, M., Kangasluoma, J.,
671 Hakala, J., Aalto, P. P., Paasonen, P., Mikkilä, J., Vanhanen, J., Aalto, J., Hakola, H., Makkonen, U.,
672 Ruuskanen, T., Mauldin, R. L., Duplissy, J., Vehkamäki, H., Bäck, J., Kortelainen, A., Riipinen, I., Kurtén,
673 T., Johnston, M. V., Smith, J. N., Ehn, M., Mentel, T. F., Lehtinen, K. E. J. J., Laaksonen, A., Kerminen, V.-
674 M. M. V.-M., Worsnop, D. R., Petaja, T., Sipila, M., Schobesberger, S., Rantala, P., Franchin, A., Jokinen,
675 T., Jarvinen, E., Aijala, M., Kangasluoma, J., Hakala, J., Aalto, P. P., Paasonen, P., Mikkila, J., Vanhanen, J.,
676 Aalto, J., Hakola, H., Makkonen, U., Ruuskanen, T., Mauldin, R. L., Duplissy, J., Vehkamaki, H., Back, J.,
677 Kortelainen, A., Riipinen, I., Kurten, T., Johnston, M. V., Smith, J. N., Ehn, M., Mentel, T. F., Lehtinen, K.
678 E. J. J., Laaksonen, A., Kerminen, V.-M. M. V.-M., Worsnop, D. R., Petäjä, T., Sipilä, M., Schobesberger,
679 S., Rantala, P., Franchin, A., Jokinen, T., Järvinen, E., Äijälä, M., Kangasluoma, J., Hakala, J., Aalto, P. P.,
680 Paasonen, P., Mikkilä, J., Vanhanen, J., Aalto, J., Hakola, H., Makkonen, U., Ruuskanen, T., Mauldin, R. L.,
681 Duplissy, J., Vehkamäki, H., Bäck, J., Kortelainen, A., Riipinen, I., Kurtén, T., Johnston, M. V., Smith, J. N.,
682 et al.: Direct observations of atmospheric aerosol nucleation., *Science*, 339(6122), 943–6,
683 doi:10.1126/science.1227385, 2013.

684 Kulmala, M., Ezhova, E., Kalliokoski, T., Noe, S., Vesala, T., Lohila, A., Liski, J., Makkonen, R., Bäck, J.,
685 Petäjä, T. and Kerminen, V.-M.: CarbonSink+-Accounting for multiple climate feedbacks from forests,
686 *Boreal Environ. Res.*, 25, 145-159, 2020.

687 Kürten, A., Rondo, L., Ehrhart, S. and Curtius, J.: Calibration of a chemical ionization mass spectrometer for
688 the measurement of gaseous sulfuric acid, *J. Phys. Chem. A*, 116(24), 6375–6386, doi:10.1021/jp212123n,
689 2012.

690 Kürten, A., Jokinen, T., Simon, M., Sipilä, M., Sarnela, N., Junninen, H., Adamov, A., Almeida, J., Amorim,

691 A., Bianchi, F., Breitenlechner, M., Dommen, J., Donahue, N. M., Duplissy, J., Ehrhart, S., Flagan, R. C.,
692 Franchin, A., Hakala, J., Hansel, A., Heinritzi, M., Hutterli, M., Kangasluoma, J., Kirkby, J., Laaksonen, A.,
693 Lehtipalo, K., Leiminger, M., Makhmutov, V., Mathot, S., Onnela, A., Petäjä, T., Praplan, A. P., Riccobono,
694 F., Rissanen, M. P., Rondo, L., Schobesberger, S., Seinfeld, J. H., Steiner, G., Tomé, A., Tröstl, J., Winkler,
695 P. M., Williamson, C., Wimmer, D., Ye, P., Baltensperger, U., Carslaw, K. S., Kulmala, M., Worsnop, D. R.,
696 Curtius, J. and Barbara Finlayson-Pitts, by J.: Neutral molecular cluster formation of sulfuric acid–
697 dimethylamine observed in real time under atmospheric conditions, *Proc. Natl. Acad. Sci. U.S.A.*, 111(42),
698 15019–15024, doi:10.1073/pnas.1404853111, 2014.

699 Kyrö, E. M., Väänänen, R., Kerminen, V. M., Virkkula, A., Petäjä, T., Asmi, A., Dal Maso, M., Nieminen,
700 T., Juhola, S., Shcherbinin, A., Riipinen, I., Lehtipalo, K., Keronen, P., Aalto, P. P., Hari, P. and Kulmala,
701 M.: Trends in new particle formation in eastern Lapland, Finland: Effect of decreasing sulfur emissions from
702 Kola Peninsula, *Atmos. Chem. Phys.*, 14(9), 4383–4396, 2014.

703 Lai, S. C., Williams, J., Arnold, S. R., Atlas, E. L., Gebhardt, S. and Hoffmann, T.: Iodine containing species
704 in the remote marine boundary layer: A link to oceanic phytoplankton, *Geophys. Res. Lett.*, 38(20),
705 doi:10.1029/2011GL049035, 2011.

706 Lehtipalo, K., Yan, C., Dada, L., Bianchi, F., Xiao, M., Wagner, R., Stolzenburg, D., Ahonen, L. R.,
707 Amorim, A., Baccarini, A., Bauer, P. S., Baumgartner, B., Bergen, A., Bernhammer, A.-K., Breitenlechner,
708 M., Brilke, S., Buchholz, A., Mazon, S. B., Chen, D., Chen, X., Dias, A., Dommen, J., Draper, D. C.,
709 Duplissy, J., Ehn, M., Finkenzeller, H., Fischer, L., Frege, C., Fuchs, C., Garmash, O., Gordon, H., Hakala,
710 J., He, X., Heikkilä, L., Heinritzi, M., Helm, J. C., Hofbauer, V., Hoyle, C. R., Jokinen, T., Kangasluoma,
711 J., Kerminen, V.-M., Kim, C., Kirkby, J., Kontkanen, J., Kürten, A., Lawler, M. J., Mai, H., Mathot, S.,
712 Mauldin, R. L., Molteni, U., Nichman, L., Nie, W., Nieminen, T., Ojdanic, A., Onnela, A., Passananti, M.,
713 Petäjä, T., Piel, F., Pospisilova, V., Quéléver, L. L. J., Rissanen, M. P., Rose, C., Sarnela, N., Schallhart, S.,
714 Schuchmann, S., Sengupta, K., Simon, M., Sipilä, M., Tauber, C., Tomé, A., Tröstl, J., Väisänen, O., Vogel,
715 A. L., Volkamer, R., Wagner, A. C., Wang, M., Weitz, L., Wimmer, D., Ye, P., Ylisirniö, A., Zha, Q.,
716 Carslaw, K. S., Curtius, J., Donahue, N. M., Flagan, R. C., Hansel, A., Riipinen, I., Virtanen, A., Winkler, P.,
717 M., Baltensperger, U., Kulmala, M. and Worsnop, D. R.: Multicomponent new particle formation from
718 sulfuric acid, ammonia, and biogenic vapors, *Sci. Adv.*, 4(12), eaau5363, doi:10.1126/sciadv.aau5363, 2018.

719 Leino, K., Nieminen, T., Manninen, H. E., Petäjä, T., Kerminen, V.-M. and Kulmala, M.: Intermediate ions
720 as a strong indicator of new particle formation bursts in a boreal forest, *Boreal Environ. Res.*, 21(3-4), 274–
721 286, 2016.

722 Levasseur, M.: Impact of Arctic meltdown on the microbial cycling of sulphur., *Nat. Geosci.*, 6(9), 691–700,
723 2013.

724 Mäkelä, J. M., Aalto, P., Jokinen, V., Pohja, T., Nissinen, A., Palmroth, S., Markkanen, T., Seitsonen, K.,
725 Lihavainen, H. and Kulmala, M.: Observations of ultrafine aerosol particle formation and growth in boreal
726 forest, *Geophys. Res. Lett.*, 24(10), 1219–1222, doi:10.1029/97GL00920, 1997.

727 Manninen, H. E., Mirme, S., Mirme, A., Petäjä, T. and Kulmala, M.: How to reliably detect molecular
728 clusters and nucleation mode particles with Neutral cluster and Air Ion Spectrometer (NAIS), *Atmos. Meas.
729 Tech.*, 9(8), 3577–3605, 2016.

730 Maso, M. D., Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P. and Lehtinen,
731 K. E. J.: Formation and growth of fresh atmospheric aerosols: Eight years of aerosol size distribution data
732 from SMEAR II, Hyytiälä, Finland, *Boreal Environ. Res.*, 10(5), 323–336, 2005.

733 Mauldin, R., Kosciuch, E., Eisele, F., Huey, G., Tanner, D., Sjostedt, S., Blake, D., Chen, G., Crawford, J.,
734 and Davis, D.: South Pole Antarctica observations and modeling results: New insights on HO_x radical and
735 sulfur chemistry, *Atmos. Environ.*, 44(4), 572–581, doi:10.1016/j.atmosenv.2009.07.058, 2010.

736 Mauldin, R. L., Kosciuch, E., Henry, B., Eisele, F. L., Shetter, R., Lefer, B., Chen, G., Davis, D., Huey, G.,
737 and Tanner, D.: Measurements of OH, HO₂+RO₂, H₂SO₄, and MSA at the South Pole during ISCAT 2000,
738 *Atmos. Environ.*, 38(32), 5423–5437, doi:10.1016/j.atmosenv.2004.06.031, 2004.

739 McFiggans, G., Bale, C. S. E. E., Ball, S. M., Beames, J. M., Bloss, W. J., Carpenter, L. J., Dorsey, J., Dunk,
740 R., Flynn, M. J., Furneaux, K. L., Gallagher, M. W., Heard, D. E., Hollingsworth, A. M., Hornsby, K.,
741 Ingham, T., Jones, C. E., Jones, R. L., Kramer, L. J., Langridge, J. M., Leblanc, C., LeCrane, J. P.-P., Lee, J.
742 D., Leigh, R. J., Longley, I., Mahajan, A. S., Monks, P. S., Oetjen, H., Orr-Ewing, a. J., Plane, J. M. C. C.,
743 Potin, P., Shillings, a. J. L. L., Thomas, F., Von Glasow, R., Wada, R., Whalley, L. K. and Whitehead, J. D.:
744 Iodine-mediated coastal particle formation: an overview of the Reactive Halogens in the Marine Boundary
745 Layer (RHAMBLe) Roscoff coastal study, *Atmos. Chem. Phys.*, 10(6), 2975–2999, doi:10.5194/acp-9-
746 26421-2009, 2010.

747 Mirme, S. and Mirme, A.: The mathematical principles and design of the NAIS – a spectrometer for the
748 measurement of cluster ion and nanometer aerosol size distributions, *Atmos. Meas. Tech.*, 6(4), 1061–1071,
749 doi:10.5194/amt-6-1061-2013, 2013.

750 Myllys, N., Ponkkonen, T., Passananti, M., Elm, J., Vehkamäki, H. and Olenius, T.: Guanidine: A Highly
751 Efficient Stabilizer in Atmospheric New-Particle Formation, *J. Phys. Chem. A*, 122(20), 4717–4729,
752 doi:10.1021/acs.jpca.8b02507, 2018.

753 Napari, I., Noppel, M., Vehkamäki, H. and Kulmala, M.: Parametrization of ternary nucleation rates for
754 $\text{H}_2\text{SO}_4\text{-NH}_3\text{-H}_2\text{O}$ vapors, *J. Geophys. Res. Atmos.*, 107(19), AAC 6-1-AAC 6-6,
755 doi:10.1029/2002JD002132, 2002.

756 Nieminen, T., Asmi, A., Maso, M. D., Aalto, P. P., Keronen, P., Kulmala, M., Kerminen, V., Dal maso, M.,
757 Aalto, P. P., Keronen, P., Petäjä, T., Kulmala, M. and Kerminen, V.: Trends in atmospheric new-particle
758 formation: 16 years of observations in a boreal-forest environment, *Boreal Environ. Res.*, 19 (suppl.(2004)),
759 191–214, 2014.

760 O'Dowd, C. D., Jimenez, J. L., Bahreini, R., Flagan, R. C., Seinfeld, J. H., Hämerl, K., Pirjola, L., Kulmala,
761 M. and Hoffmann, T.: Marine aerosol formation from biogenic iodine emissions, *Nature*, 417(6889), 632–
762 636, 2002.

763 Paasonen, P., Asmi, A., Petäjä, T., Kajos, M. K., Äijälä, M., Junninen, H., Holst, T., Abbatt, J. P. D. D.,
764 Arneth, A., Birmili, W., Van Der Gon, H. D., Hamed, A., Hoffer, A., Laakso, L., Laaksonen, A., Richard
765 Leitch, W., Plass-Dülmmer, C., Pryor, S. C., Räisänen, P., Swietlicki, E., Wiedensohler, A., Worsnop, D. R.,
766 Kerminen, V.-M. M. and Kulmala, M.: Warming-induced increase in aerosol number concentration likely to
767 moderate climate change, *Nat. Geosci.*, 6(6), 438–442, doi:10.1038/ngeo1800, 2013.

768 Park, K., Lee, K., Kim, T., Yoon, Y. J., Jang, E., Jang, S., Lee, B. and Hermansen, O.: Atmospheric DMS in
769 the Arctic Ocean and Its Relation to Phytoplankton Biomass, *Global Biogeochem. Cycles*, 32(3), 351–359,
770 doi:10.1002/2017GB005805, 2018.

771 Pirjola, L., Laaksonen, A., Aalto, P. and Kulmala, M.: Sulfate aerosol formation in the Arctic boundary
772 layer, *J. Geophys. Res. Atmos.*, 103(D7), 8309–8321, doi:10.1029/97JD03079, 1998.

773 Raso, A. R. W., Custard, K. D., May, N. W., Tanner, D., Newburn, M. K., Walker, L., Moore, R. J., Huey,
774 L. G., Alexander, L., Shepson, P. B. and Pratt, K. A.: Active molecular iodine photochemistry in the Arctic,
775 *Proc. Natl. Acad. Sci. U. S. A.*, 114(38), 10053–10058, doi:10.1073/pnas.1702803114, 2017.

776 Reyer, C. P. O., Brouwers, N., Rammig, A., Brook, B. W., Epila, J., Grant, R. F., Holmgren, M.,
777 Langerwisch, F., Leuzinger, S., Lucht, W., Medlyn, B., Pfeifer, M., Steinkamp, J., Vanderwel, M. C.,
778 Verbeeck, H. and Villela, D. M.: Forest resilience and tipping points at different spatio-temporal scales:
779 Approaches and challenges, *J. Ecol.*, 103(1), 5–15, doi:10.1111/1365-2745.12337, 2015.

780 Riva, M., Rantala, P., Krechmer, E. J., Peräkylä, O., Zhang, Y., Heikkinen, L., Garmash, O., Yan, C.,
781 Kulmala, M., Worsnop, D. and Ehn, M.: Evaluating the performance of five different chemical ionization
782 techniques for detecting gaseous oxygenated organic species, *Atmos. Meas. Tech.*, 12(4), 2403–2421,
783 doi:10.5194/amt-12-2403-2019, 2019.

784 Ruuskanen, T., Reissell, M., Keronen, A., Aalto, P. P., Laakso, P. P., Grönholm, L., Hari, T. and Kulmala,
785 P.: Atmospheric trace gas and aerosol particle concentration measurements in Eastern Lapland, *Boreal Env.*

786 Res, 8(4), 335-349, 2003.

787 Ruuskanen, T. M., Kaasik, M., Aalto, P. P., Hõrrak, U., Vana, M., Mårtensson, M., Yoon, Y. J., Keronen, P.,
788 Mordas, G., Ceburnis, D., Nilsson, E. D., O'Dowd, C., Noppel, M., Alliksaar, T., Ivask, J., Sofiev, M.,
789 Prank, M. and Kulmala, M.: Concentrations and fluxes of aerosol particles during the LAPBIAT
790 measurement campaign at Värriö field station, *Atmos. Chem. Phys.*, 7(14), 3683–3700, doi:10.5194/acp-7-
791 3683-2007, 2007.

792 Schmale, J., Zieger, P. and Ekman, A. M. L.: Aerosols in current and future Arctic climate, *Nat. Clim.
793 Chang.*, 11(2), 95–105, doi:10.1038/s41558-020-00969-5, 2021.

794 Seco, R., Holst, T., Sillesen Matzen, M., Westergaard-Nielsen, A., Li, T., Simin, T., Jansen, J., Crill, P.,
795 Friberg, T., Rinne, J. and Rinnan, R.: Volatile organic compound fluxes in a subarctic peatland and lake,
796 *Atmos. Chem. Phys.*, 20(21), 13399–13416, doi:10.5194/ACP-20-13399-2020, 2020.

797 Sherwen, T. M., Evans, M. J., Spracklen, D. V., Carpenter, L. J., Chance, R., Baker, A. R., Schmidt, J. A.
798 and Breider, T. J.: Global modeling of tropospheric iodine aerosol, *Geophys. Res. Lett.*, 43(18), 10012–
799 10019, doi:10.1002/2016gl070062, 2016.

800 Sipilä, M., Sarnela, N., Jokinen, T., Henschel, H., Junninen, H., Kontkanen, J., Richters, S., Kangasluoma, J.,
801 Franchin, A., Peräkylä, O., Rissanen, M. P., Ehn, M., Vehkamäki, H., Kurten, T., Berndt, T., Petäjä, T.,
802 Worsnop, D., Ceburnis, D., Kerminen, V.-M. M., Kulmala, M., O'Dowd, C. and O'Dowd, C.: Molecular-
803 scale evidence of aerosol particle formation via sequential addition of HIO₃, *Nature*, 537(7621), 532–534,
804 doi:10.1038/nature19314, 2016.

805 Sipilä, M., Sarnela, N., Neitola, K., Laitinen, T., Kemppainen, D., Beck, L., Duplissy, E.-M., Kuittinen, S.,
806 Lehmusjärvi, T., Lampilahti, J., Kerminen, V.-M., Lehtipalo, K., Aalto, P., Keronen, P., Siivola, E., Rantala,
807 P., Worsnop, D., Kulmala, M., Jokinen, T. and Petäjä, T.: Wintertime sub-arctic new particle formation from
808 Kola Peninsula sulphur emissions, *Atmos. Chem. Phys.*, 21(23), 17559–17576,
809 doi:<https://doi.org/10.5194/acp-21-17559-2021>, 2021.

810 Sive, B. C., Varner, R. K., Mao, H., Blake, D. R., Wingenter, O. W. and Talbot, R.: A large terrestrial source
811 of methyl iodide, *Geophys. Res. Lett.*, 34(17), L17808, doi:10.1029/2007gl030528, 2007.

812 Spolaor, A., Barbaro, E., Cappelletti, D., Turetta, C., Mazzola, M., Giardi, F., Björkman, M., Lucchetta, F.,
813 Dallo, F., Pfaffhuber, K. A., Angot, H., Dommergue, A., Maturilli, M., Saiz-Lopez, A., Barbante, C. and
814 Cairns, W.: Diurnal cycle of iodine and mercury concentrations in Svalbard surface snow, *Atmos. Chem.
815 Phys. Discuss.*, 1–25, doi:10.5194/ACP-2019-285, 2019.

816 Stohl, A.: Characteristics of atmospheric transport into the Arctic troposphere, *J. Geophys. Res. Atmos.*, 111,
817 D11306, doi:10.1029/2005JD006888, 2006.

818 Sulo, J., Sarnela, N., Kontkanen, J., Ahonen, L., Paasonen, P., Laurila, T., Jokinen, T., Kangasluoma, J.,
819 Junninen, H., Sipilä, M., Petäjä, T., Kulmala, M. and Lehtipalo, K.: Long-term measurement of sub-
820 3 nm particles and their precursor gases in the boreal forest, *Atmos. Chem. Phys.*, 21(2), 695–715,
821 doi:10.5194/acp-21-695-2021, 2021.

822 Tarvainen, V., Hakola, H., Hellén, H., Bäck, J., Hari, P. and Kulmala, M.: Temperature and light dependence
823 of the VOC emissions of Scots pine, *Atmos. Chem. Phys.*, 4(5), 989-998, doi: 10.5194/acp-5-989-2005,
824 2004.

825 Tiiva, P., Faubert, P., Michelsen, A., Holopainen, T., Holopainen, J. K. and Rinnan, R.: Climatic warming
826 increases isoprene emission from a subarctic heath, *New Phytol.*, 180(4), 853–863, doi:10.1111/J.1469-
827 8137.2008.02587.X, 2008.

828 Tunved, P., Hansson, H. C., Kerminen, V. M., Ström, J., Dal Maso, M., Lihavainen, H., Viisanen, Y., Aalto,
829 P. P., Komppula, M. and Kulmala, M.: High natural aerosol loading over boreal forests, *Science* (80- .),
830 312(5771), 261–263, doi:10.1126/science.1123052, 2006.

831 Valolahti, H., Kivimäenpää, M., Faubert, P., Michelsen, A. and Rinnan, R.: Climate change-induced

832 vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions, *Glob.*
833 *Chang. Biol.*, 21(9), 3478–3488, doi:10.1111/GCB.12953, 2015.

834 Vana, M., Komsaare, K., Hörrak, U., Mirme, S., Nieminen, T., Kontkanen, J., Manninen, H. E., Petäjä, T.,
835 Noe, S. M. and Kulmala, M.: Characteristics of new-particle formation at three SMEAR stations, *Boreal*
836 *Environ. Res.*, 21(3-4), 345–362, 2016.

837 Vehkamäki, H., Dal Maso, M., Hussein, T., Flanagan, R., Hyvärinen, A., Lauros, J., Merikanto, J.,
838 Mönkkönen, P., Pihlatie, M., Salminen, K., Sogacheva, L., Thum, T., Ruuskanen, T. M., Keronen, P., Aalto,
839 P. P., Hari, P., Lehtinen, K. E. J., Rannik, Ü. and Kulmala, M.: Atmospheric particle formation events at
840 Väriö measurement station in Finnish Lapland 1998–2002, *Atmos. Chem. Phys.*, 4(7), 2015–2023,
841 doi:10.5194/acp-4-2015-2004, 2004.

842 Wang, S., Riva, M., Yan, C., Ehn, M. and Wang, L.: Primary Formation of Highly Oxidized Multifunctional
843 Products in the OH-Initiated Oxidation of Isoprene: A Combined Theoretical and Experimental Study,
844 *Environ. Sci. Technol.*, 52(21), 12255–12264, doi:10.1021/acs.est.8b02783, 2018.

845 Wang, Y. Q., Zhang, X. Y. and Draxler, R. R.: TrajStat: GIS-based software that uses various trajectory
846 statistical analysis methods to identify potential sources from long-term air pollution measurement data,
847 *Environ. Model. Softw.*, 24(8), 938–939, doi:10.1016/j.envsoft.2009.01.004, 2009.

848 Yan, C., Nie, W., Äijälä, M., Rissanen, M. P., Canagaratna, M. R., Massoli, P., Junninen, H., Jokinen, T.,
849 Sarnela, N., Häme, S. A. K. K., Schobesberger, S., Canonaco, F., Yao, L., Prévôt, A. S. H. H., Petäjä, T.,
850 Kulmala, M., Sipilä, M., Worsnop, D. R., Ehn, M., Äijälä, M., Rissanen, M. P., Canagaratna, M. R., Massoli,
851 P., Junninen, H., Jokinen, T., Sarnela, N., Häme, S. A. K. K., Schobesberger, S., Canonaco, F., Yao, L.,
852 Prévôt, A. S. H. H., Petäjä, T., Kulmala, M., Sipilä, M., Worsnop, D. R. and Ehn, M.: Source
853 characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive
854 matrix factorization, *Atmos. Chem. Phys.*, 16(19), 12715–12731, doi:10.5194/acp-16-12715-2016, 2016.

855 Yu, H., Ren, L., Huang, X., Xie, M., He, J. and Xiao, H.: Iodine speciation and size distribution in ambient
856 aerosols at a coastal new particle formation hotspot in China, *Atmos. Chem. Phys.*, 19(6), 4025–4039,
857 doi:10.5194/acp-19-4025-2019, 2019.