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Abstract:

Aerosol particles form in the atmosphere by clustering of certain atmospheric vapors. After growing to larger
particles by condensation of low volatile gases, they can affect the Earth’s climate by scattering light and by
acting as cloud condensation nuclei (CCN). Observations of low-volatility aerosol precursor gases have been
reported around the world but longer-term measurement series and any Arctic data sets showing seasonal
variation are close to non-existent. In here, we present ~7 months of aerosol precursor gas measurements
performed with the nitrate based chemical ionization mass spectrometer (CI-APi-TOF). We deployed our
measurements ~150 km North of the Arctic Circle at the continental Finnish sub-Arctic field station, SMEAR
I (Station for Measuring Ecosystem — Atmosphere Relations), located in Vérrio strict nature reserve. We report
concentration measurements of the most common new particle formation (NPF) related compounds; sulfuric
acid (SA), methane sulfonic acid (MSA), iodic acid (IA) and a total concentration of highly oxygenated organic
molecules (HOMs). At this remote measurement site, SA is originated both from anthropogenic and biological
sources and has a clear diurnal cycle but no significant seasonal variation. MSA shows a more distinct seasonal
cycle with concentrations peaking in the summer. Of the measured compounds, IA concentrations are the most
stable throughout the measurement period, except in April, when the concentration of IA is significantly higher
than during the rest of the year. Otherwise, IA has almost identical daily maximum concentrations in spring,
summer and autumn, and on NPF event or non-event days. HOMs are abundant during the summer months
and low in the autumn months. Due to the low autumn concentrations and their high correlation with ambient
air temperature, we suggest that most of HOMs are products of biogenic emissions, most probably
monoterpene oxidation products. NPF events at SMEAR I happen under relatively low temperatures (1 — 8 °C)
with a fast temperature rise in the early morning hours, lower and decreasing relative humidity (RH, 55% vs.
80%) during the NPF days compared to non-event days. NPF days have clearly higher global irradiance values
(~450 m? vs. ~200 m?) and about 10 ppbv higher ozone concentrations than non-event days. During NPF
days, we have on average higher SA concentration peaking at noon, higher MSA concentrations in the
afternoon and slightly higher IA concentration than during non-event days. All together, these are the first long
term measurements of aerosol forming vapors from the SMEAR I in the sub-arctic region, and the results help
us to understand atmospheric chemical processes and aerosol formation in the rapidly changing Arctic.

1. Introduction:

The climate of sub-Arctic region is characterized with some of the most extreme temperature variations on
Earth. We expect that during the course of the 2 1% century, the boreal forest is to experience the largest increase
in temperatures of all forest biomes (IPCC, 2013), making it the most vulnerable to climate change. The boreal
forest (taiga) covers most of the sub-Arctic and encompasses more than 30% of all forests on Earth, being one
of the largest biome in the world (Brandt et al., 2013). The expected rate of changes, may overwhelm the
resilience of forest ecosystems and possibly lead to significant biome-level changes (Reyer et al., 2015). The
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forest-atmosphere systems are closely interlinked to one another. The forest stores carbon and water in the
peat, soil and as biomass while at the same time vegetation emits volatile organic compounds (VOC) into the
atmosphere (Bradshaw and Warkentin, 2015). In the Arctic, summer is short, but solar radiation is abundant
and extends the daylight hours all the way to midnight and beyond. On the other hand, during the polar night
air pollutants accumulate in the atmosphere due to cold and stable atmosphere, while turbulent mixing is
inhibited, and the lack of removal processes lead to the formation of Arctic haze (Stohl, 2006). These features
make the Arctic an interesting study region for photochemistry of reduced atmospheric compounds. Oxidation
processes that dominantly occur in the summer time control the processes removing VOCs and other traces
gases, such as SO, and NO,, from the atmosphere in the Arctic. Detailed understanding of atmospheric
processes leading to aerosol precursor formation and gas-to-particle conversion and their role in feedback
mechanisms help in assessing the future climate.

Aerosol and trace gas measurements in the sub-Arctic field station SMEAR 1, go back to the 90s (Ahonen et
al., 1997; Kulmala et al., 1998; Mékela et al., 1997). Trace gas and aerosol measurements at SMEAR 1 started
in 1992 making them one of the longest continuous measurements of aerosol particle number and size
distributions in the sub-Arctic (Ruuskanen et al., 2003). These long-term measurements show that aerosol
particles regularly form and grow from very small sizes (< 8 nm diameter) with the highest frequency in the
spring, between March and May (Dal Maso et al., 2007; Vehkamaéki et al., 2004). It is suggested that spring
promotes NPF because of the awakening of biological processes after the winter. At SMEAR I the snow only
melts away in May-June and thus, many biological processes (photosynthesis) activate while the snow is still
deep. This makes the Arctic spring a very complex environment for atmospheric chemistry with possible
emission sources from melting snow, ice, melt water, vegetation and transport from other areas. At SMEAR 1,
most of the observed NPF events are either connected to clean air arriving from the Northern sector (originating
from The Arctic Ocean and transported over boreal forest, Dal Maso et al., 2007) or the polluted air masses
from the Eastern sector (Kyro et al., 2014; Sipilé et al., 2021). Annually, around 30-60 NPF events are recorded
at SMEAR 1, of which around half could be initiated by anthropogenic air pollutants from the Kola Peninsula
(Kyrd et al., 2014; Pirjola et al., 1998; Sipild et al., 2021) leaving half of the events occurring from natural
sources. The trend of NPF occurrence in Vérri6 is decreasing, as the anthropogenic sulfur dioxide emissions
are decreasing in Russia (Kyrd et al., 2014).

Formation and growth of new particles at SMEAR I usually happen during daylight, highlighting the
importance of photochemical activities. However, unlike most other locations, NPF is also observed during
nighttime or polar night (Kyr6 et al., 2014; Vehkaméki et al., 2004). Formation and growth processes of
aerosols seem not to be correlated with each other at SMEAR I (Vehkaméki et al., 2004). Earlier literature
reports that the formation rate (J) has no clear seasonal trend, while the growth rates (GR) of small particles
clearly peak during summer (Ruuskanen et al., 2007). This indicates that different chemistry drives the initial
cluster formation and the subsequent growth processes. From the observed nucleation rates it has been
proposed that NPF at SMEAR I could be due to SA —ammonia (-water) nucleation (Napari et al., 2002) likely
dominated by ion-induced channel at least during winter months (Sipild et al., 2021). Kyr6 et al., (2014)
concludes that 20-50% of the condensational growth can also be explained by SA in Vérrid. Other studies
speculate about the possibility of different organic compounds participating in NPF in the sub-Arctic. Tunved
et al., (2006) studied the air masses arriving to SMEAR I and concluded that the aerosol mass increased linearly
with time that the air masses travelled over land. The concentration of condensing gases over the boreal forest
was concluded to be high and most likely consisting mainly of oxidation products of terpenes (VOCs) that are
emitted by the forest. At SMEAR Il station in Hyytiéla, approximately 700 km South-West of Vérrio, oxidized
organics mostly explain the growth of newly formed particles (Bianchi et al., 2017; Ehn et al., 2014). However,
direct measurements of the acrosol forming and growing vapor species are still lacking from SMEAR I except
during wintertime without biogenic activity when SA has been shown to be primarily responsible on formation
and growth (Sipil4 et al., 2021). In Vérrio, the role of NPF is critical in forming of CCN, since measurements
show that the number of CCN can increase up to 800 % as a result of NPF (Kerminen et al., 2012). In other
locations in the boreal forest and Arctic, some measurements shed light into the possible chemical components
that could be forming particles in Varrid. Currently, the closest continuous measurements with the nitrate based
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CI-APi-TOF are conducted in Hyytiéld at the SMEAR Il-station (Jokinen et al., 2012, 2017; Kulmala et al.,
2013). In Hyytiéla there is direct evidence on the key role of the photochemical production of SA and HOMs
maintaining atmospheric NPF (Bianchi et al., 2017; Ehn et al., 2014; Jokinen et al., 2017; Kulmala et al.,
2013).

Other chemical composition measurements of aerosol precursors have been conducted only in a few locations
in the High-Arctic and over the Arctic Ocean (Baccarini et al., 2020; Beck et al., 2021; He et al., 2021; Sipilad
et al., 2016). These studies show that in the Arctic, the marginal ice zone and the coast of the Arctic Ocean is
a source of atmospheric IA that is efficiently forming new particles. SA and MSA concentrations were also
reported (Beck et al., 2021), but they were much lower in concentration than IA (Baccarini et al., 2020).
However, the chemistry behind NPF is not that simple, even in the pristine Arctic air. The clean air above the
Arctic Ocean is abundant in dimethyl sulfide (DMS) emitted by phytoplankton that rapidly oxidizes into SA
and MSA on sunny days and consequently forms CCN (Charlson et al., 1987; Park et al., 2018). Beck et al.,
(2021) report that in Svalbard in the Arctic Ocean, SA and MSA contribute to the formation of secondary
aerosol. They also observed that these compounds formed particles large enough to contribute to some extent
to CCN. This is supported by measurements of acrosol chemical composition from the Arctic that commonly
report MSA in particulate matter (Dall Osto et al., 2018; Kerminen et al., 1997). According to Beck et al.
(2021) the initial aerosol formation in the high Arctic occurs via ion-induced nucleation of SA and ammonia
and subsequent growth by mainly SA and MSA condensation during springtime and HOM during
summertime. By contrast, in an ice-covered region around Villum, Greenland, Beck et al. (2021) observed
NPF driven by IA, but the particles remained small and did not grow to CCN sizes due to insufficient
concentration of condensing vapors. Since the Arctic CCN number concentrations are low in general,
formation of new particles is a very sensitive process affecting the composition of the aerosol population and
CCN numbers in the area.

In this article, we present the measurements of aerosol precursor molecules from the continental SMEAR 1
station, ~150 km North of the Arctic Circle and ~150 km from the Arctic Ocean. We measured SA, MSA, 1A
and HOM concentrations with a SA calibrated CI-APi-TOF (Jokinen et al., 2012; Kiirten et al., 2012) to
determine their levels in the sub-Arctic boreal forest and to understand whether these species are connected
with the aerosol formation process in the area.

2. Methods, measurement site and instrumentation:

The core of this work is measurements of gas phase aerosol precursors. We use the nitrate chemical ionization
atmospheric pressure interface time-of-flight mass spectrometer (CI-APi-ToF) that has been operational at the
SMEAR I-station (N67°46, E29°36) in Eastern-Lapland since the early spring of 2019. Measurements were
done on top of Kotovaara hill (390 m a.s.1.), close to ground level in an air-conditioned small log wood cottage.
The cottage is surrounded by ~65-year-old Scotts pine forest. More details about the station can be found in
carlier publications (Hari et al., 1994; Kyré et al., 2014). The mass spectrometric measurements are designed
to start a long-term measurement series of atmospheric aerosol forming trace gases in the Finnish Lapland and
the measurements are ongoing to this day. We measure e.g. SA, IA, HOMs and MSA with high time resolution
and precision. The measurements are running in Finnish winter time (UTC+2) throughout the year.

We calibrated the CI-APi-TOF twice during the measurement period and run the instrument with the same
settings for the whole measurement period reported in this paper. We calibrated the instrument using a SA
calibrator described in Kiirten et al. (2012). The calibration factor from the two separate calibrations were 1)
7 - 10° and 2) 8 - 10° and we use the average 7.5 - 10? in our study calculate the concentrations of all reported
compounds. This factor includes the loss parameter due to the ~1 m long unheated inlet tube (3/4” stainless
steel). HOMs and IA have been estimated to be charged similarly at the kinetic limit as SA (Ehn et al., 2014;
Sipild et al., 2016), so the calibration factor for them should be similar, but please note that the concentration
of other compounds than SA can be highly uncertain due to different ionizing efficiencies, sensitivities and
other unknown uncertainties. If MSA, IA or HOMs do not ionize at the kinetic limit these concentrations could
be underestimated and thus, the concentrations reported in here should be taken as low limit values. The SA,
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IA and MSA data presented in this study are all results of high-resolution peak fitting of the CI-APi-TOF, in
order to avoid inaccurate identification of compounds and to separate overlapping peaks. The HOM data is a
sum of mass-to-charge ratios from 300 to 400 Th, representing the monomer HOM range (Cio compound
range), 401 to 500 Th for the slightly larger HOMs (Cis compound range) and 501 to 600 Th for the dimer
species (Cz compound range). We also give the sum of these all (from 300 to 600 Th). The goal of this article
is not to specify different HOM compounds or to study NPF in mechanistic details but to give an overview of
general seasonal trends and variations of these selected species. Note that since this is a sum of all peaks in the
selected mass range, we cannot assure that all the compounds included are HOMs. However, the investigation
in laboratory conditions show that the nitrate-CI-APi-TOF is highly selective and sensitive towards HOMs
with O>5 (Riva et al., 2019) and with hydroperoxide (-OOH) functionalities (Hyttinen et al., 2015). All data
obtained from the CI-APi-TOF we analyzed using tofTools program described in (Junninen et al., 2010) and
averaged over an hour. The original data time resolution is 5 sec. The uncertainty range of the measured
concentrations reported in this study is estimated to be —50%/+100% and the limit of detection, LOD,
4-10* molecules cm™ (Jokinen et al., 2012).

To classify NPF events recorded during the measurement period, we used the data measured by a Differential
Mobility Particle Sizer (DMPS). Condensation sink was also calculated using the DMPS data. The DMPS
instrument and earlier statistics of NPF events in Varrio has been documented by (Dal Maso et al., 2007; Vana
et al., 2016; Vehkamaki et al., 2004). The NPF events were classified according to Maso et al., (2005). Total
acrosol particle number concentration was measured with a Condensation Particle Counter (CPC, TSI 3776)
in the size range of 3 — 800 nm. Air ion size distributions were measured with the Neutral cluster and Air lon
Spectrometer, NAIS (Kulmala et al., 2007; Manninen et al., 2016; Mirme and Mirme, 2013) that measures
negative and positive ions in the size range of 0.8 — 42 nm in mobility diameter and total particle size
distribution between ~2 and 42 nm.

3. Results and discussion:
3.1.Overview of the whole measurement period:

You can see a time series of the most common aerosol precursor compounds; SA, MSA, IA and sums of
different HOM groups in Figure 1. This figure depicts the whole measurement period from April 4 to October
27 in 2019. Overall, we succeeded to measure the whole 7 month period almost uninterruptedly. Only a few
short power cuts stopped our measurements during this time. A data is missing from late July since its peak
could not be separated well enough from overlapping peaks in the spectra during this time. This was due to
poor resolution (low signal of 105" close to another peak) that makes peak integration to give negative, unreal
values and we thus decided to flag them out. After late October, the instrument malfunctioned and stopped our
measurements. In this particular article, we present data from spring (Apr-May), summer (Jun-Jul-Aug) and
autumn (Sep-Oct) 2019. More about the SMEAR I winter observations can be read in Sipild et al., 2021 were
they report observations of polar night pollution events from Virri6 after the CI-APi-TOF was fixed.
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Figure 1. Overview of sulfuric (A), methane sulfonic (B) and iodic acid (C), as well as HOM (D)
concentrations at SMEAR I in April to October 2019. NPF days are depicted in grey shading in panel D. All
data in panels A-C are resulting from high-resolution peak fitting. HOM data are sums of certain mass ranges;
from 300 to 400 Th in green, representing C10 or HOM monomer compounds, from 401 to 500 Th in red,
representing C15 compound and from 501 to 600 Th on light blue, representing C20 or HOM dimer
compounds. The sum of HOM (darker blue) is a sum of the aforementioned mass ranges. The sum of HOMs
is approximately one order of magnitude higher than SA, MSA or IA concentrations during this measurement
period.

In Figure 2 we show some of the most interesting environmental and meteorological parameters that influence
the atmospheric gas composition during the measurements period; temperature, global radiation and snow
depth, ozone, NOy and SO, mixing ratios. There are some special features in year 2019; the summer had two
heat waves, when the air temperature rose up to 29.2 °C in early June and to almost the same values in late
July. These episodes are getting more common in Lapland due to climate change. These warmer conditions
will probably change the emissions of trace gases including the composition and abundance of aerosol
precursors in the future Arctic environment (Schmale et al., 2021). However, heath wave conditions are likely
not favorable conditions to NPF since condensation of low-volatility gases is favored in colder temperatures
(via the vapor pressure decrease due to lower temperatures), but they may affect the oxidation chemistry of
VOCs by promoting dimer formation.

From Figure 2, we also see that the snow covered period ended in 2019 in late May and snow started to
accumulate again in mid-October. Solar radiation (Figure 2A) is intense in Vérri6 during springtime and gives
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Virri6 favorable photo-oxidizing conditions, effectively removing air pollutants and trace gases from the
atmosphere. Photochemical activity in presence of NOy (Figure 2E), produces ozone in springtime and this is
visible in very high ozone mixing ratios at the site (Figure 2D). Median ozone mixing ratios were around 55
ppbv in April and decreased to ~30 ppbv in the late summer and autumn. The spring 0zone mixing ratio in
2019 was significantly higher than the previous reports from the years 1992 to 2001, when monthly mean
values of ozone varied between 25 — 40 ppbv (Ruuskanen et al., 2003).

The springtime diurnal solar cycle is clearly visible with all studied compounds. All measured aerosol
precursor compounds are abundant even during the period when snow covers the ground in the spring. The
HOM concentrations follow the increasing solar radiation and rising temperature. MSA has a stronger diurnal
cycle before the snow melt than after it. This may be due to rain and cloudy conditions that are more common
in the summer. SA and IA do not have such strong seasonal variation than HOMs and MSA. The aerosol
precursor concentrations are discussed in more detail in the following sections.

3.2.Seasonal and monthly variation of SA, MSA, IA and HOM concentrations

We present the diurnal variation of aerosol precursors; SA, MSA, IA and highly oxygenated molecules,
concentrations separately for different seasons accompanied with solar radiation and total aerosol number
concentrations in Figure 3. Strong seasonality is most evident in SA and HOM concentrations. SA is at its
highest in the spring, decreasing toward summer and autumn while HOMs reach their maximum in the
summer. We detect an increase in total aerosol number concentration on the spring evenings that is likely due
to more frequent NPF events taking place at SMEAR I. The increase in HOMs in the summer at SMEAR 1 is
linked to the increased emissions of VOCs from vegetation that oxidize into HOMs via ozonolysis (Ehn et al.,
2014) and OH-radical reactions (Berndt et al., 2016; Jokinen et al., 2014, 2017; Wang et al., 2018). The overall
lowest aerosol precursor concentrations and aerosol number concentration we detect during autumn (winter
data was missing from this study, see Sipild et al. 2021, for winter time observations made promptly after the
period reported here). MSA shows very similar concentrations during spring and summer, and drops down to
the limit of detection level for autumn. IA acts very differently than the other compounds. We observe IA to
have a similar level of concentration throughout the measurement period and seems that the concentration
reaches a steady state during daylight hours. This daytime maximum stays at the same level about 5 hours
longer during spring than in the autumn. The day length getting shorter towards the autumn explains this
behavior. The maximum hourly median concentrations for the measured compounds are ~2 - 10° cm™ for SA
(spring), ~5 - 10° cm™ for MSA (summer), ~3- 105 cm™ for IA (all seasons) and ~5 - 107 cm™ for the sum of
HOMs (summer, mass range from 300 to 600 Th).
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Figure 2: Observations of temperature (A), global radiation (B), snow depth (C), ozone (D), NOx (E) and SO>
(F) mixing ratios, number size distribution (G), condensation sink (H) and concentration of 2-7 nm anions (I)
at SMEAR I during the measurement period. SO, data is missing until mid-June due to instrumental
malfunction. NPF event times are depicted in red in subplots (B), (D) and (G).

We can compare these numbers to SMEAR II long-term (5-year median concentration) observations, were the
median peak SA concentrations are ~1.5 - 10°cm™, ~1 - 10° cm™ and ~3- 10° cm™ for spring, summer and
autumn, respectively (Sulo et al., 2021). These measured concentrations are very similar to SMEAR 1
observations except a slightly higher summer and autumn SA concentration at SMEAR I1. However, it should
be noted that the springtime measurements from SMEAR I do not include March data, which makes the
springtime comparison somewhat uncertain. The SMEAR II data set that includes March data cannot be
expected to be perfectly comparable with our data. However, as reported by Sipilé et al., 2021 the March data
from the following year seems very similar concentration levels what we report in here for spring (max. ~2-10°
cm and daily averages peak around 0.5-10° cm™). We expect that the SA concentrations are only marginally
affected by the lack of March data, but that the level of HOMs or MSA or IA could be affected more due to
very different meteorological conditions between the stations in springtime (SMEAR 11 is ~700 km more South
than SMEAR I). There is also a difference in the timing of the peak SA concentration in the summer. At
SMEAR I the peak concentration is reached at noon and at SMEAR 11 it can be found some hours earlier,
already around eight o’clock in the morning (Sulo et al., 2021). In the case of HOMs, we cannot compare the
concentrations directly to Sulo et al. (2021) as they calculated the sum of HOMs differently, only taking into
account the most abundant signals and separating nitrate and non-nitrate HOMs. However, we take the liberty
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to compare diurnal and seasonal variations. Both at SMEAR I and I, observations show the highest HOM
concentrations during summer, while the autumn concentrations are one order of magnitude lower. The
comparison between these sites reveals a different diurnal variation of HOMs. At SMEAR 1, the HOMs have
a maximum around noon, spanning to the afternoon (Figure 3). At SMEAR II, HOMs have two maxima, one
at noon and another one in the early evening. From these, the latter is connected to non-nitrate monomer and
dimer HOMs and nitrate dimer HOMs. At SMEAR 1 the lack of an evening maximum could indicate that
HOM dimer formation is less dominant at SMEAR I compared to SMEAR II due to lower air temperatures,
or due to the different diurnal cycle of oxidants due to longer hours of solar radiation North of the Arctic Circle.
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Figure 3. Diurnal variation of aerosol precursor gas median concentrations in different seasons: A) sulfuric
acid, B) methane sulfonic acid, C) iodic acid and D) the sum of HOMs in the 300 to 600 Th mass range. Panel
E) depicts the seasonal variation of global radiation and F) the total acrosol number concentration N The
small (false) offset (6-7 W m?) in summer data is due to 24 h sunlight hours at Varrio.

When analyzing the monthly aerosol precursor profiles in Figure 4, we observe that the springtime atmosphere
is abundant in SA and IA that have the highest median concentrations in April. MSA and HOMs concentrations
peak in June. The MSA behavior is likely connected to the algae blooms in the Arctic Ocean that peak around
midsummer. The marine emissions of DMS oxidize in the atmosphere to sulfur dioxide, SA and to MSA (e.g.
Park et al., 2018). However, SA has more sources, since SO», has also anthropogenic sources. At SMEAR 1



275
276
277
278
279
280
281
282

283

284
285

286
287
288
289
290
291
292

293
294
295
296
297

we cannot distinguish these sources precisely (more discussion about this in Sect 3.3.). It is notable that the
peak concentration of MSA is earlier in the day in April, around 12 o’clock noon, than it is later in the year
when the peak concentration is reached in the late afternoon (from 13:00 to 18:00 o’clock). There are no
previous MSA concentration reports from the SMEAR stations but some gas phase MSA results from
Antarctica show maximum of 1 - 103 cm™ to 1 - 107 cm™ concentrations (Jokinen et al., 2018; Mauldin et al.,
2010, 2004). In the Arctic, around half a year measurement series from Villum in Greenland show MSA
concentrations <10° cm™ (Mar — Sep) and from10° cm™to 107 cm™ with the highest concentrations in June in
Ny-Alesund (Beck et al., 2021). Our measurements from the SMEAR 1 fall in between these extremes.
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Figure 4. Monthly median concentrations of A) sulfuric acid, B) methane sulfonic acid, C) iodic acid and d)
the sum of HOMs in the 300 to 600 Th mass range.

These are also the first reported results of IA measurements from SMEAR I and they represent a continental
location, the White Sea coast being ~130 km South East and the Barents Sea ~230 km to the North East. 1A,
iodine and iodic oxoacid emissions are commonly connected to coastal or marine environments (Baccarini et
al., 2020; McFiggans et al., 2010; O’dowd et al., 2002; Sipila et al., 2016; Yu et al., 2019) due to the fact that
the ocean surface is a major source of iodine (Carpenter et al., 2013). While it is not precisely known how 1A
forms in the gas phase, its formation requires oxidation of the initial precursors (IO species) by ozone and the
last steps of its formation is potentially driven by reaction with OH (Chameides and Davis, 1980).

Compared to the other precursor compounds, IA has the most stable concentration between seasons, with a
long increasing period in April during the snow-melting season. This is likely due to the simultaneously
increasing ozone mixing ratios (Figure 2D) and solar radiation. In contrast to measurements from the Arctic
Ocean (Baccarini et al., 2020), we did not observe a clear increase in IA concentration in the autumn due to
freezing. We find that September had only marginally higher concentrations compared to August or July
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(Figure 4). Winter measurements would be necessary to estimate the effect of freezing in the concentration of
IA.

The source of IA on a continental site like the SMEAR [ is an interesting subject to speculate. The observed
HIO; peak in April could indicate that there could be an influence from air masses exposed to Arctic marine
environment. The increasing temperature in the spring induce a higher activity of phytoplankton in the nearby
Barents Sea and Norwegian Sea that remains ice free, even during the winter, and could result in the higher
emission of precursors for IA (Lai et al., 2011). Higher temperature would also result in more efficient
advection, which would transport species faster from emission points to SMEAR 1. The calculated back
trajectories support the idea that iodine-rich air masses arrive from the West or northwest to SMEAR 1
(discussed in details in Sect 3.3. and Figure 10). This would be the hypothesis of the long-range transport for
source of IA in SMEAR 1. On the contrary, the strong diurnal variation on IA concentration seen as one order
of magnitude difference between noon and midnight, suggests fast on-site chemistry, which is not consistent
with long-range transport of IA, but its precursor such as CHsl (Bell et al., 2002). Also, IA life time against
condensational loss is expected to be short with the condensation sink at the site (Figure 2H), in the range of
~15 minutes, this suggests that HIOs is formed close to or at the site of measurements. Land vegetation is a
source of methyl iodide (CHslI) that could be the source of IA at SMEAR I at least during summer (Sive et al.,
2007).

Most interestingly, we seem to have an emission source of iodine during all seasons. There are no reports on
iodine emissions from continental snow, but we hypothesize that one possible source of iodine in SMEAR 1
during spring is the snowpack. This is possible due to the deposition of sea salts on snow particularly during
dark periods that activate during the spring and are re-emitted to the atmosphere through heterogencous
photochemistry of iodide, and iodate ions (Raso et al., 2017; Spolaor et al., 2019). There are also possible
forest emissions of iodinated organics, similar to New England growing season (Raso et al., 2017) that might
be enhanced by higher temperature or high ozone concentrations. This type of emissions of iodinated gases,
or their implications, have not been studied before but these observations might direct research into emission
studies at SMEAR 1, since our findings indicate that vegetation could be an emission source of iodine.

The sum of HOMs at SMEAR 1 reaches up to a median ~5 - 107 cm™ concentration in the summer. This is
about one order of magnitude lower than the concentrations reported from the SMEAR II station in Hyytidld
(Yan et al., 2016) about 700 km south, where HOMs are at a maximum of ~6 - 10® cm™ during spring daytime.
It is striking how well the concentration of HOMs follow the air temperature (Figure 5) but seem to level above
circa 18°C. From the temperature dependency, we can speculate that most VOCs emitted by vegetation close
to Virri6 could be monoterpenes due to their strong temperature dependency. This is supported by emission
rate measurements of VOCs showing that in northern Finland 60 to 85 % are accounted by a- and B-pinene
emissions (Tarvainen et al., 2004). However, sesquiterpene emissions from nearby wetlands could contribute
to HOMs since their emissions are also temperature dependent and they are emitted by the boreal wetlands
(Hellén et al., 2020; Seco et al., 2020). As HOMs are oxidation products of VOC:s, it is evident that the HOM
concentration will increase in SMEAR 1 in the future with the increasing VOC emissions, including isoprene,
monoterpenes and sesquiterpenes, due to temperature rise (Ghirardo et al., 2020; Tiiva et al., 2008; Valolahti
etal., 2015).
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Figure 5. HOM concentration (cm™) measured at SMEAR 1 (sum of mass range from 300 to 600 Th) as a
function of global radiation (W m?) in panel A and as a function of temperature in panel B. The color bar
represents air temperature in °C (A) and global radiation (B). The plot includes all data measured from April
to October 2019.

3.3.New particle formation events;

During the measurement period from 4 April 2019 to 27 October 2019, we observed 36 regional NPF events
in total and our CI-APi-TOF data covers 33 of these NPF days. During the same period, we observed 75 non-
event days without clear signs of particle formation (Maso et al., 2005). Rest of the days during our
measurement period were defined as undefined, bad data or partly bad data days and these were excluded from
our analysis. In this chapter, we focus on trace gases, meteorological parameters and detected aerosol precursor
gases during NPF days and compare them to non-event days.

We plot NPF and non-event days median average number size distribution of aerosol particles (from 3 to 800
nm) in Figure 6, and the total number concentration and the 2-7 nm air ion concentrations in Figure 7. The
whole measurement period is represented already in Figure 2. In figure 6, in the case of NPF event days we
see a distinct “banana” plot, where small < 10 nm, particles are forming and growing with time. The DMPS
data is plotted from 2.82 nm to 708 nm but note that the channels below ~5 nm have much larger uncertainties
than those above. The median event start time is located around noon and the growth of particles continues
steadily until midnight. However, when looking at individual days, there is a large variation in the start-times
of the particle formation, some events start early in the morning or even in the night, while some start in late
afternoon. Non-event days show very few particles in the < 10 nm size bins.

The total number of particles measured at the site during NPF events rises up to ~2400 cm™ reaching the
maximum concentration at ~17 o’clock in the evening. This shows that NPF is an important source of aerosol
particles in Virri6 as previously reported (Vehkamaéki et al., 2004). Non-event days have clearly lower particle
concentrations throughout the day, staying lower than 1000 cm™ on average. The measured 2-7 nm anion
concentrations stay very low during non-event days. As intermediate ions form mainly during NPF, their
concentrations are used as indicator of NPF events in boreal environments (Leino et al., 2016). On NPF days,
we see a peak in the anion concentration at noon, the concentration being about six times higher than during
non-event days. This indicates that negative ions may play a role in SMEAR I particle formation events.
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367  Figure 6. This figure depicts the median number size distribution during all observed NPF events (n = 33) and
368  non-events (n = 75) during our measurement period. The data is collected with a DMPS and size bins from
369  2.82to 708 nm are plotted.
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370

371  Figure 7. Median total particle concentration (Ny) in A) and 2-7 nm negative ion concentrations in B) at
372  SMEAR I during NPF event (red, n = 33) and non-event days (black, n = 75). The total particle number
373  concentration is recorded with a CPC and air ion concentrations with a NAIS.

374  Figure 8 shows the differences in temperature, RH, global radiation and ozone mixing ratios between NPF
375  event days (in red) and non-event days (black). In Virrio, NPF events preferably happen in relatively low
376  temperatures (1 — 8 °C) with a fast temperature rise in the early morning hours, lower and decreasing RH,
377  dropping from 90% to ~55 %, during the NPF days compared to non-event days. NPF days have clearly higher
378  global irradiance values (~450 m™ vs. ~200 m?) and about 10 ppbv higher ozone concentrations than non-
379  event days. The meteorological conditions favor NPF are thus similar than at the SMEAR 1I station in Hyytidla,
380  where sunny clear sky days with low RH and condensation sink along with wind directions from the cleaner
381  northerly sector are forecasting NPF events (Nieminen et al., 2014).
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Figure 8. Average temperature (°C) in panel A), relative humidity (%) in B), global radiation (W m™) in C)
and ozone concentration (ppbv) in D), all measured at SMEAR I during NPF event (red, n = 33) and non-event
days (black, n =75).

Next, we show the concentrations of aerosol precursor compounds during NPF and non-event days in figure
9. The SA concentrations closely follow the solar irradiation profile (Figure 8C). Similarly to the results
obtained from the high Arctic, Svalbard, also MSA is elevated during NPF events, especially during summer,
and could possibly contribute acrosol growth (Beck et al., 2021). We observe close to an order of magnitude
higher MSA concentration between the events and non-events days, highlighting the dominant role of sulfur
species to nucleation and growth in general at this site. In order to attribute the source of sulfur species and 1A
during the event and non-event days we performed a cluster analysis using a geographical information system
(GIS) based software, Trajstat (Wang et al., 2009). The NCEP/NCAR reanalysis data was used as
meteorological input for the model (Kalnay et al., 1996). The simulations were performed at an arrival height
of 250 m. a.g.]. SMEAR I station is located approximately at similar height (390 m a.s.l), thus representing the
air masses arriving at the station even during strong temperature inversions (Sipild et al., 2021).
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Figure 9. Aerosol precursor gases in SMEAR I during NPF (red, n = 33) and non-event days (black, n = 75).
The data is hourly median average.

Higher concentrations of aerosol precursors SA, MSA and IA are connected to the air masses that arrive to
SMEAR I from the Arctic Ocean (Figure 10). Cluster analysis of air mass back trajectories arriving to Varrié
during NPF days clearly shows that most NPF events occur when the air mass was exposed to marine
environments within the last 72 hours. In our case, mainly the Norwegian Sea in the West (58 %) or the Barents
(21 %) and Kara Seas (21 %) in the Arctic Ocean. This seems relevant to our results since the marine
environment in the North is emitting large amounts of DMS, a precursor for SA and MSA (Levasseur, 2013)
and iodine species that further oxidize to IA (Baccarini et al., 2020; Sherwen et al., 2016). A fraction of air
masses that are connected to both NPF (21 %) and non-event days (37 %) are coming to SMEAR I from the
Kola peninsula that is connected to high SO, emissions, higher particle number concentrations and winter time
NPF events (Sipiléd et al., 2021). Most non-event air masses arrive to Virri6 from South-West (49 %) crossing
northern Finland and Sweden.

In addition from Figure 9 we observe that we cannot rule out the contribution of IA in NPF in SMEAR 1, but
with the recorded concentration, it usually is not enough to initiate NPF (He et al., 2021). Although IA
concentrations are slightly larger on NPF days than non-event days, the rise in concentration happens already
early in the morning, clearly before the average event start-time. The possible source of IA was discussed
earlier in Sect 3.2 and we hypothesize that the source of iodine at SMEAR 1 could be both; i) the long distance
transport from the Arctic Ocean combined to ii) the local emissions from the snow pack and vegetation. The
hypothesis of vegetation emitted iodine species is supported by the minor difference between NPF (mostly
marine) and non-event day (mostly continental) concentrations. At SMEAR I, HOMs are the only species that
are at a (marginally) lower level during non-event than NPF days indicating that the total HOM concentration
does not determine when NPF events occur. However, this does not exclude the possible participation of
certain HOMs in NPF together with sulfur compounds (Lehtipalo et al., 2018) or at later stages of the NPF
process, especially during particle growth. However, pure biogenic nucleation involving ions and HOMs
(Kirkby et al., 2016) seems not to be a major NPF pathway in Virri6.
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Our measurements do not unveil the detailed mechanism of nucleation or growth of particles. We lack
measurements of ambient bases that are needed to stabilize SA clusters in ambient conditions (e.g. Almeida et
al., 2013; Jen et al., 2014; Kirkby et al., 2011; Kiirten et al., 2014; Myllys et al., 2018). With the given
observations comparing NPF days with non-event days it is likely that most regional NPF events require SA,
but the NPF process can involve other compounds as well, especially IA and MSA, which show higher
concentrations on NPF days, very similarly that the results reported from Ny-Alesund (Beck et al., 2021).
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Figure 10. Trajectory cluster analysis of 72-hour back trajectories simulated at arrival height of 250 m a.g.1
and the NCEP/NCAR reanalysis data used as meteorological input. Red = NPF event, black = non-NPF

4. Conclusions:

We report ~7 months of nitrate-based CI-APi-TOF measurements of SA, MSA, IA and HOM from a remote
sub-Arctic field station SMEAR I in Finland. The measurements aim to increase our understanding of the
Arctic aerosol forming precursors and atmospheric chemistry in more details. The reason for measuring these
compounds ~150 km north of the Arctic Circle is simple; the Arctic is warming twice the speed as the planet
on average. Lapland is already facing environmental changes when e.g. woody plants disperse further north
and influence the tundra ecosystem (Aakala et al., 2014; Kemppinen et al., 2021). These changes will in turn
affect the emissions of aerosol precursor gases, which may have feedback effects on to the climate (e.g.
Kulmala et al., 2020; Paasonen et al., 2013).

The area surrounding SMEAR I station has snow cover for almost 8 months a year. Accumulating snow during
the autumn is a good reservoir to e.g. halogens, similarly than in the high Arctic (and Arctic Ocean)
environment. The snow pack also acts as a cover for biogenic emissions entering the atmosphere from the
ground. Any changes in the temperature and snow cover in the sub-Arctic regions will effect on atmospheric
chemistry and composition that are undeniably changing the way aerosol particles form and what their number
concentration is in the region.

In this study, we report seasonal and monthly variations of SA, MSA, IA and HOM concentrations and find
all these compounds abundant in springtime. SA has a peak concentration in the spring, decreasing for the rest
of the seasons. We detect high concentrations of MSA and IA that are usually connected to marine and coastal
environments, although Vérri6 is located ~130 km from the nearest coast of the White Sea. While MSA is
abundant in the spring, summer and decreases to limit of detection levels for autumn, IA continues at the same
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concentration throughout the seasons. It seems likely that these two compounds are connected to emissions
from phytoplankton or the Arctic ice pack and arrive to SMEAR I by long transport routes. In the case of 1A,
we suggest that the source of iodine emissions is a combination of transport and local emission from the
continental snow pack and vegetation at the site. Further work is needed to confirm this hypothesis.

The most striking correlation we found in HOM concentrations and ambient air temperature. The vegetation
at SMEAR I is the source of VOCs even in the snow covered spring season and these volatile gases are oxidized
into HOMs with different reaction rates depending on the oxidant. In the case of such strong temperature
controlled HOM concentrations, we conclude that HOMs in the mass range of 300 — 600 Th are most likely
products of monoterpene oxidation.

We also studied the abundance of these aerosol precursors separately during NPF and non-event days. We
observed that new particles at SMEAR I preferably form in relatively low temperatures (< 10°C), low RH that
decreases with rising temperature during the day (to a minimum of ~55%), ~10 ppbv higher ozone mixing
ratio than during non-event days, high SA concentration in the morning and high MSA concentrations in the
afternoon. Cluster analysis of air masses show that NPF usually happens in marine air masses travelling to the
site from North West - West. All together, these are the first long term measurements of aerosol forming
precursor from the sub-arctic region helping us to understand atmospheric chemical processes and aerosol
formation in the rapidly changing Arctic.
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