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Abstract. We present a method for estimating fossil fuel methane emissions using observations of methane and
ethane, accounting for uncertainty in their emission ratio. The ethane :methane emission ratio is incorporated as
a spatially and temporally variable parameter in a Bayesian model, with its own prior distribution and uncertainty.
We find that using an emission ratio distribution mitigates bias from using a fixed, potentially incorrect emission
ratio and that uncertainty in this ratio is propagated into posterior estimates of emissions. A synthetic data test is
used to show the impact of assuming an incorrect ethane :methane emission ratio and demonstrate how our vari-
able parameter model can better quantify overall uncertainty. We also use this method to estimate UK methane
emissions from high-frequency observations of methane and ethane from the UK Deriving Emissions linked to
Climate Change (DECC) network. Using the joint methane–ethane inverse model, we estimate annual mean UK
methane emissions of approximately 0.27 (95 % uncertainty interval 0.26–0.29) Tgyr−1 from fossil fuel sources
and 2.06 (1.99–2.15) Tgyr−1 from non-fossil fuel sources, during the period 2015–2019. Uncertainties in UK
fossil fuel emissions estimates are reduced on average by 15 % and up to 35 % when incorporating ethane into
the inverse model, in comparison to results from the methane-only inversion.
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1 Introduction

Atmospheric methane (CH4) is a potent greenhouse gas with
many natural and anthropogenic sources. These sources can
be split into three main types: microbial methane, which
is emitted during the decomposition of organic matter; py-5

rogenic methane, which is formed during incomplete com-
bustion of biomass; and thermogenic methane, which is re-
leased from fossil fuels during their extraction, refinement
and use. Globally, anthropogenic sources account for approx-
imately 60 % of total methane emissions. The largest sources10

of methane are agriculture and waste management (approx-
imately 35 % of total emissions) and fossil fuel production
and use (approximately 20 % of total emissions) (Saunois
et al., 2020).

Methane has contributed to approximately 25 % of the15

total anthropogenic radiative forcing caused by warming
agents since pre-industrial times (Myhre et al., 2013). Due
to its short atmospheric lifetime of around a decade and high
impact on radiative forcing in the atmosphere, reduction in
methane emissions is a key target for many countries (Gane-20

san et al., 2019).
Despite its importance when considering climate change

targets, concentrations of methane in the atmosphere are con-
tinuing to rise rapidly. Recent years have seen an accelera-
tion in this upward trend, with a global annual increase in25

atmospheric methane concentration of approximately 15 ppb
(parts per billion) between 2019 and 2020 (Dlugokencky and
NOAA/GML, 2021). There is no established consensus over
the cause of the recent increase in atmospheric concentration,
with studies suggesting increases in tropical wetland emis-30

sions (Bousquet et al., 2011; Nisbet et al., 2019; Schaefer
et al., 2016), potential changes to the hydroxyl radical con-
centration (Rigby et al., 2017; Turner et al., 2017; Thompson
et al., 2018) and variation in fossil fuel emissions (McNorton
et al., 2018; Thompson et al., 2018; Hausmann et al., 2016)35

as possible contributors. The variety of proposed mecha-
nisms for recent changes in atmospheric methane highlights
why this is a key area for research.

In this work, we present a method to quantify
methane emissions with improved uncertainty characterisa-40

tion through inverse modelling of atmospheric observations.
Estimates of sector-level emissions are calculated using ob-
servations of a secondary trace gas and its emission ratio rel-
ative to methane. The key development in this work over pre-
vious methods is the inclusion of an emission ratio as a vari-45

able parameter, which is inferred along with sectoral methane
emissions using a Bayesian inversion framework.

A general discussion of methane emissions estimation and
a review of previous work using ethane for fossil fuel emis-
sions estimation is provided in the rest of Sect. 1. We discuss50

our statistical method in Sect. 2. The methods used for a syn-
thetic data experiment and for a case study on the UK’s fossil
fuel methane emissions are described in Sects. 2.1 and 2.2.
Results from these two experiments are given in Sect. 3 and

discussions of the results in Sect. 4, followed by our conclud- 55

ing remarks.

1.1 Estimating methane emissions

Methane emissions can be estimated using two main ap-
proaches: bottom-up and top-down modelling. Bottom-up
methods model the physical and chemical processes of 60

methane emission to create estimates of sector-level emis-
sions, which can be distributed in space and time at a range
of resolutions. However, methane emissions inventories have
been shown to be inaccurate in some cases when compared
to observations, which could lead to an incorrect represen- 65

tation of methane sources. For example, the spatial distribu-
tion of methane emissions from oil and gas sources in the
Emissions Database for Global Atmospheric Research v.4.2
(EDGAR) (Team EDGAR, 2021) was shown to be too heav-
ily weighted towards locations where these fuels were dis- 70

tributed and used, rather than areas of fossil fuel extraction
and production (Chen et al., 2018). Recent updates to this in-
ventory (v.5.0 and 6.0) now include more detailed temporal
and spatial profiles.

Top-down estimation of emissions uses observations of 75

methane concentrations in the atmosphere and a chemical
transport model to infer fluxes, often through Bayesian meth-
ods. These observations can be directly sampled from ambi-
ent air or remotely sensed. An estimate of emissions from a
bottom-up model is typically used as prior information to in- 80

form the top-down inverse model during the inference of a
posterior emissions distribution and to partition emissions to
their source based on their location.

Measurements of additional trace gases can be used with a
top-down approach to partition emissions, when these trace 85

gases are co-emitted with methane from a particular source
at a characteristic ratio. For example, carbon monoxide (CO)
is co-emitted with methane during incomplete combustion
(Heald et al., 2004), so it could be used to quantify emis-
sions from biomass burning. Ethane (C2H6) is emitted by 90

fossil fuel production and use and has no significant emis-
sions from biogenic sources (Peischl et al., 2013; Helmig
et al., 2016), so it can be used to quantify fossil fuel methane
emissions. Methane isotopologue observations (e.g. 13CH4)
can be utilised to apportion emissions in a similar method, 95

by considering the ratio of isotopologues emitted from each
source type (Milkov et al., 2020; Lan et al., 2021). Studies
have shown that when incorporating emission ratios or ob-
servations of additional gases into emissions quantification
frameworks, the uncertainty in emission estimates of the pri- 100

mary gas can be reduced significantly when compared to a
single gas model (Palmer et al., 2006; Wang et al., 2009;
Boschetti et al., 2018). However, these approaches always
require a thorough understanding of the associated emission
ratios, as inaccuracies in these values could introduce large 105

posterior errors (as discussed in Nathan et al., 2018) or lead
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to emissions being incorrectly partitioned (Schwietzke et al.,
2016; Sherwood et al., 2017).

1.2 Previous work using ethane observations to infer
fossil fuel methane emissions

Previous studies have used ethane observations and emission5

ratios in a range of methods for the source partitioning of
methane emissions. Typically, the enhancement in aircraft
mole fraction observations of methane and ethane is com-
pared to a bottom-up estimate of an ethane :methane ratio
to assign a proportion of total regional methane emissions to10

a fossil fuel source (e.g. Baier et al., 2020; Mielke-Maday
et al., 2019). Similar methods have also been used more
locally over cities or individual gas fields, where compar-
isons between literature and observed emission ratios have
been used for source attribution of methane enhancements15

seen in individual plumes observed by ground-based vehicle-
mounted instruments (Yacovitch et al., 2017; Lowry et al.,
2020).

Ethane observations have also been incorporated more di-
rectly into joint inverse models, where emissions are opti-20

mised simultaneously to create emission profiles characteris-
tic of each source type (Peischl et al., 2013; Kuwayama et al.,
2019). Ethane and methane aircraft observations have also
been optimised in a joint model to estimate surface methane
fluxes, by comparing the observed ethane :methane emission25

ratios to a bottom-up estimate of the ratio (Barkley et al.,
2019).

Most of these previous works using observations of
methane and ethane have used a fixed estimate of the ethane :
methane emission ratio as a basis for the apportionment of30

methane emissions. Whilst some have considered trends in
the ratio (Wunch et al., 2016), most studies assume that this
ratio is constant, which is unlikely to be true in most situa-
tions (Hausmann et al., 2016; Lan et al., 2019; Nisbet et al.,
2019) as the ratio can vary with location and over time, de-35

pending on the type of fossil fuel source and the type of ex-
traction or processing techniques being used. Incorrectly as-
suming that this ratio is fixed could introduce errors into any
sector-level emissions estimates and could alter the inference
of emission trends.40

2 Methods

In this work, a top-down hierarchical Bayesian inverse model
uses observations of a secondary trace gas and its emission
ratio with respect to a primary gas to solve for emissions of
the primary gas at a sectoral level. Uncertainties in the emis-45

sion ratio between the primary and secondary gases are sta-
tistically propagated into the emissions distributions through
the hierarchical framework. The principle of this method is
described below.

A forward model (Eq. 1) links observed mole fractions of50

a gas y to its emissions x via a linear atmospheric chemistry

and transport model H and model–measurement error ε TS1 .
x is inferred through an inversion of the forward model using
Bayesian statistics.

y=Hx+ ε (1) 55

TS2

Prior probability density functions (PDFs) must first be as-
signed to the parameters. To reduce the subjectivity involved
when choosing these PDFs, additional hyper-parameters can
be included in a hierarchical Bayesian framework, which 60

places distributions on these uncertain parameters rather than
imposing them as fixed values. Ganesan et al. (2014) found
that by including uncertainty in parameters (such as model–
measurement error) as hyper-parameters, one could better
propagate uncertainties into the posterior estimate of emis- 65

sions. To use these hyper-parameters in the inverse model,
Bayes’ theorem is extended to include the joint distributions
between primary and secondary parameters θ (Ganesan et al.,
2014),

ρ(x|y)∝ ρ(y|x,θ ) · ρ(x|θ ) · ρ(θ ). (2) 70

There is no analytical solution to maximise Eq. (2), so a
Markov chain Monte Carlo (MCMC) method is used to pro-
duce a posterior distribution containing possible solutions for
each of the parameters. This is an iterative method, based
on the Metropolis–Hastings algorithm, that randomly sam- 75

ples the PDFs of the parameters involved and then accepts
or rejects these new parameter values based on their proba-
bility density, relative to the prior and observation distribu-
tions (Ganesan et al., 2014). The step sizes used to dictate
the size of the sampling distribution for each parameter are 80

optimised through an adaptive MCMC process to produce
an acceptance ratio of approximately 0.35, using an adapted
version of Algorithm 4 from Andrieu and Thoms (2008). The
first 50 % of these samples are discarded as a burn-in period
to remove memory of the initial state, and every 100th value 85

of the remaining samples is retained to form posterior distri-
butions for the optimised parameters. With MCMC methods,
non-Gaussian distributions can be used to represent the input
parameters; for example, a less-well-understood parameter
may be better represented by a uniform distribution, where 90

upper and lower bounds of the distribution can be set to ce-
ment the solution in physical terms.

To solve for emissions from separate sources, the forward
model is expanded to include emissions of the primary gas
from two sectors A and B: 95

yGas1 =HGas1,A · xGas1,A+HGas1,B · xGas1,B + εGas1. (3)

Observations of the secondary gas and its emission ratio
are incorporated into this model as follows. Assuming that
Gas 2 is only co-emitted from sector A, with emission ra-
tios R relative to Gas 1, the forward model for Gas 2 is ex- 100

pressed as

yGas2 =HGas2,A ·R · xGas1,A+ εGas2. (4)
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In an application where a particle dispersion model is used
to provide transport model footprints (as is the case for the
remainder of this work) and when analysing observations of
gases with long atmospheric lifetimes, atmospheric transport5

of both gases can be assumed to be equivalent. Therefore,
the linear transport model is the same for both gases and is
represented from this point onward as H.

Combining the two forward models, Eqs. (3) and (4), pro-
duces a joint model where both gases inform the estimate of10

emissions:[
yGas1
yGas2

]
=

[
HA HB

R ·HA 0

][
xGas1,A
xGas1,B

]
+

[
εGas1
εGas2

]
. (5)

Without a framework that can consider the uncertainty in
the emission ratios, R would be imposed as a fixed parameter
into the sensitivity matrix at this point. In our work, the emis-15

sion ratio R is treated as a variable parameter, requiring the
expansion of Bayes’ theorem as discussed above and shown
in Eq. (6). Model–measurement uncertainty (σ y) is also in-
cluded as a hyper-parameter, again with its own prior PDF
and uncertainty,20

ρ(x,R,σ y |y)∝ ρ(y|x,R,σ y) · ρ(x) · ρ(R) · ρ(σ y). (6)

A MCMC process is used to produce posterior distribu-
tions for both the emissions and emission ratio parameters. In
this study, we used this model to estimate methane emissions
from fossil fuel (FF) and non-fossil fuel (non-FF) sources,25

using ethane as the secondary gas. However, this model
framework is highly adaptable and could be used with other
tracers, for example, methane isotopologues.

2.1 Synthetic data experiment

To investigate the influence of the ethane :methane emission30

ratio on posterior estimates of methane emissions, we car-
ried out model runs as described above, using synthetic data
generated from a known emission field and a known emis-
sion ratio. These tests used a two-sector model of identi-
cal UK fossil fuel (FF) and non-fossil fuel (non-FF) fluxes,35

with the same magnitude and spatial distribution of emis-
sions. Total UK methane emissions from the UK National
Atmospheric Emissions Inventory (NAEI) (https://naei.beis.
gov.uk/, last access: 9 February 2022) were used to represent
emissions from both sectors. This test simulates a scenario40

when fluxes from both sectors are inseparable by spatial dif-
ferences alone. For these synthetic data tests we did not con-
sider background levels of methane (i.e. the contribution to
the total mole fraction from emissions outside the UK) and
only tested the ability of the inversion to return the regional45

(UK) emissions field.
The a priori ethane :methane emission ratio, R, was as-

sumed to be uniform across the whole domain, with a value
of 0.075. This is the approximate mean ethane :methane

emission ratio from natural gas sources in Europe (Table 1). 50

We assumed no ethane emissions from the non-FF sector.
We created 4-hourly synthetic methane observations at

four UK tall-tower sites and one coastal site in the UK De-
riving Emissions linked to Climate Change (DECC) net-
work (Stanley et al., 2018; Stavert et al., 2019) at Mace 55

Head (MHD), Tacolneston (TAC), Bilsdale (BSD), Ridge
Hill (RGL) and Heathfield (HFD) (see Fig. A1 for loca-
tions) by combining the synthetic emissions fields with atmo-
spheric transport footprints made using the Met Office’s La-
grangian Numerical Atmospheric-dispersion Modelling En- 60

vironment (NAME) (Jones et al., 2007). See Appendix A for
details on how NAME was run and for an example trans-
port footprint. Synthetic ethane observations were created by
combining FF ethane emissions (generated as FF methane
emissions times the known uniform emission ratio of 0.075) 65

with the transport model footprints. To mirror the DECC net-
work, methane observations were created for all five sites, but
ethane observations were only created for two sites, MHD
and TAC. For both gases, Gaussian noise with a standard de-
viation equal to 10 % of each measurement was added to sim- 70

ulate instrument noise and model error.
Three sets of inversions were run.

1. Joint methane–ethane inversions where the emission ra-
tio was fixed at values ranging from 0.5–1.5 times the
true value. This test simulates studies that hardwire 75

emission ratios at potentially incorrect values, without
considering their uncertainty.

2. Joint methane–ethane inversions where the emission ra-
tio is a variable parameter with its own PDF represent-
ing the range of uncertainty in the emission ratio. The 80

emission ratio prior PDF was given a uniform distribu-
tion of 0.5–1.5 times the true valueCE1 . This simulates
the situation where uncertainty in the emission ratio is
built into the framework.

3. A methane observation only (i.e. one gas) inversion 85

where no ethane observations or emission ratio are in-
cluded and the attribution of emissions is only informed
by the spatial distinction of sources in the prior (which
in this case, does not exist).

In all tests, the inversion solved for emissions as a scaling 90

of the a priori emission field, on a coarser grid than the native
resolution of the transport model. The inversion estimated
parameters for 49 regions over the UK, with the rest of the
European domain split into four larger regions (see Fig. C1
for a representation of the inversion domain). The ethane : 95

methane emission ratios were solved for at the same resolu-
tion as methane emissions. Gaussian distributions were used
for emissions parameters in these synthetic data tests. As the
true emission field is known here and to represent a real-
world situation where the prior mean may not necessarily be 100

the true value, we used emission PDFs with a priori means
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Table 1. Estimates of ethane :methane molar emission ratios from a range of fossil fuel methane sources.

Molar ratio (median and range) Source type Reference

0.045 (0–2.76) Global conventional oil and gas composition (Sherwood et al., 2017)
0.038 (0.001–1.0) European raw gas composition (Visschedijk et al., 2018)
0.03 UK gas and oil distribution (Xiao et al., 2008)
(0.049–0.09) UK gas leaks (Lowry et al., 2020)

equal to 125 % and 75 % of their true values for the FF and
non-FF sectors, respectively, to simulate slightly incorrect a
priori emission fields (i.e. correct total emissions but incor-
rect partitioning). Both sectors were given a standard devi-
ation of 50 % of their true values. Model–measurement un-5

certainty was fixed at 10 % of the mean pseudo-observation
value for both methane and ethane.

2.2 UK methane emissions case study

We used the methane-only and joint methane–ethane inverse
models to estimate monthly UK methane emissions from10

2015 to 2019. We also tested the impacts of a fixed emission
ratio on posterior flux estimates and investigated the propa-
gation of uncertainties through the model when applying an
uncertainty to this emission ratio.

2.2.1 Observations and transport footprints15

Methane observations were used from the five current
UK DECC network sites, as discussed in Sect. 2.1. Mole
fraction observations of methane were made using cav-
ity ring-down spectroscopy (CRDS) instruments Picarro
G2301 and G2401, calibrated using daily standard mea-20

surements, and are reported on the WMO-X2004A scale
(Stanley et al., 2018; Stavert et al., 2019). Ethane observa-
tions were made at two DECC sites, MHD and TAC, using
a Medusa gas-chromatography–mass-spectrometry (GCMS)
instrument (Prinn et al., 2018). Calibration of ethane obser-25

vations is currently based on the provisional SIO-p (Scripps
Institution of Oceanography) scale. Frequent comparisons
between Advanced Global Atmospheric Gases Experiment
(AGAGE) ethane measurements (for example those made at
the MHD site) and those reported by the National Oceanic30

and Atmospheric Administration (NOAA) at the same site,
but using an independent calibration scale, show no signif-
icant long-term bias. A complete description of the ethane
calibration employed here is given in Mühle et al. (2007).

Observations from the highest inlet at each tall-tower site35

were used to reduce the impact of local fluxes and to increase
the size of the footprint, with the exception of 2015–2016 for
ethane, when the instrument measured from the middle inlet
(100 ma.g.l.) at TAC. A complete discussion of instrumen-
tation, inlet heights and uncertainty characterisation is pre-40

sented in Stanley et al. (2018) for the MHD, TAC and RGL
sites, as well as in Stavert et al. (2019) for HFD and BSD.

Observations of both gases were filtered to remove points
when local emissions are likely to bias results, using simi-
lar methods to those described in Lunt et al. (2021). Mea- 45

surements made at times when the tower inlet was sampling
air from above the planetary boundary layer were removed.
Measurements were also removed when more than 10 % of
the area-integrated sensitivity at the site was from the 25 grid
cells surrounding the site (i.e. local sources). Remaining ob- 50

servations were averaged into 4-hourly periods. On average
40 % (range 18 %–69 %) of observations were filtered each
month.

The NAME model was used to produce transport foot-
prints for all observation sites. See Appendix A for more 55

detail on how NAME was run and for an example footprint
for the network of sites. As methane’s lifetime of around a
decade is long compared to the timescale of transport within
the regional domain (on the order of days), we assumed
that atmospheric loss is negligible and that only transport 60

influences the relationship between surface emissions and
atmospheric concentrations. Ethane has a shorter lifetime
than methane (from approximately 2 months in summer to
6 months in winter (Helmig et al., 2016)). However, we found
atmospheric loss of ethane on a 2-month timescale to have 65

a negligible effect on the footprints over the UK, and there-
fore we used the same transport footprints for both gases (see
Fig. B1 for a comparison of a footprint for an inert gas and
for a gas with a 2-month lifetime).

2.2.2 Model parameters and a priori PDFs 70

The a priori estimate of UK methane emissions from each
sector was taken from the UK Greenhouse Gas (UKGHG,
Levy, 2020) model of spatially and temporally disaggre-
gated emissions, which is based on national, annual totals
from the UK National Atmospheric Emissions Inventory 75

(NAEI). Emissions from the sectors “energy production”,
“offshore”, “industrial and domestic combustion”, “indus-
trial processes”, “road transport” and “other transport” were
summed to form an a priori field for FF emissions. Emissions
from “agriculture”, “waste” and “natural” sectors formed the 80

a priori field for the non-FF sector. Emissions from areas
outside the UK but within the modelling domain, including
for example western Europe, were taken from the Emissions
Database for Global Atmospheric Research (EDGAR) v5.0
(Crippa et al., 2020; Team EDGAR, 2021). The spatial distri- 85
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bution and percentage contribution from each source to total
emissions from each grid cell are given in Fig. E1.

Boundary condition curtains representing the methane
mole fractions at the edges of the study domain, were derived
from the global methane model CAMS v19r1 (available via5

https://ads.atmosphere.copernicus.eu/, last access: 9 Febru-
ary 2022). Spatially uniform boundary condition curtains
were used for ethane, based on the monthly mean ethane con-
centration observed at MHD.

Scaling factors to the a priori emissions and emission ra-10

tios were solved for at a coarser resolution than the resolution
of the transport model. The study domain was split into 49
regions using a quadtree algorithm (see e.g. Western et al.,
2021) which placed a higher density of smaller grid cells in
areas with greater sensitivity to emissions and a lower density15

of larger cells in areas with less sensitivity to emissions. The
inverse model then solved for a scaling factor of the a priori
emissions from each sector and an emission ratio for each
of the 49 regions, for each calendar month (see Fig. C1 for
an example of the inversion grid). Four boundary condition20

scaling parameters representing adjustments to the curtains at
each horizontal boundary were also estimated for each gas,
also at monthly resolution.

Prior distributions for emission scaling factors were as-
sumed to be Gaussian, truncated at zero to prevent the model25

from converging at negative emissions. Prior emission scal-
ing factor PDFs were given a mean of 1 and standard devi-
ation of 0.5 (before truncation). Boundary condition scaling
factors for the four horizontal boundaries for each gas were
also given Gaussian PDFs, truncated at zero, with a mean30

of 1 and an uncertainty of 0.05 and 0.5 (before truncation)
for methane and ethane, respectively. Ethane boundary con-
dition uncertainties are assumed to be large due to their large
seasonal and latitudinal variations.

Observational uncertainty includes both measurement and35

model uncertainty. Measurement uncertainty of 4-hourly
data was calculated as the variability within the averaging pe-
riod. Model uncertainty was included as a hyper-parameter,
with one value per site per month solved for, during the in-
version. This model uncertainty was given a uniform PDF be-40

tween 10 and 50 ppb for methane and between 20 and 50 ppb
for ethane (these values were chosen based on results from
similar work using these datasets (Ganesan et al., 2014)).
Total uncertainty for each observation is calculated as the
quadratic sum of the measurement uncertainty at each time45

point and the model uncertainty at each site. A full descrip-
tion of a similar use of model uncertainty in a hierarchical
framework can be found in Ganesan et al. (2014).

A uniform a priori emission ratio PDF was used for each of
the 49 regions with bounds of 0.0075 and 0.2. These values50

were chosen to include the most common ratios found by
bottom-up estimates of European fossil fuel ethane :methane
ratios from a range of studies and databases (Table 1).

3 Results

3.1 Synthetic data experiment results 55

Results from synthetic data tests, showing the impacts of a
fixed and variable emission ratio, are summarised in Fig. 1.
Because there is no spatial distinction between sources in the
prior and because the total posterior emissions are the true to-
tal, the methane-only (one gas) model returns the prior mean 60

emissions for each sector. This lack of sectoral information
from the prior is also expressed in the relatively large poste-
rior uncertainties for both sectors.

In the joint methane–ethane inversion, there is more infor-
mation available for the model to constrain emissions from 65

each source. However, when the emission ratio R is fixed in
the inversion at an incorrect value, the sectoral partitioning
of emissions is also incorrect but is derived with high confi-
dence. If the emission ratio is fixed at a value which is 50 %
lower than its true value, posterior mean FF fluxes are esti- 70

mated to be over 80 % larger than their true value. As total
emissions are constrained by the methane observations, the
estimate for non-FF fluxes is therefore skewed in the oppo-
site direction, with posterior mean fluxes smaller than their
true value. The 95 % confidence intervals on FF emissions in 75

this test are too small to be visible on this scale, due to the
high level of constraint from the fixed emission ratio. This
synthetic data test highlights how errors could be introduced
when using a fixed ethane :methane ratio that does not reflect
the true uncertainty in the parameter. 80

Results from the joint methane–ethane model that consid-
ers the uncertainty in the emission ratio (Fig. 1 rightmost
points in both Fig. 1a and b) show that the potential errors
introduced by assuming an incorrect ratio can be mitigated
by including R as a variable parameter. In this case, pos- 85

terior fluxes from both sectors converge closer to the true
sector-level emissions, with a reduced posterior uncertainty
compared to the methane-only model output but with larger
uncertainty than if fixing the emission ratio. True emissions
are not replicated exactly as there is some small dependence 90

on the emissions prior. FF emissions are constrained by both
methane and ethane observations, so most of the uncertainty
in R is therefore carried forward into the estimates of non-FF
fluxes.

3.2 UK monthly methane emissions 2015–2019 95

We used the joint methane–ethane inverse model to cre-
ate posterior estimates of the UK’s monthly FF and non-
FF methane emissions for 2015 to 2019. The methane-only
model was run for the same period for comparison. Figure 2
gives the monthly posterior flux from the UK for the FF and 100

non-FF sectors. Because total methane emissions are con-
strained by the methane observations, posterior total emis-
sions from the methane-only and joint methane–ethane in-
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Figure 1. Posterior methane emissions expressed as means and 95 % confidence intervals from the synthetic data tests. Methane-only model
(solid line and shading) and joint methane–ethane model (dots and error bars) with a range of fixed emission ratios and a variable emission
ratio (rightmost point in both panels a and b). FF fluxes on the left (a) in purple and non-FF fluxes on the right (b) in green. The true and a
priori mean fluxes are given as dashed and dotted grey lines, respectively.

Figure 2. Posterior monthly UK methane emissions in teragrams per year (Tgyr−1). Total (a, blue), FF (b, purple) and non-FF (c, green),
expressed as posterior means and 95 % uncertainty intervals of these PDFs. Methane-only model output (lighter shade line and shading) and
joint methane–ethane model output (darker shade line and shading) both shown for comparison. A priori mean fluxes from the UKGHG
model are given as a grey dashed line.

versions are equal. The differences in results are shown in
the partitioning of emissions from the two sectors.

The joint methane–ethane inversion finds that emissions
from FF sources contribute on average 15 % less to total
methane emissions than in the methane-only inversion. This5

is balanced by a proportional increase in non-FF emissions.
The impact on posterior uncertainty varies across the period,
with an average 15 % reduction in the size of the posterior
FF flux’s 95 % uncertainty interval, which increases up to
35 % for some months. Our results show declining emissions 10

https://doi.org/10.5194/acp-22-1-2022 Atmos. Chem. Phys., 22, 1–19, 2022
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Table 2. Results from the joint methane–ethane inversion. Annual posterior UK methane emissions from FF and non-FF sectors, given as
posterior means and 95 % uncertainty intervals.

Year FF CH4 (Tgyr−1) Non-FF CH4 (Tgyr−1) Total CH4 (Tgyr−1)

2015 0.28 (0.26–0.31) 2.16 (2.00–2.30) 2.44 (2.32–2.56)
2016 0.28 (0.24–0.30) 2.18 (1.98–2.37) 2.46 (2.28–2.64)
2017 0.26 (0.24–0.28) 2.05 (1.88–2.21) 2.31 (2.16–2.47)
2018 0.29 (0.26–0.32) 2.01 (1.82–2.21) 2.29 (2.11–2.48)
2019 0.25 (0.23–0.28) 1.90 (1.78–2.04) 2.15 (2.03–2.28)

over the time period, which is largely driven by emissions
from non-FF sources. Annual mean posterior flux estimates
are given in Table 2. These results are consistent with total
emissions derived in previous inverse modelling studies us-
ing the same data (Western et al., 2020; Lunt et al., 2021).5

A comparison between observed methane and ethane mole
fractions and posterior modelled mole fractions from the
joint methane–ethane model for two example months (April-
May 2019) is given in Fig. 3. Percentage differences between
observed and modelled mole fractions across the time series10

are given as histograms for each site. Baseline mole fractions
from all methane sites (dashed lines in Fig. 3) are consis-
tent with those from the background site (MHD). Figure F1
shows a scatter plot comparing observed and modelled pos-
terior mole fractions from the joint methane–ethane model15

for the full time series from 2015–2019. There is generally
a good fit to observations, but the model does not always fit
to the largest methane peaks from TAC, RGL and HFD, the
three sites closest to areas of high emissions. Comparisons
between observations and an a priori estimate of mole frac-20

tions made by combining the a priori map of fluxes with the
transport model are also given in Fig. F1. Overall, there is an
improved fit to both methane and ethane observations in the
posterior estimate of mole fractions produced by the inverse
model.25

Model uncertainty for methane mole fractions converged
at similar values for all sites across the time period, with a
mean value of 7.75 ppb overall (with 75 % of all mean model
error values between 5 and 10 ppb). Due to the high peaks
and troughs in ethane observations, the model consistently30

attempted to converge the ethane total model uncertainty at
the upper bound of its prior uncertainty range.

The a priori emissions and average spatial distribution
of posterior emission scaling factors for 2019 are shown in
Fig. 4. The ethane observations only indirectly constrain the35

much larger non-FF emissions, so there is little difference
in the spatial distribution of non-FF emissions between the
methane-only and joint methane–ethane inversions. How-
ever, the joint methane–ethane inversion suggests a differ-
ent distribution of FF emissions, where emissions are scaled40

down in most locations, apart from a few regions with large
positive scaling which often correlate with heavily populated

areas (e.g. the West Midlands, London and south coast of
England).

Across the whole period of study, posterior mean ethane : 45

methane emission ratios varied across the domain between
0.009 and 0.2 (we discuss the implications of these poste-
rior ratio values in Sect. 3.4). For example, in July 2019, ap-
proximately 20 % of R values converged with clear Gaussian
posterior distributions, suggesting a strongly correlated rela- 50

tionship between the two gases that the model was able to use
to inform the posterior distribution of both the methane flux
and ethane :methane ratio in that area. Posterior emission ra-
tio PDFs in the remaining areas of the domain were more
uniform, indicating a weak constraint from the observations 55

in those areas. Mean posterior emission ratios for two dif-
ferent periods are shown in Fig. 5. Some regions, for exam-
ple, central south England, London and the West Midlands,
often converge with high emission ratios close to the upper
bound of the a priori PDF. Grid cells where the posterior un- 60

certainty in R (defined as posterior 95th percentile divided
by posterior mean) is less than 50 % of the prior uncertainty
(prior 95th percentile divided by prior mean) are highlighted
in Fig. 5, showing areas where the observations were most
able to constrain R. 65

3.3 Comparison of posterior emission ratios with
independent measurements

We compare posterior ethane :methane emission ratios from
the hierarchical inverse model to independent calculations of
this ratio, made during a range of mobile observation stud- 70

ies. These independent datasets are sparse, and thus only a
limited validation can be performed.

Ethane and methane airborne observations were made dur-
ing flight C191 of the Facility for Airborne Atmospheric
Measurements (FAAM) campaign over North Sea oil and gas 75

fields on 29 July 2019, as part of the Methane Observations
and Yearly Assessments (MOYA) project. A mean average
ethane :methane emission ratio of 0.088 (range 0.04–0.18)
was calculated from four different plume observations using
two different methods, Gaussian plume fitting and linear re- 80

gression. See Appendix D for information on how these ra-
tios were calculated. In addition, the Royal Holloway mobile
laboratory sampled air around potential shale gas production
sites for baseline monitoring (Lowry et al., 2020). They ob-
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Figure 3. Left: observations (dots) and modelled observations (solid lines) of methane (red) and ethane (blue) from the UK DECC network
for April–May 2019. Modelled boundary condition (baseline) emissions are also given (dashed line) along with the a priori modelled con-
centrations (grey). Note the different scales for each site and for each gas. Right: histograms showing the percentage differences between
observed and modelled mole fractions are provided for each gas and site.

served ethane :methane ratios of approximately 0.06 from
local gas leaks, on 27 February 2018. Comparisons between
these individual plume estimates and our monthly posterior
mean emission ratios are shown in Fig. 5a and b. Both inde-
pendently measured ratios are approximately consistent with5

the emission ratios estimated in this work. However, observa-
tions from flight C191 are located far from the DECC obser-
vation network, so our estimates of emission ratios over the
North Sea are likely to have larger uncertainties than those
closer to the towers.10

As most independent observations of ethane :methane ra-
tios over the UK have only been taken over short time peri-
ods, this limits the scope of comparison available with our
monthly model estimates of these ratios. Partitioning of the
domain into coarse grid cells could also impact the compar-15

ison, as ratios are likely to be heterogeneous within each of
these regions. As we are focused on average emissions over
the month, this should not significantly affect our results but

could limit the ability for further validation of our posterior
emission ratios. 20

3.4 Impact of a fixed ethane :methane emission ratio
on UK methane fluxes

As in the synthetic data test, we tested the impact of us-
ing a fixed ethane :methane ratio on 1 month of posterior
UK sectoral methane fluxes (Fig. 6). We ran the model for 25

1 month (April 2019) but used a range of spatially uniform
emission ratios (R). As in the synthetic data test results, pos-
terior fluxes are strongly influenced by a fixed emission ratio.
For example, by assuming a fixed ratio scaling factor of 0.5
(which equates to an emission ratio of approximately 0.04, 30

similar to literature values for natural gas fossil fuel methane
sources), the estimate of mean posterior FF flux is approx-
imately 60 % higher than when using a fixed ratio of 0.075
(approximately the mean emission ratio from a range of stud-
ies, e.g. Table 1). As the rightmost points in both Fig. 6a 35

and b show, the joint methane–ethane inversion with a vari-
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Figure 4. A priori emissions and 2019 annual mean posterior emis-
sion scaling factors for UK FF (left, a, c, e) and non-FF (right,
b, d, f) methane fluxes. A priori fluxes from the UKGHG model,
as described in the text, are given at the resolution of the transport
model (a, b). Posterior mean flux scaling factors from the methane-
only (c, d) and joint ethane–methane (e, f) inverse models are given
at the coarser resolution of the transport model. Red and blue indi-
cate a scaling up or down, respectively, of the a priori estimate.

able emission ratio samples the uncertainty in the emission
ratio and propagates this into the posterior flux estimates. Un-
certainties in the posterior flux estimates are therefore higher
for both sectors than when using a fixed emission ratio but
capture the overall uncertainty in the system more accurately.5

4 Discussion

This work demonstrates the potential advancements that can
be made in sector-level emissions estimation when incorpo-
rating observations of a secondary co-emitted tracer into an
inverse model, but only when considering the uncertain na-10

ture of emission ratios. Both our synthetic data and UK tests
show that overconfidence in knowledge of emission ratios
can bias the model toward incorrect source partitioning. We
also show that in the UK, the joint methane–ethane model
suggests a different spatial distribution of FF and non-FF15

emissions than reflected in the a priori estimate, which would
be the sole constraint on sector partitioning in a methane-
only inversion.

One limitation of this study is that we assume that there
are no ethane emissions from sources other than those co-20

emitted with methane from the FF sector. Small amounts
of ethane are emitted naturally from geological seeps and
during biomass burning (Nicewonger et al., 2016), but this
should have negligible contribution to ethane emissions over

Figure 5. Comparison of posterior emission ratios R from the
joint methane–ethane inverse model with independently observed
ethane :methane ratios labelled in white boxes. Average emission
ratio for July 2019 and comparison with ratios derived from plumes
observed during FAAM flight C191 (a). Average emission ratio for
February 2018 and comparison to observations from the Royal Hol-
loway mobile laboratory sampling (b). Grid cells where the poste-
rior uncertainty (defined as posterior 95th percentile divided by pos-
terior mean) is less than 50 % of the prior uncertainty (prior 95th
percentile divided by prior mean) are filled with a hatching of black
dots.

our study domain. We also assume one possible range of 25

emission ratios for all fuel types, rather than applying dif-
ferent ranges to, for example, coal or natural gas sources.
A more detailed partitioning of methane sources into sub-
sectors of fossil fuel emissions may also be possible with the
model if more specific emission ratios are considered and 30

with a higher density of ethane observations. Our emission
ratios are estimated monthly, which does not account for any
short-term changes in ratios seen from, for example, flaring
or gas leaks.

This study has highlighted the effectiveness of the high- 35

density observational network in and around the UK for
estimating regional methane emissions. The methane-only
model was able to produce total methane emissions estimates
consistent with previous top-down estimates of UK emis-
sions from similar years (Ganesan et al., 2015; Western et al., 40

2020). The difference between methane-only and methane–
ethane inversions in constraining FF sector is small, likely
because of the strong spatial separation between FF and non-
FF sources in the UK. Therefore, this two-gas inverse model
may be even more important for quantifying sectoral emis- 45

sions estimates in areas of the world where inventories are
more uncertain and where there is greater spatial and tempo-
ral overlap between sources.
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Figure 6. Posterior UK methane fluxes for May 2015, expressed as means and 95 % uncertainty intervals. Methane-only model (solid line
and shading) and joint methane–ethane model (dots and error bars) with either a fixed emission ratio or a variable emission ratio (rightmost
value in both a and b). FF fluxes on the left in purple (a) and non-FF fluxes on the right in green (b). The a priori mean fluxes are given as
dashed grey lines.

5 Conclusions

We have presented a method of estimating sector-level emis-
sions of a trace gas using a Bayesian atmospheric inverse
model, observations of a secondary co-emitted tracer and its
emission ratio relative to the primary gas. We use methane5

and ethane, co-emitted from fossil fuel emissions sources, as
an example to highlight the utility of this method. A criti-
cal advancement of this work is in the inclusion of ethane :
methane emission ratios as a variable parameter, with its own
prior PDF and uncertainty. We show how this uncertainty is10

carried forward into posterior flux estimates to improve over-
all uncertainty characterisation. Through a synthetic data ex-
periment and the UK case study, we show how errors can
potentially be introduced into posterior methane estimates if
the ethane :methane emission ratio is assumed to be fixed but15

incorrect. Using a variable emission ratio and considering the
uncertainty in this ratio mitigates these potential errors.

Using this model, we find average 2015–2019 UK
methane emissions from fossil fuel sources of 0.27 (95 %
uncertainty interval 0.26–0.29) Tgyr−1 and from non-fossil20

fuel sources of 2.06 (1.99–2.15) Tgyr−1. The 95 % uncer-
tainty intervals of the UK total methane emission estimates
made here are within the bounds of most previous estimates
(Ganesan et al., 2015; Zammit-Mangion et al., 2015; Lunt
et al., 2016; Western et al., 2020), but fossil fuel emissions25

are 15 % lower than when estimated using only methane ob-
servations and the spatial separation of emissions in the prior.

This inverse model is highly adaptable and could be used
with other trace gases to constrain methane emissions from
other target sources. For example, methane isotopologue30

observations could be used in place of ethane to estimate
methane fluxes from a range of key sources. Recent devel-
opments in instrumentation, allowing for high-frequency iso-
topologue observations, are a promising target for future in-
vestigations of methane emissions with this method.35

Appendix A: Numerical Atmospheric-dispersion
Modelling Environment (NAME)

NAME is a Lagrangian particle model (Jones et al., 2007)
used to estimate the relationship between surface emis-
sions and atmospheric observations. The model simulated the 40

transport of 20 000 inert gas particles from the measurement
location each hour, back in time for up to 30 d, and quan-
tified their interaction with the surface and their exit loca-
tions/times from the study domain. These hourly footprints
were then averaged into 4-hourly footprints to match the av- 45

eraging of the observations. Meteorological data from the
UK Met Office’s Unified Model (Walters et al., 2014) and a
nested UK-specific 1.5 km horizontal resolution meteorolog-
ical product were used to drive NAME at a 1-hourly temporal
resolution over the UK and at 3-hourly resolution over the 50

rest of the domain. The output was stored at 0.23◦× 0.35◦

spatial resolution over a domain spanning 10.7◦ to 79.3◦ N,
−97.9◦ to 39.7◦ E. This process was carried out for each ob-
servation made at each site to build up a field of emissions
sensitivity for the whole domain. 55
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Figure A1. Monthly NAME sensitivities for May 2019 for the full NAME domain (a). Close-up of the UK (b) showing locations of the four
tall-tower observation sites and the coastal observation site used in this study: Mace Head (MHD) at 53.33◦ N, 9.90◦W; Tacolneston (TAC)
at 53.52◦ N, 1.14◦ E; Bilsdale (BSD) at 54.36◦ N, 1.15◦W; Ridge Hill (RGL) at 52.00◦ N, 2.54◦W; and Heathfield (HFD) at 50.98◦ N,
0.23◦ E. Areas with higher values have greater sensitivity to emissions from the surface. Sites with a diamond marker have both methane and
ethane observations. Site with a circular marker only have methane observations.

Appendix B: Atmospheric transport of ethane

Figure B1. Monthly NAME sensitivities for May 2019 using ethane with a 2-month atmospheric lifetime, from sites MHD and TAC. The
sensitivity to emissions (a) where areas with higher values have greater sensitivity to emissions from the surface. The percentage difference
(b) between a sensitivity footprint for an inert gas (such as methane over the study time period) and a footprint for a gas with a shorter
lifetime (such as ethane’s summer lifetime of 2 months). The percentage difference is very low over the UK, where sensitivity is high, so we
were able to assume equivalent transport for this work.
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Appendix C: Study domain grid cells

Figure C1. (a) Division of the study domain into grid cells used for the synthetic data tests (as discussed in Sect. 2.1). A spatially uniform
grid of 49 grid cells covers UK latitude and longitudes and the remainder of the domain is split into four surrounding cells. (b) An example
spacing of grid cells used in the UK case study (as described in Sect. 2.2). A quadtree function was used to split the domain into 49 grid cells,
with a higher density of smaller cells in areas with higher sensitivity to emissions. In both cases, scaling factors of the a priori emissions or
emission ratios are found for each coloured area in the plot.

Appendix D: FAAM ethane : methane emission
ratios

Measurements of methane and ethane were made using an
Aerodyne interband cascade laser (ICL), at a resolution of5

1 Hz (France et al., 2021). These data were used to iden-
tify time periods during flight C191 with concurrent en-
hancements in methane and ethane. Two methods were used
to derive ethane–methane ratios. (1) Regression analyses of
ethane and methane mixing ratios were performed for each10

enhancement. The slopes of these regressions were used to
derive the ethane :methane ratio, using a similar approach to
Wilde et al. (2021). (2) A Gaussian curve was fit to each en-
hancement of methane and concurrent ethane enhancement.
The integral of each of these curves was then used to calcu-15

late the ethane–methane ratio of each methane enhancement.
Previous work in France et al. (2021) showed that consis-
tency is expected between these two methodologies.
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Appendix E: A priori flux estimates

Figure E1. Monthly FF (a) and non-FF (b) methane emissions estimates from the UKGHG model for 2015. The percentage contribution of
each source to the total emissions from each grid cell is given in panel (c) to illustrate the strong spatial separation of methane sources in the
UK and the dominance of emissions from the non-FF (primarily biogenic) sector.
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Appendix F: Posterior mole fraction comparisons

Figure F1. Scatter plot comparing mole fraction observations of methane (left, a, c) and ethane (right, b, d) as used in this study (2015–
2019) to posterior mean modelled estimates of these values, made using the joint methane–ethane inversion (a, b). Comparison with a priori
estimates of mole fraction concentrations made by combining the a priori flux maps with the transport model are also given (c, d) to show
how the joint model improves the fit to observations. Points are colour-coded by site, with the locations of these sites given in Fig. A1.

Code and data availability. Measurements of methane
from the UK DECC network sites Tacolneston, Bils-
dale, Ridge Hill and Heathfield are available from https:
//data.ceda.ac.uk/badc/uk-decc-network/data/TacolnestonTS3 ,5

https://data.ceda.ac.uk/badc/uk-decc-network/data/Bilsdale,
https://data.ceda.ac.uk/badc/uk-decc-network/data/Ridge_Hill/,
https://data.ceda.ac.uk/badc/uk-decc-network/data/Heathfield/
(last access: 9 February 2022). Measurements of methane from
the Mace Head site are available from https://agage2.eas.gatech.10

edu/data_archive/agage/gc-md/complete/macehead/ (AGAGE
Team, 2021). Ethane observations from the Mace Head and
Tacolneston sites are included in the Supplement. The NAME
III v7.2 transport model is available from the UK Met Office
under licence by contacting https://enquiries@metoffice.gov.uk15

(Jones et al., 2007). The meteorological data used to drive
the transport model from the UK Met Office operational nu-
merical weather prediction (NWP) Unified Model (UM) are
available from https://data.ceda.ac.uk/badc/ukmo-nwp (Met Of-
fice NAME Team, 2021). The UK Greenhouse Gas (UKGHG)20

model is available from https://github.com/NERC-CEH/ukghg
(Levy, 2020). The EDGAR v5.0 methane inventory is
available from https://edgar.jrc.ec.europa.eu/dataset_ghg60
(Team EDGAR, 2021). Data from the MOYA FAAM
aircraft campaign are available from the Centre for En-25

vironmental Data Analysis (CEDA) archive, at https:
//catalogue.ceda.ac.uk/uuid/dd2b03d085c5494a8cbfc6b4b99ca702
(MOYA Team, 2022). The code used to infer methane emissions
using these data products, with an example month of data for
testing, is available from https://doi.org/10.17605/OSF.IO/VH8ND30

(Ramsden, 2022). Any other data or code can be made available by
the corresponding author on request.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-22-1-2022-supplement.
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