The formation and mitigation of nitrate pollution: 
Comparison between urban and suburban environments

Suxia Yang1,2, Bin Yuan1,2,*, Yuwen Peng1,2, Shan Huang1,2, Wei Chen3, Weiwei Hu3, 
Chenglei Pei3,4,5,6, Jun Zhou1,2, David D. Parrish1, Wenjie Wang7, Xianjun He1,2, 
Chunlei Cheng3,8, Xiaobing Li1,2, Xiaoyun Yang1,2, Yu Song7, Haichao Wang9, Jipeng 
Qi1,2, Baolin Wang10, Chen Wang10, Chaomin Wang1,2, Zelong Wang1,2, Tiange Li1,2, 
E Zheng1,2, Sihang Wang1,2, Caihong Wu1,2, Mingfu Cai1,2, Chenshuo Ye7, Wei Song3, 
Peng Cheng7, Duohong Chen8, Xinning Wang3, Zhanyi Zhang1,2, Xuemei Wang1,2, 
Junyu Zheng1,2, Min Shao1,2*

1Institute for Environmental and Climate Research, Jinan University, Guangzhou 
511443, China 
2Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for 
Environmental Quality, Jinan University, Guangzhou 511443, China 
3State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of 
Environmental Protection and Resources Utilization, Guangzhou Institute of 
Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 
4CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China 
5University of Chinese Academy of Sciences, Beijing 100049, China 
6Guangzhou Ecological and Environmental Monitoring Center of Guangdong 
Province, Guangzhou 510060, China 
7State Joint Key Laboratory of Environmental Simulation and Pollution Control, 
College of Environmental Sciences and Engineering, Peking University, Beijing 
100871, China 
8Institute of Mass Spectrometry and Atmospheric Environment, Guangdong 
Provincial Engineering Research Center for on-line Source Apportionment System of 
Air Pollution, Jinan University, Guangzhou 510632, China 
9School of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou 510275, China 
10School of Environmental Science and Engineering, Qilu University of Technology, 
Jinan 250353, China 

*Correspondence to: Bin Yuan (byuan@jnu.edu.cn) and Min Shao 
(mshao@pku.edu.cn)
Abstract. Ambient nitrate has been of increasing concern in PM$_{2.5}$, while there are still large uncertainties in quantifying the formation of nitrate aerosol. The formation pathways of nitrate aerosol at an urban site and a suburban site in the Pearl River Delta (PRD) are investigated using an observation-constrained box model. Throughout the campaigns, aerosol pollution episodes were constantly accompanied with the increase of nitrate concentrations and fractions at both urban and suburban sites. The simulations demonstrate that chemical reactions in the daytime and at night both contributed significantly to formation of nitrate in the boundary layer at the two sites. However, nighttime reactions predominately occurred aloft in the residual layer at the urban site and downward transport from the residual layer in the morning are important source (53%) for surface nitrate at the urban site, whereas similar amounts of nitrate were produced in the nocturnal boundary layer and residual layer at the suburban site, which results in little downward transport of nitrate from the residual layer to the ground at the suburban site. We show that nitrate formation was in the volatile organic compounds (VOCs)-limited regime at the urban site, and in the transition regime at the suburban site, identical to the response of ozone at both sites. The reduction of VOCs emissions can be an efficient approach to mitigate nitrate in both urban and suburban areas through influencing hydroxyl radical (OH) and N$_2$O$_5$ production, which will also be beneficial for the synergistic control of regional ozone pollution. The results highlight that the relative importance of nitrate formation pathways can be site-specific, and the quantitative understanding of various pathways of nitrate formation will provide insights for developing nitrate mitigation strategies.

Keywords: nitrate, ozone, volatile organic compounds, N$_2$O$_5$, formation pathways, urban and suburban sites
1 Introduction

Particulate nitrate is a substantial chemical component of fine particles, which plays a significant role in the acid deposition, visibility reduction, hygroscopic property, and radiative forcing (Li et al., 1993; Watson, 2002; Pathak et al., 2009; Xu and Penner, 2012; Zhang et al., 2017; Liu et al., 2020). Due to the larger emission reduction of SO2 than NOx since the implementation of the clean air actions in China, a considerable increase in the nitrate fractions in aerosols has been observed in haze periods in the northern China Plain (Wen et al., 2018; Li et al., 2018; Lu et al., 2013; Fu et al., 2020), southern China (Pathak et al., 2009; Pathak et al., 2011) and eastern China (Griffith et al., 2015; Tao et al., 2018; Yun et al., 2018b; Li et al., 2018), which indicates the growing significance of nitrate in the formation of haze events. In addition, the photolysis of particulate nitrate can increase the production of sulfate and nitrous acid (HONO), implying the importance of nitrate in the synergetic enhancement of the atmospheric oxidizing capability in haze events (Gen et al., 2019; Zhang et al., 2020; Ye et al., 2016; Ye et al., 2017). Hence, identifying and understanding the driving factors of nitrate formation are essential to establishment of optimized mitigation policies for fine particles.

Particulate nitrate is primarily produced through two processes: the photochemical reaction of hydroxyl radical (OH) and NO2 during daytime (R1) and the heterogeneous uptake of N2O5 (R2–R5) during nighttime. The gaseous nitric acid (HNO3) is produced by the reaction of OH and NO2, and then reacts with ammonia (NH3) to form particulate nitrate (Stelson and Seinfeld, 1982). The partitioning process of HNO3 between the gas and particle phase is regulated by ambient temperature ($T$), relative humidity (RH), and the abundance of NH3 (R7) (Mozurkewich, 1993; Xue et al., 2014a; Yun et al., 2018b). The heterogeneous uptake reaction of N2O5 is affected by the coefficient ($\gamma$) and the production yield of ClNO2 ($\varphi$) (R5), which cannot be directly measured and are significantly impacted by the aerosol components and ambient RH (Bertram and Thornton, 2009; McDuffie et al., 2018). Thus, the nocturnal contribution to nitrate formation still has great uncertainty.

In addition, the heterogeneous uptake of N2O5 in the nocturnal boundary layer (NBL) is greatly disturbed in the presence of fresh NO emissions, which titrate the NO3 radical within the stagnant boundary layer (Geyer and Stutz, 2004; Li et al., 2020; Chen et al., 2020). However, aircraft observations in California and Utah in the US have

https://doi.org/10.5194/acp-2021-730
Preprint. Discussion started: 21 October 2021
© Author(s) 2021. CC BY 4.0 License.
revealed that active uptake of N$_2$O$_5$ in the residual layer contributed a major portion of the near-surface nitrate accumulation during the morning transport from aloft (Prabhakar et al., 2017; McDuffie et al., 2019; Womack et al., 2019). Similarly, ground- and tower-based field observations also pointed out the important contribution of this pathway to the rapid increase of near-surface nitrate concentrations in Beijing, China (Wang et al., 2018a; Chen et al., 2020). However, under different atmospheric conditions, the relative importance of nitrate production varies significantly within the residual layer (McDuffie et al., 2019; Tang et al., 2021), giving widely varying relative contributions of the major chemical pathways to nitrate pollution among different sites (Wang et al., 2018a; Womack et al., 2019; Chen et al., 2020; Lin et al., 2020). A comprehensive understanding of the nitrate production in the residual layer is required to quantify the contributions of different formation pathways to nitrate pollution.

The nitrate production from the reaction of OH and NO$_2$ pathway during daytime is well-understood, and the control of NO$_x$ emission is commonly considered as an effective strategy to reduce ambient nitrate. However, several studies reported that the efficiency of NO$_x$ reduction in nitrate control is limited, and it may enhance nitrate production under some conditions (Womack et al., 2019; Dong et al., 2014; Hou et al., 2019). The study by Womack et al. (2019) showed that both nitrate and ozone were VOCs-limited in Salt Lake City, suggesting that VOCs control would effectively reduce nitrate. Similarly, modeling studies also found that the nitrate formation was more sensitive to the change in VOCs concentrations over the northern and eastern China (Dong et al., 2014; Lu et al., 2019; Fu et al., 2020). However, the sensitivity of nitrate production to both NO$_x$ and VOCs in different regions should be comparatively evaluated, which could provide helpful implications in formulating effective control strategies for the mitigation of aerosol pollution.
In recent years, the nitrate formation in haze episodes has been studied in northern China (Liu et al., 2015; Wang et al., 2017a; Wen et al., 2018; Fu et al., 2020; Chen et al., 2020), eastern China (Tao et al., 2016; Lin et al., 2020) and southern China (Qin et al., 2017; Tao et al., 2018; Yun et al., 2018b; Su et al., 2020), and the important contribution of the heterogeneous uptake of N2O5 in the nighttime has been discussed (Wang et al., 2017b; Yun et al., 2018b; Yun et al., 2018a; Chen et al., 2020). However, these ground-based observations rarely considered the potential contributions of reactive uptake of N2O5 aloft in the residual layer, which could be an important source of near-surface nitrate concentrations. In addition, few studies have comprehensively evaluated the relative influence of NOx and VOCs reductions on nitrate production in different environments (Hou et al., 2019).

In this study, we present the results from the ground- and tower-based measurements in both urban and suburban areas in southern China. An observation-constrained box model was used to simulate the production rates of nitrate from different formation pathways, and to compare the effects of reducing NOx and VOCs emissions in both urban and suburban areas. This work provides new insights into the synergetic mitigation of particle and ozone pollution, which can guide development of the most effective nitrate control strategies.

2 Method and data

2.1 Field observation

The ground-based field measurements were conducted at both an urban site in Guangzhou and a suburban site in Heshan. The tower-based measurements were conducted at an urban site in Guangzhou. The ground-based study in Guangzhou was carried out from late September to mid-November in 2018 at the Institute of Geochemistry (GIG), Chinese Academy of Sciences (23.1°N, 113.2°E), which is a typical urban site surrounded by a residential area and traffic avenues (Fig. 1). The instruments were deployed on the top of the 25-m building at GIG site. The ground-based measurement at the suburban site was performed from late September to mid-November in 2019 at the supersite of Heshan county (22.7°N, 112.9°E), which is approximately 50 km southwest to Foshan and 80 km southwest to Guangzhou, and is frequently influenced by anthropogenic emissions from upward Guangzhou-Foshan mega-city areas. The tower-based measurements in Guangzhou were conducted
simultaneously at the ground and 448 m on the Canton Tower in Guangzhou, which is located approximately 5.7 km away from the GIG site (Fig. 1).

The chemical components of PM$_1$, trace gases, and non-methane hydrocarbons (NMHC) were both measured at the GIG and Heshan sites, whereas only trace gases (NO$_x$ and O$_3$) and meteorological parameters were measured at the Canton Tower site. The non-refractory chemical compositions of PM$_1$ (NR-PM$_1$), including organics (Org), sulfate (SO$_4^{2-}$), nitrate (NO$_3^-$), ammonium (NH$_4^+$), and chloride (Cl$^-$) were measured using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Research Inc., US) (Hu et al., 2016; Chen et al., 2021). Black carbon (BC) was measured using an aethalometer (AE33, Magee Scientific Co., US). Particle number size distribution was measured using a scanning mobility particle sizer with an aerodynamic diameter ranging from 10 to 650 nm (SMPS, TSI, US) and aerosol particle sizer ranging from 500 nm to 20 $\mu$m (APS, TSI, US).

HNO$_3$, N$_2$O$_5$, and ClNO$_2$ were measured using iodide-time-of-flight chemical ionization mass spectrometry (Iodide-TOF-CIMS, Aerodyne Research Inc., US) (Wang et al., 2020b; Ye et al., 2021). The non-methane hydrocarbons (NMHC) were measured using online GC-MS-FID (Wuhan Tianhong Co., Ltd, China) (Yuan et al., 2012) (Table S2). The concentrations of oxygenated VOCs (OVOCs), including formaldehyde (HCHO) and acetaldehyde (CH$_3$CHO), were measured via a high-resolution proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS, Ionicon Analytik, Austria) (Wang et al., 2020a; Wu et al., 2020). HONO was detected using a long path absorption photometer (LOPAP) at the GIG site (Yu et al., 2021), and was measured by the gas and aerosol collector (GAC) instrument at the Heshan site (Dong et al., 2012; Yang et al., 2014). NH$_3$ was also measured by two sets of instruments: a cavity ring-down spectroscopy (CRDS, Picarro, US) was used at the GIG site and the GAC instrument was used at the Heshan site. Details on the limit of detection and accuracy of the instruments are presented in Table S1.

In addition, trace gases (O$_3$ (49i), NO$_x$ (42i), CO (48i) and SO$_2$ (43i)) (Thermo Scientific, US) and meteorological parameters (i.e., wind speed (WS), wind direction (WD), temperature (T), relative humidity (RH) and pressure (P)) (Vantage Pro 2, Davis Instruments Co., US) were simultaneously measured during these campaigns. The photolysis frequencies of O$_3$, NO$_2$, HCHO, and HONO (PFS-100, Focused Photonics Inc., China) were also measured during the campaign.
Considering the integrity and temporal coverage of the measurements, we mainly focus on the investigated periods from October 7 to 29, 2018, at the GIG site and from October 16 to November 16, 2019, at the Heshan site.

### 2.2 Model description

A zero-dimensional observation-based box model (F0AM) (Wolfe et al., 2016) was used to simulate the production of nitrate in this study. The F0AM box model uses a subset of the Master Chemical Mechanism (MCM) v3.3.1, which explicitly describe chemical reactions of VOCs, RO\textsubscript{x} radicals (including OH, HO\textsubscript{2} and RO\textsubscript{2}), ozone and nitrate.

In this study, the box model was constrained by observations of NMHCs, HCHO, CH\textsubscript{3}CHO, NO, CO, CH\textsubscript{4}, HONO, and meteorological parameters (i.e., photolysis rates, RH, T and P) measured at the GIG and Heshan sites. To investigate the convection of nitrate between the residual layer and the surface, the box model was split into two boxes at night (from 17:00 to 6:00 of the following morning) to separately represent the nocturnal boundary layer and the residual layer, respectively (Womack et al. (2019) (Fig. S1).

The simulation of the residual layer at the GIG site was constrained by the observation data from 488 m at the Canton Tower, while the simulation of the residual layer at the Heshan site was freely evolved from sunset time using the ground observation data of Heshan. The detailed model settings are described in Text S1, and the agreement between the observation data and simulations at the GIG and Canton Tower sites supports the use of similar simulation of the residual layer at the Heshan site. The model was operated in a time-dependent mode with a 5-min resolution. It was run for a 72-hour spin-up time to build steady-state concentrations for secondary pollutants that were not constrained during simulation. To prevent the build-up of secondary species to unreasonable levels, an additional physical dilution process with a lifetime of 24 h was applied in the model. The background concentrations for ozone and CH\textsubscript{4} were set as 30 ppb and 1.8 ppm, respectively (Wang et al., 2011).

The nocturnal production of nitrate from N\textsubscript{2}O\textsubscript{5} hydrolysis and the subsequent reactions (R5 and R6) are added to the box model. The reaction rates of R5 and R6 are expressed as Eqs.1 and 2, respectively:

\[ k_5 = \frac{\omega \cdot y \cdot \gamma \cdot v}{4} \]  

(Eq.1)
where $\omega_1$ is the average molecular speed of $\text{N}_2\text{O}_5$, $\gamma$ is the uptake coefficient of $\text{N}_2\text{O}_5$ and $\varphi$ is the production yield of ClNO$_2$ in R5. $\gamma$ and $\varphi$ are calculated using the new observation-based empirical parameterization method from Yu et al. (2020), where the impacts of nitrate, chloride, and aerosol liquid water content (ALWC) were evaluated to better represent the observed $\gamma$. The average values of $\gamma$ were 0.018$\pm$0.01 and 0.019$\pm$0.01 at the GIG and Heshan sites, respectively, which were comparable with those observed data at the Heshan site in 2017. The $\varphi$ used in this study were 0.18$\pm$0.15 and 0.20$\pm$0.23 at the GIG and Heshan sites, which were slightly lower than the observed data at the Heshan site (0.31 $\pm$ 0.27) (Yu et al., 2020). The chemical compositions of fine particles were not measured at the Canton Tower site, thus values of $\gamma$ and $\varphi$ in the residual layer were assigned equal to those of the nocturnal boundary layer. This may lead to negative deviations for $\gamma$ and positive deviations for $\varphi$ in the residual layer, as higher RH and lower PM$_{2.5}$ concentrations were observed in the residual layer (as shown in Fig.S4). The dry aerosol surface area concentration ($S_a$) was calculated from the particle number size distribution and calibrated to the actual atmospheric $S_a$ using the RH-dependent hygroscopic growth factor ($f(RH)$). $f(RH)$ was calculated using the aerosol compositions measured by AMS and estimated liquid water by thermodynamic model of ISORROPIA, according to the study conducted by McDuffie et al. (2018). The photolysis frequency of ClNO$_2$, denoted as $k_6$, was scaled from measured NO$_2$ photolysis frequencies divided by a factor of 30 (Riedel et al., 2014).

The equilibrium coefficient between HNO$_3$ and particulate nitrate is incorporated into the box model as a pseudo-first-order reaction (Eqs.3 and 4) through the equilibrium absorption partitioning theory (Yuan et al., 2016; Jacob, 2000):

$$HNO_3 \overset{k_{bf}}{\rightleftharpoons} NO_3^- (p)$$

$$k_{bf} = \frac{R_a}{D_g} \times \frac{4 \omega \alpha}{\omega \alpha^2} * S_a$$  \hspace{1cm} (Eq.3)

$$k_{bb} = \left(\frac{R_a}{D_g} + \frac{4 \omega \alpha}{\omega \alpha^2}\right)^{-1} S_a / K_{eq}$$  \hspace{1cm} (Eq.4)

where $R_a$ is the radius of nitrate particles, $D_g$ is the gas-phase molecular diffusion coefficient (m$^2$ s$^{-1}$), $\omega$ is the mean molecular speed of HNO$_3$, $\alpha$ is the mass accommodation coefficient of HNO$_3$, and $K_{eq}$ represents the equilibrium constant of
HNO$_3$ and nitrate. These coefficients are the same as those in the chemical aqueous-phase radical mechanism (CAPRAM) (Ervens et al., 2003; Wen et al., 2015).

The empirical kinetic modeling approach (EKMA) is used here to identify the sensitivity of ozone and nitrate to the variations of NO$_x$ and VOCs. The observed diurnal average conditions are used as the input for the base simulation. Sensitivity tests are conducted by increasing and decreasing initial anthropogenic VOCs (AVOCs) and NO$_x$ concentrations by a ratio ranging from 0.1 to 2.0 with 20 equal-distance steps without changing other parameters in the model (Tan et al., 2018; Lyu et al., 2019; Womack et al., 2019). The maximum concentration of ozone and nitrate in each scenario are plotted to generate the contour plots of the respective isopleths. Reducing biogenic VOCs (BVOCs) such as isoprene is impractical, so they are not scaled with AVOCs concentrations in the simulations.

Constraining N$_2$O$_5$ concentrations with the change in NO$_x$ ratio arbitrarily during the isopleth simulations is meaningless. Thus, we set the simulation of base case without N$_2$O$_5$ constrained. To evaluate the results of the base case, we compare the simulated nitrate with and without the N$_2$O$_5$ constrained in Fig. S2. The base case simulation was comparable to the results without N$_2$O$_5$ constrained. The simulated nitrate with N$_2$O$_5$ constrained during October 9 to 10, 2018 was observed to be higher compared to both the observations and base case simulation at the GIG site, which suggest that high concentrations of ambient N$_2$O$_5$ measured during this short period may not contribute significantly to nitrate formation (Fig. S3). Overall, the simulated nitrate of base case without N$_2$O$_5$ constrained agreed well with the observation suggesting the robustness of the model simulations.

Gaussian error propagation was used to evaluate the model performance, as described in Lu et al. (2012). The uncertainties of various measurement parameters (VOCS, trace gases, meteorological parameters, etc.) ranged from 0 to 20%, and uncertainties of reaction rates are in the order of ~20% (Lu et al., 2012), while less than 10% uncertainty is derived from deposition velocity (Lou et al., 2010). Therefore, the uncertainty of simulated results in the base model is estimated to be around 50%.
3 Results and discussion

3.1 Overview of nitrate concentrations during the campaign

The temporal variations of mass concentrations of the major chemical components in PM$_1$ are shown in Fig. 2. The mean concentration of PM$_1$ was 41.7±23.1 μg m$^{-3}$ at the GIG site during the investigated period, which was comparable with that at the Heshan site (40.6±15.5 μg m$^{-3}$). The aerosol composition differed between sites, with inorganic ions (sulfate, nitrate, and ammonia) higher and organic matter lower at the GIG site compared to the Heshan site.

Although the mass concentrations at the two sites were comparable, the mass fraction of nitrate in PM$_1$ at the GIG site increased from 10% to 33% as the mass concentration of PM$_1$ increased from 20 to 130 μg m$^{-3}$ (Fig. 3), while the fraction of nitrate increased from 10% to 20% at the Heshan site, suggesting that nitrate plays a more important role in the increase in PM$_1$ at the urban site than that at the suburban site. In addition, although the concentration of sulfate was higher than that of nitrate during most of the sampling periods, as PM$_1$ increased the mass concentration ratio of nitrate/sulfate increased from 0.5 to 2.0 at the GIG site and from 0.5 to 1.5 at the Heshan site. The higher ratios of nitrate/sulfate during the polluted periods implies that reducing nitrate may be essential for reducing the occurrence of PM pollution in southern China.

The increasing contributions of nitrate to PM$_1$ in this study were similar with those observed in northern China during haze pollution (Yang et al., 2017; Fu et al., 2020; Wen et al., 2015; Liu et al., 2015), suggesting the significance of nitrate mitigation to further reduce mass concentrations of fine particles in China.

The diurnal patterns of mean nitrate, NH$_3$, NO$_2$ and HNO$_3$ concentrations observed at the GIG and Heshan sites are shown in Fig. 4. The highest nitrate concentration was observed in the morning at the GIG site and during nighttime at the Heshan site, suggesting differences in the processes that dominated the formation of nitrate at the two sites. At the GIG site, nitrate rapidly increased from 4:00 to 9:00, but the concentrations of NH$_3$ and HNO$_3$ increased slowly. The concentration of NO$_2$ exhibited a decreasing trend during the nitrate growth period. As gaseous HNO$_3$ is mainly produced by the reaction of OH and NO$_2$, the accumulation of nitrate after sunrise might largely be attributable to the downward transport from the residual layer to the ground.

The diurnal variations in O$_3$ and NO$_x$ measured at the GIG and Canton Tower sites are shown in Fig. 5. The ground-based observations at the Canton Tower showed similar
variation patterns of O₃ and NOₓ to the GIG site. However, the average concentration of O₃ at 488 m was 2.4 times higher than that at the ground site during nighttime, and the low nocturnal concentrations of NO (1.8 ± 0.2 ppb) at the 488 m site would enhance the production of NOₓ and N₂O₅ (Wang et al., 2018b; McDuffie et al., 2019). Therefore, heterogeneous uptake of N₂O₅ during nighttime may be active at 488 m at urban site, which will be further investigated in Section 3.3. At the Heshan site, nitrate increased sharply in the early nighttime (before midnight), which may be attributable to the shallow nocturnal boundary layer or the enhanced nocturnal N₂O₅ heterogeneous uptake reactions. Subsequently, there was a significant increase in nitrate from 7:00 to 9:00. The concentration of NH₃ showed variation pattern that was similar with that of nitrate and increased after 7:00, while the concentrations of HNO₃ and NO₂ showed a decreasing trend from 7:00 to 9:00. The different growth characteristics of nitrate and the variation patterns of precursors at the two sites may be related to different formation processes, which will be discussed in detail later.

In this study, the wind speeds in the investigated periods at the GIG and Heshan sites were generally below 2 m s⁻¹ (Table S3), which suggests that regional transport may have limited contributions to the abundance of nitrate at the observation sites. Therefore, the discussion of the chemical formation process of nitrate in this study focuses on local production.

The molar ratios of [NH₄⁺] to the sum of 2×[SO₄²⁻]+[NO₃⁻] are calculated (Fig. S5) to determine whether there was enough NH₄⁺ to neutralize nitrate. The molar ratios were approximately 1.0 at both GIG and Heshan sites, suggesting the presence of sufficient ammonia to neutralize both nitrate and sulfate. Based on these discussions, we conclude that the nitrate production was mainly attributable to the production of HNO₃ and/or reactive heterogeneous uptake of N₂O₅, which will be discussed in the subsequent section.

### 3.2 Contributions of different pathways to nitrate formation

The temporal variations in simulated and observed nitrate concentrations at the GIG and Heshan sites are presented in Fig. 6; simulated and observed nitrate showed similar concentrations and variation patterns. The model performance was evaluated using the mean bias (MB), index of agreement (IOA), and correlation coefficient (r) (Table S4) (Liu et al., 2019; Lyu et al., 2017; Wang et al., 2019; Curci et al., 2015). The IOA was larger than 0.7 and r was larger than 0.5 at both sites, indicating good
agreements between simulated and observed nitrate concentrations. The temporal variations in simulated N$_2$O$_5$ and ClNO$_2$ concentrations were comparable with the observations at the Heshan site as shown in Fig. S3 (c, d), but the simulated results at the GIG site from October 9 to 10 were significantly lower than the observations (Fig. S3 (a, b)). The abnormally high observed concentrations of N$_2$O$_5$ and ClNO$_2$ that lasted for short periods (10-30 minutes) at the GIG site may be caused by transported air masses from upwind regions without well-mixed with fresh urban NO emissions. Simulation of these near-instantaneous processes transported to the site using a box model is difficult, as box model is more suitable to simulate the well-mixed airmass with little transport effects. However, the simulated nitrate concentrations without observed N$_2$O$_5$ constrained was adequately comparable with the observations as shown in Fig. S2, implying the influence of the instantaneously high concentrations of N$_2$O$_5$ on nitrate formation was negligible at the GIG site.

Based on these simulation results, we calculated the daily-averaged contributions of the two different reaction pathways to the nitrate concentration - the daytime OH + NO$_2$ reaction and the nighttime uptake of N$_2$O$_5$ in the nocturnal boundary layer and in the residual layer. Since the nitrate produced in the residual layer is only gradually mixed to the surface as the boundary layer develops during the following morning, while the nitrate contributed to the boundary layer column concentration always included the uptake of N$_2$O$_5$ in the residual layer during the whole nighttime (Wang et al., 2018a; Womack et al., 2019). The calculation methods to determine contribution to the boundary layer column concentrations and to ground-level nitrate concentrations should be distinguished.

To calculate the contribution to the boundary layer column concentration, the integral of the N$_2$O$_5$ uptake reaction from both the nocturnal surface layer and the residual layer directly contribute to nitrate column concentrations layer during the whole nighttime, weighted as 0.4 and 0.6 based on their altitude fractions of the two layers, respectively. This calculation for the contributions to column concentration is the same as the methods presented by Wang et al. (2018a) and Womack et al. (2019). However, to quantify the contribution of nitrate produced from the residual layer to the ground nitrate concentration, one must account for the dynamic exchange between the residual layer and the surface-based boundary layer that develops during daytime. The integral time for this dynamic exchange was assumed from 6:00 to 10:00 in the morning.
Detailed descriptions of the calculations are provided in Text S2 in Supplementary Materials. The calculation about partitioning process from OH and NO2 reaction in the daytime was the same in the two methods mentioned above, which was the partition part of the integral of the OH and NO2 reaction during the daytime.

The contributions of nitrate to the boundary layer column concentration (i.e. average from ground to 1000 m) are shown in Fig. 7a. The contribution from the N2O5 uptake reaction in the residual layer was 17.9 \( \mu \text{g m}^{-3} \text{day}^{-1} \) at the GIG site, which was much greater than the N2O5 uptake in the nocturnal boundary layer (0.4 \( \mu \text{g m}^{-3} \text{day}^{-1} \)). This is caused by the fresh NO surface emissions, which titrate the NO3 radical and ozone in the nocturnal boundary layer. The contribution from nocturnal nitrate production in the boundary layer was comparable with the contribution from OH and NO2 reaction (13.2 \( \mu \text{g m}^{-3} \text{day}^{-1} \)) during the daytime. In contrast to the GIG site, the contribution of N2O5 uptake from the nocturnal boundary layer (6.2 \( \mu \text{g m}^{-3} \text{day}^{-1} \)) was comparable with that in the residual layer (4.4 \( \mu \text{g m}^{-3} \text{day}^{-1} \)) at the Heshan site. The similar nitrate concentration and N2O5 production rate between the nocturnal boundary layer and residual layer in Fig.S7 (c, d) was due to smaller NO emissions at the Heshan site. The results demonstrate that nocturnal nitrate production plays an important role in nitrate production in the boundary layer, with nighttime contributions of 58% at the urban site and 35% at the suburban site.

The relative magnitudes of the contributions to the daily-averaged surface nitrate of nitrate differ somewhat from the contributions to the entire boundary layer. The contributions from the three major pathways to surface nitrate concentrations at the two sites are compared in Fig. 7b. At the GIG site the production of nitrate from the OH and NO2 reaction and downward transport from the residual layer were 13.2 \( \mu \text{g m}^{-3} \text{day}^{-1} \) and 16.6 \( \mu \text{g m}^{-3} \text{day}^{-1} \), contributing 43% and 53% of ground-level nitrate concentrations, with a minor contribution (1.1 \( \mu \text{g m}^{-3} \text{day}^{-1} \)) from N2O5 uptake in the nocturnal boundary layer. This is similar with the results in Fig.7a, implying a large nitrate contribution from N2O5 uptake in the residual layer, but not in the nocturnal boundary layer at the urban site.

However, at the suburban Heshan site (Fig.7b), downward transport from the residual layer made no contribution to the surface nitrate concentration, which was smaller than the contribution of nitrate from the residual layer in Fig. 7a. This is due to the similar N2O5 uptake rate between the nocturnal boundary layer and residual layer.
(see Fig. S7), inducing gradient negligible convection between the two layers as the result of small concentration gradient (Brown et al., 2003; Baasalandorj et al., 2017; Prabhakar et al., 2017). The OH and NO_2 reaction \((19.9 \mu g m^{-3} day^{-1})\) and nocturnal N_2O_5 uptake \((15.6 \mu g m^{-3} day^{-1})\) were the major nitrate formation pathways, which contributed 56\% and 44\% to the total nitrate production, respectively. Therefore, the importance of residual layer contribution to the surface nitrate can vary significantly and should be comprehensively evaluated in different environments. In addition, the nitrate contributions to the surface concentrations and boundary layer column concentrations can also be different in different regions, which should be clarified and distinguished in future studies.

In summary, the N_2O_5 uptake reaction was active in the residual layer both at urban and suburban sites, but the downward transport from the residual layer was a significant contributor to surface nitrate at the urban site, but not at the suburban site. This is attributable to the titration of the NO_3 radical and ozone by fresh NO emissions during the stagnant boundary layer at the urban site, resulting in the large difference of nitrate production between the residual and nocturnal boundary layers. In contrast, at the suburban site, lower NO emissions favored NO_3 production and heterogeneous uptake of N_2O_5 both in the nocturnal boundary layer and the residual layer.

### 3.3 Control of NOx and VOCs as mitigation strategies of nitrate

Overall, the contributions of nitrate from the three major pathways, all involving NO\_x and ozone, suggest that nitrate formation depends not only on the reactions of NO\_x but also is closely associated with the VOCs-NO\_x-O_3 chemistry. Therefore, the influence of both NO\_x and VOCs reduction on nitrate production should be considered in formulating policies to control aerosol pollution.

In this study, we adopted the widely used EKMA approach, generally used for ozone sensitivity analysis (Edwards et al., 2014; Mazzuca et al., 2016; Xue et al., 2014b; Wang et al., 2015) to investigate the response of nitrate formation in changing emissions of VOCs and NO\_x. The dependence of simulated nitrate concentrations with changing of VOCs and NO\_x concentration allow to construct isopleths of nitrate and ozone production at the GIG and Heshan sites, as displayed in Fig. 8. The production of nitrate and ozone were in the VOCs-limited regime at the GIG site, and in the transition regime at the Heshan site. As shown in Fig. 9, an initial reduction of NO\_x
emissions would increase nitrate and ozone concentrations at the GIG site, but decrease those concentrations at the Heshan site. An initial decrease in VOCs concentrations would decrease nitrate and ozone concentrations at both sites. These results suggest that control of VOCs emissions will efficiently reduce nitrate and ozone production in both urban and suburban areas, but control of NOx emissions will give different responses between urban and suburban area for both ozone and nitrate. Fig. 9 show that the nitrate sensitivity to the reduction of VOCs and NOx emissions was identical to the response of ozone at both sites. These results demonstrate the possibility of synergetic control for nitrate and ozone at both urban and suburban sites through VOCs control.

The accuracy of the isopleth plots in Fig. 8 depends on several variables and parameters included in the box model. Figs S8–9 show the results of simulation experiments on the dependence of the isopleths upon changing various parameterization for estimating HONO concentrations and ClNO2 yields as described in Text S3. The sensitivity of nitrate and ozone did not change, although the peak concentrations of ozone and nitrate did change, which supports the reliability of the results discussed above.

As nitrate and ozone exhibit similar sensitivity to the reduction of NOx and VOCs, different VOCs/NOx ratios may point to different control strategies. In the cases of the Heshan and GIG sites, the reduction of NOx can adequately control nitrate production with a VOCs/NOx ratio of 2.13 at the Heshan site, while a contrary result can be found at the GIG site (with a VOCs/NOx ratio of 0.97) in the initial stage. The simulated results at the GIG site agree well with those reported in the urban areas of Shanghai in China (Dong et al., 2014) and the Salt Lake City and San Joaquin Valley in the US (Betty and Christian, 2001; Womack et al., 2019), which all emphasized the decrease of nitrate production with the reduction of VOCs emissions, and the enhanced nitrate production with NOx reduction. The results at the Heshan site were consistent with the simulations at the suburban site of northern China, where a higher VOCs/NOx ratio was found (Wen et al., 2018; Lu et al., 2019). The synergetic reduction of NOx and VOCs is necessary to effectively mitigate the nitrate production in consideration of the different VOCs/NOx ratios in the urban and suburban areas.

The above discussions revealed that direct reduction of NOx may not lead to a decrease in nitrate production. Meanwhile, the reduction of VOCs is effective to mitigate nitrate production, though they were not the direct precursors of nitrate. To illustrate these findings, the impacts of changing VOCs and NOx on the production rate
of the OH radical, and the rate of OH plus NO₂, and the N₂O₅ uptake reaction were evaluated. During daytime nitrate production involves OH production and its subsequent reaction with NO₂. As shown in Fig. 10, the NOₓ-saturated condition at the GIG site provided sufficient NO₂ to quench the OH radical during daytime. Initial reduction of NOₓ will increase ozone production and thereby drive more production of OH, leading to increase in the OH and NO₂ reaction rates. When NOₓ is lower than 30% of the base case emissions, ozone production would decrease and lead to the decrease of OH production and its reaction with NO₂, which in turn bring about a decrease in nitrate production. In contrast, at the Heshan site, the base case NOₓ concentrations are lower, giving a production rate of OH that is already sensitive to both NOₓ and VOCs reductions. The model results indicates that further emission reductions in both NOₓ and VOCs will simultaneously mitigate the production of nitrate and ozone.

During nighttime, the decrease in NOₓ will reduce the titration effect of NO on NO₃ radical and ozone at the GIG site, which enhances production of N₂O₅ and promotes nitrate production in both the nocturnal boundary layer and the residual layer (Fig. 11). However, at the Heshan site, the reduction of NOₓ cuts down the sources of NO₂ and NO₃, decreasing the formation of N₂O₅ and thus its heterogeneous uptake to produce nitrate. The reduction of VOCs decreases ozone formation during daytime, thus attenuating the nocturnal formation of NO₃, N₂O₅ and nitrate at both the GIG and Heshan sites.

In summary, nitrate and ozone show similar responses to the reduction of NOₓ and VOCs for both daytime and nighttime chemical processes, as the result of the coupling between the formation reactions of ozone and nitrate. The results of this study emphasize the complex effects of reductions of NOₓ emissions on nitrate concentrations in the urban and suburban areas. In addition, the initial reduction of VOCs emissions would be effective in the concurrent mitigation of ozone and nitrate, suggesting that the reduction of VOCs at present is an effective method for the synergistic control of ozone and PM₂.₅ at present. As there are limitations of box modeling, a comprehensive three-dimensional model assessment is needed on a regional scale.

4 Conclusions

In this study, we use an observation-constrained box model to explore the nitrate formation pathways and implications for nitrate mitigation strategies at urban and suburban sites. At both sites, the mass fraction of nitrate in PM₁ increased as the
absolute PM1 levels increased (from 10% to 33% at the urban site and from 10% to 20% at the suburban site), suggesting the important role played by nitrate in increasing particle concentrations in the PRD.

The model simulations demonstrate that chemical reactions in the daytime and at night both contributed significantly to formation of nitrate in the boundary layer at the two sites, with nighttime contributions of 58% at the urban site and 35% at the suburban site. However, nighttime reactions predominately occurred aloft in the residual layer at the urban site and downward transport from the residual layer in the morning are important source (53%) for surface nitrate at the urban site, whereas similar amounts of nitrate were produced in the nocturnal boundary layer and residual layer at the suburban site, which results in little downward transport of nitrate from the residual layer to the ground at this region. The spatial differences of nocturnal reactions and the opposite contributions from downward transport of the residual layer to surface nitrate at urban and suburban sites were attributed to different fresh emissions and concentration levels of NOx at the two sites during the night time, suggesting that nitrate production under different NOx conditions should be explored to better understand the its formation pathways.

The non-linear relationships between nitrate and NOx, VOCs was developed to investigate the nitrate mitigation strategies. The simulations demonstrated that the formation processes of both nitrate and ozone were in the VOCs-limited region at the urban site and in the transition region at the suburban site. The same sensitivity regimes of nitrate and ozone at two sites was caused by the similar chemical processes that account to produce nitrate and ozone. These results suggest that control of VOCs emissions would effectively mitigate nitrate in both urban and suburban areas.

Overall, the formation processes of nitrate are systematically investigated in both urban and suburban areas in this study, which provides the opportunity to identify different influencing factors of nitrate production in different environments and offers insights into the comprehensive mitigation of nitrate pollution in regional scale. NOx emission controls alone might not be an effective strategy for reducing the nitrate production, while the reduction of VOCs emissions would take effect in the concurrent mitigation of ozone and nitrate. Thus, an emission control policy focusing on VOCs will be an effective means for the synergistic control of ozone and PM2.5 at present. In the long-term, multi-pollutant control should be implemented to achieve better control strategies for ozone and PM2.5. Given the limitations of the box model, three-
dimensional models should be used to further investigate the synergistic control of ozone and particles on the regional scale.

**Data availability**

The observational data used in this study are available from corresponding authors upon request (byuan@jnu.edu.cn)

**Author contributions**

BY and MS designed the research. SXY, YWP, SH, WC, WWH, CLP, CMW, ZLW, TGL, EZ, MFC, XBL, SHW, CHW, WWJ, CSY, WS and PC contributed to data collection. SXY performed the data analysis, with contributions from JZ, DD, Parrish, XJH, CCL, XYY, YS, HCW, DHC, XMW, ZYZ, JYZ and XMW. SXY and BY prepared the manuscript with contributions from the other authors. All the authors reviewed the manuscript.

**Competing interests**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

**Acknowledgments**

This work was supported by the National Key R&D Plan of China (grant No. 2019YFE0106300, 2018YFC0213904, 2016YFC0202206), the National Natural Science Foundation of China (grant No. 41877302), the National Natural Science Foundation of China (grant No. 41905111), Guangdong Natural Science Funds for Distinguished Young Scholar (grant No. 2018B030306037), Key-Area Research and Development Program of Guangdong Province (grant No. 2019B110206001), Guangdong Soft Science Research Program (2019B101001005), and Guangdong Innovative and Entrepreneurial Research Team Program (grant No. 2016ZT06N263). This work was also supported by Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province (Grant No.2019B121205004).

**References**

Sohl, J.: Coupling between Chemical and Meteorological Processes under Persistent Cold-Air Pool Conditions: Evolution of Wintertime PM2.5 Pollution Events and N2O5 Observations in Utah’s Salt Lake Valley, Environmental Science & Technology, 51, 5941-5950, 10.1021/acs.est.6b06603, 2017.


Curci, G., Ferrero, L., Tuccella, P., Barnaba, F., Angelini, F., Bolzacchini, E., Carbone, C., Der Gon, H. A. C. D. V., Facchini, M. C., and Gobbi, G. P.: How much is particulate matter near the ground influenced by upper-level processes within and above the PBL? A summertime case study in Milan (Italy) evidences the distinctive role of nitrate, Atmospheric Chemistry and Physics, 15, 2629-2649, 2015.


Edwards, P. M., Brown, S. S., Roberts, J. M., Ahmadov, R., Banta, R. M., deGouw, J. A.,
Langford, A. O., Lefer, B. L., Lerner, B. M., Li, R., Li, S.-M., McKeen, S. A., Murphy, S. M.,
Tsai, C., Veres, P. R., Washenfelder, R. A., Warneke, C., Wild, R. J., Young, C. J., Yuan, B.,
and Zamora, R.: High winter ozone pollution from carbonyl photolysis in an oil and gas

Ervens, B., George, C., Williams, J. E., Buxton, G. V., Salmon, G. A., Bydder, M., Wilkinson,
F., Dentener, F., Mirabel, P., Wolke, R., and Herrmann, H.: CAPRAM 2.4 (MODAC
mechanism): An extended and condensed tropospheric aqueous phase mechanism and its
2003.

Winter Nitrate Pollution Driven by Increased Photochemical Oxidants in Northern China,

Gen, M., Zhang, R., Huang, D. D., Li, Y., and Chan, C. K.: Heterogeneous SO2 Oxidation in
Sulfate Formation by Photolysis of Particulate Nitrate, Environmental Science & Technology
Letters, 6, 86-91, 10.1021/acs.estlett.8b00681, 2019.

Geyer, A., and Stutz, J.: Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal
boundary layer: 2. Model studies on the altitude dependence of composition and chemistry,

Griffith, S. M., Huang, X. H. H., Louie, P. K. K., and Yu, J. Z.: Characterizing the
thermodynamic and chemical composition factors controlling PM2.5 nitrate: Insights gained
from two years of online measurements in Hong Kong, Atmospheric Environment, 122, 864-

Hou, X., Chan, C., Dong, G., and Yim, S.: Impacts of transboundary air pollution and local
emissions on PM2.5 pollution in the Pearl River Delta region of China and the public health,

process of submicron aerosols in Beijing: Contrast between summer and winter, Journal of
Geophysical Research: Atmospheres, 121, 1955-1977,

Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmospheric Environment,

K.: Nitrate-driven urban haze pollution during summertime over the North China Plain,


Yun, H., Wang, W., Wang, T., Xia, M., Yu, C., Wang, Z., Poon, S. C. N., Yue, D., and Zhou, Y.: Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China, Atmos. Chem. Phys., 18, 17515-17527, 10.5194/acp-18-

Figure 1. Sampling site at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (GIG), Heshan and Canton Tower. Note that the map is extracted from © Microsoft Bing maps by the authors.
Figure 2. Temporal variations of the mass concentration of the major chemical components in PM$_1$ including nitrate (NO$_3^-$), sulfate (SO$_4^{2-}$), ammonium (NH$_4^+$), black carbon (BC), chloride (Cl$^-$) and organics at (a) GIG site and (b) Heshan site. The black dashed rectangle represents the investigated period which had complete set of data.
Figure 3. The mass concentration ratio of NO$_3^-$/SO$_4^{2-}$ (top) and fractions of major chemical components (bottom) in PM$_{1}$ at (a) GIG site and (b) Heshan site.
Figure 4. Diurnal variations of mean concentrations of nitrate and related pollution species at (a) GIG site and (b) Heshan site. The error bars represent the standard deviation of the means.
Figure 5. Diurnal variation of mean concentrations of (a) O₃, (b) NO, (c) NO₂ at GIG (orange lines), and the ground and 488m sites of Canton Tower (black and blue lines, respectively). The orange and blue error bars represent the standard deviations of the mean concentrations at the GIG site and the 488m site of Canton Tower, the grey areas show one standard deviation of the mean concentration at ground site of Canton Tower.
Figure 6. Comparison of the temporal simulated and observed nitrate at the (a) GIG site and (b) Heshan site.
Figure 7. The daily-averaged contribution (a) to boundary layer column concentration and (b) to surface nitrate from three pathways (OH + NO2 reaction, N2O5 uptake in NBL, and N2O5 uptake in RL/N2O5 uptake from RL mixed process) at the GIG and Heshan sites. The error bars represent the standard deviations of the mean production rate.
Figure 8. The simulated isopleths of ozone and nitrate with normalized NO\textsubscript{x} and AVOCs concentration at the (a, b) GIG site and (c, d) Heshan site, each isopleth represents the maximum ozone and nitrate in the simulation, and the red and blue circles represent the base cases.
Figure 9. Simulated maximum ozone and nitrate concentration with normalized NOx and AVOCs at the (a, b) GIG site and (c, d) Heshan site, cutting through the simulated isopleth in Figure 8 with normalized AVOCs and NOx ratio at 1, respectively. The red and blue circles represent the base cases.
Figure 10. Simulated average production rates of OH ($P(OH)$) and the reaction rate of OH and NO$_2$ with the normalized changes of NO$_x$ and AVOCs emissions at the (a, b) GIG site and (c, d) Heshan site.
Figure 11. Simulated average concentration of N\textsubscript{2}O\textsubscript{5} and production rate of N\textsubscript{2}O\textsubscript{5} uptake with the normalized changes of NO\textsubscript{x} and AVOCs emissions at the (a, b) GIG site and (c, d) Heshan site in the NBL and RL.