

1 **Trends in secondary inorganic aerosol pollution in China and its responses to**
2 **emission controls of precursors in wintertime**

3 Fanlei Meng^{1#}, Yibo Zhang^{2#}, Jiahui Kang¹, Mathew R. Heal³, Stefan Reis^{4,3,5}, Mengru
4 Wang⁶, Lei Liu⁷, Kai Wang¹, Shaocai Yu^{2*}, Pengfei Li⁸, Jing Wei⁹, Yong Hou¹, Ying
5 Zhang¹, Xuejun Liu¹, Zhenling Cui¹, Wen Xu^{1*}, Fusuo Zhang¹

6
7 ¹College of Resources and Environmental Sciences, National Academy of Agriculture
8 Green Development, Key Laboratory of Plant–Soil Interactions, Ministry of Education,
9 National Observation and Research Station of Agriculture Green Development
10 (Quzhou, Hebei), China Agricultural University, Beijing 100193, China.

11 ²Research Center for Air Pollution and Health, Key Laboratory of Environmental
12 Remediation and Ecological Health, Ministry of Education, College of Environment
13 and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China

14 ³School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh
15 EH9 3FJ, United Kingdom

16 ⁴UK Centre for Ecology & Hydrology, Penicuik, EH26 0QB, United Kingdom.

17 ⁵University of Exeter Medical School, Knowledge Spa, Truro, TR1 3HD United
18 Kingdom.

19 ⁶Water Systems and Global Change Group, Wageningen University & Research, P.O.
20 Box 47, 6700 AA Wageningen, The Netherlands

21 ⁷College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000,
22 China

23 ⁸College of Science and Technology, Hebei Agricultural University, Baoding, Hebei
24 071000, China

25 ⁹Department of Atmospheric and Oceanic Science, Earth System Science
26 Interdisciplinary Center, University of Maryland, College Park 20740, USA

27
28 *Corresponding authors

29 E-mail addresses: W. Xu (wenxu@cau.edu.cn); S C. Yu (shaocaiyu@zju.edu.cn)

30 [#] Contributed equally to this work.

31

32

33 **ABSTRACT:** The Chinese government recently proposed ammonia (NH₃) emissions
34 reductions (but without a specific national target) as a strategic option to mitigate PM_{2.5}
35 pollution. We combined a meta-analysis of nationwide measurements and air quality
36 modelling to identify efficiency gains by striking a balance between controlling NH₃
37 and acid gas (SO₂ and NO_x) emissions. We found that PM_{2.5} concentrations decreased
38 from 2000 to 2019, but annual mean PM_{2.5} concentrations still exceeded 35 $\mu\text{g m}^{-3}$ at
39 74% of 1498 monitoring sites in 2015-2019. The concentration of PM_{2.5} and its
40 components were significantly higher (16%-195%) on hazy days than on non-hazy days.
41 Compared with mean values of other components, this difference was more significant
42 for the secondary inorganic ions SO₄²⁻, NO₃⁻, and NH₄⁺ (average increase 98%). While
43 sulfate concentrations significantly decreased over the time period, no significant
44 change was observed for nitrate and ammonium concentrations. Model simulations
45 indicate that the effectiveness of a 50% NH₃ emission reduction for controlling SIA
46 concentrations decreased from 2010 to 2017 in four megacity clusters of eastern China,
47 simulated for the month of January under fixed meteorological conditions (2010).
48 Although the effectiveness further declined in 2020 for simulations including the
49 natural experiment of substantial reductions in acid gas emissions during the COVID-
50 19 pandemic, the resulting reductions in SIA concentrations were on average 20.8%
51 lower than that in 2017. In addition, the reduction of SIA concentrations in 2017 was
52 greater for 50% acid gas reductions than for the 50% NH₃ emissions reduction. Our
53 findings indicate that persistent secondary inorganic aerosol pollution in China is
54 limited by acid gases emissions, while an additional control on NH₃ emissions would
55 become more important as reductions of SO₂ and NO_x emissions progress.

56

57 **Keywords:** Air pollution, Particulate matter, Second inorganic aerosols, Anthropogenic
58 emission, Ammonia.

59

60 **1. Introduction**

61 Over the past two decades, China has experienced severe PM_{2.5} (particulate matter
62 with aerodynamic diameter $\leq 2.5 \mu\text{m}$) pollution (Huang et al., 2014; Wang et al., 2016),
63 leading to adverse impacts on human health (Liang et al., 2020) and the environment
64 (Yue et al., 2020). In 2019, elevated PM_{2.5} concentrations accounted for 46% of polluted
65 days in China and PM_{2.5} was officially identified as a key year-round air pollutant
66 (MEEP, 2019). Mitigation of PM_{2.5} pollution is therefore the most pressing current
67 challenge to improve China's air quality.

68 The Chinese government has put a major focus on particulate air pollution control
69 through a series of policies, regulations, and laws to prevent and control severe air
70 pollution. Before 2010, the Chinese government mainly focused on controlling SO₂
71 emissions via improvement of energy efficiency, with less attention paid to NO_x
72 abatement (CSC, 2007, 2011, 2016). For example, the 11th Five-Year Plan (FYP) (2006-
73 2010) set a binding goal of a 10% reduction for SO₂ emission (CSC, 2007). The 12th
74 FYP (2011-2015) added NO_x regulation and required 8% and 10% reductions for SO₂
75 and NO_x emissions, respectively (CSC, 2011). This was followed by further reductions
76 in SO₂ and NO_x emissions of 15% and 10%, respectively, in the 13th FYP (2016-2020)
77 (CSC, 2016). In response to the severe haze events of 2013, the Chinese State Council
78 promulgated the toughest-ever 'Atmospheric Pollution Prevention and Control Action
79 Plan' in September 2013, aiming to reduce ambient PM_{2.5} concentrations by 15-20% in
80 2017 relative to 2013 levels in metropolitan regions (CSC, 2013). As a result of the
81 implementation of stringent control measures, emissions reductions markedly

82 accelerated from 2013-2017, with decreases of 59% for SO_2 , 21% for NO_x , and 33%
83 for primary $\text{PM}_{2.5}$ (Zheng et al., 2018). Consequently, significant reductions in annual
84 mean $\text{PM}_{2.5}$ concentrations were observed nationwide (Zhang et al., 2019; Yue et al.,
85 2020), in the range 28-40% in the metropolitan regions (CSC, 2018a). To continue its
86 efforts in tackling air pollution, China promulgated the Three-Year Action Plan (TYAP)
87 in 2018 for Winning the Blue-Sky Defense Battle (CSC, 2018b), which required a
88 further 15% reduction in NO_x emissions by 2020 compared to 2018 levels.

89 Despite a substantial reduction in $\text{PM}_{2.5}$ concentrations in China, the proportion of
90 secondary aerosols during severe haze periods is increasing (An et al., 2019), and can
91 comprise up to 70% of $\text{PM}_{2.5}$ concentrations (Huang et al., 2014). Secondary inorganic
92 aerosols (SIA, the sum of sulfate (SO_4^{2-}), nitrate (NO_3^-), and ammonium (NH_4^+)) were
93 found to be of equal importance to secondary organic aerosols, with 40-50%
94 contributions to $\text{PM}_{2.5}$ in eastern China (Huang et al., 2014; Yang et al., 2011). The acid
95 gases (i.e., NO_x , SO_2), together with NH_3 , are crucial precursors of SIA via chemical
96 reactions that form particulate ammonium sulfate, ammonium bisulfate, and
97 ammonium nitrate (Ianniello et al., 2010). In addition to the adverse impacts on human
98 health via fine particulate matter formation (Liang et al., 2020; Kuerban et al., 2020),
99 large amounts of NH_3 and its aerosol-phase products also lead to nitrogen deposition
100 and consequently to environmental degradation (Ortiz-Montalvo et al., 2014; Pan et al.,
101 2015; Xu et al., 2015, 2018; Zhan et al., 2021).

102 Following the successful controls on NO_x and SO_2 emissions since 2013 in China,
103 some studies found SO_4^{2-} exhibited much larger decline than NO_3^- and NH_4^+ , which
104 lead to a rapid transition from sulfate-driven to nitrate-driven aerosol pollution (Li et
105 al., 2019, 2021; Zhang et al., 2019). Attention is turning to NH_3 emissions as a possible
106 means of further $\text{PM}_{2.5}$ control (Bai et al., 2019; Kang et al., 2016), particularly as

107 emissions of NH_3 increased between the 1980s and 2010s. Some studies have found
108 that NH_3 limited the formation of SIA in winter in the eastern United States ([Pinder et](#)
109 [al., 2007](#)) and Europe ([Megaritis et al., 2013](#)). Controls on NH_3 emissions have been
110 proposed in the TYAP, although mandatory measures and binding targets have not yet
111 been set ([CSC, 2018b](#)). Nevertheless, this proposal means that China will enter a new
112 phase of $\text{PM}_{2.5}$ mitigation, with attention now given to both acid gas and NH_3 emissions.
113 However, in the context of effective control of $\text{PM}_{2.5}$ pollution via its SIA component,
114 two key questions arise: 1) what are the responses of the constituents of SIA to
115 implementation of air pollution control policies, and 2) what is the relative efficiency
116 of NH_3 versus acid gas emission controls to reduce SIA pollution?

117 To fill this evidence gap and provide useful insights for policy-making to improve
118 air quality in China, this study adopts an integrated assessment framework. With respect
119 to the emission control policy summarized above, China's $\text{PM}_{2.5}$ control can be divided
120 into three periods: period I (2000–2012), in which $\text{PM}_{2.5}$ was not the targeted pollutant;
121 period II (2013–2016), the early stage of targeted $\text{PM}_{2.5}$ control policy implementation;
122 and period III (2017–2019), the latter stage with more stringent policies. Therefore, our
123 research framework consists of two parts: (1) assessment of trends in annual mean
124 concentrations of $\text{PM}_{2.5}$, its chemical components and SIA gaseous precursors from
125 meta-analyses and observations; (2) quantification of SIA responses to emissions
126 reductions in NH_3 and acid gases using the Weather Research and Forecasting and
127 Community Multiscale Air Quality (WRF/CMAQ) models.

128 **2. Materials and methods**

129 **2.1. Research framework**

130 This study developed an integrated assessment framework to analysis the trends of
131 secondary inorganic aerosol and strategic options to reduce SIA and $\text{PM}_{2.5}$ pollution in

132 China (Fig. 1). The difference in $\text{PM}_{2.5}$ chemical components between hazy and non-
 133 hazy days was first assessed by meta-analysis of published studies. These were
 134 interpreted in conjunction with the trends in air concentrations of $\text{PM}_{2.5}$ and its
 135 secondary inorganic aerosol precursors (SO_2 , NO_2 , and NH_3) derived from surface
 136 measurements and satellite observations. The potential of SIA and $\text{PM}_{2.5}$ concentration
 137 reductions from precursor emission reductions was then evaluated using the Weather
 138 Research and Forecasting and Community Multiscale Air Quality (WRF/CMAQ)
 139 models.

140
 141 **Fig. 1.** Integrated assessment framework for Chinese $\text{PM}_{2.5}$ mitigation strategic options.
 142 OC is organic carbon, EC is elemental carbon, NO_3^- is nitrate, SO_4^{2-} is sulfate, and NH_4^+
 143 is ammonium. NS is the slope of the regression equation between $[\text{NH}_4^+]$ and $[\text{SO}_4^{2-}]$,
 144 NSN is the slope of the regression equation between $[\text{NH}_4^+]$ and $[\text{SO}_4^{2-} + \text{NO}_3^-]$, SOR
 145 is sulfur oxidation ratio, and NOR is nitrogen oxidation ratio. SIA is secondary

146 inorganic aerosols. WRF-CMAQ is Weather Research and Forecasting and Community
147 Multiscale Air Quality models.

148 **2.2. Meta-analysis of PM_{2.5} and its chemical components**

149 Meta-analyses can be used to quantify the differences in concentrations of PM_{2.5} and
150 its secondary inorganic aerosol components (NH₄⁺, NO₃⁻, and SO₄²⁻) between hazy and
151 non-hazy days and to identify the major pollutants on non-hazy days ([Wang et al.,](#)
152 [2019b](#)); this provides evidence for effective options on control of precursor emissions
153 (NH₃, NO₂, and SO₂) for reducing occurrences of hazy days. To build a database of
154 atmospheric concentrations of PM_{2.5} and chemical components between hazy and non-
155 hazy days, we conducted a literature survey using the Web of Science and the China
156 National Knowledge Infrastructure for papers published between January 2000 and
157 January 2020. The keywords included: (1) "particulate matter," or "aerosol," or "PM_{2.5}"
158 and (2) "China" or "Chinese". Studies were selected based on the following conditions:
159 (1) Measurements were taken on both hazy and non-hazy days.
160 (2) PM_{2.5} chemical components were reported.
161 (3) If hazy days were not defined in the screened articles, the days with PM_{2.5}
162 concentrations > 75 $\mu\text{g m}^{-3}$ (the Chinese Ambient Air Quality Standard Grade II for
163 PM_{2.5} ([CSC, 2012](#))) were treated as hazy days.
164 (4) If an article reported measurements from different monitoring sites in the same city,
165 e.g. [Mao et al. \(2018\)](#) and [Xu et al. \(2019\)](#), then each measurement was considered an
166 independent study.
167 (5) If there were measurements in the same city for the same year, e.g. [Tao et al. \(2016\)](#)
168 and [Han et al. \(2017\)](#), then each measurement was treated as an independent study.

169 One hundred articles were selected based on the above conditions with the lists
170 provided in the Supporting Material dataset. For each selected study, we documented

171 the study sites, study periods, seasons, aerosol types, and aerosol species mass
172 concentrations (in $\mu\text{g m}^{-3}$) over the entire study period (2000–2019) (the detailed data
173 are provided in the dataset). In total, the number of sites contributing data to the meta-
174 analysis was 267 and their locations are shown in [Fig. S1](#). If relevant data were not
175 directly presented in studies, a GetData Graph Digitizer (Version 2.25,
176 <http://www.getdatagraph-digitizer.com>) was used to digitize concentrations of $\text{PM}_{2.5}$
177 chemical components from figures. The derivations of other variables such as sulfur
178 and nitrogen oxidation ratios are described in [Supplementary Information Method 1](#).

179 Effect sizes were developed to normalize the combined studies' outcomes to the
180 same scale. This was done through the use of log response ratios ($\ln RR$) ([Nakagawa et](#)
181 [al., 2012; Ying et al., 2019](#)). The variations in aerosol species were evaluated as follows:

$$182 \ln RR = \ln \left(\frac{X_p}{X_n} \right) \quad (1)$$

183 where X_p and X_n represent the mean values of the studied variables of $\text{PM}_{2.5}$ components
184 on hazy and non-hazy days, respectively. The mean response ratio was then estimated
185 as:

$$186 RR = \exp \left[\sum \ln RR(i) \times W(i) / \sum W(i) \right] \quad (2)$$

187 where $W(i)$ is the weight given to that observation as described below. Finally, variable-
188 related effects were expressed as percent changes, calculated as $(RR-1) \times 100\%$. A 95%
189 confidence interval not overlapping with zero indicates that the difference is significant.
190 A positive or negative percentage value indicates an increase or decrease in the response
191 variables, respectively.

192 We used inverse sampling variances to weight the observed effect size (RR) in the
193 meta-analysis ([Benitez-Lopez et al., 2017](#)). For the measurement sites where standard
194 deviations (SD) or standard errors (SE) were absent in the original study reports, we
195 used the "Bracken, 1992" approach to estimate SD ([Bracken et al., 1992](#)). The variation-

related chemical composition of PM_{2.5} was assessed by random effects in meta-analysis. Rosenberg's fail safe-numbers (N_{fs}) were calculated to assess the robustness of findings on PM_{2.5} to publication bias (Ying et al., 2019) (See Table S1). The results (effects) were considered robust despite the possibility of publication bias if $N_{fs} > 5 \times n + 10$, where n indicates the number of sites. The statistical analysis of the concentrations of PM_{2.5} and secondary inorganic ions for three periods used a non-parametric statistical method since concentrations were not normally distributed based on the Kruskal-Wallis test (Kruskal and Walls, 1952). For each species, the Kruskal-Wallis one-way analysis of variance (ANOVA) on ranks among three periods was performed with pairwise comparison using Dunn's method (Dunn, 1964).

2.3. Data collection of air pollutant concentrations

To assess the recent annual trends in China of PM_{2.5} and of the SO₂ and NO₂ gaseous precursors to SIA, real-time monitoring data of these pollutants at 1498 monitoring stations in 367 cities during 2015–2019 were obtained from the China National Environmental Monitoring Center (CNEMC) (<http://106.37.208.233:20035/>). This is an open-access archive of air pollutant measurements from all prefecture-level cities since January 2015. Successful use of data from CNEMC to determine characteristics of air pollution and related health risks in China has been demonstrated previously (Liu et al., 2016; Kuerban et al., 2020). The geography stations are shown in Fig. S1. The annual mean concentrations of the three pollutants at all sites were calculated from the hourly time-series data according to the method of Kuerban et al. (2020). Information about sampling instruments, sampling methods, and data quality controls for PM_{2.5}, SO₂, and NO₂ is provided in Supplementary Method 2. Surface NH₃ concentrations over China for the 2008–2016 (the currently available) were extracted from the study of Liu et al. (2019a). Further details are in Supplementary Method 2.

221 **2.4. WRF/CMAQ model simulations**

222 The Weather Research and Forecasting model (WRFv3.8) and the Models-3
223 community multi-scale air quality (CMAQv5.2) model were used to evaluate the
224 impacts of emission reductions on SIA and PM_{2.5} concentrations over China. The
225 simulations were conducted at a horizontal resolution of 12 km × 12 km. The simulation
226 domain covered the whole of China, part of India and east Asia. In the current study,
227 focus was on the following four regions in China: Beijing-Tianjin-Hebei (BTH),
228 Yangtze River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SCB). The
229 model configurations used in this study were the same as those used in [Wu et al. \(2018a\)](#)
230 and are briefly described here. The WRFv3.8 model was applied to generate
231 meteorological inputs for the CMAQ model using the National Center for
232 Environmental Prediction Final Operational Global Analysis (NCEP-FNL) dataset
233 ([Morrison et al., 2009](#)). Default initial and boundary conditions were used in the
234 simulations. The carbon-bond (CB05) gas-phase chemical mechanism and AERO6
235 aerosol module were selected in the CMAQ configuration ([Guenther et al., 2012](#)).
236 Anthropogenic emissions for 2010, 2014 and 2017 were obtained from the Multi-
237 resolution Emission Inventory (<http://meicmodel.org>) with 0.25 ° × 0.25 ° spatial
238 resolution and aggregated to 12 km × 12 km resolution ([Zheng et al., 2018; Li et al.,](#)
239 [2017](#)). Each simulation was spun-up for six days in advance to eliminate the effects of
240 the initial conditions.

241 The years 2010, 2014 and 2017 were chosen to represent the anthropogenic
242 emissions associated with the periods I, II, III, respectively. January was selected as the
243 typical simulation month because wintertime haze pollution frequently occurs in this
244 month ([Wang et al., 2011; Liu et al., 2019b](#)). January of 2010 was also found to have
245 PM_{2.5} pollution more serious than other months ([Geng et al., 2017, 2021](#)). The

246 sensitivity scenarios of emissions in January can therefore help to identify the efficient
247 option to control haze pollution.

248 The Chinese government has put a major focus on acid gas emission control
249 through a series of policies in the past three periods ([Fig. S2](#)). The ratio decreases of
250 anthropogenic emissions SO_2 and NO_x in January for the years 2010, 2014, 2017 and
251 2020 are presented in SI [Tables S2 and S3](#), respectively. The emissions from
252 surrounding countries were obtained from the Emissions Database for Global
253 Atmospheric Research (EDGAR): HTAPV2. The scenarios and the associated
254 reductions of NH_3 , NO_x and SO_2 for selected four years in three periods can be found
255 in [Fig. 1](#).

256 The sensitivities of SIA and $\text{PM}_{2.5}$ to NH_3 emissions reductions were determined
257 from the average $\text{PM}_{2.5}$ concentrations in model simulations without and with an
258 additional 50% NH_3 emissions reduction. The choice of 50% additional NH_3 emissions
259 reduction is based on the feasibility and current upper bound of NH_3 emissions
260 reduction expected to be realized in the near future ([Liu et al., 2019a; Zhang et al.,](#)
261 [2020a; Table S4](#)). For example, [Zhang et al. \(2020a\)](#) found that the mitigation potential
262 of NH_3 emissions from cropland production and livestock production in China can
263 reach up to 52% and 58%, respectively. To eliminate the influences of varying
264 meteorological conditions, all simulations were conducted under the fixed
265 meteorological conditions of 2010.

266 During the COVID-19 lockdown in China, emissions of primary pollutants were
267 subject to unprecedented reductions due to national restrictions on traffic and industry;
268 in particular, emissions of NO_x and SO_2 reduced by 46% and 24%, respectively,
269 averaged across all Chinese provinces ([Huang et al., 2021](#)). We therefore also ran
270 simulations applying the same reductions in NO_x and SO_2 (based on 2017 MEIC) that

271 were actually observed during the COVID-19 lockdown as a case of special control in
272 2020.

273 **2.5 Model performance**

274 The CMAQ model has been extensively used in air quality studies (Zhang et al.,
275 2019; Backes et al., 2016) and the validity of the chemical regime in the CMAQ model
276 had been confirmed by our previous studies (Zhang et al., 2021a; Wang et al., 2020a,
277 2021a). In this study, we used surface measurements from previous publications (e.g.,
278 (Xiao et al., 2020, 2021; Geng et al., 2019; Xue et al., 2019) and satellite observations
279 to validate the modelling meteorological parameters by WRF model and air
280 concentrations of PM_{2.5} and associated chemical components by CMAQ model. The
281 meteorological measurements used for validating the WRF model performances were
282 obtained from the National Climate Data Center (NCDC)
283 (<ftp://ftp.ncdc.noaa.gov/pub/data/noaa/>). For validation of the CMAQ model, monthly
284 mean concentrations of PM_{2.5} were obtained from ChinaHighAirPollutants (CHAP,
285 <https://weijing-rs.github.io/product.html>) database. We also collected ground-based
286 observations from previous publications to validate the modeling concentrations of
287 SO₄²⁻, NO₃⁻, and NH₄⁺. The detailed information of the monitoring sites is presented in
288 **Table S5**. Further information about the modelling is given in Supplementary Method
289 3 and **Figs. S3-S7 and Table S5**.

290 **3. Results and discussion**

291 **3.1. Characteristics of PM_{2.5} and its chemical components from the meta-analysis
292 and from nationwide observations**

293 The meta-analysis based on all published analyses of PM_{2.5} and chemical
294 component measurements during 2000–2019 reveals the changing characteristics of
295 PM_{2.5}. To assess the annual trends in PM_{2.5} and its major chemical components, we

296 made a three-period comparison using the measurements at sites that include both PM_{2.5}
297 and secondary inorganic ions SO₄²⁻, NO₃⁻, and NH₄⁺ (Fig. 2). The PM_{2.5} concentrations
298 on both hazy and non-hazy days showed no significant trend from period I to period II
299 based on the Kruskal-Wallis test. This could be explained by the enhanced atmospheric
300 oxidation capacity (Huang et al., 2021), faster deposition of total inorganic nitrate (Zhai
301 et al., 2021) and the changes of atmospheric circulation (Zheng et al., 2015; Li et al.,
302 2020). However, the observed concentrations of PM_{2.5} showed a downward trend from
303 Period I to Period III on the non-hazy days, decreasing by 8.2% (Fig. 2a), despite no
304 significant decreasing trend on the hazy days (Fig. 2a). In addition, the annual mean
305 PM_{2.5} concentrations from the nationwide measurements showed declining trends
306 during 2015–2019 averaged across all China and for each of the BTH, YRD, SCB, and
307 PRD megacity clusters of eastern China (Fig. 3a, d).

308 These results reflect the effectiveness of the pollution control policies (Fig. S2)
309 implemented by the Chinese government at the national scale. Nevertheless, PM_{2.5}
310 remained at relatively high levels. Over 2015–2019, the annual mean PM_{2.5}
311 concentrations at 74% of the 1498 sites (averaging $51.9 \pm 12.4 \mu\text{g m}^{-3}$, Fig. 3a) exceeded
312 the Chinese Grade-II Standard (GB 3095–2012) of $35 \mu\text{g m}^{-3}$ (MEPC, 2012), indicating
313 that PM_{2.5} mitigation is a significant challenge for China.

314

315 **Fig. 2.** Comparisons of observed concentrations of (a) $\text{PM}_{2.5}$, (b) SO_4^{2-} , (c) NO_3^- , and
 316 (d) NH_4^+ between non-hazy and hazy days in Period I (2000–2012), Period II (2013–
 317 2016), and Period III (2017–2019). Bars with different letters denote significant
 318 differences among the three periods ($P < 0.05$) (upper and lowercase letters for non-
 319 hazy and hazy days, respectively). The upper and lower boundaries of the boxes
 320 represent the 75th and 25th percentiles; the line within the box represents the median
 321 value; the whiskers above and below the boxes represent the 90th and 10th percentiles;
 322 the point within the box represents the mean value. Comparison of the pollutants among
 323 the three-periods using Kruskal-Wallis and Dunn's test. The n represents independent
 324 sites; more detail on this is presented in Section 2.2.

325

326 **Fig. 3.** Left: spatial patterns of annual mean observed concentration of (a) $\text{PM}_{2.5}$, (b)
327 (c) SO_2 , (c) NO_2 at 1498 sites, averaged for 2015–2019. Right: the annual observed
328 concentrations of (d) $\text{PM}_{2.5}$, (e) SO_2 , and (f) NO_2 for 2015–2019 in four megacity
329 clusters (BTH: Beijing-Tianjin-Hebei, YRD: Yangtze River Delta, SCB: Sichuan Basin,
330 PRD: Pearl River Delta). The locations of the regions are indicated by the blue shading
331 on the map. The upper and lower boundaries of the boxes represent the 75th and 25th
332

333 percentiles; the line within the box represents the median value; the whiskers above and
334 below the boxes represent the 90th and 10th percentiles; the point within the box
335 represents the mean value.

336 To further explore the underlying drivers of PM_{2.5} pollution, we analyzed the
337 characteristics of PM_{2.5} chemical components and their temporal changes in China. The
338 concentrations of PM_{2.5} and all its chemical components (except F⁻ and Ca²⁺) were
339 significantly higher on hazy days than on non-hazy days (Fig. 4A). Compared with
340 other components this difference was more significant for secondary inorganic ions (i.e.,
341 SO₄²⁻, NO₃⁻, and NH₄⁺). Sulfur oxidation ratio (SOR) and nitrogen oxidation ratio
342 (NOR) were also 58.0% and 94.4% higher on hazy days than on non-hazy days,
343 respectively, implying higher oxidations of gaseous species to sulfate- and nitrate-
344 containing aerosols on the hazy days (Sun et al., 2006; Xu et al., 2017).

345 To provide quantitative information on differences in PM_{2.5} and its components
346 between hazy days and non-hazy days, we made a comparison using 46 groups of data
347 on simultaneous measurements of PM_{2.5} and chemical components. The 46 groups refer
348 to independent analyses from the literature that compare concentrations of PM_{2.5} and
349 major components (SO₄²⁻, NO₃⁻, NH₄⁺, OC, and EC) on hazy and non-hazy days
350 measured across different sets of sites. The “Other” species was calculated by
351 difference between PM_{2.5} and sum of OC, EC, and secondary inorganic ions (SO₄²⁻,
352 NO₃⁻ and NH₄⁺). As shown in Fig.4B (a), PM_{2.5} concentrations significantly increased
353 (by 136%) on the hazy days ($149.2 \pm 81.6 \mu\text{g m}^{-3}$) relative to those on the non-hazy
354 days ($63.2 \pm 29.8 \mu\text{g m}^{-3}$). By contrast, each component’s proportions within PM_{2.5}
355 differed slightly, with 36% and 40% contributions by SIA on non-hazy days and hazy
356 days, respectively (Fig. 4B(b)). This is not surprising because concentrations of PM_{2.5}
357 and SIA both significantly increased on the hazy days ($60.1 \pm 37.4 \mu\text{g m}^{-3}$ for SIA)

358 relative to the non-hazy days ($22.4 \pm 12.1 \mu\text{g m}^{-3}$ for SIA). Previous studies have found
 359 that increased SIA formation is the major influencing factor for haze pollution in
 360 wintertime and summertime (mainly in years since 2013) in major Chinese cities in
 361 eastern China (Huang et al., 2014; Wang et al., 2019a; Li et al., 2018). Our results
 362 extend confirmation of the dominant role of SIA to $\text{PM}_{2.5}$ pollution over a large spatial
 363 scale in China and to longer temporal scales.

364 **Fig. 4.** (A) Variations in $\text{PM}_{2.5}$ concentration, aerosol component concentration, NS,
 365 NSN, SOR, and NOR from non-hazy to hazy days in China during 2000–2019. (B) (a)
 366 Summary of differences in $\text{PM}_{2.5}$ concentration between non-hazy and hazy days in
 367 China; (b) the average proportions of components of $\text{PM}_{2.5}$ on non-hazy and hazy days.
 368 NS is the slope of the regression equation between $[\text{NH}_4^+]$ and $[\text{SO}_4^{2-}]$, NSN is the slope
 369 of the regression equation between $[\text{NH}_4^+]$ and $[\text{SO}_4^{2-} + \text{NO}_3^-]$, SOR is sulfur oxidation
 370 ratio, and NOR is nitrogen oxidation ratio. The variations are considered significant if
 371 the confidence intervals of the effect size do not overlap with zero. ** denotes significant
 372 difference ($P < 0.01$) between hazy days and non-hazy days. The upper and lower
 373 boundaries of the boxes represent the 75th and 25th percentiles; the line within the box
 374 represents the median value; the whiskers above and below the boxes represent the 90th
 375 and 10th percentiles; the point within the box represents the mean value. Values
 376 adjacent to each confidence interval indicate number of measurement sites. The n
 377 adjacent to each confidence interval indicate number of measurement sites. The n

378 represents independent sites; more detail on this is presented in [Section 2.2](#).

379 The effect values of SIA on the hazy days were significantly higher than those on
380 non-hazy days for all three periods (I, II, and III) ([Fig. 5](#)), indicating the persistent
381 prevalence of the SIA pollution problem over the past two decades. Considering
382 changes in concentrations, SO_4^{2-} showed a downward trend from Period I to Period III
383 on the non-hazy days and hazy day, decreasing by 38.6% and 48.3%, respectively ([Fig.](#)
384 [2b](#)). These results reflect the effectiveness of the SO_2 pollution control policies ([Ronald](#)
385 [et al., 2017](#)). In contrast, there were no significant downward trends in concentrations
386 of NO_3^- and NH_4^+ on either hazy or non-hazy days ([Fig. 2c, d](#)), but the mean NO_3^-
387 concentration in Period III decreased by 10.5% compared with that in Period II,
388 especially on hazy days (-16.8%). These results could be partly supported by decreased
389 NO_x emissions and tropospheric NO_2 vertical column densities between 2011 and 2019
390 in China owing to effective NO_x control policies ([Zheng et al., 2018; Fan et al., 2021](#)).
391 The lack of significantly downward trends in NH_4^+ concentrations is due to the fact that
392 the total NH_3 emissions in China changed little and remained at high levels between
393 2000 and 2018, i.e., slightly decreased from 2000 (10.3 Tg) to 2012 (9.3 Tg) ([Kang et](#)
394 [al., 2016](#)) and then slightly increased between 2013 and 2018 ([Liu et al., 2021](#)). The
395 same trends are also found in Quzhou in China, which is a long-term in situ monitoring
396 site (in Quzhou County, North China Plain, operated by our group; the detailed
397 information on Quzhou can be found in [Meng et al. \(2022\)](#) and [Feng et al. \(2022\)](#))
398 during the period 2012-2020 from previous publications ([Xu et al., 2016; Zhang et al.,](#)
399 [2021b](#), noted that data during 2017-2020 are unpublished before) ([Fig. S8](#)). [Zhang et](#)
400 [al. \(2020b\)](#) found that the clean air actions implemented in 2017 effectively reduced
401 wintertime concentrations of PM_{1} (particulate matter with diameter $\leq 1 \mu\text{m}$), SO_4^{2-} and

402 NH_4^+ in Beijing compared with those in 2007, but had no apparent effect on NO_3^- . Li
403 et al. (2021) also found that SO_4^{2-} exhibited a significant decline, However, NO_3^- did
404 not evidently exhibit a decreasing trend in the BTH region.

405 Our findings are to some extent supported by the nationwide measurements.
406 Annual mean SO_2 concentrations displayed a clear decreasing trend with a 53%
407 reduction in 2019 relative to 2015 for the four megacity clusters of eastern China (Fig.
408 3b, e), whereas there were only slight reductions in annual mean NO_2 concentrations
409 (Fig. 3c, f). In contrast, annual mean NH_3 concentrations showed an obvious increasing
410 trend in both northern and southern regions of China, and especially in the BTH
411 region (Fig. S9).

412 Overall, the above analyses indicate that SO_4^{2-} concentrations responded
413 positively to air policy implementations at the national scale, but that reducing NO_3^-
414 and NH_4^+ remains a significant challenge. China has a history of around 10-20 years
415 for SO_2 and NO_x emission control and has advocated NH_3 controls despite to date no
416 mandatory measures and binding targets having been set (Fig. S2). Nevertheless, $\text{PM}_{2.5}$
417 pollution, especially SIA such as NO_3^- and NH_4^+ , is currently a serious problem (Fig. 4
418 and 5a, b). Some studies have reported that $\text{PM}_{2.5}$ pollution can be effectively reduced
419 if implementing synchronous NH_3 and NO_x/SO_2 controls (Liu et al., 2019b). Therefore,
420 based on the above findings, we propose that NH_3 and NO_x/SO_2 emission mitigation
421 should be simultaneously strengthened to mitigate haze pollution.

422

423 **Fig. 5.** Variations in PM_{2.5} composition, NS, NSN, SOR, and NOR from non-hazy to
 424 hazy days in (a) Period I (2000–2012), (b) Period II (2013–2016), (c) Period III (2017–
 425 2019). NS is the slope of the regression equation between [NH₄⁺] and [SO₄²⁻], NSN is
 426 the slope of the regression equation between [NH₄⁺] and [SO₄²⁻ + NO₃⁻], SOR is sulfur
 427 oxidation ratio, and NOR is nitrogen oxidation ratio. The variations are statistically
 428 significant if the confidence intervals of the effect size do not overlap with zero. Values
 429 adjacent to each confidence interval indicate number of measurement sites. The *n*
 430 represents independent sites; more detail on this is presented in [Section 2.2](#).

431 3.2. Sensitivities from model simulations

432 To further examine the efficiencies of NH₃ and acid gas emission reductions on
 433 SIA and PM_{2.5} mitigation, the decreases of mean SIA and PM_{2.5} concentrations with and
 434 without additional 50% NH₃ reductions were simulated using the WRF/CMAQ model.

435 Fig. 6 and Fig. S10 shows that, compared to 2010, SIA and PM_{2.5} concentrations in
436 January in 2017 were significantly decrease in the BTH, YRD, SCB, and PRD megacity
437 clusters, respectively, in the simulations without additional NH₃ emission reductions.
438 Across the four megacity clusters, the reduction in SIA and PM_{2.5} is largest in the SCB
439 region from 2010 to 2017 and smallest in the PRD region.

440 When simulating the effects of an additional 50% NH₃ emissions reductions in
441 January in each of the years 2010, 2014 and 2017, the SIA concentrations in the
442 megacity clusters (i.e. BTH, YRD, SCB and PRD) decreased by $25.9 \pm 0.3\%$, $24.4 \pm$
443 0.3% , and $22.9 \pm 0.3\%$, respectively (Fig. 6, Fig. S11, and Table S6). The reductions
444 of PM_{2.5} in 2010, 2014 and 2017 were $9.7 \pm 0.1\%$, $9.0 \pm 0.1\%$, and $9.2 \pm 0.2\%$ in
445 the megacity clusters, respectively (Figs. S10 and S12). Whilst these results confirm
446 the effectiveness of NH₃ emission controls, it is important to note that the response of
447 SIA concentrations is less sensitive to additional NH₃ emission controls along the
448 timeline of the SO₂ and NO_x anthropogenic emissions reductions associated with the
449 series of clean air actions implemented by the Chinese government from 2010 to 2017
450 (Zheng et al., 2018). Given the feasibility and current upper bound of NH₃ emission
451 reductions options in the near future (50%) (Liu et al., 2019b), further abatement of SIA
452 concentrations merely by reducing NH₃ emissions is limited in China. In other words,
453 the controls on acid gas emissions should continue to be strengthened beyond their
454 current levels.

455

456

457 **Fig. 6.** Simulated SIA concentrations (in $\mu\text{g m}^{-3}$) without (basic) and with 50%
458 ammonia (NH₃) emissions reductions in January for the years 2010, 2014, 2017 and
459 2020 in four megacity clusters (BTH: Beijing-Tianjin-Hebei, YRD: Yangtze River
460 Delta, SCB: Sichuan Basin, PRD: Pearl River Delta). Inset maps indicate the location
461 of each region. ** denotes significant difference without and with 50% ammonia
462 emission reductions ($P < 0.05$). n is the number of calculated samples by grid extraction.
463 Error bars are standard errors of means. (Period I (2000–2012), Period II (2013–2016),
464 and Period III (2017–2019); Special control is the restrictions in economic activities
465 and associated emissions during the COVID-19 lockdown period in 2020).

466 To further verify the above findings, we used the reductions of emissions of acid
467 gases (46% and 23% for NO_x and SO₂, respectively, in the whole China) during the

468 COVID-lockdown period as a further scenario (Huang et al., 2021). The model
469 simulations suggest that the effectiveness of reductions in SIA and PM_{2.5} concentrations
470 by a 50% NH₃ emission reduction further declined in 2020 ($15 \pm 0.2\%$ for SIA, and
471 $5.1 \pm 0.2\%$ for PM_{2.5}), but the resulting concentrations of them were lower ($20.8 \pm 0.3\%$
472 for SIA, and $15.6 \pm 0.3\%$ for PM_{2.5}) when compared with that in 2017 under the same
473 scenario of an additional 50% NH₃ emissions reduction (and constant meteorological
474 conditions) (Fig. 6 and Table S6), highlighting the importance of concurrently NH₃
475 mitigation when acid gas emissions are strengthened. To confirm the importance of acid
476 gas emissions, another sensitivity simulation was conducted for 2017, in which the acid
477 gas (NO_x and SO₂) emissions were reduced by 50% (Fig. 7). We found that reductions
478 in SIA concentrations are $13.4 \pm 0.5\%$ greater for the 50% reductions in SO₂ and NO_x
479 emissions than for the 50% reductions in NH₃ emissions. These results indicate that to
480 substantially reduce SIA pollution it remains imperative to strengthen emission controls
481 on NO_x and SO₂ even when a 50% reduction in NH₃ emission is targeted and achieved.

482

483
484 **Fig. 7.** Left: the spatial distributions of simulated $\text{PM}_{2.5}$ concentrations (in $\mu\text{g m}^{-3}$) in
485 January 2017 with (a) 50% reductions in ammonia (NH₃) emissions and (b) 50%
486 reductions in acid gas (NO_x and SO₂) emissions. Right: the % decreases in $\text{PM}_{2.5}$ (c)
487 and SIA (d) concentrations for the simulations with compared to without the NH₃ and
488 acid gas emissions reductions in four megacity clusters (BTH: Beijing-Tianjin-Hebei,
489 YRD: Yangtze River Delta, SCB: Sichuan Basin, PRD: Pearl River Delta). ** denotes
490 significant differences without and with 50% ammonia emission reductions ($P < 0.05$).
491 n is the number of calculated samples by grid extraction. Error bars are standard errors
492 of means.

493 **3.3. Uncertainty analysis and limitations**

494 Some limitations should be noted in interpreting the results of the present study: this
495 study examined period-to-period changes in $\text{PM}_{2.5}$ chemical components based on a

496 meta-analysis and the efficiencies of NH_3 and acid gas emission reductions on $\text{PM}_{2.5}$
497 mitigation. Some uncertainties may still exist in meta-analysis of nationwide
498 measurements owing to differences in monitoring, sample handling and analysis
499 methods as well as lack of long-term continuous monitoring sites (Fig. 2). For example,
500 the measurements of $\text{PM}_{2.5}$ were mainly taken using the TEOM method, which is
501 associated with under-reading of PM due to some nitrate volatilization at its operational
502 temperature. To test whether the use of data during 2000–2019 could bias annual trends
503 of $\text{PM}_{2.5}$ and chemical components, we summarize measurements of $\text{PM}_{2.5}$ at a long-
504 term monitoring site (Quzhou County) during the period 2012-2020. The $\text{PM}_{2.5}$ and
505 SO_4^{2-} show the decreasing trend. The concentration of NO_3^- and NH_4^+ do not show
506 significant change (Fig. S8). The results are consistent with the trend for the whole of
507 China obtained from the meta-analysis. Considering the uncertainty of $\text{PM}_{2.5}$ and its
508 major components between different seasons (winter, summer, etc) and site type (urban,
509 suburban or rural). We have analyzed historic trend in the different season and sites
510 (Figs. S13-S20). We found that concentrations of $\text{PM}_{2.5}$ and its major chemical
511 components (SO_4^{2-} , NO_3^- , and NH_4^+) were significantly higher in fall and winter than
512 in spring and summer (Fig. S13). Only the winter season showed significant change
513 trend in the three periods (Figs. S14-S17). The analyses also confirmed that pollution
514 days predominated in winter. We also found that concentrations of $\text{PM}_{2.5}$ and its major
515 chemical components were higher at urban than rural sites (Fig. S18). Spatially, the
516 trends of $\text{PM}_{2.5}$ and its major components are similar across the whole of China (both
517 of urban and rural) (Fig. S19). Rural areas show the same change trend in hazy days
518 compared with whole of China (Fig. S20).

519 WRF-CMAQ model performance also has some uncertainty. We performed the
520 validations of WRF and CMAQ models. The simulations of temperature at 2 m above

521 ground (T2), wind speed (WS), and relative humidity (RH) versus observed values at
522 400 monitoring sites in China are shown in [Fig. S7](#). The meteorological measurements
523 were obtained from the National Climate Data Center (NCDC)
524 (<ftp://ftp.ncdc.noaa.gov/pub/data/noaa/>). The comparisons showed that the model
525 performed well at predicting meteorological parameters with R values of 0.94, 0.64 and
526 0.82 for T2, WS and RH, respectively. However, the WS was overestimated (22.3%
527 NMB) in most regions of China, which is also reported in previous studies ([Gao et al.,
528 2016; Chen et al., 2019](#)). This may be related to the underlying surface parameters set
529 in the WRF model configurations.

530 In addition, the simulations of PM_{2.5} and associated chemical components by the
531 CMAQ model have potential biases in the spatial pattern, although the CMAQ model
532 has been extensively used in air quality studies ([Backes et al., 2016; Zhang et al., 2019](#))
533 and the validity of the chemical regime in the CMAQ model had been confirmed by
534 our previous studies ([Zhang et al., 2021a; Wang et al., 2020a, 2021a](#)). Since nationwide
535 measurements of PM_{2.5} and associated chemical components are lacking in 2010 in
536 China, we undertook our own validation of PM_{2.5} and its components (such as SO₄²⁻,
537 NO₃⁻, and NH₄⁺) using a multi-observation dataset that includes those monitoring data
538 and satellite observations at a regional scale that were available.

539 First, the simulated monthly mean PM_{2.5} concentration in January 2010 was
540 compared with corresponding data obtained from the ChinaHighAirPollutants (CHAP,
541 <https://weijing-rs.github.io/product.html>) database. The satellite historical PM_{2.5}
542 predictions are reliable (average $R^2 = 0.80$ and RMSE = 11.26 $\mu\text{g m}^{-3}$) using cross
543 validation against the in-situ surface observations on a monthly basis ([Wei et al., 2020,
544 2021](#)). The model well captured the spatial distributions of PM_{2.5} concentrations in our
545 studied regions of BTH, YRD, PRD, and SCB ([Fig. S3a](#)), with correlation coefficient

546 (R) between simulated and satellite observed PM_{2.5} concentrations of 0.96, 0.80, 0.60,
547 and 0.85 for BTH, YRD, PRD, and SCB, respectively.

548 Second, we also collected ground-based observations from previous publications
549 (Xiao et al., 2020, 2021; Geng et al., 2019; Xue et al., 2019) to validate the modeling
550 concentrations of SO₄²⁻, NO₃⁻, and NH₄⁺. Detailed information about the monitoring
551 sites is presented in Table S5. The distributions of the simulated monthly mean
552 concentrations of SO₄²⁻, NO₃⁻, and NH₄⁺ in January 2010 over China is compared with
553 collected surface measurements are shown in Fig. S4a, b, and c, respectively, with their
554 linear regression analysis presented in Fig. S4d. The model showed underestimation in
555 simulating SO₄²⁻ and NO₃⁻ in the BTH region, which might be caused by the uncertainty
556 in the emission inventory. The lack of heterogeneous pathways for SO₄²⁻ formation in
557 the CMAQ model might also be an important reason for the negative bias between
558 simulations and measurements (Yu et al., 2005; Cheng et al., 2016). The model
559 overestimated NO₃⁻ concentration in the SCB region, but can capture the spatial
560 distribution of NO₃⁻ in other regions. The overestimation of NO₃⁻ has been a common
561 problem in regional chemical transport models such as CMAQ, GEOS-CHEM and
562 CAMx (Yu et al., 2005; Fountoukis et al., 2011; Zhang et al., 2012; Wang et al., 2013),
563 due to the difficulties in correctly capturing the gas and aerosol-phase nitrate
564 partitioning (Yu et al., 2005). The modeling of NH₄⁺ concentrations show good
565 agreement with the observed values. Generally, the evaluation results indicate that the
566 model reasonably predicted concentrations of SO₄²⁻, NO₃⁻, and NH₄⁺ in PM_{2.5}.

567 Third, we performed a comparison of the time-series of the observed and simulated
568 hourly PM_{2.5} and its precursors (SO₂ and NO₂) during January 2010. The model well
569 captures the temporal variations of the PM_{2.5} in Beijing, with an NMB value of 0.05 µg
570 m⁻³, NME of 28%, and R of 0.92 (Fig. 5a). The predicted daily concentrations of NO₂

571 and SO₂ during January 2010 also show good agreement with the ground measurements
572 in Beijing, with NMB and *R* values of 0.12 $\mu\text{g m}^{-3}$ and 0.89 for NO₂, and -0.04, 0.95
573 for SO₂, respectively (Fig. 5b). The variations of daily PM_{2.5} concentrations between
574 simulation and observation at 4 monitoring sites (Shangdianzi, Chengdu, Institute of
575 Atmospheric Physics, Chinese Academy of Sciences (IAP-CAS), and Tianjin) from 14
576 to 30 January 2010 also matched well, with NMB values ranging from -0.05 to 0.12 μg
577 m^{-3} , and *R* values exceeding 0.89 (Fig. S5c).

578 We also compared the simulated and observed concentrations of PM_{2.5}, NO₂, and
579 SO₂ in China in pre-COVID period (1–26 January 2020) and during the COVID-
580 lockdown period (27 January–26 February) with actual meteorological conditions. As
581 shown in Fig. S6, both the simulations and observations suggested that the PM_{2.5} and
582 NO₂ concentrations substantially decreased during the COVID-lockdown, mainly due
583 to the sharp reduction in vehicle emissions (Huang et al., 2021; Wang et al., 2021b).
584 For SO₂, the concentrations decreased very little and even increased at some monitoring
585 sites. The model underestimated the concentrations of PM_{2.5}, NO₂, and SO₂, with NMB
586 values of -21.4%, -22.1%, and -9.6%, respectively. We also newly evaluated the model
587 performance in actual meteorological conditions for PM_{2.5} concentrations in January
588 2014 and 2017, respectively. As shown in the Figure S21, the model well captured the
589 spatial distribution of PM_{2.5} concentration in China with MB (NMB) values of 23.2 μg
590 m^{-3} (15.4%) and 26.8 $\mu\text{g m}^{-3}$ (-26.7%) for 2014 and 2017, respectively. The simulated
591 PM_{2.5} concentrations compared well against the observations, with *R* values of 0.82 and
592 0.65, respectively

593

594

595

596 **3.4. Implication and outlook**

597 Improving air quality is a significant challenge for China and the world. A key
598 target in China is for all cities to attain annual mean $PM_{2.5}$ concentrations of $35 \mu g m^{-3}$
599 or below by 2035 (Xing et al., 2021). However, this study has shown that 74% of 1498
600 nationwide measurement sites have exceeded this limit value in recent years (averaged
601 across 2015-2019). Our results indicated that acid gas emissions still need to be a focus
602 of control measures, alongside reductions in NH_3 emissions, in order to reduce SIA (or
603 $PM_{2.5}$) formation. Model simulations for the month of January underpin the finding that
604 the relative effectiveness of NH_3 emission control decreased over the period from 2010
605 to 2017. However, simulating the substantial emission reductions in acid gases due to
606 the lockdown during the COVID-19 pandemic, with fossil fuel-related emissions
607 reduced to unprecedented levels, indicated the importance of ammonia emission
608 abatement for $PM_{2.5}$ air quality improvements when SO_2 and NO_x emissions have
609 already reached comparatively low levels. Therefore, a strategic and integrated
610 approach to simultaneously undertaking acid gas emissions and NH_3 mitigation is
611 essential to substantially reduce $PM_{2.5}$ concentrations. However, the mitigation of acid
612 gas and NH_3 emissions pose different challenges due to different sources they originate
613 from.

614 The implementation of further reduction of acid gas emissions is challenging. The
615 prevention and control of air pollution in China originally focused on the control of acid
616 gas emissions (Fig. S2). The controls have developed from desulfurization and
617 denitrification technologies in the early stages to advanced end-of-pipe control
618 technologies. By 2018, over 90% of coal-fired power plants had installed end-of-pipe
619 control technologies (CEC, 2020). The potential for further reductions in acid gas
620 emissions by end-of-pipe technology might therefore be limited. Instead, addressing

621 total energy consumption and the promotion of a transition to clean energy through a
622 de-carbonization of energy production is expected to be an inevitable requirement for
623 further reducing PM_{2.5} concentrations (Xing et al., 2021). In the context of improving
624 air quality and mitigating climate change, China is adopting a portfolio of low-carbon
625 policies to meet its Nationally Determined Contribution pledged in the Paris Agreement.
626 Studies show that if energy structure adjusts and energy conservation measures are
627 implemented, SO₂ and NO_x will be further reduced by 34% and 25% in Co-Benefit
628 Energy scenario compared to the Nationally Determined Contribution scenario in 2035
629 (Xing et al., 2021). Although it has been reported that excessive acid gas emission
630 controls may increase the oxidizing capacity of the atmosphere and increase other
631 pollution, PM_{2.5} concentrations have consistently decreased with previous acid gas
632 control (Huang et al., 2021). In addition, under the influence of low-carbon policies,
633 other pollutant emissions will also be controlled. Opportunities and challenges coexist
634 in the control of acid gas emissions.

635 In contrast to acid gas emissions, NH₃ emissions predominantly come from
636 agricultural sources. Although the Chinese government has recognized the importance
637 of NH₃ emissions controls in curbing PM_{2.5} pollution, NH₃ emissions reductions have
638 only been proposed recently as a strategic option and no specific nationwide targets
639 have yet been implemented (CSC, 2018b). The efficient implementation of NH₃
640 reduction options is a major challenge because NH₃ emissions are closely related to
641 food production, and smallholder farming is still the dominant form of agricultural
642 production in China. The implementation of NH₃ emissions reduction technologies is
643 subject to investment in technology, knowledge and infrastructure, and most farmers
644 are unwilling or economically unable to undertake additional expenditures that cannot
645 generate financial returns (Gu et al., 2011; Wu et al., 2018b). Therefore, economically

646 feasible options for NH₃ emission controls need to be developed and implemented
647 nationwide.

648 We propose the following three requirements that need to be met to achieve
649 effective reductions of SIA concentrations and hence of PM_{2.5} concentrations in China.

650 First, binding targets to reduce both NH₃ and acid gas emissions should be set. The
651 targets should be designed to meet the PM_{2.5} standard, and NH₃ concentrations should
652 be incorporated into the monitoring system as a government assessment indicator. In
653 this study, we find large differences in PM_{2.5} concentration reductions from NH₃
654 emissions reduction in the four megacity regions investigated. At a local scale (i.e., city
655 or county), the limiting factors may vary within a region (Wang et al., 2011). Thus,
656 local-specific environmental targets should be considered in policy-making.

657 Second, further strengthening of the controls on acid gas emissions are still needed,
658 especially under the influence of low-carbon policies, to promote emission reductions
659 and the adjustment of energy structures and conservation. Ultra-low emissions should
660 be requirements in the whole production process, including point source emissions,
661 diffuse source emissions, and clean transportation (Xing et al., 2021; Wang et al.,
662 2021a). The assessment of the impact of ultra-low emissions is provided in Table S7.
663 In terms of energy structure, it is a requirement to eliminate outdated production
664 capacity and promote low-carbon new energy generation technologies.

665 Third, a requirement to promote feasible NH₃ reduction options throughout the
666 whole food production chain, for both crop and animal production. Options include the
667 following. 1) Reduction of nitrogen input at source achieved, for example, through
668 balanced fertilization based on crop needs instead of over-fertilization, and promotion
669 of low-protein feed in animal breeding. 2) Mitigation of NH₃ emissions in food
670 production via, for example, improved fertilization techniques (such as enhanced-

671 efficiency fertilizer (urease inhibitor products), fertilizer deep application, fertilization-
672 irrigation technologies ([Zhan et al., 2021](#)), and coverage of solid and slurry manure. 3)
673 Encouragement for the recycling of manure back to croplands, and reduction in manure
674 discarding and long-distance transportation of manure fertilizer. Options for NH₃
675 emissions control are provided in [Table S4](#). Although the focus here has been on
676 methods to mitigate NH₃ emissions, it is of course critical simultaneously to minimize
677 N losses in other chemical forms such as nitrous oxide gas emissions and aqueous
678 nitrate leaching ([Shang et al., 2019](#); [Wang et al., 2020b](#)).

679 **4. Conclusions**

680 The present study developed an integrated assessment framework using meta-
681 analysis of published literature results, analysis of national monitoring data, and
682 chemical transport modelling to provide insight into the effectiveness of SIA precursor
683 emissions controls in mitigating poor PM_{2.5} air quality in China. We found that PM_{2.5}
684 concentration significantly decreased in 2000-2019 due to acid gas control policies, but
685 PM_{2.5} pollution still severe. Compared with other components, this difference was more
686 significant higher (average increase 98%) for secondary inorganic ions (i.e., SO₄²⁻, NO₃⁻,
687 and NH₄⁺) on hazy days than on-hazy days. This is mainly caused by the persistent SIA
688 pollution during the same period. with sulfate concentrations significantly decreased
689 and no significant changes observed for nitrate and ammonium concentrations. The
690 reductions of SIA concentrations in January in megacity clusters of eastern China by
691 additional 50% NH₃ emission controls decreased from 25.9 ± 0.3% in 2010 to 22.9 ±
692 0.3% in 2017, and to 15 ± 0.2% in the COVID lockdown in 2020 for simulations
693 representing reduced acid gas emissions to unprecedented levels, but the SIA
694 concentrations decreased by 20.8 ± 0.3% in 2020 compared with that in 2017 under the
695 same scenario of an additional 50% NH₃ emissions reduction. In addition, the reduction

696 of SIA concentration in 2017 was $13.4 \pm 0.5\%$ greater for 50% acid gas (SO_2 and NO_x)
697 reductions than for the NH_3 emissions reduction. These results indicate that acid gas
698 emissions need to be further controlled concertedly with NH_3 reductions to substantially
699 reduce $\text{PM}_{2.5}$ pollution in China.

700 Overall, this study provides new insight into the responses of SIA concentrations
701 in China to past air pollution control policies and the potential balance of benefits in
702 including NH_3 emissions reductions with acid gas emissions controls to curb SIA
703 pollution. The outcomes from this study may also help other countries seeking feasible
704 strategies to mitigate $\text{PM}_{2.5}$ pollution.

705

706

707 **Data availability**

708 All data in this study are available from the from the corresponding authors (Wen Xu,
709 wenxu@cau.edu.cn; Shaocai Yu, shaocaiyu@zju.edu.cn) upon request.

710 **Author contributions**

711 W.X., S.Y., and F.Z. designed the study. F.M., Y.Z., W.X., and J.K. performed the
712 research. F.M., Y.Z., W.X., and J.K. analyzed the data and interpreted the results. Y.Z.
713 conducted the model simulations. L.L. provided satellite-derived surface NH_3
714 concentration. F.M., W.X., Y.Z., and M.R.H. wrote the paper, S. R., M.W., K.W., J.K.,
715 Y.Z., Y.H., P.L., J.W., Z.C., X.L., M.R.H., S.Y. and F.Z. contributed to the discussion
716 and revision of the paper.

717 **Declaration of Competing Interest**

718 The authors declare that they have no known competing financial interests or personal
719 relationships that could have appeared to influence the work reported in this paper.

720 **Acknowledgments**

721 This study was supported by National Natural Science Foundation of China (42175137,
722 21577126 and 41561144004), China Scholarship Council (201913043), the National
723 Key Research and Development Program of China (2021YFD1700900), the
724 Department of Science and Technology of China (2016YFC0202702,
725 2018YFC0213506 and 2018YFC0213503), National Research Program for Key Issues
726 in Air Pollution Control in China (DQGG0107), and the High-level Team Project of
727 China Agricultural University. SR's contribution was supported by the Natural
728 Environment Research Council award number NE/R000131/1 as part of the SUNRISE
729 program delivering National Capability. We would like to thank Prof. Yuepeng Pan and
730 Dr. Yangyang Zhang for their help on validating the modeling results.

731 **References**

732 An, Z. S., Huang, R. J., Zhang, R.Y., Tie, X. X., Li, G. H., Cao, J. J., Zhou, W. J., Shi,
733 Z. G ., Han, Y. M ., Gu, Z. L., and Ji, Y. M.: Severe haze in northern China: A
734 synergy of anthropogenic emissions and atmospheric processes, Proc. Natl. Acad.
735 Sci. U. S. A., 116, 8657-8666. <https://doi.org/10.1073/pnas.1900125116>, 2019.

736 Backes, A., Aulinger, A., Bieser, J., Matthias, V., and Quante, M.: Ammonia emissions
737 in Europe, part II: How ammonia emission abatement strategies affect secondary
738 aerosols, Atmos. Environ., 126, 153-161,
739 <https://doi.org/10.1016/j.atmosenv.2015.11.039>, 2016.

740 Bai, Z., Winiwarter, W., Klimont, Z., Velthof, G., Misselbrook, T., Zhao, Z., Jin, X.,
741 Oenema, O., Hu, C., and Ma, L.: Further improvement of air quality in China needs
742 clear ammonia mitigation target, Environ. Sci. Technol., 53, 10542-10544,
743 <https://doi.org/10.1021/acs.est.9b04725>, 2019.

744 Benitez-Lopez, A., Alkemade, R., Schipper, A. M., Ingram, D. J., Verweij, P. A.,

745 Eikelboom, J. A. J., and Huijbregts, M. A. J.: The impact of hunting on tropical
746 mammal and bird populations, *Science*, 356, 180-183, <https://doi.org/10.1126/science.aaj1891>, 2017.

748 Bracken, M. B.: Statistical methods for analysis of effects of treatment in overviews of
749 randomized trials. In: J.C. Sinclair, M.B. Bracken (Eds.) *Effective care of the*
750 *newborn infant*, Oxford University Press, 1992.

751 Chen, Z.Y., Chen, D.L., Wen, W., Zhuang, Y., Kwan, M.P., Chen, B., Zhao, B., Yang,
752 L., Gao, B.B., Li, R.Y., and Xu, B.: Evaluating the “2+26” regional strategy for air
753 quality improvement during two air pollution alerts in Beijing: Variations in PM_{2.5}
754 concentrations, source apportionment, and the relative contribution of local
755 emission and regional transport, *Atmos. Chem. Phys.*, 19, 6879-6891.
756 <https://doi.org/10.5194/acp-19-6879-2019>, 2019.

757 Cheng, Y.F., Zheng, G.A., Wei, C., Mu, Q., Zheng, B., Wang, Z.B., Gao, M., Zhang, Q.,
758 He, K.B., Carmichael, G., Poschl, U., and Su, H.: Reactive nitrogen chemistry in
759 aerosol water as a source of sulfate during haze events in China, *Sci. Adv.* 2(12).
760 <https://doi.org/10.1126/sciadv.1601530>, 2016.

761 China Electricity Council.: China Power Industry Annual Development Report 2019,
762 <https://www.cec.org.cn/yaowenkuaidi/2019-06-14/191782.html>, 2020.

763 CSC (China State Council): The 11th Five-Year plan on energy saving and emissions
764 reduction, http://www.gov.cn/zhengce/content/2008-03/28/content_4877.htm,
765 2007.

766 CSC (China State Council): The 12th Five-Year plan on energy saving and emissions
767 reduction. http://www.gov.cn/zwgk/2011-12/20/content_2024895.htm, 2011.

768 CSC (China State Council): Action Plan on Prevention and Control of Air Pollution,
769 China State Council, Beijing, China. <http://www.gov.cn/zwgk/2013->

770 09/12/content_2486773.htm, 2013.

771 CSC (China State Council): The 13th Five-Year plan on energy saving and emissions
772 reduction. http://www.gov.cn/zhengce/content/2016-12/05/content_5143290.htm,
773 2016.

774 CSC (China State Council): Air quality targets set by the Action Plan have been fully
775 realized, http://www.gov.cn/xinwen/2018-02/01/content_5262720.htm, 2018a.

776 CSC (China State Council): Notice of the state council on issuing the three-year action
777 plan for winning the Blue Sky defense battle.
778 http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm, 2018b.

779 Dunn, O.J.: Multiple comparisons using rank sums. *Technometrics*, 6, 241-252, 1964.

780 Fountoukis, C., Racherla, P. N., Denier van der Gon, H. A. C., Polymeneas, P.,
781 Charalampidis, P. E., Pilinis, C., Wiedensohler, A., Dall’Osto, M., O’Dowd, C., and
782 Pandis, S. N.: Evaluation of a three-dimensional chemical transport model
783 (PMCAMx) in the European domain during the EUCAARI May 2008 campaign,
784 *Atmos. Chem. Phys.*, 11, 10331–10347, <https://doi.org/10.5194/acp-11-10331-2011>, 2011.

785

786 Fan, C., Li, Z., Li, Y., Dong, J., van der A, R., and de Leeuw, G.: Variability of NO₂
787 concentrations over China and effect on air quality derived from satellite and
788 ground-based observations, *Atmos. Chem. Phys.*, 21, 7723-7748,
789 <https://doi.org/10.5194/acp-21-7723-2021>, 2021.

790 Feng, S. J., Xu, W., Cheng, M. M., Ma, Y. X., Wu, L. B., Kang, J. H., Wang, K., Tang,
791 A. H., Collett Jr., J. L., Fang, Y. T., Goulding, K., Liu, X. J., and Zhang, F. S.:
792 Overlooked nonagricultural and wintertime agricultural NH₃ emissions in Quzhou
793 County, North China Plain: Evidence from ¹⁵N-stable isotopes, *Environ. Sci.
794 Technol. Lett.*, 9, 127-133, <https://doi.org/10.1021/acs.estlett.1c00935>, 2022.

795 Gao, M., Carmichael, G. R., Wang, Y., Saide, P. E., Yu, M., Xin, J., Liu, Z., and Wang,
796 Z.: Modeling study of the 2010 regional haze event in the North China Plain, *Atmos.*
797 *Chem. Phys.*, 16, 1673–1691, <https://doi.org/10.5194/acp-16-1673-2016>, 2016.

798 Geng, G., Xiao, Q., Zheng, Y., Tong, D., Zhang, Y., Zhang, X., Zhang, Q., He, K., and
799 Liu, Y.: Impact of China's air pollution prevention and control action plan on PM_{2.5}
800 chemical composition over eastern China, *Sci China Earth Sci.*, 62, 1872-1884,
801 <https://doi.org/10.1007/s11430-018-9353-x>, 2019.

802 Geng, G., Xiao, Q., Liu, S., Liu, X., Cheng, J., Zheng, Y., Xue, T., Tong, D., Zheng,
803 B., Peng, Y., and Huang, X.: Tracking air pollution in China: Near real-time PM2.
804 5 retrievals from multisource data fusion, *Environ. Sci. Technol.*, 55, 12106-12115,
805 <https://doi.org/10.1021/acs.est.1c01863>, 2021.

806 Geng, G., Zhang, Q., Tong, D., Li, M., Zheng, Y., Wang, S., and He, K.: Chemical
807 composition of ambient PM2.5 over China and relationship to precursor emissions
808 during 2005–2012, *Atmos. Chem. Phys.*, 17, 9187–9203,
809 <https://doi.org/10.5194/acp-17-9187-2017>, 2017.

810 Gu, B. J., Zhu, Y. M., Chang, J., Peng, C. H., Liu, D., Min, Y., Luo, W. D., Howarth, R.
811 W., and Ge, Y.: The role of technology and policy in mitigating regional nitrogen
812 pollution, *Environ. Res. Lett.*, 6, 1, <https://doi.org/10.1088/1748-9326/6/1/014011>,
813 2011.

814 Guenther, A. B., Jiang, X., Heald, CL., Sakulyanontvittaya, T., Duhl, T., Emmons, L.
815 K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature
816 version 2.1 (MEGAN2.1): an extended and updated framework for modeling
817 biogenic emissions, *Geosci. Model Dev.*, 5, 1471-1492.
818 <https://doi.org/10.5194/gmd-5-1471-2012>, 2012.

819 Han, Y., Wu, Y. F., Don, H. Y., and Chen, F.: Characteristics of PM_{2.5} and its chemical

820 composition during the Asia-Pacific Economic Cooperation Summit in Beijing-
821 Tianjin-Hebei Region and surrounding cities, Environ. Sci. Technol., 40, 134-138
822 (in Chinese with English abstract), 2017.

823 Huang, R. J., Zhang, Y. L., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y. M., Daellenbach,
824 K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M.,
825 Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M.,
826 Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z. S., Szidat, S.,
827 Baltensperger, U., El Haddad, I., and Prevot, A. S.: High secondary aerosol
828 contribution to particulate pollution during haze events in China, Nature, 514, 218-
829 222. <https://doi.org/10.1038/nature13774>, 2014.

830 Huang, X., Ding, A.J, Gao, J., Zheng, B., Zhou, D.R., Qi, X. M., Tang, R., Wang, J. P.,
831 Ren, C. H., Nie, W., Chi, X. G., Xu, Z., Chen, L. D., Li, Y. Y., Che, F., Pang, N. N.,
832 Wang, H. K., Tong, D., Qin, W., Cheng, W., Liu, W. J., Fu, Q. Y., Liu, B. X., Chai,
833 F. H., Davis, S. J., Zhang, Q., and He, K. B.: Enhanced secondary pollution offset
834 reduction of primary emissions during COVID-19 lockdown in China, Natl. Sci.
835 Rev., 8, 137, <https://doi.org/10.1093/nsr/nwaa137>, 2021.

836 Ianniello, A., Spataro, F., Esposito, G., Allegrini, I ., Rantica, E ., Ancora, MP., Hu, M.,
837 and Zhu, T.: Occurrence of gas phase ammonia in the area of Beijing (China).
838 Atmos. Chem. Phys., 10, 9487-9503, <https://doi.org/10.5194/acp-10-9487-2010>, 2010.

839 Kang, Y. N., Liu, M. X., Song, Y., Huang, X ., Yao, H ., Cai, X. H., Zhang, H. S., Kang,
840 L., Liu, X. J., Yan, X. Y., He, H., Zhang, Q., Shao, M., and Zhu, T.: High-resolution
841 ammonia emissions inventories in China from 1980 to 2012, Atmos. Chem. Phys.,
842 16, 2043-2058, <https://doi.org/10.5194/acp-16-2043-2016>, 2016.

843 Kruskal, W.H. and Wallis, W.A.: Use of ranks in one-criterion variance
844 analysis. Journal of the American statistical Association, 47, 583-621,

845 https://doi.org/10.1080/01621459.1952.10483441, 1952.

846 Kuerban, M., Waili, Y., Fan, F., Liu, Y., Qin, W., Dore, A. J., Dore, A. J., Xu, W., and
847 Zhang, F. S.: Spatio-temporal patterns of air pollution in China from 2015 to 2018
848 and implications for health risks, *Environ. Pollut.*, 258, 113659, https://doi.org/
849 10.1016/j.envpol.2019.113659, 2020.

850 Li, H., Cheng, J., Zhang, Q., Zheng, B., Zhang, Y., Zheng, G., and He, K.: Rapid
851 transition in winter aerosol composition in Beijing from 2014 to 2017: response to
852 clean air actions, *Atmos. Chem. Phys.*, 19, 11485–11499,
853 https://doi.org/10.5194/acp-19-11485-2019, 2019.

854 Li, H. Y., Zhang, Q., Zheng, B., Chen, C. R., Wu, N. N., Guo, H. Y., Zhang, Y. X., Zheng,
855 Y. X., Li, X., and He, K. B.: Nitrate-driven urban haze pollution during summertime
856 over the North China Plain, *Atmos. Chem. Phys.*, 18, 5293–5306, https://doi.org/
857 10.5194/acp-18-5293-2018, 2018.

858 Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., and Liao, H.: Increases in surface
859 ozone pollution in China from 2013 to 2019: anthropogenic and meteorological
860 influences, *Atmos. Chem. Phys.*, 20, 11423–11433, https://doi.org/10.5194/acp-20-
861 11423-2020, 2020.

862 Li, M., Liu, H., Geng, G., Geng, G. N., Hong, C. P., Liu, F., Song, Y., Tong, D., Zheng,
863 B., Cui, H. Y., Man, H. Y., Zhang, Q., and He, K. B.: Anthropogenic emission
864 inventories in China: a review, *Natl. Sci. Rev.*, 4, 834–866.
865 https://doi.org/10.1093/nsr/nwx150, 2017.

866 Li, X., Bei, N., Hu, B., Wu, J., Pan, Y., Wen, T., Liu, Z., Liu, L., Wang, R., and Li, G.:
867 Mitigating NO_x emissions does not help alleviate wintertime particulate pollution
868 in Beijing-Tianjin-Hebei, China, *Environ. Pollut.*, 279(X), https://
869 10.1016/j.envpol.2021.11693, 2021.

870 Liang, F. C., Xiao, Q. Y., Huang, K. Y., Yang, X. L., Liu, F. C., Li, J. X., Lu, X. F., Liu,
871 Y., and Gu, D. F.: The 17-y spatiotemporal trend of PM_{2.5} and its mortality burden
872 in China, Proc. Natl. Acad. Sci. U. S. A., 117, 25601-25608, <https://doi.org/10.1073/pnas.1919641117>, 2020.

874 Liu, J., Han, Y. Q., Tang, X., Zhu, J., and Zhu, T.: Estimating adult mortality attributable
875 to PM_{2.5} exposure in China with assimilated PM_{2.5} concentrations based on a ground
876 monitoring network, Sci. Total. Environ., 568, 1253-1262, <https://doi.org/10.1016/j.scitotenv.2016.05.165>, 2016.

878 Liu, L., Zhang, X. Y., Wong, A. Y. H., Xu, W., Liu, X. J., Li, Y., Mi, H., Lu, X. H., Zhao,
879 L. M., Wang, Z., Wu, X. D., and Wei, J.: Estimating global surface ammonia
880 concentrations inferred from satellite retrievals, Atmos. Chem. Phys., 19, 12051-
881 12066, <https://doi.org/10.5194/acp-19-12051-2019>, 2019a.

882 Liu, M. X., Huang, X., Song, Y., Tang, J., Cao, J. J., Zhang, X. Y., Zhang, Q., Wang, S.
883 X., Xu, T. T., Kang, L., Cai, X. H., Zhang, H. S., Yang, F. M., Wang, H. B., Yu, J.
884 Z., Lau, A. K. H., He, L. Y., Huang, X. F., Duan, L., Ding, A. J., Xue, L. K., Gao,
885 J., Liu, B., and Zhu, T.: Ammonia emission control in China would mitigate haze
886 pollution and nitrogen deposition, but worsen acid rain, Proc. Natl. Acad. Sci. U. S.
887 A., 116, 7760-7765, <https://doi.org/10.1073/pnas.1814880116>, 2019b.

888 Liu, X.J., Sha, Z.P., Song, Y., Dong, H.M., Pan, Y.P., Gao, Z.L., Li, Y.E., Ma, L., Dong,
889 W.X., Hu, C.S., Wang, W.L., Wang, Y., Geng, H., Zheng, Y.H., and Gu, M.N.:
890 China's atmospheric ammonia emission characteristics, mitigation options and
891 policy recommendations, Res. Environ. Sci., 34, 149-157,
892 <https://10.13198/j.issn.1001-6929.2020.11.12>, 2021.

893 Mao, S. S., Chen, T, Fu, J. M., Liang, J. L., An, X. X.,Luo, X. X., Zhang, D. W., and

894 Liu, B. X.: Characteristic analysis for the thick winter air pollution accidents in
895 Beijing based on the online observations, Journal of Safety and Environment. 1,
896 1009-6094 (in Chinese with English abstract), 2018.

897 MEEP. The Ministry of Ecology and Environment of the People's Republic of China,
898 China Ecological Environment Bulletin.
899 <http://www.mee.gov.cn/hjzl/sthjzk/zghjzkbg/>, 2019.

900 Megaritis, A., Fountoukis, C., Charalampidis, P. E., Pilinis, C., and Pandis, S. N.:
901 Response of fine particulate matter concentrations to changes of emissions and
902 temperature in Europe, Atmos. Chem. Phys., 13, 3423-3443,
903 <https://doi.org/10.5194/acp-13-3423-2013>, 2013.

904 Meng, F. L., Wang, M. R., Strokal, M., Kroeze, C., Ma, L., Li, Y. N., Zhang, Q., Wei,
905 Z. B., Hou, Y., Liu, X. J., Xu, W., and Zhang, F. S.: Nitrogen losses from food
906 production in the North China Plain: A case study for Quzhou, Sci. Total. Environ.,
907 816, 151557, <https://doi.org/10.1016/j.scitotenv.2021.151557>, 2022.

908 MEPC. Ministry of Environment Protection of China, Ambient air quality standards
909 (GB3095–2012). <http://www.mep.gov.cn/>, 2012.

910 Morrison, H., Thompson, G., and Tatarki, V.: Impact of cloud microphysics on the
911 development of trailing stratiform precipitation in a simulated squall line:
912 comparison of one- and two-moment schemes, Mon. Weather. Rev., 137, 991-1007.
913 <https://doi.org/10.1175/2008MWR2556.1>, 2012 .

914 Nakagawa, S. and Santos, E. S. A.: Methodological issues and advances in biological
915 meta-analysis, Evol. Ecol., 26, 1253-1274. <https://doi.org/10.1007/s10682-012-9555-5>, 2012.

916 Ortiz-Montalvo, D. Häkkinen, S. A. K., Schwier, A. N., Lim, Y. B., Faye McNeill, V.,
917 and Turpin, B. J.: Ammonium addition (and aerosol pH) has a dramatic impact on

919 the volatility and yield of glyoxal secondary organic aerosol, Environ. Sci. Technol.,
920 48, 255-262, <https://doi.org/10.1021/es4035667>, 2014.

921 Pan, Y. P., Wang, Y. S., Tang, G. Q., and Wu, D.: Wet and dry deposition of atmospheric
922 nitrogen at ten sites in Northern China, Atmos. Chem. Phys., 12, 6515–6535,
923 doi:10.5194/acp-12-6515-2012, 2012.

924 Pinder, R. W., Adams, P. J., and Pandis, S. N.: Ammonia emission controls as a cost-
925 effective strategy for reducing atmospheric particulate matter in the eastern United
926 States, Environ. Sci. Technol., 41, 380-386, <https://doi.org/10.1021/es060379a>,
927 2007.

928 Ronald, J. V., Mijling, B., Ding, J. Y., Koukouli, M. E., Liu, F., Li, Q., Mao, H. Q., and
929 Theys, N.: Cleaning up the air: effectiveness of air quality policy for SO₂ and NO_x
930 emissions in China, Atmos. Chem. Phys., 17, 1775-1789,
931 <https://doi.org/10.5194/acp-17-1775-2017>, 2017.

932 Shang, Z.Y., Zhou, F., Smith, P., Saikawa, E., Ciais, P., Chang, J.F., Tian, H.Q., Del
933 Grosso, S.L., Ito, A., Chen, M.P., Wang, Q.H., Bo, Y., Cui, X.Q., Castaldi, S.,
934 Juszczak, P., Kasimire, A., Magliulo, V., Medinets, S., Medinets, V., Rees, R. M.,
935 Wohlfahrt, G., and Sabbatini, S: Weakened growth of cropland-N₂O emissions in
936 China accociated with nationwide policy interventions, Glob. Change. Biol., 25,
937 3706-3719, <https://doi.org/10.1111/gcb.14741>, 2021.

938 Sun, Y. L., Zhuang, G. S., Tang, A. H., Wang, Y., and An, Z. S.: Chemical characteristics
939 of PM_{2.5} and PM₁₀ in haze-fog episodes in Beijing, Environ. Sci. Technol., 40, 3148-
940 3155, <https://doi.org/10.1021/es051533g>, 2006.

941 Tao, J., Gao, J., Zhang, L. M., Wang, H., Qiu, X. H., Zhang, Z. S., Wu, Y. F., Chai, F.
942 H., and Wang, S. L: Chemical and optical characteristics of atmospheric aerosols in
943 Beijing during the Asia-Pacific Economic Cooperation China 2014, Atmos.

944 Environ., 144, 8-16, <https://doi.org/10.1016/j.atmosenv.2016.08.067>, 2016.

945 Wang S.: How to promote ultra-low emissions during the 14th Five-Year Plan? China.

946 Environment. News. http://epaper.cenews.com.cn/html/2021-04/30/node_7.htm,

947 2021a.

948 Wang, G. H., Zhang, R. Y., Gomez, M. E., Yang, L. X., Zamora, M. L., Hu, M., Lin, Y.,

949 Peng, J. F., Guo, S., Meng, J. J., Li, J. J., Cheng, C. L., Hu, T. F., Ren, Y. Q., Wang,

950 Y. S., Gao, J., Cao, J. J., An, Z. S., Zhou, W. J., Li, G. H., Wang, J. Y., Tian, P. F.,

951 Marrero-Ortiz, W., Secrest, J., Du, Z. F., Zheng, J., Shang, D. J., Zeng, L. M., Shao,

952 M., Wang, W. G., Huang, Y., Wang, Y., Zhu, Y. J., Li, Y. X., Hu, J. X., Pan, B., Cai,

953 L., Cheng, Y. T., Ji, Y. M., Zhang, F., Rosenfeld, D., Liss, P. S., Duce, R. A., Kolb,

954 C. E., and Molina, M. J.: Persistent sulfate formation from London Fog to Chinese

955 haze, Proc. Natl. Acad. Sci. U. S. A., 113, 13630-13635, <https://doi.org/10.1073/pnas.1616540113>, 2016.

956

957 Wang, L., Chen, X., Zhang, Y., Li, M., Li, P., Jiang, L., Xia, Y., Li, Z., Li, J., Wang, L.,

958 Hou, T., Liu, W., Rosenfeld, D., Zhu, T., Zhang, Y., Chen, J., Wang, S., Huang, Y.,

959 Seinfeld, J. H., and Yu, S.: Switching to electric vehicles can lead to significant

960 reductions of PM_{2.5} and NO₂ across China, One Earth, 4, 1037–1048,

961 <https://doi.org/10.1016/j.oneear.2021.06.008>, 2021b.

962

963 Wang, L., Yu, S., Li, P., Chen, X., Li, Z., Zhang, Y., Li, M., Mehmood, K., Liu, W., Chai,

964 T., Zhu, Y., Rosenfeld, D., and Seinfeld, J. H.: Significant wintertime PM_{2.5}

965 mitigation in the Yangtze River Delta, China, from 2016 to 2019: observational

966 constraints on anthropogenic emission controls, Atmos. Chem. Phys., 2, 14787–

967 14800, <https://doi.org/10.5194/acp-20-14787-2020>, 2020a.

968

969 Wang, Q.H., Zhou, F., Shang, Z.Y., Ciais, P., Winiwarter, W., Jackson, R. B., Tubiello,

970 F.N., Janssens-Maenhout, G., Tian, H. Q., Cui, X. Q., Canadell, J.G., Piao, S. L.,

969 and Tao, S.: Data-driven estimates of global nitrous oxide emissions from cropland,
970 Natl. Sci. Rev., 7, 441-452, <https://doi.org/10.1093/nsr/nwz087>, 2020b.

971 Wang, S. X, Xing, J., Jang, C., Jang, C. R., Zhu, Y., Fu, J. S., and Hao, J. M.: Impact
972 assessment of ammonia emissions on inorganic aerosols in East China using
973 response surface modeling technique, Environ. Sci. Technol., 45, 9293-9300,
974 <https://doi.org/10.1021/es2022347>, 2011.

975 Wang, Y. H., Wang, Y. S., Wang, L.L., Petaja, T., Zha, Q.Z., Gong, C.S., Li, S.X., Pan,
976 Y. P., Hu, B., Xin, J. Y., and Kulmala, M.: Increased inorganic aerosol fraction
977 contributes to air pollution and haze in China, Atmos. Chem. Phys., 19, 5881-5888.
978 <https://doi.org/10.5194/acp-19-5881-2019>, 2019a.

979 Wang, Y., Zhang, Q. Q., He, K.B., Zhang, Q., and Chai, L.: Sulfate-nitrate-ammonium
980 aerosols over China: Response to 2000-2015 emission changes of sulfur dioxide,
981 nitrogen oxides, and ammonia, Atmos. Chem. Phys., 13, 2635–2652.
982 <https://doi.org/10.5194/acp-13-2635-2013>, 2013.

983 Wang, Y.C., Chen, J., Wang, Q.Y., Qin, Q.D., Ye, J.H., Han, Y.M., Li, L., Zhen, W., Zhi,
984 Q., Zhang, Y.X., and Cao, J.J.: Increased secondary aerosol contribution and
985 possible processing on polluted winter days in China, Environ. Int, 127.
986 <https://doi.org/10.1016/j.envint.2019.03.021>, 2019b.

987 Wei, J., Li, Z. Q., Cribb, M., Huang, W., Xue, W.H., Sun, L., Guo, J. P., Peng, Y. R., Li,
988 J., and Lyapustin, A.: Improved 1 km resolution PM_{2.5} estimates across China using
989 enhanced space–time extremely randomized trees, Atmos. Chem. Phys., 20, 3273-
990 3289. <https://doi.org/10.5194/acp-20-3273-2020>, 2020.

991 Wei, J., Li, Z. Q., Lyapustin, A., Sun, L., Peng, Y. R., Xue, W. H., Su, T. N., and Cribb,
992 M.: Reconstructing 1-km-resolution high-quality PM_{2.5} data records from 2000 to
993 2018 in China: spatiotemporal variations and policy implications, Remote. Sens.

994 Environ., 252, 112136, <https://doi.org/10.1016/j.rse.2020.112136>, 2021.

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

Wu, Y. J., Wang, P., Yu, S. C., Wang, L. Q., Li, P. F., Li, Z., Mehmood, K., Liu, W. P., Wu, J., Lichtfouse, E., Rosenfeld, D., and Seinfeld, J. H.: Residential emissions predicted as a major source of fine particulate matter in winter over the Yangtze River Delta, China, Environ. Chem. Lett., 16, 1117-1127. <https://doi.org/10.1007/s10311-018-0735-6>, 2018a.

Wu, Y. Y., Xi, X. C., Tang, X., Luo, D. M., Gu, B. J., Lam, S. K., Vitousek, P. M., and Chen, D. L.: Policy distortions, farm size, and the overuse of agricultural chemicals in China, Proc. Natl. Acad. Sci. U. S. A., 115, 7010-7015. <https://doi.org/10.1073/pnas.1806645115>, 2018b.

Xiao, Q.Y, Geng, G.N., Liang, F.C., Wang, X., Lv, Z., Lei, Y., Huang, X.M., Zhang, Q., Liu, Y., and He, K.B: Changes in spatial patterns of PM_{2.5} pollution in China 2000–2018: Impact of clean air policies, Environ. Int., 141, 105776, <https://doi.org/10.1016/j.envint.2020.105776>, 2020.

Xiao, Q.Y., Zheng, Y.X., Geng, G.N., Chen, C.H., Huang, X.M., Che, H.Z., Zhang, X.Y., He, K.B., and Zhang, Q.: Separating emission and meteorological contribution to PM_{2.5} trends over East China during 2000–2018, Atmos. Chem. Phys., 21, 9475-9496, <https://doi.org/10.5194/acp-21-9475-2021>, 2021.

Xing, J., Liu, X., Wang, S. X., Wang, T., Ding, D., Yu, S., Shindell, D., Ou, Y., Morawska, L., Li, S. W., Ren, L., Zhang, Y. Q., Loughlin, D., Zheng, H. T., Zhao, B., Liu, S. C., Smith, K. R., and Hao, J. M.: The quest for improved air quality may push China to continue its CO₂ reduction beyond the Paris Commitment, Proc. Natl. Acad. Sci. U. S. A., 117, 29535-29542, <https://doi.org/10.1073/pnas.2013297117>, 2021.

Xu, Q. C., Wang, S. X., Jiang, J. K., Bhattarai, N., Li, X. X., Chang, X., Qiu, X. H.,

1019 Zheng, M., Hua, Y., and Hao, J. M.: Nitrate dominates the chemical composition of
1020 PM_{2.5} during haze event in Beijing, China, *Sci. Total. Environ.*, 689, 1293-1303,
1021 <https://doi.org/10.1016/j.scitotenv.2019.06.294>, 2019.

1022 Xu, W., Wu, Q.H., Liu, X.J., Tang, A.H., Dore, A.J., and Heal, M.R.: Characteristics of
1023 ammonia, acid gases, and PM_{2.5} for three typical land-use types in the North China
1024 Plain, *Environ Sci Pollut R.*, 23, 1158-1172. <https://doi.org/10.1007/s11356-015-5648-3>, 2016.

1026 Xu, W., Luo, X. S., Pan, Y. P., Zhang, L., Tang, A. H., Shen, J. L., Zhang, Y., Li, K. H.,
1027 Wu, Q. H., Yang, D. W., Zhang, Y. Y., Xue, J., Li, W. Q., Li, Q. Q., Tang, L., Lu, S.
1028 H., Liang, T., Tong, Y. A., Liu, P., Zhang, Q., Xiong, Z. Q., Shi, X. J., Wu, L. H.,
1029 Shi, W. Q., Tian, K., Zhong, X. H., Shi, K., Tang, Q. Y., Zhang, L. J., Huang, J. L.,
1030 He, C. E., Kuang, F. H., Zhu, B., Liu, H., Jin, X., Xin, Y. J., Shi, X. K., Du, E. Z.,
1031 Dore, A. J., Tang, S., Collett Jr., J. L., Goulding, K., Sun, Y. X., Ren, J., Zhang, F.
1032 S., and Liu, X. J.: Quantifying atmospheric nitrogen deposition through a
1033 nationwide monitoring network across China, *Atmos. Chem. Phys.*, 15, 12345–
1034 12360, <https://doi.org/10.5194/acp-15-12345-2015>, 2015

1035 Xu, W., Song, W., Zhang, Y. Y., Liu, X. J., Zhang, L., Zhao, Y. H., Liu, D. Y., Tang, A.
1036 H., Yang, D. W., Wang, D. D., Wen, Z., Pan, Y. P., Fowler, D., Collett, J. L., Erisman,
1037 J. W., Goulding, K., Li, Y., and Zhang, F. S.: Air quality improvement in a megacity:
1038 implications from 2015 Beijing Parade Blue pollution control actions, *Atmos.*
1039 *Chem. Phys.*, 17, 31-46, <https://doi.org/10.5194/acp-17-31-2017>, 2017.

1040 Xu, W., Liu, L., Cheng, M.M., Zhao, Y.H., Zhang, L., Pan, Y.P., Zhang, X.M., Gu, B.J.,
1041 Li, Y., Zhang, X.Y., Shen, J.L., Lu, L., Luo, X.S., Zhao, Y., Feng, Z.Z., Collett Jr.,
1042 J.L., Zhang, F.S., and Liu, X.J.: Spatial-temporal patterns of inorganic nitrogen air
1043 concentrations and deposition in eastern China. *Atmos. Chem. Phys.* 18, 10931–

1044 10954, <https://doi.org/10.5194/acp-18-10931-2018>, 2018.

1045 Xue, T., Liu, J., Zhang, Q., Geng, G.N., Zheng, Y.X., Tong, D., Liu, Z., Guan, D.B., Bo,
1046 Y., Zhu, T., He, K.B., and Hao, J.M.: Rapid improvement of PM_{2.5} pollution and
1047 associated health benefits in China during 2013–2017, *Sci. China Earth Sci.*, 62,
1048 1847-1856, <https://doi.org/10.1007/s11430-018-9348-2>, 2019.

1049 Yang, F., Tan, J., Zhao, Q., Du, Z., He, K., Ma, Y., Duan, F., Chen, G., and Zhao, Q.:
1050 Characteristics of PM_{2.5} speciation in representative megacities and across China.
1051 *Atmos. Chem. Phys.*, 11, 5207-5219, <https://doi.org/10.5194/acp-11-5207-2011>,
1052 2011.

1053 Ying, H., Yin, Y. L., Zheng, H. F., Wang, Y. C., Zhang, Q. S., Xue, Y. F., Stefanovski,
1054 D., Cui, Z. L., and Dou, Z. X.: Newer and select maize, wheat, and rice varieties
1055 can help mitigate N footprint while producing more grain, *Glob. Change. Biol.*, 12,
1056 4273-4281, <https://doi.org/10.1111/gcb.14798>, 2019.

1057 Yu, S.C., Dennis, R., Roselle, S., Nenes, A., Walker, J., Eder, B., Schere, K., Swall, J.,
1058 and Robarge, W.: An assessment of the ability of three-dimensional air quality
1059 models with current thermodynamic equilibrium models to predict aerosol NO₃⁻, *J*
1060 *Geophys Res-Atmos.*, 110(D7). <https://doi.org/10.1029/2004JD004718>, 2005.

1061 Yue, H. B., He, C. Y., Huang, Q. X., Yin, D., and Bryan, B. A.: Stronger policy required
1062 to substantially reduce deaths from PM_{2.5} pollution in China, *Nat. Commun.*, 11,
1063 1462, <https://doi.org/10.1038/s41467-020-15319-4>, 2020.

1064 Zhai, S., Jacob, D.J., Wang, X., Liu, Z., Wen, T., Shah, V., Li, K., Moch, J.M., Bates,
1065 K.H., Song, S. and Shen, L.: Control of particulate nitrate air pollution in China, *Nat.*
1066 *Geosci.*, 14, 389-395. <https://doi.org/10.1038/s41561-021-00726-z>, 2021.

1067 Zhan, X.Y., Adalibieke, W., Cui, X.Q., Winiwarter, W., Reis, S., Zhang, L., Bai, Z.H.,
1068 Wang, Q.H., Huang, W.C., and Zhou, F.: Improved estimates of ammonia emissions

1069 from global croplands, Environ. Sci. Technol., 55, 1329-1338,
1070 <https://doi.org/10.1021/acs.est.0c05149>, 2021.

1071 Zhang, L., Jacob, D. J., Knipping, E. M., Kumar, N., Munger, J. W., Carouge, C. C.,
1072 van Donkelaar, A., Wang, Y. X., and Chen, D: Nitrogen deposition to the United
1073 States: distribution, sources, and processes, Atmos. Chem. Phys., 12, 4539–4554,
1074 <https://doi.org/10.5194/acp-12-4539-2012>, 2012.

1075 Zhang, Q., Zheng, Y. X., Tong, D., Shao, M., Wang, S. X., Zhang, Y. H., Xu, X. D.,
1076 Wang, J. N., He, H., Liu, W. Q., Ding, Y. H., Lei, Y., Li, J. H., Wang, Z. F., Zhang,
1077 X. Y., Wang, Y. S., Cheng, J., Liu, Y ., Shi, Q. R., Yan, L., Geng, G. N., Hong, C. P.,
1078 Li, M., Liu, F., Zheng, B., Cao, J. J., Ding, A. J., Gao, J., Fu, Q. Y., Huo, J. T., Liu,
1079 B. X., Liu, Z. R., Yang, F. M., He, K. B., and Hao, J. M.: Drivers of improved PM_{2.5}
1080 air quality in China from 2013 to 2017, Proc. Natl. Acad. Sci. U. S. A., 49, 24463-
1081 24469, <https://doi.org/10.1073/pnas.1907956116>, 2019.

1082 Zhang, X. M., Gu, B. J., van Grinsven, H., Lam, S.K., Liang, X., Bai, M., and Chen,
1083 D.L.: Societal benefits of halving agricultural ammonia emissions in China far
1084 exceed the abatement costs. Nat. Commun., 11, 4357,
1085 <https://doi.org/10.1038/s41467-020-18196-z>, 2020a.

1086 Zhang, Y., Vu, T. V., Sun, J., He, J., Shen, X., Lin, W., Zhang, X., Zhang, J., Gao, W.,
1087 Wang, Y., Fu, T., Ma, Y., Li, W., and Shi, Z.: Significant changes in chemistry of
1088 fine particles in wintertime Beijing from 2007 to 2017: Impact of clean air actions,
1089 Environ. Sci. Technol., 54, 1344-1352, <https://doi.org/10.1021/acs.est.9b04678>,
1090 2020b.

1091 Zhang, Y., Chen, X., Yu, S., Wang, L., Li, Z., Li, M., Liu, W., Li, P., Rosenfeld, D., and
1092 Seinfeld, J. H: City-level air quality improvement in the Beijing-Tianjin-Hebei

1093 region from 2016/17 to 2017/18 heating seasons: Attributions and process analysis,
1094 Environ. Pollut., 274, <https://doi.org/10.1016/j.envpol.2021.116523>, 2021a.

1095 Zhang, Y., Liu, X., Zhang, L., Tang, A., Goulding, K., and Collett Jr, J.L.: Evolution of
1096 secondary inorganic aerosols amidst improving PM_{2.5} air quality in the North China
1097 Plain, Environ. Pollut., 281, 117027,
1098 <https://doi.org/10.1016/j.envpol.2021.117027>, 2021b.

1099 Zheng, B., Tong, D., Li, M., Hong, C. P., Geng, G. N., Li, H. Y., Li, X., Peng, L. Q.,
1100 Qi, J., Yan, L., Zhang, Y. X., Zhao, H. Y., Zheng, Y. X., He, K. B., and Zhang, Q.:
1101 Trends in China's anthropogenic emissions since 2010 as the consequence of clean
1102 air actions, Atmos. Chem. Phys., 18, 14095-14111, <https://doi.org/10.5194/acp-18-14095-2018>, 2018.

1103 Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang,
1104 T., Kimoto, T., Chang, D., Pöschl, U., Cheng, Y. F., and He, K. B.: Exploring the
1105 severe winter haze in Beijing: the impact of synoptic weather, regional transport
1106 and heterogeneous reactions, Atmos. Chem. Phys., 15, 2969–2983,
1107 <https://doi.org/10.5194/acp-15-2969-2015>, 2015.