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ABSTRACT: The Chinese government recently proposed ammonia (NH3) emissions 33 

reductions (but without a specific national target) as a strategic option to mitigate PM2.5 34 

pollution. We combined a meta-analysis of nationwide measurements and air quality 35 

modelling to identify efficiency gains by striking a balance between controlling NH3 36 

and acid gas (SO2 and NOx) emissions. We found that PM2.5 concentrations decreased 37 

from 2000 to 2019, but annual mean PM2.5 concentrations still exceeded 35 µg m-3 at 38 

74% of 1498 monitoring sites in 2015-2019. The concentration of PM2.5 and its 39 

components were significantly higher (16%-195%) on hazy days than on non-hazy days. 40 

Compared with mean values of other components, this difference was more significant 41 

for the secondary inorganic ions SO4
2-, NO3

-, and NH4
+ (average increase 98%). While 42 

sulfate concentrations significantly decreased over the time period, no significant 43 

change was observed for nitrate and ammonium concentrations. Model simulations 44 

indicate that the effectiveness of a 50% NH3 emission reduction for controlling SIA 45 

concentrations decreased from 2010 to 2017 in four megacity clusters of eastern China, 46 

simulated for the month of January under fixed meteorological conditions (2010). 47 

Although the effectiveness further declined in 2020 for simulations including the 48 

natural experiment of substantial reductions in acid gas emissions during the COVID-49 

19 pandemic, the resulting reductions in SIA concentrations were on average 20.8% 50 

lower than that in 2017. In addition, the reduction of SIA concentrations in 2017 was 51 

greater for 50% acid gas reductions than for the 50% NH3 emissions reduction. Our 52 

findings indicate that persistent secondary inorganic aerosol pollution in China is 53 

limited by acid gases emissions, while an additional control on NH3 emissions would 54 

become more important as reductions of SO2 and NOx emissions progress.  55 

 56 

删除了: Secondary inorganic aerosols (SIA) were the 57 
dominant contributor to ambient PM2.5 concentrations. 58 
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emission, Ammonia. 60 

 61 

1. Introduction 62 

Over the past two decades, China has experienced severe PM2.5 (particulate matter 63 

with aerodynamic diameter ≤ 2.5 μm) pollution (Huang et al., 2014; Wang et al., 2016), 64 

leading to adverse impacts on human health (Liang et al., 2020) and the environment 65 

(Yue et al., 2020). In 2019, elevated PM2.5 concentrations accounted for 46% of polluted 66 

days in China and PM2.5 was officially identified as a key year-round air pollutant 67 

(MEEP, 2019). Mitigation of PM2.5 pollution is therefore the most pressing current 68 

challenge to improve China’s air quality. 69 

   The Chinese government has put a major focus on particulate air pollution control 70 

through a series of policies, regulations, and laws to prevent and control severe air 71 

pollution. Before 2010, the Chinese government mainly focused on controlling SO2 72 

emissions via improvement of energy efficiency, with less attention paid to NOx 73 

abatement (CSC, 2007, 2011, 2016). For example, the 11th Five-Year Plan (FYP) (2006-74 

2010) set a binding goal of a 10% reduction for SO2 emission (CSC, 2007). The 12th 75 

FYP (2011-2015) added NOx regulation and required 8% and 10% reductions for SO2 76 

and NOx emissions, respectively (CSC, 2011) This was followed by further reductions 77 

in SO2 and NOx emissions of 15% and 10%, respectively, in the 13th FYP (2016-2020) 78 

(CSC, 2016). In response to the severe haze events of 2013, the Chinese State Council 79 

promulgated the toughest-ever ‘Atmospheric Pollution Prevention and Control Action 80 

Plan’ in September 2013, aiming to reduce ambient PM2.5 concentrations by 15-20% in 81 

2017 relative to 2013 levels in metropolitan regions (CSC, 2013). As a result of the 82 

implementation of stringent control measures, emissions reductions markedly 83 
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accelerated from 2013-2017, with decreases of 59% for SO2, 21% for NOx, and 33% 84 

for primary PM2.5 (Zheng et al., 2018). Consequently, significant reductions in annual 85 

mean PM2.5 concentrations were observed nationwide (Zhang et al., 2019; Yue et al., 86 

2020), in the range 28-40% in the metropolitan regions (CSC, 2018a). To continue its 87 

efforts in tackling air pollution, China promulgated the Three-Year Action Plan (TYAP) 88 

in 2018 for Winning the Blue-Sky Defense Battle (CSC, 2018b), which required a 89 

further 15% reduction in NOx emissions by 2020 compared to 2018 levels.  90 

Despite a substantial reduction in PM2.5 concentrations in China, the proportion of 91 

secondary aerosols during severe haze periods is increasing (An et al., 2019), and can 92 

comprise up to 70% of PM2.5 concentrations (Huang et al., 2014). Secondary inorganic 93 

aerosols (SIA, the sum of sulfate (SO4
2-), nitrate (NO3

-), and ammonium (NH4
+)) were 94 

found to be of equal importance to secondary organic aerosols, with 40-50% 95 

contributions to PM2.5 in eastern China (Huang et al., 2014; Yang et al., 2011). The acid 96 

gases (i.e., NOx, SO2), together with NH3, are crucial precursors of SIA via chemical 97 

reactions that form particulate ammonium sulfate, ammonium bisulfate, and 98 

ammonium nitrate (Ianniello et al., 2010). In addition to the adverse impacts on human 99 

health via fine particulate matter formation (Liang et al., 2020; Kuerban et al., 2020), 100 

large amounts of NH3 and its aerosol-phase products also lead to nitrogen deposition 101 

and consequently to environmental degradation (Ortiz-Montalvo et al., 2014; Zhan et 102 

al., 2021).  103 

Following the successful controls on NOx and SO2 emissions since 2013 in China, 104 

some studies found SO4
2- exhibited much larger decline than NO3

- and NH4
+ , which 105 

lead to a rapid transition from sulfate-driven to nitrate-driven aerosol pollution (Li et 106 

al., 2019, 2021; Zhang et al., 2019). Attention is turning to NH3 emissions as a possible 107 

means of further PM2.5 control (Bai et al., 2019; Kang et al., 2016), particularly as 108 

删除了: a109 
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emissions of NH3 increased between the 1980s and 2010s. Some studies have found 110 

that NH3 limited the formation of SIA in winter in the eastern United States (Pinder et 111 

al., 2007) and Europe (Megaritis et al., 2013). Controls on NH3 emissions have been 112 

proposed in the TYAP, although mandatory measures and binding targets have not yet 113 

been set (CSC, 2018b). Nevertheless, this proposal means that China will enter a new 114 

phase of PM2.5 mitigation, with attention now given to both acid gas and NH3 emissions. 115 

However, in the context of effective control of PM2.5 pollution via its SIA component, 116 

two key questions arise: 1) what are the responses of the constituents of SIA to 117 

implementation of air pollution control policies, and 2) what is the relative efficiency 118 

of NH3 versus acid gas emission controls to reduce SIA pollution? 119 

To fill this evidence gap and provide useful insights for policy-making to improve 120 

air quality in China, this study adopts an integrated assessment framework. With respect 121 

to the emission control policy summarized above, China’s PM2.5 control can be divided 122 

into three periods: period I (2000–2012), in which PM2.5 was not the targeted pollutant; 123 

period II (2013–2016), the early stage of targeted PM2.5 control policy implementation; 124 

and period III (2017–2019), the latter stage with more stringent policies. Therefore, our 125 

research framework consists of two parts: (1) assessment of trends in annual mean 126 

concentrations of PM2.5, its chemical components and SIA gaseous precursors from 127 

meta-analyses and observations; (2) quantification of SIA responses to emissions 128 

reductions in NH3 and acid gases using the Weather Research and Forecasting and 129 

Community Multiscale Air Quality (WRF/CMAQ) models. 130 

2. Materials and methods 131 

2.1. Research framework 132 

This study developed an integrated assessment framework to analysis the trends of 133 

secondary inorganic aerosol and strategic options to reduce SIA and PM2.5 pollution in 134 
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China (Fig. 1). The difference in PM2.5 chemical components between hazy and non-135 

hazy days was first assessed by meta-analysis of published studies. These were 136 

interpreted in conjunction with the trends in air concentrations of PM2.5 and its 137 

secondary inorganic aerosol precursors (SO2, NO2, and NH3) derived from surface 138 

measurements and satellite observations. The potential of SIA and PM2.5 concentration 139 

reductions from precursor emission reductions was then evaluated using the Weather 140 

Research and Forecasting and Community Multiscale Air Quality (WRF/CMAQ) 141 

models. 142 

 143 

Fig. 1. Integrated assessment framework for Chinese PM2.5 mitigation strategic options. 144 

OC is organic carbon, EC is elemental carbon, NO3
- is nitrate, SO4

2- is sulfate, and NH4
+ 145 

is ammonium. NS is the slope of the regression equation between [NH4
+] and [SO4

2-], 146 

NSN is the slope of the regression equation between [NH4
+] and [SO4

2- + NO3
-], SOR 147 

is sulfur oxidation ratio, and NOR is nitrogen oxidation ratio. SIA is Secondary 148 
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inorganic aerosols. WRF-CMAQ is Weather Research and Forecasting and Community 149 

Multiscale Air Quality models. 150 

2.2. Meta-analysis of PM2.5 and its chemical components  151 

Meta-analyses can be used to quantify the differences in concentrations of PM2.5 and 152 

its secondary inorganic aerosol components (NH4
+, NO3

-, and SO4
2-) between hazy and 153 

non-hazy days and to identify the major pollutants on non-hazy days (Wang et al., 154 

2019b); this provides evidence for effective options on control of precursor emissions 155 

(NH3, NO2, and SO2) for reducing occurrences of hazy days. To build a database of 156 

atmospheric concentrations of PM2.5 and chemical components between hazy and non-157 

hazy days, we conducted a literature survey using the Web of Science and the China 158 

National Knowledge Infrastructure for papers published between January 2000 and 159 

January 2020. The keywords included: (1) "particulate matter," or "aerosol," or "PM2.5" 160 

and (2) "China" or "Chinese". Studies were selected based on the following conditions: 161 

(1) Measurements were taken on both hazy and non-hazy days. 162 

(2) PM2.5 chemical components were reported. 163 

(3) If hazy days were not defined in the screened articles, the days with PM2.5 164 

concentrations > 75 μg m-3 (the Chinese Ambient Air Quality Standard Grade II for 165 

PM2.5 (CSC, 2012)) were treated as hazy days. 166 

(4) If an article reported measurements from different monitoring sites in the same city, 167 

e.g. Mao et al. (2018) and Xu et al. (2019), then each measurement was considered an 168 

independent study. 169 

(5) If there were measurements in the same city for the same year, e.g. Tao et al. (2016) 170 

and Han et al. (2017), then each measurement was treated as an independent study. 171 

One hundred articles were selected based on the above conditions with the lists 172 

provided in the Supporting Material dataset. For each selected study, we documented 173 
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the study sites, study periods, seasons, aerosol types, and aerosol species mass 174 

concentrations (in μg m-3) over the entire study period (2000–2019) (the detailed data 175 

are provided in the dataset). In total, the number of sites contributing data to the meta-176 

analysis was 267 and their locations are shown in Fig. S1. If relevant data were not 177 

directly presented in studies, a GetData Graph Digitizer (Version 2.25, 178 

http://www.getdatagraph-digitizer.com) was used to digitize concentrations of PM2.5 179 

chemical components from figures. The derivations of other variables such as sulfur 180 

and nitrogen oxidation ratios are described in Supplementary Information Method 1.   181 

   Effect sizes were developed to normalize the combined studies' outcomes to the 182 

same scale. This was done through the use of log response ratios (lnRR) (Nakagawa et 183 

al., 2012; Ying et al., 2019). The variations in aerosol species were evaluated as follows: 184 

ln 𝑅𝑅 = ln⁡(
𝑋𝑝

𝑋𝑛
)                                                  (1)   185 

where Xp and Xn represent the mean values of the studied variables of PM2.5 components 186 

on hazy and non-hazy days, respectively. The mean response ratio was then estimated 187 

as: 188 

𝑅𝑅 = exp⁡[∑ ln𝑅𝑅(𝑖) ⁡× 𝑊(𝑖)⁡/∑𝑊(𝑖)⁡]                             (2) 189 

where W(i) is the weight given to that observation as described below. Finally, variable-190 

related effects were expressed as percent changes, calculated as (RR−1) ×100%. A 95% 191 

confidence interval not overlapping with zero indicates that the difference is significant. 192 

A positive or negative percentage value indicates an increase or decrease in the response 193 

variables, respectively. 194 

We used inverse sampling variances to weight the observed effect size (RR) in the 195 

meta-analysis (Benitez-Lopez et al., 2017). For the measurement sites where standard 196 

deviations (SD) or standard errors (SE) were absent in the original study reports, we 197 

used the "Bracken, 1992" approach to estimate SD (Bracken et al., 1992). The variation-198 
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related chemical composition of PM2.5 was assessed by random effects in meta-analysis. 199 

Rosenberg's fail safe-numbers (𝑁𝑓𝑠) were calculated to assess the robustness of findings 200 

on PM2.5 to publication bias (Ying et al., 2019) (See Table S1). The results (effects) 201 

were considered robust despite the possibility of publication bias if 𝑁𝑓𝑠⁡ > 5 × 𝑛 + 10, 202 

where n indicates the number of sites. The statistical analysis of the concentrations of 203 

PM2.5 and secondary inorganic ions for three periods used a non-parametric statistical 204 

method since concentrations were not normally distributed based on the Kruskal-Wallis 205 

test (Kruskal and Walls, 1952). For each species, the Kruskal-Wallis one-way analysis 206 

of variance (ANOVA) on ranks among three periods was performed with pairwise 207 

comparison using Dunn’s method (Dunn, 1964).  208 

2.3. Data collection of air pollutant concentrations 209 

To assess the recent annual trends in China of PM2.5 and of the SO2 and NO2 210 

gaseous precursors to SIA, real-time monitoring data of these pollutants at 1498 211 

monitoring stations in 367 cities during 2015–2019 were obtained from the China 212 

National Environmental Monitoring Center (CNEMC) (http://106.37.208.233:20035/). 213 

This is an open-access archive of air pollutant measurements from all prefecture-level 214 

cities since January 2015. Successful use of data from CNEMC to determine 215 

characteristics of air pollution and related health risks in China has been demonstrated 216 

previously (Liu et al., 2016; Kuerban et al., 2020). The geography stations are shown 217 

in Fig. S1. The annual mean concentrations of the three pollutants at all sites were 218 

calculated from the hourly time-series data according to the method of Kuerban et al. 219 

(2020). Information about sampling instruments, sampling methods, and data quality 220 

controls for PM2.5, SO2, and NO2 is provided in Supplementary Method 2. Surface NH3 221 

concentrations over China for the 2008–2016 (the currently available) were extracted 222 

from the study of Liu et al. (2019a). Further details are in Supplementary Method 2.   223 
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2.4. WRF/CMAQ model simulations 224 

The Weather Research and Forecasting model (WRFv3.8) and the Models-3 225 

community multi-scale air quality (CMAQv5.2) model were used to evaluate the 226 

impacts of emission reductions on SIA and PM2.5 concentrations over China. The 227 

simulations were conducted at a horizontal resolution of 12 km × 12 km. The simulation 228 

domain covered the whole of China, part of India and east Asia. In the current study, 229 

focus was on the following four regions in China: Beijing-Tianjin-Hebei (BTH), 230 

Yangtze River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SCB). The 231 

model configurations used in this study were the same as those used in Wu et al. (2018a) 232 

and are briefly described here. The WRFv3.8 model was applied to generate 233 

meteorological inputs for the CMAQ model using the National Center for 234 

Environmental Prediction Final Operational Global Analysis (NCEP-FNL) dataset 235 

(Morrison et al., 2009). Default initial and boundary conditions were used in the 236 

simulations. The carbon-bond (CB05) gas-phase chemical mechanism and AERO6 237 

aerosol module were selected in the CMAQ configuration (Guenther et al., 2012). 238 

Anthropogenic emissions for 2010, 2014 and 2017 were obtained from the Multi-239 

resolution Emission Inventory (http://meicmodel.org) with 0.25 ° × 0.25 °  spatial 240 

resolution and aggregated to 12km×12km resolution (Zheng et al., 2018; Li et al., 2017). 241 

Each simulation was spun-up for six days in advance to eliminate the effects of the 242 

initial conditions.  243 

The years 2010, 2014 and 2017 were chosen to represent the anthropogenic 244 

emissions associated with the periods I, II, III, respectively. January was selected as the 245 

typical simulation month because wintertime haze pollution frequently occurs in this 246 

month (Wang et al., 2011; Liu et al., 2019b). January of 2010 was also found to have 247 

PM2.5 pollution more serious than other months (Geng et al., 2017, 2021). The 248 

删除了: The 249 

删除了: the250 

删除了: an251 



11 

 

sensitivity scenarios of emissions in January can therefore help to identify the efficient 252 

option to control haze pollution. 253 

The Chinese government has put a major focus on acid gas emission control 254 

through a series of policies in the past three periods (Fig. S2). The ratio decreases of 255 

anthropogenic emissions SO2 and NOx in January for the years 2010, 2014, 2017 and 256 

2020 are presented in SI Tables S2 and S3, respectively. The emissions from 257 

surrounding countries were obtained from the Emissions Database for Global 258 

Atmospheric Research (EDGAR): HTAPV2. The scenarios and the associated 259 

reductions of NH3, NOx and SO2 for selected four years in three periods can be found 260 

in Fig. 1. 261 

The sensitivities of SIA and PM2.5 to NH3 emissions reductions were determined 262 

from the average PM2.5 concentrations in model simulations without and with an 263 

additional 50% NH3 emissions reduction. The choice of 50% additional NH3 emissions 264 

reduction is based on the feasibility and current upper bound of NH3 emissions 265 

reduction expected to be realized in the near future (Liu et al., 2019a; Zhang et al., 266 

2020a; Table S4). For example, Zhang et al. (2020a) found that the mitigation potential 267 

of NH3 emissions from cropland production and livestock production in China can 268 

reach up to 52% and 58%, respectively. To eliminate the influences of varying 269 

meteorological conditions, all simulations were conducted under the fixed 270 

meteorological conditions of 2010.  271 

During the COVID-19 lockdown in China, emissions of primary pollutants were 272 

subject to unprecedented reductions due to national restrictions on traffic and industry; 273 

in particular, emissions of NOx and SO2 reduced by 46% and 24%, respectively, 274 

averaged across all Chinese provinces (Huang et al., 2021). We therefore also ran 275 

simulations applying the same reductions in NOx and SO2 (based on 2017 MEIC) that 276 
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were actually observed during the COVID-19 lockdown as a case of special control in 277 

2020.  278 

2.5 Model performance  279 

The CMAQ model has been extensively used in air quality studies (Zhang et al., 280 

2019; Backes et al., 2016) and the validity of the chemical regime in the CMAQ model 281 

had been confirmed by our previous studies (Zhang et al., 2021a; Wang et al., 2020a, 282 

2021a). In this study, we used surface measurements from previous publications (e.g., 283 

(Xiao et al., 2020, 2021; Geng et al., 2019; Xue et al., 2019) and satellite observations 284 

to validate the modelling meteorological parameters by WRF model and air 285 

concentrations of PM2.5 and associated chemical components by CMAQ model. The 286 

meteorological measurements used for validating the WRF model performances were 287 

obtained from the National Climate Data Center (NCDC) 288 

(ftp://ftp.ncdc.noaa.gov/pub/data/noaa/). For validation of the CMAQ model, monthly 289 

mean concentrations of PM2.5 were obtained from China High Air Pollutants (CHAP, 290 

https://weijing-rs.github.io/product.html) database. We also collected ground-based 291 

observations from previous publications to validate the modeling concentrations of 292 

SO4
2-, NO3

-, and NH4
+. The detailed information of the monitoring sites is presented in 293 

Table S5. Further information about the modelling is given in Supplementary Method 294 

3 and Figs. S3-S7 and Table S5. 295 

3. Results and discussion 296 

3.1. Characteristics of PM2.5 and its chemical components from the meta-analysis 297 

and from nationwide observations 298 

The meta-analysis based on all published analyses of PM2.5 and chemical 299 

component measurements during 2000–2019 reveals the changing characteristics of 300 

PM2.5. To assess the annual trends in PM2.5 and its major chemical components, we 301 

删除了: Tracking Air pollution in 302 
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made a three-period comparison using the measurements at sites that include both PM2.5 305 

and secondary inorganic ions SO4
2-, NO3

-, and NH4
+ (Fig. 2). The PM2.5 concentrations 306 

on both hazy and non-hazy days showed no significant trend from period I to period II 307 

based on the Kruskal-Wallis test. This can be explained by the enhanced atmospheric 308 

oxidation capacity (Huang et al., 2021), faster deposition of total inorganic nitrate (Zhai 309 

et al., 2021) and the changes of atmospheric circulation (Zheng et al., 2015; Li et al., 310 

2020). However, the observed concentrations of PM2.5
 showed a downward trend from 311 

Period I to Period III on the non-hazy days, decreasing by 8.2% (Fig. 2a), despite no 312 

significant decreasing trend on the hazy days (Fig. 2a). In addition, the annual mean 313 

PM2.5 concentrations from the nationwide measurements showed declining trends 314 

during 2015-2019 averaged across all China and for each of the BTH, YRD, SCB, and 315 

PRD megacity clusters of eastern China (Fig. 3a, d).  316 

These results reflect the effectiveness of the pollution control policies (Fig. S2) 317 

implemented by the Chinese government at the national scale. Nevertheless, PM2.5 318 

remained at relatively high levels. Over 2015–2019, the annual mean PM2.5 319 

concentrations at 74% of the 1498 sites (averaging 51.9 ± 12.4 μg m-3, Fig. 3a) exceeded 320 

the Chinese Grade-II Standard (GB 3095–2012) of 35 μg m-3 (MEPC, 2012), indicating 321 

that PM2.5 mitigation is a significant challenge for China. 322 
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 324 

Fig. 2. Comparisons of observed concentrations of (a) PM2.5, (b) SO4
2-, (c) NO3

-, and 325 

(d) NH4
+ between non-hazy and hazy days in Period I (2000–2012), Period II (2013–326 

2016), and Period III (2017–2019). Bars with different letters denote significant 327 

differences among the three periods (P <0.05) (upper and lowercase letters for non-328 

hazy and hazy days, respectively). The upper and lower boundaries of the boxes 329 

represent the 75th and 25th percentiles; the line within the box represents the median 330 

value; the whiskers above and below the boxes represent the 90th and 10th percentiles; 331 

the point within the box represents the mean value. Comparison of the pollutants among 332 

the three-periods using Kruskal-Wallis and Dunn’s test. The n represents independent 333 

sites; more detail on this is presented in Section 2.2. 334 

 335 
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 337 

Fig. 3. Left: spatial patterns of annual mean observed concentration of (a) PM2.5, (b) 338 

SO2, (c) NO2 at 1498 sites, averaged for 2015–2019. Right: the annual observed 339 

concentrations of (d) PM2.5, (e) SO2, and (f) NO2 for 2015-2019 in four megacity 340 

clusters (BTH: Beijing-Tianjin-Hebei, YRD: Yangtze River Delta, SCB: Sichuan Basin, 341 

PRD: Pearl River Delta). The locations of the regions are indicated by the blue shading 342 

on the map. The upper and lower boundaries of the boxes represent the 75th and 25th 343 
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percentiles; the line within the box represents the median value; the whiskers above and 344 

below the boxes represent the 90th and 10th percentiles; the point within the box 345 

represents the mean value. 346 

To further explore the underlying drivers of PM2.5 pollution, we analyzed the 347 

characteristics of PM2.5 chemical components and their temporal changes in China. The 348 

concentrations of PM2.5 and all its chemical components (except F- and Ca2+) were 349 

significantly higher on hazy days than on non-hazy days (Fig. 4A). Compared with 350 

other components this difference was more significant for secondary inorganic ions (i.e., 351 

SO4
2-, NO3

-, and NH4
+). Sulfur oxidation ratio (SOR) and nitrogen oxidation ratio 352 

(NOR) were also 58.0% and 94.4% higher on hazy days than on non-hazy days, 353 

respectively, implying higher oxidations of gaseous species to sulfate- and nitrate-354 

containing aerosols on the hazy days (Sun et al., 2006; Xu et al., 2017).  355 

To provide quantitative information on differences in PM2.5 and its components 356 

between hazy days and non-hazy days, we made a comparison using 46 groups of data 357 

on simultaneous measurements of PM2.5 and chemical components. The 46 groups refer 358 

to independent analyses from the literature that compare concentrations of PM2.5 and 359 

major components (SO4
2-, NO3

-, NH4
+, OC, and EC) on hazy and non-hazy days 360 

measured across different sets of sites. The “Other” species was calculated by 361 

difference between PM2.5 and sum of OC, EC, and secondary inorganic ions (SO4
2-, 362 

NO3
- and NH4

+). As shown in Fig.4B (a), PM2.5 concentrations significantly increased 363 

(by 136%) on the hazy days (149.2 ± 81.6 μg m-3) relative to those on the non-hazy 364 

days (63.2 ± 29.8 μg m-3). By contrast, each component’s proportions within PM2.5 365 

differed slightly, with 36% and 40% contributions by SIA on non-hazy days and hazy 366 

days, respectively (Fig. 4B(b)). This is not surprising because concentrations of PM2.5 367 

and SIA both significantly increased on the hazy days (60.1 ± 37.4 μg m-3 for SIA) 368 
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relative to the non-hazy days (22.4 ± 12.1 μg m-3 for SIA). Previous studies have found 370 

that increased SIA formation is the major influencing factor for haze pollution in 371 

wintertime and summertime (mainly in years since 2013) in major Chinese cities in 372 

eastern China (Huang et al., 2014; Wang et al., 2019a; Li et al., 2018). Our results 373 

extend confirmation of the dominant role of SIA to PM2.5 pollution over a large spatial 374 

scale in China and to longer temporal scales. 375 

 376 

Fig. 4. (A) Variations in PM2.5 concentration, aerosol component concentration, NS, 377 

NSN, SOR, and NOR from non-hazy to hazy days in China during 2000–2019. (B) (a) 378 

Summary of differences in PM2.5 concentration between non-hazy and hazy days in 379 

China; (b) the average proportions of components of PM2.5 on non-hazy and hazy days. 380 

NS is the slope of the regression equation between [NH4
+] and [SO4

2-], NSN is the slope 381 

of the regression equation between [NH4
+] and [SO4

2- + NO3
-], SOR is sulfur oxidation 382 

ratio, and NOR is nitrogen oxidation ratio. The variations are considered significant if 383 

the confidence intervals of the effect size do not overlap with zero. ** denotes significant 384 

difference (P <0.01) between hazy days and non-hazy days. The upper and lower 385 

boundaries of the boxes represent the 75th and 25th percentiles; the line within the box 386 

represents the median value; the whiskers above and below the boxes represent the 90th 387 

and 10th percentiles; the point within the box represents the mean value. Values 388 

adjacent to each confidence interval indicate number of measurement sites. The n 389 

36%

40%

A B (a) (b)
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represents independent sites; more detail on this is presented in Section 2.2. 390 

The effect values of SIA on the hazy days were significantly higher than those on 391 

non-hazy days for all three periods (I, II, and III) (Fig. 5), indicating the persistent 392 

prevalence of the SIA pollution problem over the past two decades. Considering 393 

changes in concentrations, SO4
2- showed a downward trend from Period I to Period III 394 

on the non-hazy days and hazy day, decreasing by 38.6% and 48.3%, respectively (Fig. 395 

2b). These results reflect the effectiveness of the SO2 pollution control policies (Ronald 396 

et al., 2017). In contrast, there were no significant downward trends in concentrations 397 

of NO3
- and NH4

+ on either hazy or non-hazy days (Fig. 2c, d), but the mean NO3
- 398 

concentration in Period III decreased by 10.5% compared with that in Period II, 399 

especially on hazy days (-16.8%). These results could be partly supported by decreased 400 

NOx emissions and tropospheric NO2 vertical column densities between 2011 and 2019 401 

in China owing to effective NOx control policies (Zheng et al., 2018; Fan et al., 2021). 402 

The lack of significantly downward trends in NH4
+ concentrations is due to the fact that 403 

the total NH3 emissions in China changed little and remained at high levels between 404 

2000 and 2018, i.e., slightly decreased from 2000 (10.3 Tg) to 2012 (9.3 Tg) (Kang et 405 

al., 2016) and then slightly increased between 2013 and 2018 (Liu et al., 2021). The 406 

same trends are also found in Quzhou in China, which is a long-term in situ monitoring 407 

site (in Quzhou County, North China Plain, operated by our group) during the period 408 

2012-2020 from previous publications (Xu et al., 2016; Zhang et al., 2021b, noted that 409 

data during 2017-2020 are unpublished before) (Fig.S8). Zhang et al. (2020b) found 410 

that the clean air actions implemented in 2017 effectively reduced wintertime 411 

concentrations of PM1 (particulate matter with diameter ≤1 m), SO4
2- and NH4

+ in 412 

Beijing compared with those in 2007, but had no apparent effect on NO3
-. Li et al. 413 
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(2021) also found that SO4
2- exhibited a significant decline, However, NO3

- did not 414 

evidently exhibit a decreasing trend in the BTH region. 415 

Our findings are to some extent supported by the nationwide measurements. 416 

Annual mean SO2 concentrations displayed a clear decreasing trend with a 53% 417 

reduction in 2019 relative to 2015 for the four megacity clusters of eastern China (Fig. 418 

3b, e), whereas there were only slight reductions in annual mean NO2 concentrations 419 

(Fig. 3c, f). In contrast, annual mean NH3 concentrations showed an obvious increasing 420 

trend in in both northern and southern regions of China, and especially in the BTH 421 

region (Fig. S9).  422 

     Overall, the above analyses indicate that SO4
2- concentrations responded 423 

positively to air policy implementations at the national scale, but that reducing NO3
- 424 

and NH4
+ remains a significant challenge. China has a history of around 10-20 years 425 

for SO2 and NOx emission control and has advocated NH3 controls despite to date no 426 

mandatory measures and binding targets having been set (Fig. S2). Nevertheless, PM2.5 427 

pollution, especially SIA such as NO3
- and NH4

+, is currently a serious problem (Fig. 4 428 

and 5a, b). Some studies have reported that PM2.5 pollution can be effectively reduced 429 

if implementing synchronous NH3 and NOx/SO2 controls (Liu et al., 2019b). Therefore, 430 

based on the above findings, we propose that NH3 and NOx/SO2 emission mitigation 431 

should be simultaneously strengthened to mitigate haze pollution. 432 
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 435 

Fig. 5. Variations in PM2.5 composition, NS, NSN, SOR, and NOR from non-hazy to 436 

hazy days in (a) Period I (2000–2012), (b) Period II (2013–2016), (c) Period III (2017–437 

2019). NS is the slope of the regression equation between [NH4
+] and [SO4

2-], NSN is 438 

the slope of the regression equation between [NH4
+] and [SO4

2- + NO3
-], SOR is sulfur 439 

oxidation ratio, and NOR is nitrogen oxidation ratio. The variations are statistically 440 

significant if the confidence intervals of the effect size do not overlap with zero. Values 441 

adjacent to each confidence interval indicate number of measurement sites. The n 442 

represents independent sites; more detail on this is presented in Section 2.2. 443 

3.2. Sensitivities from model simulations 444 

To further examine the efficiencies of NH3 and acid gas emission reductions on 445 

SIA and PM2.5 mitigation, the decreases of mean SIA and PM2.5 concentrations with and 446 

without additional 50% NH3 reductions were simulated using the WRF/CMAQ model. 447 

(a) Period I (2000–2012) (b) Period II (2013–2016) (c) Period III (2017–2019) 
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Fig. 6 and Fig S10 shows that, compared to 2010, SIA and PM2.5 concentrations in 448 

January in 2017 were significantly decrease in the BTH, YRD, SCB, and PRD megacity 449 

clusters, respectively, in the simulations without additional NH3 emission reductions. 450 

Across the four megacity clusters, the reduction in SIA and PM2.5 is largest in the SCB 451 

region from 2010 to 2017 and smallest in the PRD region.  452 

When simulating the effects of an additional 50% NH3 emissions reductions in 453 

January in each of the years 2010, 2014 and 2017, the SIA concentrations in the BTH, 454 

YRD, SCB and PRD megacity clusters decreased by 25.9 ± 0.3%, 24.4 ± 0.3%, and 455 

22.9 ± 0.3%, respectively (Fig. 6 , Fig. S11, and Table S6). The reductions of PM2.5 in 456 

2010, 2014 and 2017 were 9.7±0.1%, 9.0±0.1%, and 9.2±0.2% in the megacity clusters, 457 

respectively. (Figs. S10 and S12). Whilst these results confirm the effectiveness of NH3 458 

emission controls, it is important to note that the response of SIA concentrations is less 459 

sensitive to additional NH3 emission controls along the timeline of the SO2 and NOx 460 

anthropogenic emissions reductions associated with the series of clean air actions 461 

implemented by the Chinese government from 2010 to 2017 (Zheng et al., 2018). Given 462 

the feasibility and current upper bound of NH3 emission reductions options in the near 463 

future (50%) (Liu et al., 2019b), further abatement of SIA concentrations merely by 464 

reducing NH3 emissions is limited in China. In other words, the controls on acid gas 465 

emissions should continue to be strengthened beyond their current levels.  466 

 467 
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 469 

Fig. 6. Simulated SIA concentrations (in g m-3) without (basic) and with 50% 470 

ammonia (NH3) emissions reductions in January for the years 2010, 2014, 2017 and 471 

2020 in four megacity clusters (BTH: Beijing-Tianjin-Hebei, YRD: Yangtze River 472 

Delta, SCB: Sichuan Basin, PRD: Pearl River Delta). Inset maps indicate the location 473 

of each region. ** denotes significant difference without and with 50% ammonia 474 

emission reductions (P <0.05). n is the number of calculated samples by grid extraction. 475 

Error bars are standard errors of means. (Period I (2000–2012), Period II (2013–2016), 476 

and Period III (2017–2019); Special control is the restrictions in economic activities 477 

and associated emissions during the COVID-19 lockdown period in 2020.) 478 

To further verify the above findings, we used the reductions of emissions of acid 479 

gases (46% and 23% for NOx and SO2, respectively, in the whole China) during the 480 

(a) BTH (n=154) (b) YRD (n=258) 

(c) SCB (n=184) (d) PRD (n=71) 
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COVID-lockdown period as a further scenario (Huang et al., 2021). The model 481 

simulations suggest that the effectiveness of reductions in SIA and PM2.5 concentrations 482 

by a 50% NH3 emission reduction further declined in 2020 (15 ± 0.2% for SIA, and 483 

5.1± 0.2% for PM2.5), but the resulting concentrations of them were lower (20.8 ± 0.3% 484 

for SIA, and 15.6 ± 0.3% for PM2.5) when compared with that in 2017 under the same 485 

scenario of an additional 50% NH3 emissions reduction (and constant meteorological 486 

conditions) (Fig. 6 and Table S6), highlighting the importance of concurrently NH3 487 

mitigation when acid gas emissions are strengthened. To confirm the importance of acid 488 

gas emissions, another sensitivity simulation was conducted for 2017, in which the acid 489 

gas (NOx and SO2) emissions were reduced by 50% (Fig. 7). We found that reductions 490 

in SIA concentrations are 13.4 ± 0.5% greater for the 50% reductions in SO2 and NOx 491 

emissions than for the 50% reductions in NH3 emissions. These results indicate that to 492 

substantially reduce SIA pollution it remains imperative to strengthen emission controls 493 

on NOx and SO2 even when a 50% reduction in NH3 emission is targeted and achieved. 494 

 495 
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 497 

Fig. 7. Left: the spatial distributions of simulated PM2.5 concentrations (in g m-3) in 498 

January 2017 with (a) 50% reductions in ammonia (NH3) emissions and (b) 50% 499 

reductions in acid gas (NOx and SO2) emissions. Right: the % decreases in PM2.5 (c) 500 

and SIA (d) concentrations for the simulations with compared to without the NH3 and 501 

acid gas emissions reductions in four megacity clusters (BTH: Beijing-Tianjin-Hebei, 502 

YRD: Yangtze River Delta, SCB: Sichuan Basin, PRD: Pearl River Delta). ** denotes 503 

significant differences without and with 50% ammonia emission reductions (P <0.05). 504 

n is the number of calculated samples by grid extraction. Error bars are standard errors 505 

of means. 506 

3.3. Uncertainty analysis and limitations 507 

Some limitations should be noted in interpreting the results of the present study: this 508 

study examined period-to-period changes in PM2.5 chemical components based on a 509 

(c) PM2.5
(a) 50%NH3 emission  

(b) 50% acid gas emission (d) SIA
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meta-analysis and the efficiencies of NH3 and acid gas emission reductions on PM2.5 510 

mitigation. Some uncertainties may still exist in meta-analysis of nationwide 511 

measurements owing to differences in monitoring, sample handling and analysis 512 

methods as well as lack of long-term continuous monitoring sites (Fig. 2). For example, 513 

the measurements of PM2.5 were mainly taken using the TEOM method, which is 514 

associated with under-reading of PM due to some nitrate volatilization at its operational 515 

temperature. To test whether the use of data during 2000–2019 could bias annual trends 516 

of PM2.5 and chemical components, we summarize measurements of PM2.5 at a long-517 

term monitoring site (in Quzhou County, North China Plain, operated by our group) 518 

during the period 2012-2020 from previous publications (Xu et al., 2016; Zhang et al., 519 

2021b, noted that data during 2017-2020 are unpublished before). The PM2.5 and SO4
2- 520 

show the same decreasing trend. The concentration of NO3
- and NH4

+ do not show 521 

significant change (Fig. S8). The results are consistent with the trend for the whole of 522 

China obtained from the meta-analysis. Considering the uncertainty of PM2.5 and its 523 

major components between different seasons (winter, summer, etc) and site type (urban, 524 

suburban or rural). We have analyzed historic trend in the different season and sites 525 

(Figs. S13-S20). We found that concentrations of PM2.5 and its major chemical 526 

components (SO4
2-, NO3

-, and NH4
+) were significantly higher in fall and winter than 527 

in spring and summer (Fig. S13). Only the winter season showed significant change 528 

trend in the three periods (Figs. S14-S17). The analyses also confirmed that pollution 529 

days predominated in winter. We also found that concentrations of PM2.5 and its major 530 

chemical components were higher at urban than rural sites (Fig. S18). Spatially, the 531 

trends of PM2.5 and its major components are similar across the whole of China (both 532 

of urban and rural) (Fig. S19). Rural areas show the same change trend in hazy days 533 

compared with whole of China (Fig. S20). 534 
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WRF-CMAQ model performance also has some uncertainty. We performed the 535 

validations of WRF and CMAQ models. The simulations of temperature at 2 m above 536 

ground (T2), wind speed (WS), and relative humidity (RH) versus observed values at 537 

400 monitoring sites in China are shown in Fig. S7. The meteorological measurements 538 

were obtained from the National Climate Data Center (NCDC) 539 

(ftp://ftp.ncdc.noaa.gov/pub/data/noaa/). The comparisons showed that the model 540 

performed well at predicting meteorological parameters with R values of 0.94, 0.64 and 541 

0.82 for T2, WS and RH, respectively. However, the WS was overestimated (22.3% 542 

NMB) in most regions of China, which is also reported in previous studies (Gao et al., 543 

2016; Chen et al., 2019). This may be related to the underlying surface parameters set 544 

in the WRF model configurations.  545 

In addition, the simulations of PM2.5 and associated chemical components by the 546 

CMAQ model have potential biases in the spatial pattern, although the CMAQ model 547 

has been extensively used in air quality studies (Backes et al., 2016; Zhang et al., 2019) 548 

and the validity of the chemical regime in the CMAQ model had been confirmed by 549 

our previous studies (Zhang et al., 2021a; Wang et al., 2020a, 2021a). Since nationwide 550 

measurements of PM2.5 and associated chemical components are lacking in 2010 in 551 

China, we undertook our own validation of PM2.5 and its components (such as SO4
2-, 552 

NO3
-, and NH4

+) using a multi-observation dataset that includes those monitoring data 553 

and satellite observations at a regional scale that were available.  554 

First, the simulated monthly mean PM2.5 concentration in January 2010 was 555 

compared with corresponding data obtained from the China High Air Pollutants (CHAP, 556 

https://weijing-rs.github.io/product.html) database. The satellite historical PM2.5 557 

predictions are reliable (average R2 = 0.80 and RMSE = 11.26 μg m-3) using cross 558 

validation against the in-situ surface observations on a monthly basis (Wei et al., 2020, 559 

删除了: Tracking Air pollution in China (TAP, 560 
http://tapdata.org.cn/) 561 
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2021). The model well captured the spatial distributions of PM2.5 concentrations in our 563 

studied regions of BTH, YRD, PRD, and SCB (Fig. S3a), with correlation coefficient 564 

(R) between simulated and satellite observed PM2.5 concentrations of 0.96, 0.80, 0.60, 565 

and 0.85 for BTH, YRD, PRD, and SCB, respectively. 566 

Second, we also collected ground-based observations from previous publications 567 

(Xiao et al., 2020, 2021; Geng et al., 2019; Xue et al., 2019) to validate the modeling 568 

concentrations of SO4
2-, NO3

-, and NH4
+. Detailed information about the monitoring 569 

sites is presented in Table S5. The distributions of the simulated monthly mean 570 

concentrations of SO4
2-, NO3

-, and NH4
+ in January 2010 over China is compared with 571 

collected surface measurements are shown in Fig. S4a, b, and c, respectively, with their 572 

linear regression analysis presented in Fig. S4d. The model showed underestimation in 573 

simulating SO4
2- and NO3

- in the BTH region, which might be caused by the uncertainty 574 

in the emission inventory. The lack of heterogeneous pathways for SO4
2- formation in 575 

the CMAQ model might also be an important reason for the negative bias between 576 

simulations and measurements (Yu et al., 2005; Cheng et al., 2016). The model 577 

overestimated NO3
- concentration in the SCB region, but can capture the spatial 578 

distribution of NO3
- in other regions. The overestimation of NO3

- has been a common 579 

problem in regional chemical transport models such as CMAQ, GEOS-CHEM and 580 

CAMx (Yu et al., 2005; Fountoukis et al., 2011; Zhang et al., 2012; Wang et al., 2013), 581 

due to the difficulties in correctly capturing the gas and aerosol-phase nitrate 582 

partitioning (Yu et al., 2005). The modeling of NH4
+ concentrations show good 583 

agreement with the observed values. Generally, the evaluation results indicate that the 584 

model reasonably predicted concentrations of SO4
2-, NO3

-, and NH4
+ in PM2.5. 585 

Third, we performed a comparison of the time-series of the observed and simulated 586 

hourly PM2.5 and its precursors (SO2 and NO2) during January 2010. The model well 587 
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captures the temporal variations of the PM2.5 in Beijing, with an NMB value of 0.05 ug 588 

m-3, NME of 28%, and R of 0.92 (Fig. 5a). The predicted daily concentrations of NO2 589 

and SO2 during January 2010 also show good agreement with the ground measurements 590 

in Beijing, with NMB and R values of 0.12 μg m-3 and 0.89 for NO2, and -0.04, 0.95 591 

for SO2, respectively (Fig. 5b). The variations of daily PM2.5 concentrations between 592 

simulation and observation at 4 monitoring sites (Shangdianzi, Chengdu,  Institute of 593 

Atmospheric Physics, Chinese Academy of Sciences (IAP-CAS), and Tianjin) from 14 594 

to 30 January 2010 also matched well, with NMB values ranging from -0.05 to 0.12 ug 595 

m-3, and R values exceeding 0.89 (Fig. S5c). 596 

We also compared the simulated and observed concentrations of PM2.5, NO2, and 597 

SO2 in China in pre-COVID period (1–26 January 2020) and during the COVID-598 

lockdown period (27 January–26 February) with actual meteorological conditions. As 599 

shown in Fig. S6, both the simulations and observations suggested that the PM2.5 and 600 

NO2 concentrations substantially decreased during the COVID-lockdown, mainly due 601 

to the sharp reduction in vehicle emissions (Huang et al., 2021; Wang et al., 2021b). 602 

For SO2, the concentrations decreased very little and even increased at some monitoring 603 

sites. The model underestimated the concentrations of PM2.5, NO2, and SO2, with NMB 604 

values of -21.4%, -22.1%, and -9.6%, respectively. We also newly evaluated the model 605 

performance in actual meteorological conditions for PM2.5 concentrations in January 606 

2014 and 2017, respectively. As shown in the Figure S21, the model well captured the 607 

spatial distribution of PM2.5 concentration in China with MB (NMB) values of 23.2 μg 608 

m-3 (15.4%）and 26.8 μg m-3 (-26.7%) for 2014 and 2017, respectively. The simulated 609 

PM2.5 concentrations compared well against the observations, with R values of 0.82 and 610 

0.65, respectively 611 

 612 
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3.4. Implication and outlook 617 

Improving air quality is a significant challenge for China and the world. A key 618 

target in China is for all cities to attain annual mean PM2.5 concentrations of 35 μg m-3 619 

or below by 2035 (Xing et al., 2021). However, this study has shown that 74% of 1498 620 

nationwide measurement sites have exceeded this limit value in recent years (averaged 621 

across 2015-2019). Our results indicated that acid gas emissions still need to be a focus 622 

of control measures, alongside reductions in NH3 emissions, in order to reduce SIA (or 623 

PM2.5) formation. Model simulations for the month of January underpin the finding that 624 

the relative effectiveness of NH3 emission control decreased over the period from 2010 625 

to 2017. However, simulating the substantial emission reductions in acid gases due to 626 

the lockdown during the COVID-19 pandemic, with fossil fuel-related emissions 627 

reduced to unprecedented levels, indicated the importance of ammonia emission 628 

abatement for PM2.5 air quality improvements when SO2 and NOx emissions have 629 

already reached comparatively low levels. Therefore, a strategic and integrated 630 

approach to simultaneously undertaking acid gas emissions and NH3 mitigation is 631 

essential to substantially reduce PM2.5 concentrations. However, the mitigation of acid 632 

gas and NH3 emissions pose different challenges due to different sources they originate 633 

from. 634 

  The implementation of further reduction of acid gas emissions is challenging. The 635 

prevention and control of air pollution in China originally focused on the control of acid 636 

gas emissions (Fig. S2). The controls have developed from desulfurization and 637 

denitrification technologies in the early stages to advanced end-of-pipe control 638 

technologies. By 2018, over 90% of coal-fired power plants had installed end-of-pipe 639 

control technologies (CEC, 2020). The potential for further reductions in acid gas 640 

emissions by end-of-pipe technology might therefore be limited. Instead, addressing 641 
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total energy consumption and the promotion of a transition to clean energy through a 642 

de-carbonization of energy production is expected to be an inevitable requirement for 643 

further reducing PM2.5 concentrations (Xing et al., 2021). In the context of improving 644 

air quality and mitigating climate change, China is adopting a portfolio of low-carbon 645 

policies to meet its Nationally Determined Contribution pledged in the Paris Agreement. 646 

Studies show that if energy structure adjusts and energy conservation measures are 647 

implemented, SO2 and NOx will be further reduced by 34% and 25% in Co-Benefit 648 

Energy scenario compared to the Nationally Determined Contribution scenario in 2035 649 

(Xing et al., 2021). Although it has been reported that excessive acid gas emission 650 

controls may increase the oxidizing capacity of the atmosphere and increase other 651 

pollution, PM2.5 concentrations have consistently decreased with previous acid gas 652 

control (Huang et al., 2021). In addition, under the influence of low-carbon policies, 653 

other pollutant emissions will also be controlled. Opportunities and challenges coexist 654 

in the control of acid gas emissions. 655 

   In contrast to acid gas emissions, NH3 emissions predominantly come from 656 

agricultural sources. Although the Chinese government has recognized the importance 657 

of NH3 emissions controls in curbing PM2.5 pollution, NH3 emissions reductions have 658 

only been proposed recently as a strategic option and no specific nationwide targets 659 

have yet been implemented (CSC, 2018b). The efficient implementation of NH3 660 

reduction options is a major challenge because NH3 emissions are closely related to 661 

food production, and smallholder farming is still the dominant form of agricultural 662 

production in China. The implementation of NH3 emissions reduction technologies is 663 

subject to investment in technology, knowledge and infrastructure, and most farmers 664 

are unwilling or economically unable to undertake additional expenditures that cannot 665 

generate financial returns (Gu et al., 2011; Wu et al., 2018b). Therefore, economically 666 
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feasible options for NH3 emission controls need to be developed and implemented 667 

nationwide.  668 

   We propose the following three requirements that need to be met to achieve 669 

effective reductions of SIA concentrations and hence of PM2.5 concentrations in China.  670 

First, binding targets to reduce both NH3 and acid gas emissions should be set. The 671 

targets should be designed to meet the PM2.5 standard, and NH3 concentrations should 672 

be incorporated into the monitoring system as a government assessment indicator. In 673 

this study, we find large differences in PM2.5 concentration reductions from NH3 674 

emissions reduction in the four megacity regions investigated. At a local scale (i.e., city 675 

or county), the limiting factors may vary within a region (Wang et al., 2011). Thus, 676 

local-specific environmental targets should be considered in policy-making.  677 

Second, further strengthening of the controls on acid gas emissions are still needed, 678 

especially under the influence of low-carbon policies, to promote emission reductions 679 

and the adjustment of energy structures and conservation. Ultra-low emissions should 680 

be requirements in the whole production process, including point source emissions, 681 

diffuse source emissions, and clean transportation (Xing et al., 2021; Wang et al., 682 

2021a). The assessment of the impact of ultra-low emissions is provided in Table S7. 683 

In terms of energy structure, it is a requirement to eliminate outdated production 684 

capacity and promote low-carbon new energy generation technologies. 685 

   Third, a requirement to promote feasible NH3 reduction options throughout the 686 

whole food production chain, for both crop and animal production. Options include the 687 

following. 1) Reduction of nitrogen input at source achieved, for example, through 688 

balanced fertilization based on crop needs instead of over-fertilization, and promotion 689 

of low-protein feed in animal breeding. 2) Mitigation of NH3 emissions in food 690 

production via, for example, improved fertilization techniques (such as enhanced-691 
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efficiency fertilizer (urease inhibitor products), fertilizer deep application, fertilization-693 

irrigation technologies (Zhan et al., 2021), and coverage of solid and slurry manure. 3) 694 

Encouragement for the recycling of manure back to croplands, and reduction in manure 695 

discarding and long-distance transportation of manure fertilizer. Options for NH3 696 

emissions control are provided in Table S4. Although the focus here has been on 697 

methods to mitigate NH3 emissions, it is of course critical simultaneously to minimize 698 

N losses in other chemical forms such as nitrous oxide gas emissions and aqueous 699 

nitrate leaching (Shang et al., 2019; Wang et al., 2020b). 700 

4. Conclusions 701 

The present study developed an integrated assessment framework using meta-702 

analysis of published literature results, analysis of national monitoring data, and 703 

chemical transport modelling to provide insight into the effectiveness of SIA precursor 704 

emissions controls in mitigating poor PM2.5 air quality in China. We found that PM2.5 705 

concentration significantly decreased in 2000-2019 due to acid gas control policies, but 706 

PM2.5 pollution still severe. Compared with other components, this difference was more 707 

significant higher (average increase 98%) for secondary inorganic ions (i.e., SO4
2-, NO3

-, 708 

and NH4
+) on hazy days than on-hazy days. This is mainly caused by the persistent SIA 709 

pollution during the same period. with sulfate concentrations significantly decreased 710 

and no significant changes observed for nitrate and ammonium concentrations. The 711 

reductions of SIA concentrations in January in megacity clusters of eastern China by 712 

additional 50% NH3 emission controls decreased from 25.9 ± 0.3% in 2010 to 22.9 ± 713 

0.3% in 2017, and to 15 ± 0.2% in the COVID lockdown in 2020 for simulations 714 

representing reduced acid gas emissions to unprecedented levels, but the SIA 715 

concentrations decreased by 20.8 ± 0.3% in 2020 compared with that in 2017 under the 716 

same scenario of an additional 50% NH3 emissions reduction. In addition, the reduction 717 
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of SIA concentration in 2017 was 13.4 ± 0.5% greater for 50% acid gas (SO2 and NOx) 718 

reductions than for the NH3 emissions reduction. These results indicate that acid gas 719 

emissions need to be further controlled concertedly with NH3 reductions to substantially 720 

reduce PM2.5 pollution in China. 721 

Overall, this study provides new insight into the responses of SIA concentrations 722 

in China to past air pollution control policies and the potential balance of benefits in 723 

including NH3 emissions reductions with acid gas emissions controls to curb SIA 724 

pollution. The outcomes from this study may also help other countries seeking feasible 725 

strategies to mitigate PM2.5 pollution. 726 

 727 
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