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Abstract. As an important issue in atmospheric environment, the contributions of anthropogenic emissions and meteorological 

conditions to air pollution have been few assessed over the receptor region in regional transport of air pollutants.As an 15 

important issue in atmospheric environment, the contributions of anthropogenic emissions and meteorological conditions to 

air pollution have been few assessed over the receptor region in regional transport of air pollutants. In the present study of 5-

year observations and modeling, we targeted the Twain-Hu Basin (THB), a large region of heavy PM2.5 pollution over central 

China, to assess the meteorological effects on PM2.5 change over a receptor region in regional transport of air pollutants. In 

this study Based on observations of environment and meteorology over 2015–2019, the Kolmogorov–Zurbenko (KZ) filter 20 

was performed to decompose the PM2.5 variations into multi-time scale components over the Twain-Hu Basin (THB,), a 

receptor region in regional transport of air pollutants in central China, where the short-term, seasonal and long-term 
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components accounted for respectively 47.5 %, 41.4 % and 3.7 % to daily PM2.5 changes. The short-term and seasonal 

components dominated the day-to-day PM2.5 variations with long-term component determining the change trend of PM2.5 

concentrations over recent years. The As the emission- and meteorology-related long-term PM2.5 components over the THB 25 

were identified. T, the meteorological contribution to PM2.5 declining trend presented the distinct spatial pattern over the THB 

with northern positive rates up to 61.92 % and southern negative rates down to –24.93 %. The opposite effects of meteorology 

on PM2.5 pollution could accelerate and offset the effects of emission reductions in the northern and southern THB, which is 

attributed to the upwind diffusion and downward accumulation of air pollutants over the receptor region in regional PM2.5 

transport. It is noteworthy that the increasing conversion efficiencies of SO2 and NO2 to sulfate and nitrate for secondary PM2.5 30 

could offset the effects of PM2.5 emission reduction on air pollution in the THB during recent years, revealing the enhancing 

contribution of gaseous precursor emissions to PM2.5 concentrations with under controlling anthropogenic emissions of PM2.5 

and the gaseous precursors over the receptor region in regional transport of air pollutants. Our results highlight the effects of 

emission mitigation and meteorological changes on source-receptor relationship of region transport of air pollutants with the 

implication of long-range transport of air pollutants for regional and global environment changes. 35 

 

1. Introduction 

Haze pollution with high levels of PM2.5 (fine particulate matters with aerodynamic diameters equal to or less than 2.5 

µm) has been a serious problem in atmospheric environment (Peng et al., 2016; Wang et al., 2016) with adverse influences on 

air quality and human health (Cao et al., 2012; Crouse et al., 2012). In recent years, the large areas over central and eastern 40 

China (CEC) have undergone haze pollution with unprecedentedly high PM2.5 levels in the regions covering North China Plain 

(NCP), Yangtze River Delta (YRD), Pearl River Delta (PRD) and Sichuan Basin (SB) (Zhang et al., 2012; Lin et al., 2018; 

Guo et al., 2017). In order to improve air quality with reducing air pollutant emissions, Chinese government has implemented 

an Action Plan of controlling anthropogenic emissions since September 2013 (http://www.gov.cn/xinwen/2018-

02/01/content_5262720.htm, last access: August 21, 2021). Surface PM2.5 concentrations exhibited 30 %–40 % decreases in 45 
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CEC over recent years (Xue et al., 2019; Zhang et al., 2019). However, the changes of air pollution are generally co-determined 

by air pollutant emissions and meteorological conditions. The contributions of changes in meteorology and anthropogenic 

emissions to the improvement of air quality need to be comprehensively investigated.  

In addition to anthropogenic emissions of air pollutants, the meteorological conditions can alter the local accumulation, 

regional transport, chemical conversion, wet and dry depositions of air pollutants (Lu et al., 2017; Li et al., 2018). Severe haze 50 

pollution always occurs in the wintertime under the stagnant meteorological conditions with weak near-surface wind, strong 

temperature inversion, and high relative humidity in the atmospheric boundary layer, which are favorable for the accumulation 

of air pollutants to form air pollution (Li et al., 2018; Miao et al., 2015; Tang et al., 2016). Meteorological conditions are 

closely governed by synoptic circulations,  by modulating the atmospheric physical and chemical processes including 

regional transport of air pollutants (Miao et al., 2017; Ning et al., 2019). The climate changes of East Asian monsoons largely 55 

influence the seasonal and interannual variations of aerosol concentrations for air pollution over China (Zhu et al., 2012; Jeong 

and Park, 2017).  

Assessments on contributions of anthropogenic emissions and meteorological changes to air quality improvement are an 

important issue in environmental changes (Pearce et al., 2011; Zhang et al., 2018; Chen et al., 2019). The chemical transport 

models have been widely used to quantify the meteorological effects on PM2.5 variations by a linear additive relationship 60 

between sensitivity and base simulations (Mueller and Mallard, 2011; Li et al., 2015b; Zhang et al., 2020). The contribution 

of meteorological changes to PM2.5 decreases was estimated at the averages of 10 %–20 % with the interannual fluctuations 

of about 5 % in CEC from 2015 to 2019 through a model-based environmental meteorology index (Gong et al., 2021). The 

accuracy of modeling assessments can be influenced by the uncertainties in emission inventories and the incomplete chemical 

and physical mechanisms in air pollution simulation (Li et al., 2011). Based on statistical analysis on long-term observational 65 

data, it was quantified that the emission control could explain more of the variances in PM2.5 than meteorology (Gui et al., 

2019), and 12 % of the observed PM2.5 decrease was attributed to meteorological drivers in China since 2013 (Zhai et al., 

2019). However, the modeling and observational studies have mostly assessed the contribution of emissions and meteorology 
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to regional PM2.5 variations in the emission source regions with high anthropogenic emissions of air pollutants, and there have 

been few assessments on multi-scale changes of atmospheric environment over the receptor region in regional transport of air 70 

pollutants.  

The Twain-Hu Basin (THB), featuring the lower lands (mainly less than 200 m in a. s. l.) of two provinces Hubei and 

Hunan in central China (Fig. 1), is surrounded by the high air pollution regions NCP, YRD, PRD and SB. As such, it is the a 

key receptor region in regional transport of air pollutants from the upstream region driven by East Asian monsoonal winds 

over CEC (Shen et al., 2020). Heavy air pollution in the THB with a unique “non-stagnation” atmospheric boundary layer is 75 

aggravated by regional PM2.5 transport over CEC (Zhong et al., 2019; Yu et al., 2020). By cohesion with the heavy pollution 

region of NCP through distinct transport channels, the regional transport from northern China to the THBcentral China 

contributed 70.5 % PM2.5 concentrations to a wintertime heavy pollution episode in the THB (Hu et al., 2021). Thus, the 

contributions of air pollutant emissions and meteorological conditions to air quality change over this air pollution region in 

central China need to be specifically assessed with the long-term observations over recent years.  80 

 In this observational study, we investigated the multi-scale changes of PM2.5 concentrations over the THB, a key receptor 

region of regional PM2.5 transport over China from 2015 to 2019 by establishing the statistic model with Kolmogorov–

Zurbenko (KZ) filter, and then evaluated the contributions of anthropogenic emissions and meteorological changes to the 

declining trends in PM2.5 concentrations in over this receptor region in regional PM2.5 transport over CEC during the past 5-

year emission control. The analysis of THB’s multi-scale air quality changes can improve the understanding of the effects of 85 

emission mitigation and meteorological changes on environmental change with regional transport of air pollutants.  

 

2. Data and methods  

2.1 Data  

In order to analyze air quality changes in the THB, the observational data of hourly NO2, SO2 and PM2.5 concentrations 90 

from 2015 to 2019 were collected from the national air quality monitoring network (http://www.mee.gov.cn/, last access: 

http://www.mee.gov.cn/
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August 21, 2021). The air quality observation data are under quality control, based on China’s national standard of air quality 

observation.  

The data of meteorological observations in the THB were sourced from the weather monitoring network of China 

Meteorological Administration (http://data.cma.cn/, last access: August 21, 2021), including air temperature, relative humidity 95 

(RH), sea level pressure (SLP), wind speed (WS) and precipitation with temporal resolutions of 3 h.  

 

2.2 KZ filter  

To better understand the multi-time scale variations of PM2.5 and the relation to air pollutant emissions and meteorological 

drivers, KZ filter (Rao and Zurbenko, 1994; Seo et al., 2018) is used to separate the daily data into multi-scale components, 100 

based on an iterative moving average that removes high frequency variations in the data with the applications in study of air 

pollutants, especially O3 and PM2.5 variations (Chen et al., 2019; Ma et al., 2016; Seo et al., 2014; Zheng et al., 2020).  

The KZ filter KZ𝑚,𝑝 with the length of moving average window m and the number of iterations p, can remove the high-

frequency component of period smaller than the effective filter width N (≥ m × 𝑝
1

2⁄ ). The KZ filter is applicable to the time 

series with missing data owing to the iterative moving average process, which provides a high accuracy level to compare with 105 

the wavelet transform method (Eskridge et al., 1997). By comparing different sets of moving average m and number of 

iterations p, it was found that the decomposed time series using 𝐾𝑍15,5 filter exhibited no white noise (short-term component), 

and the trend of long-term component derived with 𝐾𝑍365,3 filter corresponded approximately to the interannual trend of the 

original data (Rao and Zurbenko, 1994; Eskridge et al., 1997). Based on the spectral decompositions of the daily observational 

data and three components, the power spectral of daily observational data in periods less than 33 days and longer than 632 110 

days (1.7 years) have been well reproduced by short-term and long-term components, and seasonal component represents well 

the seasonal variations, i.e., periods between 33 days and 1.7 years (Seo et al., 2018). In this study, Thus we applied KZ15,5 

and KZ365,3 filters to remove the variations with the periods shorter than 33 days and 1.7 years in this study.(Seo et al., 2018).   

A meteorological or environmental variable X(t)  observed in time series t can be decomposed into the short-term 
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component 𝑋𝑆𝑇(t) and the baseline component 𝑋𝐵𝐿(t) presenting as:  115 

X(t) = X𝑆𝑇(𝑡) + 𝑋𝐵𝐿(t). (1) 

The baseline component 𝑋𝐵𝐿(𝑡) is obtained by applying the KZ(15,5) filter to 𝑋(𝑡), removing the short-term component 

𝑋𝑆𝑇(t) with the temporal period shorter than 33 days from the observed data, expressing with:  

𝑋𝐵𝐿(t) = KZ(15,5)[𝑋(𝑡)]. (2) 

The baseline component 𝑋𝐵𝐿(𝑡) also can be separated into the daily climatic averages 𝑋𝐵𝐿
𝑐𝑙𝑚 over the study period 120 

occupying most of the seasonality in 𝑋𝐵𝐿(𝑡) and the residual 𝜀(𝑡):  

𝜀(𝑡) = 𝑋𝐵𝐿(t) − 𝑋𝐵𝐿
𝑐𝑙𝑚 . (3) 

To obtain the long-term component 𝑋𝐿𝑇(𝑡) by removing the variations with the temporal period shorter than 1.7 years, the 

KZ365,3 filter is applied to 𝜀(𝑡) expressed as follows:  

 𝑋𝐿𝑇(t) = KZ(365,3)[𝜀(𝑡)] (4) 125 

with the short-term component  

𝑋𝑆𝑇(t) = 𝑋(𝑡) − 𝑋𝐵𝐿(t) (5) 

and the seasonal component  

𝑋𝑆𝑁(t) = 𝑋𝐵𝐿(t) − 𝑋𝐿𝑇(t). (6) 

The KZ filter was used to separate the daily surface PM2.5, NO2 and SO2 concentrations into short-term, seasonal and 130 

long-term components in this study. The short-term component presents a synoptic-scale variation of meteorological influences, 

which could control local accumulation and regional transport of air pollutants (Seo et al., 2017), partly associated with short-

term fluctuations in air pollutant emissions (Russell et al., 2010). The seasonal and long-term components are attributable to 

the variations in air pollutant emissions related to human activities as well as the seasonal and interannual changes in 

meteorological conditions (Kim et al., 2018).  135 

 

2.3 Multiple linear regression of air pollutant changes with meteorological variables 
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By altering the local accumulation, regional transport, chemical conversion, wet and dry depositions of air pollutants, the 

meteorological factors such as wind, RH, air temperature, air pressure and precipitation could exert significant impacts on 

PM2.5 changes (Sun et al., 2013; Li et al., 2018; Chen et al., 2020b). Therefore, with the multiple factors of the baseline 140 

components of 10-m WS, 2-m RH, 2-m air temperature, SLP and precipitation calculated by Eq. (2), a multiple linear 

regression equation was stepwise established for the baseline component of PM2.5 as follows:  

𝑃𝑀2.5𝐵𝐿𝑀𝐿𝑅
(𝑡) = 𝑎0 + ∑ 𝑎𝑖

𝑖
MET𝐵𝐿𝑖

(t), (7) 

where MET𝐵𝐿𝑖
(𝑡) (iϵ[1,5])  is the baseline component of the meteorological variable i with i=1,2,3,4,5 respectively for 

𝑊𝑆𝐵𝐿(𝑡), 𝑅𝐻𝐵𝐿(𝑡), 𝑇𝐵𝐿(𝑡), 𝑆𝐿𝑃𝐵𝐿(𝑡), 𝑃𝑟𝑒𝐵𝐿(𝑡). We fit the regression coefficient 𝑎𝑖 for each meteorological variable and 145 

the intercept 𝑎0. The residual 𝜀𝑃𝑀2.5
 between 𝑃𝑀2.5𝐵𝐿 and 𝑃𝑀2.5𝐵𝐿𝑀𝐿𝑅

 regressed with the multiple linear equation (7) is 

given as:  

𝜀𝑃𝑀2.5
(𝑡) = 𝑃𝑀2.5𝐵𝐿(𝑡) − 𝑃𝑀2.5𝐵𝐿𝑀𝐿𝑅

(𝑡). (8) 

𝜀𝑃𝑀2.5
 contains not only the variability of PM2.5 related to long-term changes in air pollutant emissions but also the minor 

seasonal change of PM2.5 attributable to unconsidered meteorological influences in the multiple linear regression. By removing 150 

the minor seasonal change from 𝜀𝑃𝑀2.5
  with the KZ365,3  filter, the emission-related long-term component 𝑃𝑀2.5𝐿𝑇

𝑒𝑚𝑖𝑠𝑠(𝑡) 

can be isolated as follows:  

𝑃𝑀2.5𝐿𝑇
𝑒𝑚𝑖𝑠𝑠(𝑡) = 𝐾𝑍(365,3)[𝜀𝑃𝑀2.5

(𝑡)]. (9) 

Here the long-term component of surface PM2.5 concentrations can be further separated into the emission- and 

meteorology-related long-term components with Eqs. (9) and (4) (Seo et al., 2018). Similarly, the multi-time scale variations 155 

in SO2 and NO2 with long-term variations related to changes in air pollutant emissions and meteorological drivers are 

decomposed by KZ filter with multiple linear regression. Seo et al. (Seo et al., 2018) described the details of this method.  

 

3. Results and discussion  

3.1 Verification of PM2.5 decompositions in multi-scale variations  160 
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The daily PM2.5 concentrations observed in 14 sites over the THB (Fig. 1) were decomposed into short-term, seasonal and 

long-term components with Eqs. (4), (5) and (6) of the KZ filter. To verify the decomposition results, the spatial distribution 

of total contributions of short-term, seasonal and long-term PM2.5 components to the total variances of observed daily changes 

in PM2.5 concentrations over 2015–2019 were shown in Figure 2a. The larger the total variance, the more independent the three 

components are of each other (Chen et al., 2019). The sum of the long-term, seasonal and short-term components contributed 165 

91.4 %–94.4 % to the total variance with the regional averages of 92.7 % (Fig. 2), reflecting a satisfactory verification of the 

KZ filtering results.  

 The total contribution of short-term, seasonal and long-term components demonstrated the regional distribution with the 

high values exceeding 90% and the regional average of 92.7 % in the THB (Fig. 2a), which presented a good decomposition 

of the multi-time scale components from the observed daily PM2.5 with the KZ filter.  170 

 Based on the PM2.5 decomposition results of KZ filter, the short-term, seasonal and long-term components respectively 

accounted for 34.8 %–53.8 %, 29.2 %–56.3 % and 0.2 %–9.8 % of the total variances of daily PM2.5 changes in the THB over 

recent years (Figs. 2b, 2c and 2d), reflecting the different patterns of multi-time scale variations of PM2.5 over this region in 

central China with diverse effects of emissions and meteorology. The regional contributions of short-term, seasonal and long-

term components were averaged respectively with 47.5 %, 41.4 % and 3.7 % to daily PM2.5 changes over the THB (Fig. 2), 175 

which could be reasonably verified that the daily variation in atmospheric pollutant was generally dominated by short-term 

and seasonal components with long-term component determining the change trend (Ma et al., 2016; Yin et al., 2019b).  

The short-term, seasonal and long-term PM2.5 components were averaged in 14 sites of the THB to characterize the 

temporal variations of three components in the THB for 2015–2019 (Fig. 3). The correlation coefficients of 0.05, 0.01 and 

0.04 among the decomposed short-term, seasonal and long-term components were near zero, indicating the orthogonal 180 

decomposition of multi-time scale components (Eskridge et al., 1997). According to the decomposed long-term, seasonal and 

short-term components demonstrated in Fig. 3, the notable peaks of decomposed seasonal and short-term components were 

highly consistent with the peaks of PM2.5 concentrations in the original observed data, which further proved a reasonable 
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decomposition of the multi-scale components of PM2.5 change over 2015–2019.  

The observed daily PM2.5 exhibited a distinct daily variation, with an overlapping of high frequency variations, which 185 

could be caused by mesoscale and synoptic scale meteorological processes (Ma et al., 2016). The short-term component of 

PM2.5 fluctuated frequently with a significantly positive correlation to the daily change of PM2.5 (r = 0.68, p<0.05), indicating 

an important role of the short-term component with the temporal period < 33 days in the day-to-day variations of PM2.5 

concentrations in the THB (Fig. 3a).  

The notable peaks of PM2.5 seasonal components emerged in winters were highly in keeping with the peaks of observed 190 

daily PM2.5 concentrations (Fig. 3b). A close linkage with the significant correlation coefficient of 0.75 (p<0.05) was found 

between the changes of PM2.5 seasonal components and daily PM2.5 concentrations, which could reflect a significant 

modulation of the PM2.5 seasonal oscillations to the day-to-day variations of PM2.5, driven by the seasonal shift of East Asian 

summer and winter monsoons as well as the seasonal change of anthropogenic emissions (Zhu et al., 2012; Jeong and Park, 

2017).  195 

The change of long-term component of PM2.5 exhibited a steadily declining trend over 2015–2019 (Fig. 3c), which was 

consistent with the interannual trend of observed PM2.5 concentrations under might be caused by the sustained impact of 

emission control (Zhang et al., 2019; Xu et al., 2020). The correlation coefficient (r = 0.24, p<0.05) of long-term PM2.5 

components with the observed daily PM2.5 change was much smaller than those of short-term and seasonal PM2.5 components, 

implying less influence of emission reduction on the daily PM2.5 change and air pollution frequency, although the declining 200 

trend in PM2.5 was determined by anthropogenic emission reduction.  

In previous studies, chemical transport models and statistical methods were both used to assess the changes in air pollution 

attributable to emissions and meteorology (Xiao et al., 2021). Significant declines in emission-related PM2.5 concentrations 

occurred in central China (Wang et al., 2019; Chen et al., 2020a), and the meteorology offset the impact of emission reduction 

in typical years of unfavorable meteorological conditions (Xu et al., 2020; Gong et al., 2021). The regional averaged emission- 205 

and meteorology-related long-term components as well as the long-term component over the THB are displayed in Fig. S1a, 
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implying the steadily declining trend of PM2.5 and the dominating impact of emission reduction on long-term PM2.5 changes, 

which is consistent with the previous studies using multiple linear regression model for central China (Fig. S1b). The 

meteorology-related long-term component is positive value in certain periods, implying the significant modulation effect of 

meteorology on PM2.5 decline in the THB.  210 

 

3.2 Multiple linear regressions of PM2.5, SO2 and NO2 with meteorological drivers  

Since the short-term variations in meteorological variables were excluded, the correlations between baseline components 

of PM2.5 and meteorological variables were only related to their seasonal and long-term components, affected by regional 

climate of East Asian monsoons rather than synoptic-scale meteorological processes. Based on our understanding of chemical 215 

and physical processes of diffusive transport, chemical transformation, emissions and depositions of PM2.5 in the atmosphere, 

the dominant meteorological factors for changing PM2.5 concentrations over china are wind speed, relative humidity, air 

temperature, atmospheric pressure and precipitation (Chen et al., 2020b). We examined the significant correlations between 

baseline components of air pollutant concentrations and selected a set of meteorological factors, including air temperature, 

wind speed, precipitation, relative humidity, and air pressure (Tables S1-S3). The meteorological parameters selected in this 220 

study are consistent with the previous studies (Chen et al., 2020b).  

Generally, the baseline components of air pollutants were negatively correlated with baseline components of wind speed 

(WSBL) and positively correlated with baseline components of sea level pressure (SLPBL) (Tables S1–S3), which could be 

attributed to the ventilation effect of wind and stagnant condition of meteorology in high-pressure systems, restraining the 

horizontal and vertical dispersions of air pollutants (Hsu and Cheng, 2016; Wang et al., 2016; Miao et al., 2017). Although 225 

wind speed exerts a negative influence of on PM2.5 concentrations over the emission source region, increasing wind speed 

might cause the accumulation of PM2.5 concentrations over the downwind region of emission sources (Chen et al., 2020b), 

which led to the inconsistent influence of WSBL in the region of central China (Tables S1–S3). Under surface high air 

temperature conditions, there are strong thermal activities such as turbulence, making an accelerated dispersion of air pollutants 
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(Yang et al., 2016b). The negative influence of RHBL and TBL on PM2.5BL, SO2BL and NO2BL mainly reflected the effect of 230 

seasonal cycle in East Asian winter and summer monsoons, whereas the influence of precipitation on air pollutants was more 

straightforward than other meteorological parameters, negatively influencing surface pollutant concentrations through the 

precipitation washout of air pollutants (Tables S1–S3).  

To isolate emission-related long-term components from long-term components of PM2.5, NO2 and SO2, the stepwise 

multiple linear regressions of PM2.5BL, SO2BL and NO2BL respectively with baseline components of meteorological parameters 235 

(TBL, WSBL, RHBL, SLPBL and PreBL) were conducted with Eq. (7) in 14 sites, by adding and deleting meteorological variables 

based on the independent statistical significance to obtain the best model fit (Draper, 1998). We evaluated the PM2.5BL, SO2BL 

and NO2BL fitted by the multiple linear regression models with the KZ decomposition (Table 1). The multiple linear regressions 

explained PM2.5BL, SO2BL and NO2BL with adjusted determination coefficients (Adj. R2) of 0.5695–0.8093, 0.0630–0.4592 and 

0.6304–0.8669 passing the confidence level of 99 % in all the THB sites, confirming the reasonable construct of multiple linear 240 

regressions. The Adj. R2 of multiple linear regression for SO2BL were lower than those of PM2.5BL and NO2BL, which might be 

attributed to the larger impact of SO2 emission control on the seasonal and long-term SO2 variations. In general, the variations 

of meteorological drivers can well reproduce the meteorology-related seasonal and long-term variations of PM2.5, SO2 and 

NO2 in the THB (Table 1).  

 245 

3.3 Interannual variations in air pollutants observed over the THB  

PM2.5 consists of chemical components generated in the complex physical and chemical processes (Li et al., 2015a). 

Primary particles are emitted directly from anthropogenic (e.g., industry, power plants, and vehicles) and natural (e.g., outdoor 

biomass burning and dust storms) sources. Secondary particles (e.g. sulfate and nitrate) are converted with chemical reactions 

of the precursor gases (e.g., SO2 and NOx) , which are mainly produced by human activities (Li et al., 2015a; Yang et al., 250 

2016a). Therefore, in addition to the reductions in primary particulate emissions, control of the secondary aerosol precursor 

emissions is of great importance in mitigating air pollution.  
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The interannual variations of the ratios in annual mean PM2.5, SO2 and NO2 concentrations relative to the annual averages 

in 2015 over the THB are displayed in Figure 4. The declines of PM2.5 and SO2 in 2019 averaged over the THB were –26 % 

and –68 % relative to 2015, while the decrease ratio in NO2 was only –8 % over this region. The observed SO2 concentrations 255 

had a steeper decrease than PM2.5 and NO2, possibly because the dominant source sectors (i.e., power and industry) of SO2 

significantly reduced their emissions (Zheng et al., 2018). The power sector was the major contributor to emission reduction 

but only accounted for one-third of NOX emissions and the contribution of transportation to NOX emissions was estimated to 

have increased over recent years (Zheng et al., 2018). The interannual variations in emissions for China were calculated from 

MEIC (Zheng et al., 2018), as well as the annual total emissions of SO2 and NOx, PM in the THB region reported by National 260 

Bureau of Statistic of China (http://www.stats.gov.cn/tjsj/ndsj/, last access: January 17, 2022), presenting the rapid decline of 

SO2 emissions in the THB than changes of PM2.5 and NOx emissions (Fig. S2). The declining trend of anthropogenic emissions 

estimated from emission inventories can support the explanation of the changes in air pollutant concentrations.  

Figure 5 shows the spatial distributions of 5-year averaged concentrations, the linear trends and the change rates in 

interannual variations of PM2.5, SO2 and NO2 observed in the THB over 2015–2019. The change rates (% yr–1) were calculated 265 

with the linear trends by dividing with temporal-mean concentrations of air pollutants at the observation sites for the analysis 

period in Figure 5. The 5-year averaged PM2.5 concentrations over the THB exceeded the Chinese National secondary air 

quality standard of 35 μg m–3 for annual mean PM2.5 concentrations (Fig. 5a), while SO2 and NO2 concentrations reached the 

secondary standards of 60 μg m–3 and 40 μg m–3 in annual mean SO2 and NO2 concentrations at most sites over the THB (Figs. 

5d and 5g). Specifically, the 5-year averaged NO2 concentrations exceeded 40 μg m–3 in WH (Wuhan), the mega-city in central 270 

China, that might be attributable to the large amounts of traffic transportation. From 2015 to 2019, both PM2.5 and SO2 

decreased at all sites over the THB (Figs. 5b and 5e), whereas NO2 trends were changed from mostly negative to positive in 

some sites (Fig. 5h), possibly due to the spatial disparity of NOx emissions in traffic sectors (Zheng et al., 2018). The 

comparison among the change rates of PM2.5, SO2 and NO2 in the THB presented the largest decreases of SO2 with –20% – –

40% yr–1 over the five years (Figs. 5c, 5f and 5i), reflecting the effective control of SO2 emissions in terms of primary gaseous 275 
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pollutants.  

There were obvious decreases in regional mean PM2.5, SO2 and NO2 concentrations over the THB (Fig. 4), while the 

declining degree of PM2.5 and SO2 varied from site to site over the THB and the change trends in NO2 were weak negative and 

even positive in certain sites (Figs. 5c, 5f and 5i). These interannual changes of air pollutants in the THB over recent years 

were investigated with the emission- and meteorology-related long-term components of air pollutants in the next sections.  280 

 

3.4 Effects of NO2 and SO2 emission reductions on PM2.5 change trends  

The declining trend of PM2.5 in China could be partly attributed to the reduced NOx and SO2 concentrations for producing 

the secondary aerosols (Zhang et al., 2018). The reduction rates of anthropogenic emissions have markedly accelerated after 

2013, decreasing by 59% for SO2, 21% for NOx and 33% for PM2.5 during 2013–2017 over the THB region (Zheng et al., 285 

2018). In order to assess the effect of changing precursor pollutant emissions on PM2.5 declines, we compared the linear trends 

of emission-related long-term components of PM2.5, NO2 and SO2 decomposed based on Eq. (9) over the THB for 2015–2019 

(Fig. 6). The distinct declining trends of emission-related long-term PM2.5 and SO2 components as well as the variable trends 

of emission-related long-term NO2 components were distributed basically consistent with the positive and negative trends in 

the interannual variations of air pollutant concentrations in the THB (Fig.5 (middle column); Fig. 6), demonstrating that the 290 

local emissions of air pollutants could spatially dominate the long-term variations of air pollutants in central China, especially 

the increasing trends in NO2 at some THB sites.  

PM2.5 concentrations are changed by emissions of both primary PM2.5 and PM2.5’s gaseous precursors. As major gaseous 

precursors, SO2 and NO2 can be oxidized to convert nitrate and sulfate for secondary PM2.5 (Li et al., 2015a). To investigate 

the effects of emission reductions on the interannual variations of PM2.5, NO2 and SO2 over recent years, the ratios of change 295 

trends in long-term (𝑘LT) and emission-related long-term (𝑘emiss) components of PM2.5, SO2 and NO2, in the THB over 2015–

2019 were demonstrated in Figure 7, where the long-term and emission-related long-term components of PM2.5, SO2 and NO2 

were calculated with Eqs. (4) and (9). The trend ratios 
𝑘LT

𝑘𝑒𝑚𝑖𝑠𝑠
⁄  <1 indicated the more obvious downward trend of emission-
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related long-term variations than the long-term trend of air pollutant concentrations, which might be attributed to the offsetting 

effect of meteorological conditions on emission reduction in air quality change, whereas the long-term trend of air pollutant 300 

concentrations was more significant than the emission-related long-term trend with 
𝑘LT

𝑘𝑒𝑚𝑖𝑠𝑠
⁄  >1, reflecting the synchronous 

impacts of anthropogenic emissions and meteorology on the long-term trend in air pollutant change. In addition, the trend 

ratios 
𝑘LT

𝑘𝑒𝑚𝑖𝑠𝑠
⁄   >1 and 

𝑘LT
𝑘𝑒𝑚𝑖𝑠𝑠

⁄   <1 of PM2.5’s gaseous precursors SO2 and NO2 could reflect the high and weak 

efficiencies of SO2 and NO2 converting to sulfate and nitrate in the production of secondary PM2.5 during air pollutant emission 

reduction. The notable differences in Figure 7 were spatially distributed with the trend ratios 
𝑘LT

𝑘𝑒𝑚𝑖𝑠𝑠
⁄  >1 and 

𝑘LT
𝑘𝑒𝑚𝑖𝑠𝑠

⁄  305 

<1 in PM2.5, SO2 and NO2 concentrations under the same meteorological conditions, indicating the different influences of 

emissions on the long-term variations of PM2.5, SO2 and NO2 in the THB during recent years. The reduction in PM2.5 emissions 

was a primary cause for the long-term declines in PM2.5 concentrations in the THB, even though the meteorological changes 

might offset the effects of emission reduction on air quality improvement over the southern THB (Figs. 6 and 7). It is 

noteworthy that the trend ratios 
𝑘LT

𝑘𝑒𝑚𝑖𝑠𝑠
⁄   <1 of PM2.5 were accompanied with 

𝑘LT
𝑘𝑒𝑚𝑖𝑠𝑠

⁄   >1 of SO2 and NO2 at the 310 

downwind southern THB sites with both negative 𝑘LT  and 𝑘emiss  (Fig. 7, Table S4), which could imply the increasing 

conversion efficiency of SO2 and NO2 to sulfate and nitrate for secondary PM2.5 during the reductions of air pollutant emissions 

over recent years. In the upwind northern THB sites, the 
𝑘LT

𝑘𝑒𝑚𝑖𝑠𝑠
⁄  >1 of PM2.5 were accompanied with 

𝑘LT
𝑘𝑒𝑚𝑖𝑠𝑠

⁄  >1 

of SO2 and NO2 with obviously facilitating effect of meteorology on PM2.5 decline (Fig. 7, Table S4), revealing the 

underlying effect of regional transport of air pollutants on the spatial distribution of conversion efficiency of gaseous precursor 315 

to secondary PM2.5.  

In order to further assess the effect of gaseous precursor emissions on PM2.5 declines during recent 5-year air pollution 

mitigation, we selected 7 and 9 sites in the THB with the decreasing trends of emission-related long-term SO2 and NO2 

components below –0.5 and 0.0 μg m–3 100d–1 respectively (Table S4) to compare the trend ratios 
𝑘LT

𝑘𝑒𝑚𝑖𝑠𝑠
⁄  of PM2.5, NO2 

and SO2 for 2015–2019 (Fig. 8). The significantly negative linear correlations between changes in 
𝑘LT

𝑘𝑒𝑚𝑖𝑠𝑠
⁄  of gaseous 320 

precursors (SO2 and NO2) and PM2.5 could present the connection of 
𝑘LT

𝑘𝑒𝑚𝑖𝑠𝑠
⁄  > 1 for NO2 and SO2 with 

𝑘LT
𝑘𝑒𝑚𝑖𝑠𝑠

⁄  < 1 
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for PM2.5, which confirmed the fact that the high conversion efficiency of SO2 and NO2 to sulfate and nitrate could offset the 

role of PM2.5 emission reduction in controlling PM2.5 pollution. This study identified the enhancing contribution of gaseous 

precursor emissions to PM2.5 concentrations with reducing anthropogenic emissions of air pollutants over the receptor region 

in regional PM2.5 transport.  325 

The long-term changes in PM2.5 are also caused by the emission variations of primary components like black and organic 

carbon, in addition to the chemical transformation of gaseous precursors. The difference in the emission of different primary 

pollutants may also lead to modifications in 
𝑘LT

𝑘𝑒𝑚𝑖𝑠𝑠
⁄  of PM2.5. However, due to the current lack of long-term observation 

of PM2.5 components in the THB, the influence of emission variations of primary components on long-term changes in PM2.5 

concentrations is not assessed in our study. Further work with long-term observational data of PM2.5 components like black 330 

and organic carbon could be conducted to quantify the influence of emissions of primary components and chemical 

transformation of gaseous precursors on PM2.5 changes.  

 

3.5 Meteorological contribution to PM2.5 change trends 

As the air pollutant change trend is assumed to generally consist of emission- and meteorology-related changes (Seo et 335 

al., 2018; Yin et al., 2019a), the meteorological contribution rate 𝐶𝑜𝑛𝑚𝑒𝑡  to long-term PM2.5 change trend is calculated with 

the following equation:  

𝐶𝑜𝑛𝑚𝑒𝑡 =
𝑘LT − 𝑘𝑒𝑚𝑖𝑠𝑠

𝑘𝐿𝑇

× 100%. (10) 

Here, 𝐶𝑜𝑛𝑚𝑒𝑡 (in %) is estimated with the linear trends 𝑘𝐿𝑇 of long-term component 𝑃𝑀2.5𝐿𝑇(𝑡) and 𝑘𝑒𝑚𝑖𝑠𝑠  of emission-

related long-term component 𝑃𝑀2.5𝐿𝑇
𝑒𝑚𝑖𝑠𝑠(t). 𝑃𝑀2.5𝐿𝑇(𝑡) and 𝑃𝑀2.5𝐿𝑇

𝑒𝑚𝑖𝑠𝑠(t) are respectively calculated with Eqs. (4) and (9).  340 

To quantitatively assess the meteorological contributions to the PM2.5 declining trends, the linear trends 𝑘LT and 𝑘emiss 

with the meteorological contribution rate 𝐶𝑜𝑛𝑚𝑒𝑡  in Eq. (10) were presented in Table S5 for 14 sites over the THB during 

2015-2019. All the trends 𝑘LT  and 𝑘emiss  respectively in 𝑃𝑀2.5𝐿𝑇(𝑡)  and 𝑃𝑀2.5𝐿𝑇
𝑒𝑚𝑖𝑠𝑠(t)  were negative over the THB 

(Table S5), indicating the significant effect of emission reductions on PM2.5 declining trends for improving regional air quality 
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in central China. By comparing the PM2.5 declining trends 𝑘emiss  and 𝑘LT  from site to site (Table S5), the positive and 345 

negative contributions of meteorological variations to PM2.5 change trends over recent years were determined with the positive 

and negative differences between 𝑘emiss  and 𝑘LT  with the distinct meteorological influences on the change of THB’s 

regional environment.  

The spatial distribution of meteorological contribution rates 𝐶𝑜𝑛𝑚𝑒𝑡  to long-term PM2.5 declining trend presented the 

unique pattern of northern positive and southern negative values over the THB (Fig. 9), with the high positive contributions in 350 

northern sites XY (61.92%) and EZ (37.31%) as well as low negative contributions in southern sites CD (–24.93 %) and CS 

(–23.03 %). It is worth mentioning that the contribution rates of meteorological variations show great spatial disparities at a 

small scale, i.e., EZ, HG and HS, which seems not be induced by the variation in synoptic weather or meteorological conditions. 

The underlying surface conditions dominate the near-surface meteorological conditions in the atmospheric boundary layer at 

a small scale (Wang et al., 2017). The topography and land use of HG, HS, EZ and surrounding regions vary distinctly with 355 

underlying surface conditions of plain, lakes and hilly area. The underlying surface of observational sites with different near-

surface meteorology effectively influence the local accumulation, chemical transformation, dry and wet depositions of air 

pollutants (Bai et al., 2022). Therefore, the heterogeneity of meteorological contribution to PM2.5 at such a small spatial scale 

might be attributed to the local meteorological conditions in the atmospheric boundary layer, which is largely affected by the 

underlying surface changes.  360 

Comparing with the statistical studies using synthetic data of meteorological influence on regional PM2.5 changes in other 

regions overcentral China with the meteorological contribution of about 20from –45.5 % to 29.0 % over recent years  (Gong 

et al., 2021; Chen et al., 2020a), the PM2.5 pollution over the THB was affected contrarily by meteorological drivers with the 

northern positive and southern negative contribution from 2015 to 2019 (Fig. 9). The meteorological change could accelerate 

and offset the effects of emission reductions on PM2.5 declining trends in the northern and southern THB, which might be 365 

attributed to regional transport of air pollutants conducive to the upwind diffusion and downward accumulation of air pollutants 

respectively over the northern and southern THB under the declining wind of East Asian monsoons over recent years (Hu et 
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al., 2020; Zhong et al., 2019).  

 

3.6 Meteorological contribution to PM2.5 changes validated with WRF-Chem modeling  370 

The above observational study investigated the meteorological influence on the changes in PM2.5 concentrations in the 

THB using KZ filter, with concluding the large impact of meteorology on the PM2.5 changes over 2015–2019. To validate 

this conclusion of analyses with KZ filter, we designed three sets of modeling experiments CTRL, SENS-MET and SENS-

EMI (Table S6) for December of 2015–2019, respectively driven with the changing meteorology and anthropogenic emissions 

over 2015–2019, the fixed meteorological conditions and anthropogenic emissions of 2015 with atmospheric chemical model 375 

WRF-Chem (Weather Research and Forecasting model with Chemistry). Air pollutant emission inventories, modeling 

configuration, experiment design and modeling verification were described in the supplement. The modeling verification of 

experiments CTRL indicated that PM2.5 and meteorology were reasonably reproduced by the WRF-Chem simulation (Figs.S4–

S5, Table S7), and the designed three sets of modeling experiments CTRL, SENS-MET and SENS-EMI could be used in the 

further analyses of emission and meteorological impact on PM2.5 change over 2015–2019 to confirm the results of KZ filter.  380 

We derived the effect of meteorology by comparing the simulated PM2.5 concentrations in three sets of experiments CTRL, 

SENS-MET and SENS-EMI (Table S6). The relative contribution of meteorology to the interannual changes of PM2.5 

concentrations was calculated with a linear additive relationship of contributions of meteorology and emission in the following 

equations:  

 385 

𝐶𝑜𝑛𝑀𝐸𝑇 =
𝑘𝑀𝐸𝑇

𝑘𝐶𝑇𝑅𝐿

(11) 

𝐶𝑜𝑛𝐸𝑀𝐼 =
𝑘𝐸𝑀𝐼

𝑘𝐶𝑇𝑅𝐿

(12) 

𝑅𝐶𝑜𝑛𝑀𝐸𝑇 =
𝐶𝑜𝑛𝑀𝐸𝑇

𝐶𝑜𝑛𝑀𝐸𝑇 + 𝐶𝑜𝑛𝐸𝑀𝐼

× 100% (13) 

 

𝑘𝐶𝑇𝑅𝐿, 𝑘𝑀𝐸𝑇  and 𝑘𝐸𝑀𝐼  represent the trends in interannual changes of PM2.5 concentrations simulated by the experiments 390 
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CTRL, SENS-MET and SENS-EMI, respectively. 𝐶𝑜𝑛𝑀𝐸𝑇  and 𝐶𝑜𝑛𝐸𝑀𝐼  are the contribution of meteorology and emission, 

and 𝑅𝐶𝑜𝑛𝑀𝐸𝑇 is the contribution rate (%) of meteorology to interannual changes of PM2.5 concentrations (Zhang et al., 2020).  

Based on WRF-Chem modeling experiments, we assessed the impact of meteorological changes on interannual PM2.5 

variations from 2015 to 2019 with Eqs. (11–13). The relative contribution of meteorology to interannual PM2.5 variations 

displayed the regional pattern of northern positive and southern negative values over the THB (Fig. 10), confirming the impact 395 

of meteorological changes by accelerating and offsetting the effects of emission reductions on PM2.5 declining trends in the 

northern and southern THB, respectively. The general spatial distribution of meteorological contribution rates to PM2.5 

declining trends from the WRF-Chem simulation was consistent with the results using KZ filter (Figs. 9 and 10), validating 

the results with KZ filter that meteorological drivers exerted a contrary impact of northern positive and southern negative 

contribution on long-term changes of PM2.5 concentrations in the THB.  400 

 

4. Conclusions 

The meteorological effect on multi-scale changes of atmospheric environment has been few assessed for the receptor 

region in regional transport of air pollutants. In this study of observations and modeling, we targeted the THB, a large region 

of heavy PM2.5 pollution over central China, to assess the meteorological effects on PM2.5 change over a receptor region in 405 

regional transport of air pollutants during recent five years. The study results provide insights in the effects of emission 

mitigation and meteorological changes on source-receptor relationship of long-range transport of air pollutants for regional 

and global environment changes. 

The observational data of environment and meteorology from 2015 to 2019 were achieved to investigate the characteristics 

and causes of PM2.5 reductions in the THB, a receptor region in regional transport of air pollutants in central China. This study 410 

decomposed the observed PM2.5 concentrations into multi-time scale components with a modified KZ filter, to better 

understand the PM2.5 variations with the short-term, seasonal and long-term components accounting for respectively 47.5 %, 

41.4 % and 3.7 % to observed PM2.5 changes. The short-term and seasonal PM2.5 components dominated the daily PM2.5 
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changes and long-term component determined the trend of PM2.5 change over recent years. The long-term components of PM2.5, 

SO2 and NO2 were further isolated into emission- and meteorology-related long-term components with multiple linear 415 

regressions, to figure out the contributions of emission and meteorology to PM2.5 decline in the THB over 2015–2019. The 

reduction in anthropogenic emissions was the primary cause for long-term decline in PM2.5 concentrations and the 

meteorological changes moderated the PM2.5 variations in the THB. As the receptor region of regional PM2.5 transport, the 

impact of diverse meteorological conditions on long-term trend of PM2.5 changes displayed unique regional pattern of northern 

positive rates up to 61.92 % and southern negative rates down to –24.93 %. The change of meteorological conditions could 420 

accelerate and offset the effects of emission reductions on PM2.5 declining trends in the northern and southern THB, which 

could be attributed to the upwind diffusing and downward accumulating roles of regional transport pathway on air pollutants 

in the THB. In terms of gaseous precursor emissions, the increasing conversion efficiency of SO2 and NO2 to sulfate and nitrate 

for secondary PM2.5 could offset the role of PM2.5 emission reduction in controlling air pollution, and the contribution of 

gaseous precursor emissions to secondary PM2.5 enhanced with the reducing anthropogenic emissions of air pollutants over 425 

this receptor region.  

This study exposed the impact of anthropogenic emissions and meteorological conditions on the PM2.5 decline over a 

receptor region in regional transport of air pollutants in central China. The effect of regional transport on PM2.5 pollution over 

the receptor region was found differing from that over the source regions with high anthropogenic emissions. The changes in 

data coverage and the meteorological parameter selection would largely influence the final quantitative estimation of 430 

contributions of meteorology and emissions. Due to the limitation of the data coverage of observational data,To generalize our 

finding, further work could be desired with climate analyses of long-term data of fine meteorological and environmental 

observations of air pollutants and more comprehensively modeling of chemical and physical processes in the atmosphere to 

generalize the assessment on the effects of emission mitigation and meteorological changes on source-receptor relationship of 

region transport of air pollutants.air quality and meteorology.  435 

 



20 

 

Data availability. Data used in this paper can be provided upon request from Xiaoyun Sun (sunxy6362@126.com) or Tianliang 

Zhao (tlzhao@nuist.edu.cn). 

 

Author contributions. TZ and XS conceived the study. YB provided the observation data. XS designed the graphics and wrote 440 

the manuscript with help from TZ and SK. HZ, WH, XM and JX were involved in the scientific discussion. All authors 

commented on the paper. 

 

Competing interests. The authors declare that they have no conflict of interest. 

 445 

Acknowledgement. This research was financially funded by grants from National Natural Science Foundation of China 

(41830965; 42075186; 91744209) and the National Key R & D Program Pilot Projects of China (2016YFC0203304). 

 

References 

Bai, Y., Zhao, T., Hu, W., Zhou, Y., Xiong, J., Wang, Y., Liu, L., Shen, L., Kong, S., Meng, K., and Zheng, H.: Meteorological 450 

mechanism of regional PM2.5 transport building a receptor region for heavy air pollution over Central China, Science of The 

Total Environment, 808, 151951, 10.1016/j.scitotenv.2021.151951, 2022. 

Cao, J. J., Wang, Q. Y., Chow, J. C., Watson, J. G., Tie, X. X., Shen, Z. X., Wang, P., and An, Z. S.: Impacts of aerosol 

compositions on visibility impairment in Xi'an, China, Atmospheric Environment, 59, 559-566, 2012. 

Chen, L., Zhu, J., Liao, H., Yang, Y., and Yue, X.: Meteorological influences on PM2.5 and O3 trends and associated health 455 

burden since China's clean air actions, Sci Total Environ, 744, 140837, 10.1016/j.scitotenv.2020.140837, 2020a. 

Chen, Z. Y., Chen, D. L., Kwan, M. P., Chen, B., Gao, B. B., Zhuang, Y., Li, R. Y., and Xu, B.: The control of anthropogenic 

emissions contributed to 80 % of the decrease in PM 2.5 concentrations in Beijing from 2013 to 2017, Atmospheric Chemistry 

and Physics, 19, 13519-13533, 2019. 

Chen, Z. Y., Chen, D. L., Zhao, C. F., Kwan, M.-P., Cai, J., Zhuang, Y., Zhao, B., Wang, X. Y., Chen, B., and Yang, J.: Influence 460 

of meteorological conditions on PM2. 5 concentrations across China: A review of methodology and mechanism, Environment 

International, 139, 105558, 2020b. 

Crouse, D. L., Peters, P. A., van Donkelaar, A., Goldberg, M. S., Villeneuve, P. J., Brion, O., Khan, S., Atari, D. O., Jerrett, M., 

and Pope III, C. A.: Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations 

of fine particulate matter: a Canadian national-level cohort study, Environmental Health Perspectives, 120, 708-714, 2012. 465 

Draper, N. R.: Applied regression analysis, Technometrics, 9, 182-183, 1998. 

Eskridge, R. E., Ku, J. Y., Rao, S. T., Porter, P. S., and Zurbenko, I. G.: Separating different scales of motion in time series of 

meteorological variables, Bulletin of the American Meteorological Society, 78, 1473-1484, 1997. 

Gong, S. L., Liu, H. L., Zhang, B. H., He, J. J., Zhang, H. D., Wang, Y. Q., Wang, S. X., Zhang, L., and Wang, J.: Assessment 

mailto:tlzhao@nuist.edu.cn


21 

 

of meteorology vs. control measures in the China fine particular matter trend from 2013 to 2019 by an environmental 470 

meteorology index, Atmospheric Chemistry and Physics, 21, 2999-3013, 10.5194/acp-21-2999-2021, 2021. 

Gui, K., Che, H. Z., Wang, Y. Q., Wang, H., Zhang, L., Zhao, H. J., Zheng, Y., Sun, T. Z., and Zhang, X. Y.: Satellite-derived 

PM2. 5 concentration trends over Eastern China from 1998 to 2016: Relationships to emissions and meteorological parameters, 

Environmental Pollution, 247, 1125-1133, 2019. 

Guo, H., Cheng, T. H., Gu, X. F., Wang, Y., Chen, H., Bao, F. W., Shi, S. Y., Xu, B. R., Wang, W. N., Zuo, X., Zhang, X. C., 475 

and Meng, C.: Assessment of PM2.5 concentrations and exposure throughout China using ground observations, Sci Total 

Environ, 601-602, 1024-1030, 10.1016/j.scitotenv.2017.05.263, 2017. 

Hsu, C.-H., and Cheng, F.-Y.: Classification of weather patterns to study the influence of meteorological characteristics on 

PM2. 5 concentrations in Yunlin County, Taiwan, Atmospheric Environment, 144, 397-408, 2016. 

Hu, W. Y., Zhao, T. L., Bai, Y. Q., Shen, L. J., Sun, X. Y., and Gu, Y.: Contribution of regional PM2. 5 transport to air pollution 480 

enhanced by sub-basin topography: A modeling case over central China, Atmosphere, 11, 1258, 2020. 

Hu, W. Y., Zhao, T. L., Bai, Y. Q., Kong, S. F., Xiong, J., Sun, X. Y., Yang, Q. J., Gu, Y., and Lu, H. C.: Importance of regional 

PM2. 5 transport and precipitation washout in heavy air pollution in the Twain-Hu Basin over Central China: Observational 

analysis and WRF-Chem simulation, Science of the Total Environment, 758, 143710, 2021. 

Jeong, J. I., and Park, R. J.: Winter monsoon variability and its impact on aerosol concentrations in East Asia, Environ Pollut, 485 

221, 285-292, 10.1016/j.envpol.2016.11.075, 2017. 

Kim, Y. M., Seo, J. H., Kim, J. Y., Lee, J. Y., Kim, H. J., and Kim, B. M.: Characterization of PM 2.5 and identification of 

transported secondary and biomass burning contribution in Seoul, Korea, Environmental Science and Pollution Research, 25, 

4330-4343, 2018. 

Li, G. H., Zavala, M., Lei, W., Tsimpidi, A. P., Karydis, V. A., Pandis, S. N., Canagaratna, M. R., and Molina, L. T.: Simulations 490 

of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign, 

Atmospheric Chemistry and Physics, 11, 3789-3809, 2011. 

Li, K., Liao, H., Cai, W. J., and Yang, Y.: Attribution of anthropogenic influence on atmospheric patterns conducive to recent 

most severe haze over eastern China, Geophysical Research Letters, 45, 2072-2081, 2018. 

Li, S., Ren, A. L., Guo, B., Du, Z., Zhang, S., Tian, M., and Wang, S. S.: Influence of Meteorological Factors and VOCs on 495 

PM2. 5during Severe Air Pollution Period in Shijiazhuang in Winter, 2015 2nd International Conference on Machinery, 

Materials Engineering, Chemical Engineering and Biotechnology, 2015a, 588-592. 

Li, X., Zhang, Q., Zhang, Y., Zheng, B., Wang, K., Chen, Y., Wallington, T. J., Han, W. J., Shen, W., and Zhang, X. Y.: Source 

contributions of urban PM2. 5 in the Beijing–Tianjin–Hebei region: Changes between 2006 and 2013 and relative impacts of 

emissions and meteorology, Atmospheric Environment, 123, 229-239, 2015b. 500 

Lin, C. Q., Liu, G. H., Lau, A. K. H., Li, Y., Li, C. C., Fung, J. C. H., and Lao, X. Q.: High-resolution satellite remote sensing 

of provincial PM2. 5 trends in China from 2001 to 2015, Atmospheric Environment, 180, 110-116, 2018. 

Lu, M. M., Tang, X., Wang, Z. F., Gbaguidi, A., Liang, S. W., Hu, K., Wu, L., Wu, H. J., Huang, Z., and Shen, L. J.: Source 

tagging modeling study of heavy haze episodes under complex regional transport processes over Wuhan megacity, Central 

China, Environmental Pollution, 231, 612-621, 2017. 505 

Ma, Z. Q., Xu, J., Quan, W. J., Zhang, Z. Y., Lin, W. L., and Xu, X. B.: Significant increase of surface ozone at a rural site, 

north of eastern China, Atmospheric Chemistry and Physics, 16, 3969-3977, 2016. 

Miao, Y. C., Hu, X. M., Liu, S. H., Qian, T. T., Xue, M., Zheng, Y. J., and Wang, S.: Seasonal variation of local atmospheric 

circulations and boundary layer structure in the Beijing‐Tianjin‐Hebei region and implications for air quality, Journal of 

Advances in Modeling Earth Systems, 7, 1602-1626, 2015. 510 

Miao, Y. C., Guo, J. P., Liu, S. H., Liu, H., Li, Z. Q., Zhang, W. C., and Zhai, P. M.: Classification of summertime synoptic 

patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution, Atmospheric Chemistry 

and Physics, 17, 3097-3110, 2017. 

Mueller, S. F., and Mallard, J. W.: Contributions of natural emissions to ozone and PM2. 5 as simulated by the community 

multiscale air quality (CMAQ) model, Environmental science & technology, 45, 4817-4823, 2011. 515 



22 

 

Ning, G. C., Yim, S. H. L., Wang, S. G., Duan, B. L., Nie, C. Q., Yang, X., Wang, J. Y., and Shang, K. Z.: Synergistic effects 

of synoptic weather patterns and topography on air quality: a case of the Sichuan Basin of China, Climate Dynamics, 53, 6729-

6744, 2019. 

Pearce, J. L., Beringer, J., Nicholls, N., Hyndman, R. J., and Tapper, N. J.: Quantifying the influence of local meteorology on 

air quality using generalized additive models, Atmospheric Environment, 45, 1328-1336, 2011. 520 

Peng, J., Chen, S., Lü, H. L., Liu, Y. X., and Wu, J. S.: Spatiotemporal patterns of remotely sensed PM2. 5 concentration in 

China from 1999 to 2011, Remote Sensing of Environment, 174, 109-121, 2016. 

Rao, S. T., and Zurbenko, I. G.: Detecting and tracking changes in ozone air quality, Air & waste, 44, 1089-1092, 1994. 

Russell, A. R., Valin, L. C., Bucsela, E. J., Wenig, M. O., and Cohen, R. C.: Space-based constraints on spatial and temporal 

patterns of NO x emissions in California, 2005− 2008, Environmental science & technology, 44, 3608-3615, 2010. 525 

Seo, J., Youn, D., Kim, J. Y., and Lee, H.: Extensive spatiotemporal analyses of surface ozone and related meteorological 

variables in South Korea for the period 1999–2010, Atmospheric Chemistry and Physics, 14, 6395-6415, 2014. 

Seo, J., Kim, J. Y., Youn, D., Lee, J. Y., Kim, H., Lim, Y. B., Kim, Y., and Jin, H. C.: On the multiday haze in the Asian 

continental outflow: the important role of synoptic conditions combined with regional and local sources, Atmospheric 

Chemistry and Physics, 17, 9311-9332, 2017. 530 

Seo, J., Park, D. S. R., Kim, J. Y., Youn, D., Lim, Y. B., and Kim, Y.: Effects of meteorology and emissions on urban air quality: 

a quantitative statistical approach to long-term records (1999–2016) in Seoul, South Korea, Atmospheric Chemistry and 

Physics, 18, 16121-16137, 2018. 

Shen, L. J., Wang, H. L., Zhao, T. L., Liu, J., Bai, Y. Q., Kong, S. F., and Shu, Z. Z.: Characterizing regional aerosol pollution 

in central China based on 19 years of MODIS data: Spatiotemporal variation and aerosol type discrimination, Environmental 535 

Pollution, 263, 114556, 10.1016/j.envpol.2020.114556, 2020. 

Sun, Y., Song, T., Tang, G. Q., and Wang, Y. S.: The vertical distribution of PM2. 5 and boundary-layer structure during summer 

haze in Beijing, Atmospheric Environment, 74, 413-421, 2013. 

Tang, G. Q., Zhang, J. Q., Zhu, X. W., Song, T., Münkel, C., Hu, B., Schäfer, K., Liu, Z. R., Zhang, J. K., and Wang, L. L.: 

Mixing layer height and its implications for air pollution over Beijing, China, Atmospheric Chemistry and Physics, 16, 2459-540 

2475, 2016. 

Wang, P., Guo, H., Hu, J., Kota, S. H., Ying, Q., and Zhang, H.: Responses of PM2.5 and O3 concentrations to changes of 

meteorology and emissions in China, Sci Total Environ, 662, 297-306, 10.1016/j.scitotenv.2019.01.227, 2019. 

Wang, X. Y., Wang, K. C., and Su, L. Y.: Contribution of atmospheric diffusion conditions to the recent improvement in air 

quality in China, Scientific reports, 6, 1-11, 2016. 545 

Wang, Y., Di Sabatino, S., Martilli, A., Li, Y., Wong, M. S., Gutiérrez, E., and Chan, P. W.: Impact of land surface heterogeneity 

on urban heat island circulation and sea-land breeze circulation in Hong Kong, Journal of Geophysical Research: Atmospheres, 

122, 4332-4352, 10.1002/2017jd026702, 2017. 

Xiao, Q., Zheng, Y., Geng, G., Chen, C., Huang, X., Che, H., Zhang, X., He, K., and Zhang, Q.: Separating emission and 

meteorological contributions to long-term PM2.5 trends over eastern China during 2000–2018, Atmospheric Chemistry and 550 

Physics, 21, 9475-9496, 10.5194/acp-21-9475-2021, 2021. 

Xu, Y., Xue, W., Lei, Y., Huang, Q., Zhao, Y., Cheng, S., Ren, Z., and Wang, J.: Spatiotemporal variation in the impact of 

meteorological conditions on PM2.5 pollution in China from 2000 to 2017, Atmospheric Environment, 223, 117215, 

10.1016/j.atmosenv.2019.117215, 2020. 

Xue, T., Liu, J., Zhang, Q., Geng, G. N., Zheng, Y. X., Tong, D., Liu, Z., Guan, D. B., Bo, Y., and Zhu, T.: Rapid improvement 555 

of PM 2.5 pollution and associated health benefits in China during 2013–2017, Science China Earth Sciences, 62, 1847-1856, 

2019. 

Yang, H., Chen, J., Wen, J., Tian, H., and Liu, X.: Composition and sources of PM2.5 around the heating periods of 2013 and 

2014 in Beijing: Implications for efficient mitigation measures, Atmospheric Environment, 124, 378-386, 

10.1016/j.atmosenv.2015.05.015, 2016a. 560 

Yang, Y., Liao, H., and Lou, S.: Increase in winter haze over eastern China in recent decades: Roles of variations in 



23 

 

meteorological parameters and anthropogenic emissions, Journal of Geophysical Research: Atmospheres, 121, 13,050-013,065, 

10.1002/2016jd025136, 2016b. 

Yin, C. Q., Deng, X. J., Zou, Y., Solmon, F., Li, F., and Deng, T.: Trend analysis of surface ozone at suburban Guangzhou, 

China, Science of The Total Environment, 695, 133880, 2019a. 565 

Yin, C. Q., Deng, X. J., Zou, Y., Solmon, F., Li, F., and Deng, T.: Trend analysis of surface ozone at suburban Guangzhou, 

China, Sci Total Environ, 695, 133880, 10.1016/j.scitotenv.2019.133880, 2019b. 

Yu, C., Zhao, T. L., Bai, Y. Q., Zhang, L., Kong, S. F., Yu, X. N., He, J. H., Cui, C. G., Yang, J., and You, Y. C.: Heavy air 

pollution with a unique “non-stagnant” atmospheric boundary layer in the Yangtze River middle basin aggravated by regional 

transport of PM 2.5 over China, Atmospheric Chemistry and Physics, 20, 7217-7230, 2020. 570 

Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., and Liao, H.: Fine particulate matter (PM2.5) 

trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology, Atmospheric Chemistry 

and Physics, 19, 11031-11041, 10.5194/acp-19-11031-2019, 2019. 

Zhang, W. J., Wang, H., Zhang, X. Y., Peng, Y., Zhong, J. T., Wang, Y. Q., and Zhao, Y. F.: Evaluating the contributions of 

changed meteorological conditions and emission to substantial reductions of PM2. 5 concentration from winter 2016 to 2017 575 

in Central and Eastern China, Science of The Total Environment, 716, 136892, 2020. 

Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M., and Sun, J. Y.: Atmospheric aerosol compositions 

in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols, 

Atmospheric Chemistry and Physics, 12, 779-799, 2012. 

Zhang, X. Y., Xu, X. D., Ding, Y. H., Liu, Y. J., Zhang, H. D., Wang, Y. Q., and Zhong, J. T.: The impact of meteorological 580 

changes from 2013 to 2017 on PM 2.5 mass reduction in key regions in China, Science China Earth Sciences, 62, 1885-1902, 

2019. 

Zhang, Z., Ma, Z., and Kim, S.: Significant decrease of PM2. 5 in Beijing based on long-term records and Kolmogorov-

Zurbenko filter approach, Aerosol and Air Quality Research, 18, 711-718, 2018. 

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C. P., Geng, G. N., Li, H. Y., Li, X., Peng, L. Q., and Qi, J.: Trends in China's 585 

anthropogenic emissions since 2010 as the consequence of clean air actions, Atmospheric Chemistry and Physics, 18, 14095-

14111, 2018. 

Zheng, H., Kong, S. F., Zheng, M. M., Yan, Y. Y., Yao, L. Q., Zheng, S. R., Yan, Q., Wu, J., Cheng, Y., and Chen, N.: A 5.5-

year observations of black carbon aerosol at a megacity in Central China: Levels, sources, and variation trends, Atmospheric 

Environment, 232, 117581, 2020. 590 

Zhong, J. T., Zhang, X. Y., Wang, Y. Q., Wang, J. Z., Shen, X. J., Zhang, H. S., Wang, T. J., Xie, Z. Q., Liu, C., and Zhang, H. 

D.: The two-way feedback mechanism between unfavorable meteorological conditions and cumulative aerosol pollution in 

various haze regions of China, Atmospheric Chemistry and Physics, 19, 3287-3306, 2019. 

Zhu, J. L., Liao, H., and Li, J. P.: Increases in aerosol concentrations over eastern China due to the decadal‐scale weakening 

of the East Asian summer monsoon, Geophysical Research Letters, 39, 2012. 595 

 

 

 

 

 600 



24 

 

Table 1 Adjusted determination coefficients (Adj. R2) between the baseline components decomposed by KZ filter and fitted 

with multiple linear regressions respectively for PM2.5BL, SO2BL and NO2BL in 14 sites over the THB. All Adj. R2 passing the 

confidence level of 99%. 

Sites 

Adj. R2 of multiple linear regressions 

PM2.5BL SO2BL NO2BL 

JZ 0.6776 0.4166 0.8358 

XN 0.6899 0.0630 0.7408 

XY 0.7971 0.6741 0.8181 

JM 0.7872 0.3612 0.6480 

YC 0.7168 0.2980 0.6304 

SZ 0.7175 0.3612 0.8669 

WH 0.7289 0.2718 0.6653 

EZ 0.7162 0.4592 0.7523 

HG 0.6937 0.1901 0.7220 

HS 0.5695 0.2787 0.6952 

CS 0.7307 0.1255 0.7012 

YY 0.7501 0.1047 0.7592 

XG 0.6755 0.4389 0.7692 

CD 0.7017 0.1730 0.6937 
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Figure 1 Topographical height (color contours, m, in a. s. l.) over the THB (outlined with black dashed line) with the locations 605 

of 14 sites (red dots) and the surrounding regions in central China.  

 

Figure 2 Spatial distributions of the (a) total and relative contributions of (b) short-term, (c) seasonal and (d) long-term 

components to the total variances of daily PM2.5 changes observed at 14 sites in the THB with the regional averages of 92.7%, 

47.5%, 41.4% and 3.7%.  610 



26 

 

 

Figure 3 The relations of regional averages of (a) short-term (PM2.5-ST), (b) seasonal (PM2.5-SN) and (c) long-term (PM2.5-

LT) components with the observed daily PM2.5 concentrations (PM2.5) over the THB from 2015 to 2019.  

 

 615 

Figure 4 Interannual variations in the ratios of observed annual mean concentrations of SO2, NO2 and PM2.5 relative to those 

in 2015 averaged over the THB.  
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Figure 5 Spatial distributions of (left column) 5-year averages of (a) PM2.5, (d) SO2 and (g) NO2 concentrations (A, unit: μg m-

3), (middle column) the linear trends in interannual variations of (b) PM2.5, (e) SO2 and (h) NO2 (k, unit: μg m-3 yr-1), as well as 620 

(right column) the change rates (Rt=k/A, unit: % yr-1) of (c) PM2.5, (f) SO2 and (i) NO2 in the THB over 2015–2019.  

 

 

Figure 6 Spatial distributions of the linear trends in emission-related long-term components of (a) PM2.5, (b) SO2 and (c) NO2 

(unit: μg m-3 d-1) over 2015–2019 in the THB 625 
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Figure 7 Spatial distributions of the ratios of linear trends in long-term components (𝑘LT) and emission-related long-term 

components (𝑘emiss) of (a) PM2.5, (b) SO2 and (c) NO2 at 14 sites in the THB over 2015–2019.  

 630 

 

Figure 8 Scatter plots of the ratios between 𝑘LT and 𝑘𝑒𝑚𝑖𝑠𝑠 of (a) SO2, (b) NO2 and PM2.5 in the THB from 2015 to 2019 

with red lines for the linear fitting equations.  
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 635 

Figure 9 Spatial distribution of contribution rates (colored dots, unit: %) of meteorological variations to PM2.5 reductions with 

topographical height (color contours, m, in a. s. l.) in the THB (outlined with orange dashed orange line) and surrounding 

regions from 2015 to 2019.  
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Figure 10 Spatial distribution of contribution rates of meteorological variations to PM2.5 reductions based on WRF-Chem 

modeling experiments (contour, unit: %) in the THB outlined with black dashed line and surrounding regions for December 

of 2015–2019.  


