
Dear Editors and Referees: 

 

Thank you very much for your careful review and constructive comments on our manuscript acp-2021-

709. We have accordingly made the substantial revisions. The revised portions are highlighted in the 

revised manuscript. In the following, we quoted each review question in the square brackets and added 

our response after each paragraph. 

 

Responses to Referee #1 

 

[1. General comments: The manuscript by Sun et al. analyzes the impact of meteorological factors on 

the changes in PM2.5 concentration in Twain-Hu Basin, China using a Kolmogorov-Zurbenko filter. They 

conclude that interannual and seasonal meteorology have the largest impacts on the changes in PM2.5. 

However, the method used in this work is not validated using synthetic data or with other methods, so the 

accuracy of the results is doubtful. In addition, this work focuses on a very small region, and the results 

may not have broader implications for national - global air pollution issues and may not fit the scope of 

the general ACP readership.] 

 

Response 1.1: Thanks for the referee’s comments and suggestions. Please find our response as follows 

and the subsequent Response 1.2 to the referee’s comments and suggestions: 

 

According to the suggestions, we have conducted the simulation experiments with Weather Research 

and Forecasting model with Chemistry (WRF-Chem) to validate the accuracy of the results with KZ filter, 

which is added in the new Sect. 3.6 as follows:  

 

3.6 Meteorological contribution to PM2.5 changes validated with WRF-Chem modeling  

The above observational study investigated the meteorological influence on the changes in PM2.5 

concentrations in the THB using KZ filter, with concluding the large impact of meteorology on the PM2.5 

changes over 2015–2019. To validate this conclusion of analyses with KZ filter, we designed three sets 

of modeling experiments CTRL, SENS-MET and SENS-EMI (Table S6) for December of 2015–2019, 

respectively driven with the changing meteorology and anthropogenic emissions over 2015–2019, the 

fixed meteorological conditions and anthropogenic emissions of 2015 with atmospheric chemical model 



WRF-Chem (Weather Research and Forecasting model with Chemistry). Air pollutant emission 

inventories, modeling configuration, experiment design and modeling verification were described in the 

supplement. The modeling verification of experiments CTRL indicated that PM2.5 and meteorology were 

reasonably reproduced by the WRF-Chem simulation (Figs.S4–S5, Table S7), and the designed three sets 

of modeling experiments CTRL, SENS-MET and SENS-EMI could be used in the further analyses of 

emission and meteorological impact on PM2.5 change over 2015–2019 to confirm the results of KZ filter.  

We derived the effect of meteorology by comparing the simulated PM2.5 concentrations in the three 

sets of experiments CTRL, SENS-MET and SENS-EMI (Table S6). The relative contribution of 

meteorology to the interannual changes of PM2.5 concentrations was calculated with a linear additive 

relationship of contributions of meteorology and emission in the following equations:  

 

𝐶𝑜𝑛𝑀𝐸𝑇 =
𝑘𝑀𝐸𝑇

𝑘𝐶𝑇𝑅𝐿
(11) 

𝐶𝑜𝑛𝐸𝑀𝐼 =
𝑘𝐸𝑀𝐼

𝑘𝐶𝑇𝑅𝐿
(12) 

𝑅𝐶𝑜𝑛𝑀𝐸𝑇 =
𝐶𝑜𝑛𝑀𝐸𝑇

𝐶𝑜𝑛𝑀𝐸𝑇 + 𝐶𝑜𝑛𝐸𝑀𝐼
× 100% (13) 

 

𝑘𝐶𝑇𝑅𝐿, 𝑘𝑀𝐸𝑇 and 𝑘𝐸𝑀𝐼 represent the trends in interannual changes of PM2.5 concentrations simulated 

by the experiments CTRL, SENS-MET and SENS-EMI, respectively. 𝐶𝑜𝑛𝑀𝐸𝑇   and 𝐶𝑜𝑛𝐸𝑀𝐼  are the 

contribution of meteorology and emission, and 𝑅𝐶𝑜𝑛𝑀𝐸𝑇 is the contribution rate (%) of meteorology to 

interannual changes of PM2.5 concentrations (Zhang et al., 2020).  

Based on WRF-Chem modeling experiments, we assessed the impact of meteorological changes on 

interannual PM2.5 variations from 2015 to 2019 with Eqs. (11–13). The relative contribution of 

meteorology to interannual PM2.5 variations displayed the regional pattern of northern positive and 

southern negative values over the THB (Fig. 10), confirming the impact of meteorological changes by 

accelerating and offsetting the effects of emission reductions on PM2.5 declining trends in the northern 

and southern THB, respectively. The general spatial distribution of meteorological contribution rates to 

PM2.5 declining trends from the WRF-Chem simulation was consistent with the results using KZ filter 

(Figs. 9 and 10), validating the results with KZ filter that meteorological drivers exerted a contrary impact 

of northern positive and southern negative contribution on long-term changes of PM2.5 concentrations in 

the THB.  



  

Figure 10 Spatial distribution of contribution rates of meteorological variations to PM2.5 reductions based 

on WRF-Chem modeling experiments (contour, unit: %) in the THB outlined with black dashed line and 

surrounding regions for December of 2015–2019.  

 

[1. General comments: … ... … … In addition, this work focuses on a very small region, and the results 

may not have broader implications for national - global air pollution issues and may not fit the scope of 

the general ACP readership] 

Response 1.2: In response to the above comments, we have clarified the highlights and implications in 

the revised Abstract and Introduction as follows: 

 

The THB covering a large region of two provinces, Hubei and Hunan in central China, is surrounded 

by the high air pollutant emission regions in North China Plain (NCP) to the north, Yangtze River Delta 

(YRD) to the east, Pearl River Delta (PRD) to the south and Sichuan Basin (SB) to the west (Lin et al., 

2018). Driven by East Asian monsoonal winds over Central Eastern China, THB is a major receptor region 

in regional transport of air pollutants over China (Shen et al., 2020). Governed by the multi-scale 

atmospheric circulations, air pollutants emitted from the upwind source regions can be transported easily 

to the downstream receptor region exacerbating the regional air quality, which can result in a complicated 

relation of source and receptor in regional transport of air pollutants (Hu et al., 2021). However, the 

previous studies mostly focused on the atmospheric environment change in the source regions with high 

anthropogenic emissions of air pollutants, and there have been few assessments on multi-scale changes 

of atmospheric environment over the receptor region in regional transport of air pollutants. In the present 



study of 5-year observations and modeling, we targeted the THB, a large region of heavy PM2.5 pollutions 

over central China, to assess the meteorological effect on PM2.5 changes over a receptor region in regional 

transport of air pollutants, and we assessed the contributions of air pollutant emissions and meteorological 

conditions to air quality change over this receptor region with the long-term observations over recent 

years. Our results highlight the effects of emission mitigation and meteorological changes on source-

receptor relationship of region transport of air pollutants with the implication of long-range transport of 

air pollutants for regional and global environment changes. Therefore, the results in this paper have 

broader implications for regional - global air pollution issues and fit the scope of the general ACP 

readership.  

 

References:  

Hu, W. Y., Zhao, T. L., Bai, Y. Q., Kong, S. F., Xiong, J., Sun, X. Y., Yang, Q. J., Gu, Y., and Lu, H. C.: 

Importance of regional PM2. 5 transport and precipitation washout in heavy air pollution in the Twain-

Hu Basin over Central China: Observational analysis and WRF-Chem simulation, Science of the Total 

Environment, 758, 143710, 2021. 

Lin, C. Q., Liu, G. H., Lau, A. K. H., Li, Y., Li, C. C., Fung, J. C. H., and Lao, X. Q.: High-resolution 

satellite remote sensing of provincial PM2. 5 trends in China from 2001 to 2015, Atmospheric 

Environment, 180, 110-116, 2018. 

Shen, L. J., Wang, H. L., Zhao, T. L., Liu, J., Bai, Y. Q., Kong, S. F., and Shu, Z. Z.: Characterizing 

regional aerosol pollution in central China based on 19 years of MODIS data: Spatiotemporal variation 

and aerosol type discrimination, Environmental Pollution, 263, 114556, 10.1016/j.envpol.2020.114556, 

2020. 

Zhang, W. J., Wang, H., Zhang, X. Y., Peng, Y., Zhong, J. T., Wang, Y. Q., and Zhao, Y. F.: Evaluating the 

contributions of changed meteorological conditions and emission to substantial reductions of PM2.5 

concentration from winter 2016 to 2017 in Central and Eastern China, Science of The Total Environment, 

716, 136892, 2020. 

 

[2. Abstract, please clarify why THB is selected as the studied region in this work.] 

Response 2: The THB covering a large region of two provinces, Hubei and Hunan in central China, is 

surrounded by the high air pollutant emission regions in North China Plain (NCP) to the north, Yangtze 

River Delta (YRD) to the east, Pearl River Delta (PRD) to the south and Sichuan Basin (SB) to the west 

(Lin et al., 2018). Driven by East Asian monsoonal winds over Central Eastern China, THB is a major 



receptor region in regional transport of air pollutants over China (Shen et al., 2020). Governed by the 

multi-scale atmospheric circulations, air pollutants emitted from the upwind source regions can be 

transported easily to the downstream receptor region exacerbating the regional air quality, which can 

result in a complicated relation of source and receptor in regional transport of air pollutants (Hu et al., 

2021). However, the previous studies mostly focused on the atmospheric environment change in the 

source regions with high anthropogenic emissions of air pollutants, and there have been few assessments 

on multi-scale changes of atmospheric environment over the receptor region in regional transport of air 

pollutants. Thus, we assessed the contributions of air pollutant emissions and meteorological conditions 

to air quality change over this receptor region in central China with the long-term observations over recent 

years. Our results highlight the effects of emission mitigation and meteorological changes on source-

receptor relationship of region transport of air pollutants with the implication of long-range transport of 

air pollutants for regional and global environment changes. In the revised Abstract, we have clarified why 

THB is selected as the studied region in this work as follows:  

As an important issue in atmospheric environment, the contributions of anthropogenic emissions and 

meteorological conditions to air pollution have been few assessed over the receptor region in regional 

transport of air pollutants. In the present study of 5-year observations and modeling, we targeted the 

Twain-Hu Basin (THB), a large region of heavy PM2.5 pollutions over central China, to assess the 

meteorological effects on PM2.5 change over a receptor region in regional transport of air 

pollutants. … … … … Our results highlight the effects of emission mitigation and meteorological 

changes on source-receptor relationship of region transport of air pollutants with the implication of long-

range transport of air pollutants for regional and global environment changes. 

 

References:  
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satellite remote sensing of provincial PM2. 5 trends in China from 2001 to 2015, Atmospheric 
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Shen, L. J., Wang, H. L., Zhao, T. L., Liu, J., Bai, Y. Q., Kong, S. F., and Shu, Z. Z.: Characterizing 

regional aerosol pollution in central China based on 19 years of MODIS data: Spatiotemporal variation 



and aerosol type discrimination, Environmental Pollution, 263, 114556, 10.1016/j.envpol.2020.114556, 

2020. 

 

[3. L99-100, please clarify what the numbers in the subscript of KZ stand for and why using 1.7 years 

here.] 

Response 3: The KZ filter 𝐾𝑍𝑚,𝑝 is a low-pass filter based on an iterative moving average to remove 

the high frequency variations from the daily observational data, m and p in the subscript of KZ are moving 

average (unit: day) and number of iterations (unit: time) respectively.  

By comparing different sets of moving average m and number of iterations p, it was found that the 

decomposed time series using 𝐾𝑍15,5 (15-day length with five iterations) filter exhibited no white noise 

(short-term component), and the trend of long-term component derived with 𝐾𝑍365,3 (365-day length 

with three iterations) filter corresponded approximately to the interannual trend of the original data, so 

that 𝐾𝑍15,5 and 𝐾𝑍365,3 filters were used to decompose the short-term and long-term components from 

the daily observational data (Rao and Zurbenko, 1994; Eskridge et al., 1997).  

Based on the spectral decompositions of the daily observational data and three components (Fig. R1), 

the power spectral of daily observational data in periods less than 33 days and longer than 632 days (1.7 

years) have been well reproduced by short-term and long-term components, and seasonal component 

represents well the seasonal variations, i.e., periods between 33 days and 1.7 years. We also clarified why 

using 33 days and 1.7 years in the revised manuscript (Lines 106–113) as shown below:  

 

By comparing different sets of moving average m and number of iterations p, it was found that the 

decomposed time series using 𝐾𝑍15,5 filter exhibited no white noise (short-term component), and the 

trend of long-term component derived with 𝐾𝑍365,3 filter corresponded approximately to the interannual 

trend of the original data (Rao and Zurbenko, 1994; Eskridge et al., 1997). Based on the spectral 

decompositions of the daily observational data and three components, the power spectral of daily 

observational data in periods less than 33 days and longer than 632 days (1.7 years) have been well 

reproduced by short-term and long-term components, and seasonal component represents well the 

seasonal variations, i.e., periods between 33 days and 1.7 years (Seo et al., 2018). Thus we applied KZ15,5 

and KZ365,3 filters to remove the variations with the periods shorter than 33 days and 1.7 years in this 

study.  

 



 

Figure R1 Power spectra of (a) log-transformed original time series X (black line) and (b) the short-term 

(less than 33 days), (c) seasonal (between 33 days and 632 days), and (d) long-term components (longer 

than 632 days) (red lines). Effective filter widths for 𝐾𝑍15,5 filter (33 days) and 𝐾𝑍365,3 filter (632 days) 

are marked with blue vertical dashed lines. The power spectrum of the original time series in (a) is 

represented with gray lines in (b-d) (Seo et al., 2018).  

 

References:  

Eskridge, R. E., Ku, J. Y., Rao, S. T., Porter, P. S., and Zurbenko, I. G.: Separating different scales of 

motion in time series of meteorological variables, Bulletin of the American Meteorological Society, 78, 

1473-1484, 1997. 

Rao, S. T., and Zurbenko, I. G.: Detecting and tracking changes in ozone air quality, Air & waste, 44, 

1089-1092, 1994. 

Seo, J., Park, D. S. R., Kim, J. Y., Youn, D., Lim, Y. B., and Kim, Y.: Effects of meteorology and 

emissions on urban air quality: a quantitative statistical approach to long-term records (1999–2016) in 

Seoul, South Korea, Atmospheric Chemistry and Physics, 18, 16121-16137, 2018. 

 



[4. L148-154, it is not clear to me how the authors verified this approach. How are the results compared 

to analyses using other methods? Could synthetic data be generated to test this approach?] 

 

Response 4.1: Many thanks for the referee’s comments. Please find our response as follows and the 

subsequent parts in Responses 4.2 and 4.3 to the referee’s comments and suggestions:  

     As presented in the response 3, the best moving average m and number of iterations p are chosen 

to separate the multi-scale components with the KZ filter in this study, as the correlation coefficients of 

0.05, 0.01 and 0.04 among the decomposed short-term, seasonal and long-term components were near 

zero, indicating the orthogonal decomposition of multi-time scale components (Eskridge et al., 1997). 

Besides, the larger the total variance, the more independent the three components are of each other (Chen 

et al., 2019). The sum of the long-term, seasonal and short-term components contributed 91.4–94.4 % to 

the total variance with the regional averages of 92.7 % (Fig. 2), reflecting a satisfactory verification of 

the KZ filtering results. According to the decomposed long-term, seasonal and short-term components 

demonstrated in Fig. 3, the notable peaks of decomposed seasonal and short-term components were highly 

consistent with the peaks of PM2.5 concentrations in the original observed data, which further proved a 

reasonable decomposition of the multi-scale components of PM2.5 change over 2015–2019.  

The verification of the decomposition using KZ filter have been added in Lines 164–167 and Lines 

179-184 of the revised manuscript:  

 

The larger the total variance, the more independent the three components are of each other (Chen et 

al., 2019). The sum of the long-term, seasonal and short-term components contributed 91.4–94.4 % to the 

total variance with the regional averages of 92.7 % (Fig. 2), reflecting a satisfactory verification of the 

KZ filtering results. (Lines 163–166) 

… … … … 

The correlation coefficients of 0.05, 0.01 and 0.04 among the decomposed short-term, seasonal and 

long-term components were near zero, indicating the orthogonal decomposition of multi-time scale 

components (Eskridge et al., 1997). According to the decomposed long-term, seasonal and short-term 

components demonstrated in Fig. 3, the notable peaks of decomposed seasonal and short-term 

components were highly consistent with the peaks of PM2.5 concentrations in the original observed data, 

which further proved a reasonable decomposition of the multi-scale components of PM2.5 change over 

2015–2019. (Lines 178-183) 

 



[4. L148-154: … … … … How are the results compared to analyses using other methods? … … … …] 

 

Response 4.2: In response to this comment, we compared the decomposed long-term component using 

KZ filter with other studies and have revised the manuscript (Lines 196–198) as follows: 

 

The change of long-term component of PM2.5 exhibited a steadily declining trend over 2015–2019 

(Fig. 3c), which was consistent with the interannual trend of observed regional PM2.5 concentrations under 

the sustained impact of emission control (Zhang et al., 2019; Xu et al., 2020).  

 

To further validate the accuracy of the meteorological contribution to PM2.5 changes with KZ filter, 

we have conducted the simulation experiments with WRF-Chem, which is added in the new Sect. 3.6.  

 

[4. L148-154: … … … … Could synthetic data be generated to test this approach?] 

 

Response 4.3: There are various statistical methods using synthetic data to quantify the relative 

contribution of meteorology and emission on air pollution over China. Multiple linear regression model 

was constructed to quantify meteorological influences on the trends in PM2.5 changes, with a novel focus 

on the contribution of the most influential meteorological factors to PM2.5 trends for four seasons, 

contributing 2 %–29 % of the observed decreasing trend of PM2.5 concentrations over China during recent 

years (Chen et al., 2020). The meteorology-driven anomalies contributed –3.9 % to 2.8 % of the annual 

mean PM2.5 concentrations in China estimated from the generalized additive model driven by the satellite-

based full-coverage daily PM2.5 retrievals (Xiao et al., 2021). Based on the model-based environmental 

meteorology index, both meteorological variations and emission controls contributed to PM2.5 decrease 

in the THB, with the meteorology contributing –45.5 % (Gong et al., 2021). These results emphasize the 

general accelerating effect of meteorology on PM2.5 decline national wide and the offsetting effect for 

various regions. The comparison of the results using KZ filter with other studies using synthetic data have 

been added in Lines 356–359 of the revised manuscript:  

 

Comparing with the statistical studies using synthetic data of meteorological influence on regional 

PM2.5 changes in China with meteorological contribution from –45.5 % to 29.0 % over recent years (Chen 

et al., 2020; Xiao et al., 2021; Gong et al., 2021), the PM2.5 pollution over the THB was affected contrarily 



by meteorological drivers with the northern positive and southern negative contribution from 2015 to 

2019 (Fig. 9).  
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[5. Section 3.1, how are the results compared to other studies?] 

 

Response 5: In response to the referee’s comments, we clarified the verification of KZ filter in the revised 



manuscript from the following two aspects: (1) comparing the decomposited short-term, seasonal and 

long-term components; (2) the decomposition of emission- and meteorology-related long-term 

components.  

(1) The comparison of decomposed multi-time scale components with other studies has been given in 

response 4.1 and have been added in Lines 164–167 and Lines 179-184 of the revised manuscript:  

 

The larger the total variance, the more independent the three components are of each other (Chen et 

al., 2019). The sum of the long-term, seasonal and short-term components contributed 91.4–94.4 % to the 

total variance with the regional averages of 92.7 % (Fig. 2), reflecting a satisfactory verification of the 

KZ filtering results. (Lines 164–167) 

… … … … 

The correlation coefficients of 0.05, 0.01 and 0.04 among the decomposed short-term, seasonal and 

long-term components were near zero, indicating the orthogonal decomposition of multi-time scale 

components (Eskridge et al., 1997). According to the decomposed long-term, seasonal and short-term 

components demonstrated in Fig. 3, the notable peaks of decomposed seasonal and short-term 

components were highly consistent with the peaks of PM2.5 concentrations in the original observed data, 

which further proved a reasonable decomposition of the multi-scale components of PM2.5 change over 

2015–2019. (Lines 179-184) 

 

(2) The comparison of emission- and meteorology-related long-term components with other studies was 

clarified in the revised manuscript (Lines 196–198 and Lines 202–210) as follows:  

 

The change of long-term component of PM2.5 exhibited a steadily declining trend over 2015–2019 

(Fig. 3c), which was consistent with the interannual trend of observed regional PM2.5 concentrations under 

the sustained impact of emission control (Zhang et al., 2019; Xu et al., 2020). (Lines 196–198)  

 

In previous studies, chemical transport models and statistical methods were both used to assess the 

changes in air pollution attributable to emissions and meteorology (Xiao et al., 2021). Significant declines 

in emission-related PM2.5 concentrations occurred in central China (Wang et al., 2019; Chen et al., 2020), 

and the meteorology offset the impact of emission reduction in typical years of unfavorable 

meteorological conditions (Xu et al., 2020; Gong et al., 2021). The regional averaged emission- and 

meteorology-related long-term components as well as the long-term component over the THB are 



displayed in Fig. S1a, implying the steadily declining trend of PM2.5 and the dominating impact of 

emission reduction on long-term PM2.5 changes, which is consistent with the previous studies using 

multiple linear regression model for central China (Fig. S1b). The meteorology-related long-term 

component is positive value in certain periods, implying the significant modulation effect of meteorology 

on PM2.5 decline in the THB. (Lines 202–210) 

 

 

Figure S1 (a) The regional averaged long-term (PM2.5-LT), emission-related long-term (PM2.5-LT-emi) 

and meteorology-related long-term (PM2.5-LT-met) components over the THB from 2015 to 2019. (b) 

Meteorologically driven, and non-meteorologically (emission) driven trends of annual and seasonal PM2.5 

concentrations during 2014–2018 for central China. Blue and red bars respectively represent 

meteorologically driven trends and non-meteorologically (emission) driven trends (reconstructed from 

Chen et al., 2020).  
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[6. L196, what are the relative contributions of emissions and meteorology to the long-term changes in 

PM2.5 based on the analyses here?] 

 

Response 6: We applied KZ15,5 and KZ365,3 filters to remove variabilities of periods shorter than 33 

days and 1.7 years and decompose the daily environmental data into short-term, seasonal and long-term 

components. The long-term component can be further separated into emission-related and meteorology-

related components by isolating the emission-related component using a multiple linear regression model 

with representative meteorological variables (Seo et al., 2018). The detailed methods about the separation 

of emission- and meteorology-related long-term components are displayed in Fig. R2 and Sect. 2.3 of the 

revised manuscript.  

The slope of the long-term component can reveal the long-term trend after short-term and seasonal 

variations are removed from the daily observational data. The difference between the slope of emission-

related long-term and long-term components of PM2.5 is caused by meteorological changes. The 

meteorological contribution to the PM2.5 declining trend is quantitatively assessed with Eq. (10) in the 

revised manuscript (Lines 338–340) as follows:  

 

Conmet =
kLT − kemiss

kLT
× 100%. (10) 

Conmet (in %) is estimated with the linear trends kLT of long-term component PM2.5LT(t) and kemiss 

of emission-related long-term component PM2.5LT
emiss(t).  



 

 

 

Figure R2 Schematic flowchart of time series decomposition of any environmental variable X into short-

term, seasonal, and emission-related and meteorology-related long-term components (Seo et al., 2018).  
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[7. L217-218, this can be testified by checking the trend of SO2 emissions in this region from the emission 

estimate. Do the emissions support your explanations here?] 

 

Response 7: Following the reviewer’s comment, we have testified by checking the trend of SO2 emissions 

in this region from the emission estimate in the revised manuscript (Lines 259–263) as follows:  

 

   The interannual variations in emissions for China were calculated from MEIC (Zheng et al., 2018), 

as well as the annual total emissions of SO2 and NOx, PM in THB region reported by National Bureau of 

Statistic of China (http://www.stats.gov.cn/tjsj/ndsj/, last access: January 17, 2022), presenting the rapid 

decline of SO2 emissions in the THB than changes of PM2.5 and NOx emissions (Fig. S2). The declining 



trend of anthropogenic emissions estimated from emission inventories can support the explanation of the 

changes in air pollutant concentrations.  

 

 

Figure S2 (a) Interannual variations in the ratios of MEIC emissions for 2010–2017 compared with 

satellite- and ground- based observations relative to those in 2013 (Zheng et al., 2018), (b) interannual 

variations in the ratios of annual total emission of SO2, NOx and PM relative to those in 2015 averaged 

over the THB reported by National Bureau of Statistic of China.  
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Responses to Referee #2 

 

[1. General comments: This study investigates the relative contribution from meteorological effect and 

emission changes to PM2.5 variation over the Twain-Hu Basin (THB) based on the Kolmogorov–Zurbenko 

(KZ) filtering of long-term air quality measurement data. It is indicated that the reduction in 

anthropogenic emissions was the primary cause for the long-term decline in PM2.5 concentrations and 

the meteorological changes moderated the PM2.5 variations in the THB. However, in terms of novelty and 

broad interest, this work still needs to be improved. Besides, there could be great uncertainties associated 

with the multiple linear regression and KZ filtering method, but the authors have not validated the method 

and touched on the uncertainties in the conclusion. Here list some of my main concerns.] 



 

Response 1.1: Thanks for the referee’s comments and suggestions. Please find our response as follows 

and the subsequent Response 1.2 to the referee’s comments and suggestions.  

We have clarified the highlights and implications for novelty and broad interest in the revised Abstract 

and Introduction as follows:  

 

The THB covering a large region of two provinces, Hubei and Hunan in central China, is surrounded 

by the high air pollutant emission regions in North China Plain (NCP) to the north, Yangtze River Delta 

(YRD) to the east, Pearl River Delta (PRD) to the south and Sichuan Basin (SB) to the west (Lin et al., 

2018). Driven by East Asian monsoonal winds over Central Eastern China, THB is a major receptor region 

in regional transport of air pollutants over China (Shen et al., 2020). Governed by the multi-scale 

atmospheric circulations, air pollutants emitted from the upwind source regions can be transported easily 

to the downstream receptor region exacerbating the regional air quality, which can result in a complicated 

relation of source and receptor in regional transport of air pollutants (Hu et al., 2021). However, the 

previous studies mostly focused on the atmospheric environment change in the source regions with high 

anthropogenic emissions of air pollutants, and there have been few assessments on multi-scale changes 

of atmospheric environment over the receptor region in regional transport of air pollutants. In the present 

study of 5-year observations and modeling, we targeted the THB, a large region of heavy PM2.5 pollutions 

over central China, to assess the meteorological effect on PM2.5 changes over a receptor region in regional 

transport of air pollutants, and we assessed the contributions of air pollutant emissions and meteorological 

conditions to air quality change over this receptor region with the long-term observations over recent 

years. Our results highlight the effects of emission mitigation and meteorological changes on source-

receptor relationship of region transport of air pollutants with the implication of long-range transport of 

air pollutants for regional and global environment changes. Therefore, the results in this paper have 

broader implications for regional - global air pollution issues.  

 

[1. General comments: … … … … Besides, there could be great uncertainties associated with the multiple 

linear regression and KZ filtering method, but the authors have not validated the method and touched on 

the uncertainties in the conclusion.]  

Response 1.2: The multiple linear regression is done stepwise, adding and deleting meteorological factors 

based on their independent statistical significance to obtain the best regression fit for air pollutants. For 

meteorological variables not in the final multiple linear regression model, the regression coefficients are 



zero. The selected meteorological variables differ by sites and all regression coefficients pass the 

confidence of 99%. The multiple linear regressions explained PM2.5BL, SO2BL and NO2BL with adjusted 

determination coefficients (Adj. R2) of 0.5695–0.8093, 0.0630–0.4592 and 0.6304–0.8669 passing the 

confidence level of 99 % in all the THB sites, confirming the reasonable construct of multiple linear 

regressions. The detailed justification and validation of selecting the meteorological parameters and 

discussions about validating the multiple linear regressions are clarified in Sect. 3.2 of the revised 

manuscript.  

 

To verify the results using KZ filter, we have added more discussions by clarifying the reasonable 

decomposition of multi-time scale components in Lines 164–167 and Lines 179–184 based on the 

previous studies as follows:  

 

The larger the total variance, the more independent the three components are of each other (Chen et 

al., 2019). The sum of the long-term, seasonal and short-term components contributed 91.4–94.4 % to the 

total variance with the regional averages of 92.7 % (Fig. 2), reflecting a satisfactory verification of the 

KZ filtering results. (lines 164–167)  

… … … … 

The correlation coefficients of 0.05, 0.01 and 0.04 among the decomposed short-term, seasonal and 

long-term components were near zero, indicating the orthogonal decomposition of multi-time scale 

components (Eskridge et al., 1997). According to the decomposed long-term, seasonal and short-term 

components demonstrated in Fig. 3, the notable peaks of decomposed seasonal and short-term 

components were highly consistent with the peaks of PM2.5 concentrations in the original observed data, 

which further proved a reasonable decomposition of the multi-scale components of PM2.5 change over 

2015–2019. (Lines 179–184) 

 

To further validate the accuracy of our results with KZ filter, we have conducted the simulation 

experiments with Weather Research and Forecasting model with Chemistry (WRF-Chem), which is added 

in the new Sect. 3.6 as follows:  

 

3.6 Meteorological contribution to PM2.5 changes validated with WRF-Chem modeling  

The above observational study investigated the meteorological influence on the changes in PM2.5 

concentrations in the THB using KZ filter, with concluding the large impact of meteorology on the PM2.5 



changes over 2015–2019. To validate this conclusion of analyses with KZ filter, we designed three sets 

of modeling experiments CTRL, SENS-MET and SENS-EMI (Table S6) for December of 2015–2019, 

respectively driven with the changing meteorology and anthropogenic emissions over 2015–2019, the 

fixed meteorological conditions and anthropogenic emissions of 2015 with atmospheric chemical model 

WRF-Chem (Weather Research and Forecasting model with Chemistry). Air pollutant emission 

inventories, modeling configuration, experiment design and modeling verification were described in the 

supplement. The modeling verification of experiments CTRL indicated that PM2.5 and meteorology were 

reasonably reproduced by the WRF-Chem simulation (Figs.S4–S5, Table S7), and the designed three sets 

of modeling experiments CTRL, SENS-MET and SENS-EMI could be used in the further analyses of 

emission and meteorological impact on PM2.5 change over 2015–2019 to confirm the results of KZ filter.  

We derived the effect of meteorology by comparing the simulated PM2.5 concentrations in the three 

sets of experiments CTRL, SENS-MET and SENS-EMI (Table S6). The relative contribution of 

meteorology to the interannual changes of PM2.5 concentrations was calculated with a linear additive 

relationship of contributions of meteorology and emission in the following equations:  

 

𝐶𝑜𝑛𝑀𝐸𝑇 =
𝑘𝑀𝐸𝑇

𝑘𝐶𝑇𝑅𝐿
(11) 

𝐶𝑜𝑛𝐸𝑀𝐼 =
𝑘𝐸𝑀𝐼

𝑘𝐶𝑇𝑅𝐿
(12) 

𝑅𝐶𝑜𝑛𝑀𝐸𝑇 =
𝐶𝑜𝑛𝑀𝐸𝑇

𝐶𝑜𝑛𝑀𝐸𝑇 + 𝐶𝑜𝑛𝐸𝑀𝐼
× 100% (13) 

 

𝑘𝐶𝑇𝑅𝐿, 𝑘𝑀𝐸𝑇 and 𝑘𝐸𝑀𝐼 represent the trends in interannual changes of PM2.5 concentrations simulated 

by the experiments CTRL, SENS-MET and SENS-EMI, respectively. 𝐶𝑜𝑛𝑀𝐸𝑇   and 𝐶𝑜𝑛𝐸𝑀𝐼  are the 

contribution of meteorology and emission, and 𝑅𝐶𝑜𝑛𝑀𝐸𝑇 is the contribution rate (%) of meteorology to 

interannual changes of PM2.5 concentrations (Zhang et al., 2020).  

Based on WRF-Chem modeling experiments, we assessed the impact of meteorological changes on 

interannual PM2.5 variations from 2015 to 2019 with Eqs. (11–13). The relative contribution of 

meteorology to interannual PM2.5 variations displayed the regional pattern of northern positive and 

southern negative values over the THB (Fig. 10), confirming the impact of meteorological changes by 

accelerating and offsetting the effects of emission reductions on PM2.5 declining trends in the northern 

and southern THB, respectively. The general spatial distribution of meteorological contribution rates to 

PM2.5 declining trends from the WRF-Chem simulation was consistent with the results using KZ filter 

(Figs. 9 and 10), validating the results with KZ filter that meteorological drivers exerted a contrary impact 



of northern positive and southern negative contribution on long-term changes of PM2.5 concentrations in 

the THB.  

  

Figure 10 Spatial distribution of contribution rates of meteorological variations to PM2.5 reductions based 

on WRF-Chem modeling experiments (contour, unit: %) in the THB outlined with black dashed line and 

surrounding regions for December of 2015–2019.  
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[2. There are many parameters used in KZ filtering and multiple linear regression. The justification and 

validation of the selection of them should be provided. I think the changes in data coverage or the 

parameter selection would largely influence the final quantitative estimation of contributions, which is 

suggested to be elaborated.] 

 

Response 2: Following the reviewer’s suggestion, we have justified and validated the selection of 

meteorological parameters in Sect. 3.2 (Lines 215–221 and Lines 234–241) as follows:  

 

Based on our understanding of chemical and physical processes of diffusive transport, chemical 

transformation, emissions and depositions of PM2.5 in the atmosphere, the dominant meteorological 

factors for changing PM2.5 concentrations over china are wind speed, relative humidity, air temperature, 

atmospheric pressure and precipitation (Chen et al., 2020). We examined the significant correlations 

between baseline components of air pollutant concentrations and selected a set of meteorological factors, 

including air temperature, wind speed, precipitation, relative humidity, and air pressure (Tables S1-S3 in 

the Supplement). The meteorological parameters selected in this study are consistent with the previous 

studies (Chen et al., 2020). (Lines 215–221) 

… … … …  

The multiple linear regression is done stepwise, by adding and deleting meteorological factors based 

on their independent statistical significance to obtain the best regression fit for air pollutants (Draper, 

1998). The multiple linear regressions explained PM2.5BL, SO2BL and NO2BL with adjusted determination 

coefficients (Adj. R2) of 0.5695–0.8093, 0.0630–0.4592 and 0.6304–0.8669 passing the confidence level 

of 99 % in all the THB sites, confirming the reasonable construct of multiple linear regressions. (Lines 

234–241) 

 



Following the reviewer’s comments, we have elaborated that the changes in data coverage or the 

parameter selection would largely influence the final quantitative estimation of contributions of 

meteorology and emissions for the limitation and outlook of our study in the revised Conclusions (Lines 

429–435) as follows:  

 

The changes in data coverage and the meteorological parameter selection would largely influence the 

final quantitative estimation of contributions of meteorology and emissions. Due to the limitation of the 

data coverage of observational data, further work could be desired with climate analyses of long-term 

data of fine meteorological and environmental observations and more comprehensively modeling of 

chemical and physical processes in the atmosphere to generalize the assessment on the effects of emission 

mitigation and meteorological changes on source-receptor relationship of region transport of air pollutants.  
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[3. Another issue is the estimation of the effects of NO2 and SO2 emission reductions on PM2.5 change 

trends based on long-term (𝑘LT) and emission-related long-term (𝑘emiss) components of PM2.5, SO2 and 

NO2. The long-term changes in PM2.5 are also caused by the emission variation of primary components 

like black and organic carbon, in addition to the chemical transformation of gaseous precursors. The 

difference in the emission of different primary pollutants may also lead to modifications in Klt/Kemis of 

PM2.5. How was this impact/bias included and quantified in the present work?] 

Response 3: We agree with the referee’s comment. In the revised manuscript (lines 326–332), we have 

added the according discussions as follows:  

 

The long-term changes in PM2.5 are also caused by the emission variations of primary components 

like black and organic carbon, in addition to the chemical transformation of gaseous precursors. The 

difference in the emission of different primary pollutants may also lead to modifications in 
𝑘LT

𝑘𝑒𝑚𝑖𝑠𝑠
⁄  

of PM2.5. However, due to the current lack of long-term observation of PM2.5 components in the THB, the 



influence of emissions variations of primary components on long-term changes in PM2.5 concentrations 

is not assessed in our study. Further work with long-term observational data of PM2.5 components like 

black and organic carbon could be conducted to quantify the influence of emissions of primary 

components and chemical transformation of gaseous precursors on PM2.5 changes.  

 

[4. Figure 9: Why did the contribution rates of meteorological variations show great spatial disparities 

at a small scale, i.e., EZ, HG and HS. It seems not very likely that the variation in synoptic weather or 

meteorological conditions has such a large heterogeneity at such a small spatial scale.] 

Response 4: Thanks for the reviewer’s careful review. In the revised manuscript, we have added the 

according discussions in Sect. 3.5 (Lines 352–360) as follows:  

 

It seems not very likely that the variation in synoptic weather or meteorological conditions has such 

a large heterogeneity at such a small spatial scale over EZ, HG and HS. However, the underlying surface 

conditions dominate the near-surface meteorological conditions in the atmospheric boundary layer at a 

small scale (Wang et al., 2017). The topography and land use of HG, HS, EZ and surrounding regions 

vary distinctly with underlying surface conditions of plain, lakes and hilly area (Fig. R1). The underlying 

surface of observational sites with different near-surface meteorology effectively influence the local 

accumulation, chemical transformation, dry and wet depositions of air pollutants (Bai et al., 2022). 

Therefore, the heterogeneity of meteorological contribution to PM2.5 at such a small spatial scale might 

be attributed to the local meteorological conditions in the atmospheric boundary layer, which is largely 

affected by the underlying surface changes.  

 



 

Figure R1 Distribution of (a) topographical height (color contours, m, in a. s. l.) and (b) land use over 

HG, EZ, HS and the surrounding regions in the THB (https://lpdaac.usgs.gov/products/mcd12q1v006/, 

last access: January 17, 2022). 
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