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respective components in the mixture  In the low to middle RH range, the deliquescence and efflorescence of inorganic salts 

can strongly affect the hygroscopic growth of atmospheric particles, and could result in hysteresis according to the history of 

RH (Tang et al , 1977)  For the hygroscopicity of ambient particles, the composition of inorganics, including the degree of 

neutralization, affects their contribution to particle hygroscopicity (Tang and Munkelwitz, 1977; Freedman et al , 2019)  In 

addition, the contrasting hygroscopicity of organics and inorganics are responsible for variations of their hygroscopicity (e g , 5 

Gunthe et al , 2009; Cerully et al , 2011; Pierce et al , 2012; Levin et al , 2014; Deng et al , 2018)  The dominant components 

of atmospheric aerosols govern the dependence of aerosol hygroscopicity on locations: hygroscopicity in the forest atmosphere 

(Gunthe et al , 2009; Hong et al , 2014), where OA dominates the aerosol composition, is generally less than that in the marine 

atmosphere (Mochida et al , 2011; Pringle et al , 2010), where inorganic salts dominate  Moreover, while the oxygenation of 

OA relates to its hygroscopicity (Kuwata et al , 2013), correlation from analysis of atmospheric aerosols can be poor (Kuang 10 

et al , 2020)  Whereas multiple compositional factors are expected to control the aerosol hygroscopic growth as explained 

above, studies elucidating variations of hygroscopic growth under different atmospheric environments are few, which can be 

attributed to the lack of hygroscopicity analyses coupled with chemical composition analyses  

 

For characterizing the hygroscopicity of atmospheric aerosols, offline analysis, i e , the collection of aerosol samples on 15 

substrates, followed by analysis of the hygroscopicity of chemical components therein, provides information that complements 

information obtained from online analysis  Such offline analyses have been conducted for urban aerosols (e g , Aggarwal et 

al , 2007; Mihara and Mochida, 2011) and aerosols in remote environments (e g , Silvergren et al , 2014; Boreddy and 

Kawamura, 2016)  For offline methods, hygroscopicity of aerosol particles with size up to ~1 µm or larger was analyzed, 

providing data for hygroscopicity in a wide range of particle sizes, which are often difficult to obtain by online analyses  20 

Furthermore, whereas information related to the mixing state is lost, offline methods enable investigation of the hygroscopicity 

of specific compound groups in aerosols, for example, water-soluble matter and humic-like substances (Gysel et al , 2004)  

Moreover, whereas field deployments of online instruments such as HTDMA might be a heavy duty and hinder observations 

particularly at remote sites, offline analysis can be a good alternative for aerosol hygroscopicity studies  Recent studies have 

indicated that offline use of an aerosol mass spectrometer (AMS) can be a useful means to elucidate the contribution of OA 25 

component to aerosol hygroscopicity because of its capability of quantifying organic mass in addition to organic carbon, and 

to characterize the chemical structure of OA (Mihara and Mochida, 2011; Lee et al , 2019)  More offline studies, in particular 

those of the role of OA, should be undertaken to characterize aerosol hygroscopicity further  

 

Positive and negative artifacts have been evaluated for offline analyses of the concentrations of aerosol chemical components 30 

(Turpin et al , 2000; Chow et al , 2005)  Sampling artifacts are inherent to offline analyses, and might also affect offline 

hygroscopic growth measurements  However, the propriety of the offline method for quantifying aerosol hygroscopicity is not 

evaluated tentatively  Bias might arise from sampling artifacts by adsorption or evaporative loss of compounds and degradation 

of collected aerosol components, as in the case of the quantification of chemical components  Although full resolution of the 
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obtain the O:C and H:C and densities of organics in the manner of the offline analysis  The SMPS measured the aerosol 

number-size distributions at diameters of 13 8–749 9 nm every 5 min  The DMA in the SMPS was operated with an aerosol 

flow rate of 0 3 LPM and a sheath to aerosol flow ratio of 10:1  Compressed dry pure air was supplied to the CPC through an 

equalizer to complement its total inlet flow rate of 1 0 LPM  Temperature and RH of ambient air, wind speed and direction, 

and precipitation were measured using a weather sensor (model WXT520; Vaisala)  The AMS was calibrated before both 5 

online and offline (Sect  2 3) measurements using the same procedures as those reported by Deng et al  (2018)  The SMPS was 

calibrated using standard size PSL particles (Text S2) before ambient measurements  Furthermore, a hygroscopicity and 

volatility tandem differential mobility analyzer (H/V-TDMA) was deployed during 1–9 November 2015 to measure the size-

resolved aerosol hygroscopicity and volatility  Related details have been presented by Cai et al  (2017)  For comparison 

between offline and online data, the time windows for offline data were truncated to 10 am to 10 am (24 h)  Online data were 10 

averaged for the one-day periods (Table S1)  

2.5 Prediction of WSM hygroscopicity based on E-AIM model 

Hygroscopic growth of the WSM sample for the water activity (aw) range of 0 10–0 99 was predicted without considering the 

water uptake by WSOM using the online Extended AIM Aerosol Thermodynamics Model III (E-AIM III, 

http://www aim env uea ac uk/aim/model3/model3a php, last access: 1 August 2019; Clegg et al , 1998; Wexler and Clegg, 15 

2002)  The inorganic chemical components of WSM (sulfate, sodium, and ammonium) obtained from IC analysis and the 

WSOM obtained from TOC and offline AMS analyses were used for derivation  Potassium, calcium, magnesium, nitrate, and 

chloride were not considered in the E-AIM because of their very low concentrations (Table S3)  The RH-dependent 

hygroscopicity parameters of WSM, WSM, were predicted from hygroscopic growth data following the - Köhler theory  The 

RH-dependent hygroscopicity parameters of water-soluble inorganic matter (WSIM) in each WSM sample, inorg, were derived 20 

similarly to those for WSM  Details of these derivations are presented in Text S6  

2.6 Estimating the hygroscopicity of WSOM, EOM, and PM0.95 

The hygroscopicity parameters of WSOM (WSOM), EOM (EOM), and PM0.95 (PM0.95) were calculated on the assumption that 

the volumes of water retained by respective components are additive (Petters and Kreidenweis, 2007): 𝜅WSM = 𝜀୛ୗ୓୑/୛ୗ୑𝜅୛ୗ୓୑ + 𝜀୛ୗ୍୑/୛ୗ୑𝜅୧୬୭୰୥        (2) 25 

Therein, WSM is the hygroscopicity parameter of WSM particles; WSOM and inorg respectively denote hygroscopicity 

parameters of WSOM and WSIM  The WSOM/WSM and WSIM/WSM respectively stand for the volume fractions of WSOM and 

WSIM in WSM, as derived from offline IC, TOC, and AMS analyses (Text S7)  
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importance to understand the temporal variability of the aerosol hygroscopicity at the receptor region of East Asian outflow, 

which includes a long-term trend under the condition of the large decrease of Chinese SO2 emissions in recent years (Zheng 

et al , 2018)  

 

The hygroscopicity parameter values of PM0.95 at 85 % RH from offline methods were close to earlier reported values from 5 

online hygroscopicity measurements performed during the field campaign  Results obtained from this study extended the 

characterization of the studied aerosols by online analysis (≤200 nm), toward the mass/volume based mean diameter of the 

submicrometer aerosols  On the other hand, the similarity of the hygroscopicity parameter values from offline and online 

methods suggest the propriety of the offline method on aerosol hygroscopicity analysis, at least for remote sites at which the 

aerosols are aged and semi-volatile ammonium nitrate is not abundant  This finding encourages further studies of the 10 

hygroscopicity of aerosol components, particularly OA, the hygroscopicity of which is not yet characterized well  Given that 

precise analysis of the hygroscopicity of OA is not easy based on online analyses, the offline approach is useful for better 

understanding of the relation between chemical structure, sources and hygroscopicity of WSOM and other organic components, 

because of the richness of information from the AMS spectra  For example, the hygroscopicity of humic-like substances and 

other organic fractions and their contributions to total particulate matter are worth elucidating by the extension of the approach 15 

of this study  

 

Abbreviations and symbols 

aw water activity 

EC/PM0.95  volume fraction of EC in PM0.95 20 

EOM/PM0.95 volume fraction of EOM in PM0.95 

WISOM/EOM volume fraction of WISOM in EOM

WSIM/PM0.95 volume fraction of WSIM in PM0.95 

WSIM/WSM volume fraction of WSIM in WSM 

WSOM/EOM volume fraction of WSOM in EOM25 

WSOM/WSM volume fraction of WSOM in WSM 

ρw density of pure water 

σ surface tension at the solution–air interface of a liquid particle 

 hygroscopicity parameter 

EC  of EC, which is equal to zero 30 

EOM  of EOM 

inorg  of WSIM 
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online  of ambient aerosol particles at 85 % RH obtained through on-site measurement 

PM0.95  of PM0.95 

WSM  of WSM 

WSOM  of WSOM 

AMS (high-resolution time-of-flight) aerosol mass spectrometer 5 

AS ammonium sulfate 

BC black carbon 

COSMOS continuous soot monitoring system 

CPC condensation particle counter 

ddry dry particle diameter, which is 100 nm for this study 10 

DMA differential mobility analyzer 

DRH deliquescence RH 

dwet wet particle diameter: the product of gf and ddry 

E-AIM online Extended AIM Aerosol Thermodynamics model 

EC elemental carbon 15 

EOC extracted organic carbon 

EOM extracted organic matter 

ERH efflorescence RH 

gf hygroscopic growth factor 

H:C atomic ratio of H to C 20 

H/V-TDMA hygroscopicity and volatility tandem differential mobility analyzer 

HTDMA hygroscopicity tandem differential mobility analyzer 

IC ion chromatograph 

Mw molar mass of pure water 

O:C atomic ratio of O to C 25 

OA organic aerosol 

OC organic carbon 

OM:OC mass ratio of organic matter to organic carbon in the organic aerosol component 

PM0.95 subset of aerosol particles with diameters <0 95 m 

PM1 subset of aerosol particles with diameters <1 m 30 

R universal gas constant 

r2 coefficient of determination between two variables 

RA/S molar ratio of ammonium to the remaining sulfate after preferentially being neutralized by sodium 
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RA/S′ molar ratio of ammonium to sulfate 

RH relative humidity 

SMPS scanning mobility particles sizer 

T absolute temperature 

TOC total organic carbon 5 

WISOC water-insoluble organic carbon 

WISOM water-insoluble organic matter 

WSM water-soluble matter 

WSIM water-soluble inorganic matter 

WSOC water-soluble organic carbon 10 

WSOM water-soluble organic matter 
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Figure 4: The mean of (a) measured and E-AIM predicted gf for WSM particles as a function of RH and (b) measured and E-AIM 
predicted WSM as a function of RH. (c) The  values for WSM from respective PM0.95 samples in dehumidification (dehum) branches. 
In panels (a) and (b), results from both humidification (hum) and dehumidification branches are presented. In the predictions in 
panels (a) and (b), water retained by WSOM are not considered. Results obtained for the dehumidification branch were obtained 5 
by assuming that no solid is formed under any RH condition. 
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the humidification branch (90%hum) was also compared to (b) fWSOM and (d) RA/S. The shaded area in panel (b) show WSM predicted 
by application of mean value of inorg (0.59) and mean ± standard deviation of WSOM for 85 % RH (0.22±0.12) using Eq. (2). 
Coefficients of determination r2 are also presented. 
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and online data are in general in good agreement. However, for the last three days when the mass 

concentrations of organics were low, the agreement was poor. The poor agreement may be originated 

from low organic mass concentrations, which should accompany relatively large uncertainty in the 

mass spectra. It is suggested from the result in Fig. S10: f44 (or H:C) from the online analysis seems 

sensitive to the subtraction of the contribution of CO2 in air from the signal at m/z 44 or that of the 

fragment CO2+ when the organic mass concentration was small. Note that the signal at m/z 38 was 

excluded from the analysis here because 38Ar+ from Ar carrier gas presumably influenced it. 
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Figure S11: The gf of 100 nm WSM particles in humidification and dehumidification branches as a 

function of RH for individual samples. The gf predicted from the E-AIM model without considering 

the water retained by WSOM are also presented. Dates shown on panels represent dates when sampling 

started. 
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Figure S15: (a and b) Scatter plots of WSOM in the dehumidification branch versus O:C of WSOM at 

(a) 80 and 85 % RH and at (b) 65, 70, and 75 % RH. (c and d) Scatter plots of EOM in the 

dehumidification branch versus O:C of EOM at (c) 80 and 85 % RH and at (d) 65, 70, and 75 % RH. 
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Table S1: Sampling periods and sampled air volumes for the PM0.95 studied 

Sample ID Period (in 2015, JST) Air volume (m3) 

OKNW_001 26 Oct, 09:56:00 – 27 Oct, 09:00:03 1569.5 

OKNW_003 27 Oct, 09:26:00 – 28 Oct, 09:00:00 1602.9 

OKNW_005B* 28 Oct, 09:11:11 – 28 Oct, 09:11:21 0 

OKNW_006 28 Oct, 09:43:30 – 29 Oct, 09:00:00 1584.5 

OKNW_009 29 Oct, 09:24:00 – 30 Oct, 09:00:00 1608.7 

OKNW_011 30 Oct, 09:23:00 – 31 Oct, 09:00:00 1612.5 

OKNW_014 31 Oct, 09:46:00 – 1 Nov, 09:00:00 1588.1 

OKNW_017 1 Nov, 09:34:10 – 2 Nov, 09:00:01 1602.8 

OKNW_019B* 2 Nov, 09:39:00 – 2 Nov, 09:39:10 0 

OKNW_020 2 Nov, 09:59:45 – 3 Nov, 09:00:00 1574.7 

OKNW_023 3 Nov, 09:20:00 – 4 Nov, 09:00:00 1621.2 

OKNW_025 4 Nov, 09:22:40 – 5 Nov, 09:00:00 1619.9 

OKNW_028 5 Nov, 09:44:40 – 6 Nov, 09:00:00 1595.9 

OKNW_045B* 6 Nov, 09:19:20 – 6 Nov, 09:19:30 0 

OKNW_032 6 Nov, 09:49:30 – 7 Nov, 09:00:00 1590.7 

OKNW_035 7 Nov, 09:24:40 – 8 Nov, 09:00:02 1619.8 

OKNW_037 8 Nov, 09:25:00 – 9 Nov, 09:00:00 1620.2 

OKNW_039B* 9 Nov, 09:16:00 – 9 Nov, 09:16:10 0 

* Field blanks 
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Table S2: Mode diameters of PSL size standards measured using DMA1, DMA2, and SMPS (in 
nm)a 

Manufacturer’s warrantyb 
HTDMA 

Online SMPS 
DMA1 DMA2 

55 (± 1)  - 61.8 ± 0.3 60.3 ± 0.2  

100 (± 3) 100.8 ± 0.0 103.2 ± 0.2 102.8 ± 0.3  

309 (± 9) 303.3 ± 0.2 314.8 ± 1.1 307.5 ± 0.2 (308.4 ± 0.3) 

498 (± 9) - 516.7 ± 1.2 503.4 ± 0.5  
a The mean ± SD of the mode diameters from fittings. Results are based on calibrations done before analysis of 

atmospheric samples, except for the case of 309 nm PSL size standards from the SMPS, for which calibration was 

also made after sample analysis (in parenthesis). 
b Mean diameter (± expanded uncertainty; k = 2). 

 







 

29 
 

References 
Chen, Q., Ikemori, F., Nakamura, Y., Vodicka, P., Kawamura, K., and Mochida, M.: Structural and 

light-absorption characteristics of complex water-insoluble organic mixtures in urban 

submicrometer aerosols, Environmental Science & Technology, 51, 8293-8303, 

10.1021/acs.est.7b01630, 2017. 

Han, Y. M., Kawamura, K., Chen, Q. C., and Mochida, M.: Formation of high-molecular-weight 

compounds via the heterogeneous reactions of gaseous C-8-C-10 n-aldehydes in the presence of 

atmospheric aerosol components, Atmospheric Environment, 126, 290-297, 

10.1016/j.atmosenv.2015.11.050, 2016. 

Jung, J. S., Kim, Y. J., Aggarwal, S. G., and Kawamura, K.: Hygroscopic property of water-soluble 

organic-enriched aerosols in Ulaanbaatar, Mongolia during the cold winter of 2007, Atmospheric 

Environment, 45, 2722-2729, 10.1016/j.atmosenv.2011.02.055, 2011. 

Park, K., Kittelson, D. B., Zachariah, M. R., and McMurry, P. H.: Measurement of inherent material 

density of nanoparticle agglomerates, J. Nanopart. Res., 6, 267-272, 

10.1023/B:NANO.0000034657.71309.e6, 2004. 

Petters, M. D., and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and 

cloud condensation nucleus activity, Atmospheric Chemistry and Physics, 7, 1961-1971, 

10.5194/acp-7-1961-2007, 2007. 

Tang, I. N., and Munkelwitz, H. R.: Water Activities, Densities, and Refractive-Indexes of Aqueous 

Sulfates and Sodium-Nitrate Droplets of Atmospheric Importance, Journal of Geophysical 

Research-Atmospheres, 99, 18801-18808, 10.1029/94jd01345, 1994. 


	main_tc_mm220302a
	Supplement_tc_mm220302a

