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Abstract.

The Indo-Gangetic Plain (IGP) is home to 9% of the global population and is responsible for a large fraction of agri-

cultural crop production in Pakistan, India, and Bangladesh. Levels of fine particulate matter (mean diameter <2.5 microns,

PM2.5) across the IGP often exceed human health recommendations, making cities across the IGP among the most polluted in

the world. Seasonal changes in the physical environment over the IGP are dominated by the large-scale South Asian monsoon5

system that dictates the timing of agricultural planting and harvesting. We use the WRF-Chem model to study the seasonal

anthropogenic, pyrogenic, and biogenic influences on fine particulate matter and its constituent organic aerosol (OA) over

the IGP that straddles Pakistan, India, and Bangladesh during 2017/2018. We find that surface air quality during pre-monsoon

(March—May) and monsoon (June—September) seasons is better than during post-monsoon (October—December) and winter

(January—February) seasons, but all seasonal mean values of PM2.5 still exceed the recommended levels, so that air pollution10

is a year-round problem. Anthropogenic emissions influence the magnitude and distribution of PM2.5 and OA throughout the

year, especially over urban sites, while pyrogenic emissions result in localized contributions over the central and upper parts of

IGP in all non-monsoonal seasons, with the highest impact during post-monsoon seasons that correspond to the post-harvest

season in the agricultural calendar. Biogenic emissions play an important role in the magnitude and distribution of PM2.5 and

OA during the monsoon season, and shows a substantial contribution to secondary OA (SOA) particularly over the lower IGP.15

We find that the OA contribution to PM2.5 is significant in all four seasons (17-30%), with primary OA generally representing

the larger fractional contribution. We find that the volatility distribution of SOA is driven mainly by the mean total OA loading

and the washout of aerosols and gas-phase aerosol precursors that result in SOA being less volatile during the pre-monsoon

and monsoon season than during the post-monsoon and winter seasons.

1 Introduction20

The Indo-Gangetic Plain (IGP), including parts of Pakistan, India and Bangladesh (Figure 1), is one of the most populous

and polluted areas in the world. It is home to ∼ 700 million people (9% of the global population (Bangladesh Bureau

of Statistics, 2011; Indian National Commission on Population, 2020; Pakistan Bureau of Statistics, 2017)) and to the
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Figure 1. Geographical and administrative features of the Indo-Gangetic Plain (IGP), including Pakistan, India, and Bangladesh. Numbers

denote individual IGP states and purple dots denote the main cities.

associated sources of anthropogenic air pollution, which are distributed proportionally to population, with hotspots

over cities of various sizes from megacities of more than 10 million people, e.g. Karachi, Lahore, Delhi, Kolkata, and25

Dhaka, to smaller cities of a few million inhabitants, e.g. Faisalabad, Patna, Kanpur, Lucknow, and Varanasi (DESA,

2018). It has been estimated that there would be a potential gain in life expectancy in the IGP of approximately 4-6 years

if levels of PM2.5 were reduced to standards set by the World Health Organisation (Greenstone et al., 2020; WHO, 2016).

The unique geography of the IGP and broader scale meteorological drivers, coupled with the regional diversity of seasonal

pollutant emission sources makes this region one of the most challenging places to study the controls of its air pollution and30

the consequent impact on human health. Here, we use the WRF-Chem regional atmospheric chemistry and transport model to

describe the seasonal patterns of surface organic aerosol and PM2.5 and to help disentangle the role of anthropogenic, pyrogenic

and biogenic emissions on their surface patterns across the IGP.

The importance of the IGP lies in the fertility of its soils formed from alluvium that is deposited across the Indus and Ganges

basins by the Indus and Ganges rivers. These rivers originate in the Himalaya mountains and the Tibetan Plateau. The Indus and35

Ganges basins benefit also from precipitation from the seasonal monsoon. The monsoon timing also defines the main seasons

over the IGP (India Meteorological Department): the pre-monsoon season runs from March to May, the monsoon season is
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from June to September, the post-monsoon season is from October to December, and winter occurs in January and February.

The Indian states across the IGP (e.g. Punjab, Haryana, and Uttar Pradesh) represent the vast majority of nationwide wheat

and rice production. Rice and wheat are planted in May and November and harvested in October-November and April-May40

respectively, following the rice–wheat cropping cycle. The IGP is also an important producer of sugarcane, cultivated mainly

in the Indus Valley in Pakistan and in the Indian state of Uttar-Pradesh. The two main seasons for planting are in September-

October and February-March, followed by harvesting during the winter and pre-monsoon months, respectively. Crop residues

left from harvesting, e.g. husk, bran, straw, are generally burned in open fires. Traditionally, these residues were ploughed back

into the soil to maintain fertility and stability, but the sheer scale of current production precludes these practices in time for a45

second growing season (Chauhan et al., 2012; Ahmed et al., 2015). Open burning of these residues across the IGP, particularly

during the post-monsoon season, is a large source of gaseous and particulate pollution that has implications for regional air

quality and human health (Vadrevu et al., 2011; Jethva et al., 2019; Sembhi et al., 2020). Residential biofuel combustion also

plays an important role for air quality (Conibear et al., 2020; Agarwala and Chandel, 2020).

The high population density and intense human activity over the IGP result in anthropogenic emissions being a major source50

of regional surface air pollution (Begum et al., 2013; Guttikunda and Jawahar, 2014; Shahid et al., 2015; Venkataraman et al.,

2018). Residential energy consumption represents a major contribution to anthropogenic emissions with a large fraction of the

rural and urban population using solid fuel for cooking (Conibear et al., 2018). Emissions from land transportation, particularly

in cities, also represents a significant contribution to anthropogenic emissions (Begum et al., 2013; Guttikunda et al., 2014;

Mallik and Lal, 2014). Intense agriculture over the IGP is associated with large emissions of ammonia, an aerosol precursor,55

from urea fertilizer application, as well as from post-harvest burning as described above (Kuttippurath et al., 2020; Wang et al.,

2020). Vegetation cover over the IGP consists mainly of croplands (Stibig et al., 2007; Gumma et al., 2019), which have lower

isoprene emissions than trees (Hardacre et al., 2013). Consequently, biogenic emissions over the IGP are lower compared to

other parts of South Asia (Guenther et al., 2006; Stavrakou et al., 2014).

Regional dispersion of air pollution over the IGP is dominated on a seasonal timescale by the monsoon system, influenced by60

the high mountain ranges of Hindu Kush and Himalayas that lie to the northwest to northeast of the IGP. Agricultural planting

and harvesting (and associated burning) are determined by the timing of the monsoon when the majority of the annual rainfall

falls. Consequently, observed variations of PM2.5 reflect large-scale variations in meteorology and the seasonal variations in

anthropogenic, biogenic, and pyrogenic emissions (Jethva et al., 2005; Lelieveld et al., 2018; Schnell et al., 2018).

A growing body of regional models have been used to study the relationship between emissions, meteorology, and PM2.565

over India (Kumar et al., 2015b; Bran and Srivastava, 2017; Kulkarni et al., 2020; Ojha et al., 2020), and to estimate the health

impacts of outdoor exposure to PM2.5 (Ghude et al., 2016; Conibear et al., 2018; David et al., 2019). Many studies have focused

on post-monsoon biomass burning episodes and on air pollution during the winter season over the upper-central Indian part

of the IGP (Guttikunda and Gurjar, 2012; Ram et al., 2012; Pant et al., 2015; Kumar et al., 2015a; Jethva et al., 2018; Singh

et al., 2018; Krishna et al., 2019; Mhawish et al., 2020). But of course the IGP also includes parts of Pakistan and Bangladesh70

that remain poorly studied even though they are connected via atmospheric transport. With only a few exceptions, these studies

have focused on total PM2.5 although there is evidence that single aerosol components play a major role in PM2.5 composition
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over the IGP (Gani et al. (2019) and Singh et al. (2018) and references therein). Measurements have shown that organic aerosol

(OA), originating from anthropogenic, pyrogenic, and biogenic emissions, constitute a significant fraction (20-35%) of PM2.5

across the IGP especially during post-monsoon and winter seasons (Ram et al., 2008; Alam et al., 2014; Rajput et al., 2014;75

Behera and Sharma, 2015; Sharma et al., 2016). OA exists as a complex mixture, comprising of thousands of individual organic

compounds, and it is made up of primary OA (POA), emitted directly to the atmosphere, and of secondary OA (SOA) formed by

the condensation of organic vapours as they become progressively less volatile through oxidation (Seinfeld and Pandis, 2016;

Donahue et al., 2006). Changes in OA volatility is key for the formation of SOA, and it is particularly sensitive to temperature,

ambient concentration of OA, and nitrogen oxide levels (Shrivastava et al., 2017). We take advantage of the Volatility Basis Set80

(VBS) model, which helps to describe succinctly the evolving volatility of OA through oxidative chemistry in the atmosphere

(Donahue et al., 2006, 2012; Chuang and Donahue, 2016), described below. This method has been used successfully in a range

of modelling studies (Lane et al., 2008b; Bergström et al., 2012; Ahmadov et al., 2012; Zhang et al., 2013; Zhao et al., 2016).

We use the WRF-Chem regional atmospheric chemistry model to characterise the seasonal and spatial distributions and

composition of PM2.5 and OA in light of synoptic meteorology and emission drivers over three sub-regions of the IGP, in-85

cluding relevant parts of Pakistan and Bangladesh. We use a 1-D VBS model to describe the evolution of OA and its influence

on PM2.5, described in section 2. In section 2, we also describe the in situ and satellite measurements we use to evaluate our

model. In section 3, we describe the seasonal meteorology over the IGP, the seasonal distributions and composition of PM2.5

and OA, and the seasonal distribution of SOA volatility. In section 3 we also use a perturbative approach to understand the

sensitivity of PM2.5 constituent distributions to changes in anthropogenic, pyrogenic and biogenic emissions and to seasonal90

changes in the atmospheric environment. We conclude our study in section 4.

2 Data and Methods

Here, we describe the WRF-Chem model that we use to understand the influence of anthropogenic, pyrogenic, and biogenic

emissions on the atmospheric distribution of PM2.5 and OA over the IGP.

2.1 Weather Research and Forecasting model coupled with Chemistry95

We use v.3.9.1.1 of the the Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem) (Grell et al.,

2005) to describe the emissions and atmospheric chemistry and transport associated with gas and aerosol phase compounds

over the IGP during 2017 and 2018. WRF uses the Advanced Research WRF (ARW) dynamical solver to solve the fully

compressible, non-hydrostatic Euler equations that describe atmospheric flow. These calculations are coupled with atmospheric

chemistry so that that our PM2.5 and OA calculations are consistent with the meteorology.100

Our study domain is defined as 17◦–40◦ N and 64◦–97◦ E, encompassing the IGP at a horizontal spatial resolution of 20 km

and using 33 vertical levels that span from the surface to 50 hPa ('19 km). For the description of terrain data for the

domain (land use and soil categories) we use MODIS IGPB 21-category data at 30 arc-seconds resolution (∼ 1 km)

(Friedl et al., 2010). To define our initial conditions and lateral boundary conditions, and for nudging (Newtonian relaxation),
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Figure 2. Seasonal mean daily emissions over the IGP (g m−2 day−1) of (left) column) anthropogenic, (middle column) biomass burning,

and (right column) biogenic (isoprene) emissions. Anthropogenic emissions from EDGAR-HTAP and fire emissions from FINN. Biogenic

emissions are calculated online in WRF-Chem using MEGAN. To determine total anthropogenic and pyrogenic emissions we sum across

all emitted species, respectively, while for biogenic emissions we consider only isoprene.

we use meteorological reanalyses from NCEP FNL Operational Model Global Tropospheric Analyses Data (National Centers105

for Environmental Prediction, National Weather Service, NOAA, U.S. Department of Commerce, 2015) at a spatial resolution

of 0.25◦×0.25◦ and at a temporal resolution of six hours. We use the nudging approach at all levels to prevent our calculations

from deviating too far from observed meteorology. Table B1 provides more details about the meteorological processes we use

in our calculations. Chemical initial conditions and lateral boundary conditions for each month are provided by six-hourly

CAM-CHEM global model data (Buchholz et al., 2019). We spin-up each simulation for a week before studying the model110

output to minimize the influence of the initial conditions.

To describe gas-phase chemistry we use the Model for OZone And Related chemical Tracers, version 4 (MOZART-4)

chemical mechanism (Emmons et al., 2010), including the extended treatment of volatile organic compound (VOC) chemistry

(Knote et al., 2014). Photolysis rates are calculated by the Fast Tropospheric Ultraviolet–Visible (FTUV) module (Tie et al.,

2003).115

We use the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) to simulate aerosols chemistry (Zaveri

et al., 2008), including aqueous-phase chemistry (Knote et al., 2014). MOSAIC describes aerosols using four sectional discrete

size bins: 0.039—0.156µm, 0.156—0.625µm, 0.625—2.5µm, 2.5–10µm. The first three of these bins represent PM2.5, while

the largest one describes coarse particulate matter (PM2.5−10). We use the 1-D VBS method to describe SOA for WRF-Chem

(Knote et al., 2015), based on previous studies (Lane et al., 2008b; Ahmadov et al., 2012). For each of the four aerosol size120
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bins in MOSAIC, the 1-D VBS implementation considers five volatility bins for semi-volatile organic compounds (SVOCs),

described by effective saturation concentrations C∗ of 10−4, 1, 10, 100 and 103 µg m−3 at 298 K. The log10C∗ =−4 volatility

corresponds to an inert compound, and serves computationally as a loss of particle phase organics to avoid unrealistic volatile

mixtures due to continuously aging of gas-phase SVOCs. Lumped anthropogenic, pyrogenic, and biogenic gas-phase aerosol

precursors undergo continuous gas-phase oxidation and partition between the gas and aerosol phase using pseudo-ideal par-125

titioning theory (Pankow, 1994). Partitioning between the gas and aerosol phase depends on total organic aerosol load and

temperature. SOA yields are also dependent on NOx levels, so SOA yields is calculated differently for low and high NOx

conditions, through a branching ratio (Lane et al., 2008a). We also include the SOA formation from glyoxal (Knote et al.,

2014). Loss of SVOCs is from washout via convective and grid scale precipitation. Our chosen implementation of VBS only

accounts for SVOCs, and assumes that POA is inert so that it contributes only to the aerosol mass. We do not include direct130

emissions of SVOCs or intermediate VOCs (IVOCs). This is a limitation of our current implementation given evidence that

SVOC and IVOC vapours creates a considerable amount of regional SOA, and that POA emissions are semivolatile and un-

dergo oxidation and should be also considered in describing SOA production (Robinson et al., 2007). To describe POA using

the VBS approach we would require information about the volatility distribution of POA, but conventional inventories typically

consider POA as non-volatile. The 1-D version of the VBS model is unable to describe some aspects of SOA formation,135

including fragmentation and the increase in OA oxidation state, which are better described by the 2-D version of the

model that tracks the oxygen-to-carbon ratio (O:C) in addition to organic mass (Donahue et al., 2012). Previous studies

have shown that the 2-D VBS model improves model-measurement agreement in SOA (e.g., Zhao et al. (2016)) but has

a significant associated computational burden when used in 3-D chemistry transport models. Further details of this VBS

implementation in WRF-Chem are described in (Knote et al., 2015) and references therein.140

We use monthly anthropogenic emissions from Emission Database for Global Atmospheric Research with Task Force on

Hemispheric Transport of Air Pollution (EDGAR-HTAP v2.2) for year 2010 (Janssens-Maenhout et al., 2015) as provided by

the WRF-Chem community, which provides the total anthropogenic emissions and includes a NMVOC speciation according

to the gas and aerosol chemistry scheme we use here (MOZART-MOSAIC). Using an anthropogenic emission inventory

for 2010 to describe atmospheric chemistry during 2017-2018 will inevitably introduce some biases in our model PM2.5145

estimates, particularly because our study domain includes regions with rapidly growing emissions. From 2010 to 2017,

India has seen reductions in BC, OC, CO and NMVOC emissions from the residential sector owing to policies that have

enabled a switch to cleaner residential fuels and energy sources. However India’s growing economy had led to a rapid

increase of NOx and SO2 emissions from the industrial sector(∼+12%,∼+10%) and energy sector (∼+20%,∼+26%),

and an increase in NOx and NMVOC from on-road transportation (∼+50%, ∼+27%). An increase in intensive agri-150

cultural practices over the Indian IGP has increased ammonia emissionsNH3 (∼+15%) (McDuffie et al., 2020). Errors

in PM precursor gaseous emissions will impact our ability to describe air pollution for our study year, especially for in-

dividual components of secondary inorganic aerosols (nitrate, sulfate and ammonium) and SOA. It remains difficult to

disentangle the impact of using outdated emission estimates from other sources of model error, e.g., meteorology, chem-

istry, land-use change, and model resolution. For pyrogenic emissions, hourly biomass burning emissions are taken from the155
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Fire Inventory from NCAR (FINNv.15) inventory for year 2017/2018 (Wiedinmyer et al., 2011). Pyrogenic emissions are

apportioned between FINN and EDGAR-HTAP inventories. The FINNv1.5 inventory includes global estimates of trace

gas and particle emissions from open burning of biomass, which includes wildfire, agricultural fires, and prescribed

burning (Wiedinmyer et al., 2011). EDGAR-HTAPv2.2 is focused on anthropogenic emissions but excludes large-scale

biomass burning (e.g. forest fires, peat fires), agricultural waste or field burning. Within its residential sector, emissions160

include small-scale combustion, including heating, lighting, cooking and solid waste disposal or incineration (Janssens-

Maenhout et al., 2015). Biogenic emissions are calculated online using the Model of Emissions of Gases and Aerosol from

Nature (MEGAN, Guenther et al. (2006)).

Figure 2 shows the seasonal distributions of total anthropogenic, pyrogenic, and biogenic (predominately isoprene) emissions

over the IGP. Total anthropogenic emissions have been calculated by summing the mass contribution from all the chemical165

species (gas and particle) specified in the inventory once preprocessed onto the model domain using the WRF-Chem tools for

the community ACOM-NCAR. We converted gas emissions to mass units using the appropriate molar mass for each species.

The same approach has been used to calculate fire emissions, while isoprene emissions are calculated online by MEGAN in

the WRF-Chem model and then converted to mass units. Anthropogenic emissions generally dominate in all seasons (Figure

2a,d,g,j) with daily values ranging from 101 to 102g m−2 day−1. The two largest localised regions of anthropogenic emissions170

are Delhi and Kolkata with emissions >100 g m−2 day−1, followed by smaller indian cities, e.g. Patna, Varanasi, Kanpur and

Lucknow (Figure 1). Just south of the border of Uttar-Pradesh, the Madhya Pradesh district of Singrauli hosts several large

power plants. The Pakistani and Bangladeshi parts of the IGP generally have the lowest anthropogenic emissions, with the

exception of Karachi in south Pakistan, the north Pakistani Punjab (the most populated part of Pakistan where Lahore and

Faisalabad are located), and Dhaka in Bangladesh. Emissions from Karachi and Dhaka have lower per capita emissions than175

Indian cities of comparable size.

Fires have a strong seasonal cycle, peaking during pre-monsoon and post-monsoon seasons (Figure 2b,h), with emissions

∼ 10−1g m−2 day−1 mainly due to agricultural stubble burning. The post-monsoon harvesting season includes fire emis-

sions rates that are three times higher compared to the pre-monsoon season (∼ 0.3 g m−2 day−1 and ∼ 0.9 g m−2 day−1,

respectively). Post-monsoon fires are almost exclusively located in the Indian Punjab, with the largest values at the border with180

Haryana state. Pre-monsoon fires are located around the border of Pakistani and Indian Punjab and upper Haryana. There are

also some isolated fires in the eastern part of the IGP. During winter (Figure 2k), low fire activity is present in the Indus valley

in Pakistan and mainly over Uttar-Pradesh from post-harvesting of sugarcane crop.

Biogenic emissions peak during pre-monsoon and monsoon seasons (Figure 2c,f), with values of 2×10−3g m−2 day−1 and

1.5×10−2g m−2 day−1, respectively. The largest values are over Sindh in Pakistan, West Bengal, and Bangladesh. Land cover185

over the IGP is dominated by croplands, but state of Sindh includes coastal mangrove plantations, inlands riverine forests,

irrigated plantations, and rangelands (Ministry of Environment Government of Pakistan, 2009). Moreover, West Bengal

and Bangladesh emissions are mostly confined close to the coast, where forest land is present (Reddy et al., 2016). During

these two seasons there are also isoprene emissions over Uttar Pradesh from forests in Pilibhit and Kheri, and from northeast

Pakistan.190
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For computational expediency we have chosen a representative period of one month for each distinct season over the IGP.

We define, based on the seasonal definition of the Indian Meteorological Department (India Meteorological Department), the

pre-monsoon period as 18th April to 16th May 2017; the monsoon season as 3rd to 31st July 2017; the post monsoon season

at 18th October to 16th November 2017; and finally winter as 8th January to 5th February 2018. The 2017/2018 year is close

to the climatological mean state so our results are typical of this region rather than being influenced by significant circulation195

changes due to, for example, El Niño Southern Oscillation climate variations (Null, 2020).

For the purposes of reporting our results we divide the IGP into three sub-regions: the upper IGP that includes the Pakistani

states of Sindh and Punjab and the Indian Punjab; the middle IGP that includes the Indian states of Haryana, Delhi NCT, and

Uttar Pradesh; and the lower IGP that include the Indian state of Bihar and West Bengal and Bangladesh, excluding the states

of Chittagong and Sylhet (Figure 1).200

2.2 Determining the Sensitivity of PM2.5 and OA to Changes in Precursor Emissions

We use a perturbative approach to determine the importance of different source sectors on PM2.5 and OA, which takes into

account the non-linear chemical environment. Alternatively, setting a particular emission source to zero would result in a signif-

icant non-linear response that is unique to the source, consequently precluding any meaningful comparison of the importance

of a particular source to PM2.5 and OA.205

First, we run a base run for each season. We then, for each season, systematically perturb one emission source by +5% over

the study domain for the central week of each season, keeping the other sources the same as the base run. Finally, we calculate

the sensitivity Sij of species concentration to the changes in a given source of emissions as:

Sij =
∆Cij

∆E
=

∆Cij

Ep
tot−Eb

tot

=

∑
t(C

p
ij,t−Cb

ij,t)∑
ij,t,s(E

p
ij,t,s−Eb

ij,t,s)
, (1)

where ∆Cij represents the concentration change of our target species (PM2.5 and OA in this study) at grid point ij in210

response to an emission change ∆E summed over the IGP for a particular source. We perturb directly anthropogenic

and fire emissions rates. Biogenic emissions are calculated online by scaling normalized emission rates by factors that

describes changes in, for example, temperature, photosynthetic active radiation, leaf area index (LAI) (Guenther et al.,

2006). We modify the WRF-Chem code to increment only isoprene emissions because our calculations suggest they

account for almost all of biogenic emissions over the IGP, in agreement with other studies (Singh et al., 2011; Surl et al.,215

2018). ∆Cij is calculated by summing over time the difference in concentrations at each grid cell ij of the perturbed

run p Cp
ij,t and the base run b Cb

ij,t. The change in concentration in each grid cell is therefore scaled by the same

∆E, allowing to consider local and non-local emission influences equally and to avoid singularities in grid cells where

there is no net emission change. We use this scaling because it allows us to compare the sensitivity of atmospheric

concentrations to different sources types. ∆E is calculated as the difference of total emissions within the IGP domain220

between the perturbed model run and the base model run for a given source type.

Total emissions across the IGP for the perturbed run Ep
tot and for the base run Eb

tot are calculated by summing emis-

sions from all species for the length of the simulation and for all grid cells across the IGP. In more detail, emissions at
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each grid point ij for species s between two consecutive model outputs at t and t+1 is calculated (for both the perturbed

and base runs) by Eij,t,s = εij,t,s∆tAij . εij,t,s denotes the emission rate of species s at location ij and output time t, Aij225

denotes the area of grid point ij, which in our calculations is constant at 400 km2, and ∆t corresponds to an interval

of model output which in our calculation is 3 hours. To take into account the different spatial variability of emissions

from different sources (Figure 2), we scale ∆E with the total number of grid cells within the IGP for which the emis-

sion difference is >0.001 g m−2 day−1, corresponding approximately to cumulative emissions > 2.8 Mg for each grid

cell in one week. This threshold corresponds to a lower limit for significant emissions rate across the area considered230

(Figure 2). We also neglect values of Sij for which the change in the pollutant concentration Cij <5% of mean pollu-

tant seasonal concentration over the IGP (4 µg m−3 and 1 µg m−3 for PM2.5 and total OA, respectively). Using this

additional threshold allows us to isolate significant changes in concentrations due to direct changes in emissions, and

remove smaller values due to model non-linearity. We report the sensitivity parameter Sij with units of µg m−3 Gg−1.

In a policy-making context, our sensitivity parameter provides information about how to control atmospheric concen-235

trations by changing different emission sources in order to obtain the highest air quality benefits from certain emission

reductions.

2.3 Data Used for Model Evaluation

We use in situ measurements of PM2.5, PM10, CO, NO2, O3, and SO2 from the Indian Central Pollution Control Board CPCB

and PM2.5 data collected atop the US Embassy in Pakistan and Bangladesh U.S. Department of State. We accessed these data240

from the OpenAQ Platform (OpenAQ). Appendix B describes an overview of the in situ data, our data cleaning approach, and

evaluation metrics. Given the lack of continuous measurements of OA and its components POA and SOA over the IGP, we

compare our model OA with measurements available from the literature. We also evaluate the model using satellite observations

of aerosol optical depth (AOD) from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard

the Terra and Aqua satellites, which have a local equatorial overpass time of 1030 and 1330, respectively. AODs are retrieved at245

550 nm, corresponding to particle sizes of 0.1–2µm and comparable to the PM2.5 size range. In particular, we use the MODIS

Collection 6.1 Level 2 combined Dark Target and Deep Blue AOD product available on a 10 km spatial resolution (Levy et al.,

2013).

Here we summarize the main results of our evaluation (detailed results are available in Appendix B). We report the normal-

ized mean bias (NMB) and the Pearson correlation coefficient r, which we use to describe how well the model reproduces the250

observations. The model tends to overestimate surface PM2.5 concentrations (0.004<NMB<0.4) especially during monsoon

season (NMB=0.4) but it has skill in reproducing observed seasonal variations (r > 0.62) with the exception of the monsoon

season (r = 0.09). Poorer model performance during the monsoon period may be due to a number of compounding

factors. In particular, it is challenging to reproduce observed atmospheric water vapour and precipitation over the Bay

of Bengal, western coasts of India and the Himalayan foothills during summer months. Uncertainties in the represen-255

tation of topography, insufficient mixing in the boundary layer, errors in moisture transport and simulation of surface

moisture availability, soil temperature and an excessive water vapour flux from the ocean all contribute to model error
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(Kumar et al., 2012a). Previous studies have shown that monsoonal rainfall is not well described by regional models

such as MM5 or WRF (Rakesh et al., 2009; Ratnam and Kumar, 2005). When we compare our WRF model simulation

with MERRA-2 reanalysed meteorology (Gelaro et al., 2017) we find that precipitation rates have a negative model bias260

of '80% over the IGP, similarly to what Conibear et al. (2018) obtained with a similar model set-up.

For PM10, the model tends to underestimate the observation in all seasons (NMB up to -0.25) except in premonsoon season

(NMB=0.15) and has poorer skill in reproducing observed PM10 variations compared to PM2.5 (r ≤ 0.69), especially during

winter and pre-monsoon season. We generally find poorer model agreement with gas-phase pollutants, including a positive

model bias and comparatively poor correlations with observations of NO2, SO2 O3 (Table A3). We attribute this to265

multiple sources of error. Given the coarse spatial and temporal resolution our model (20 km×20 km spatial, 3 hour

temporal), we expect our model to be affected by non-negligible representation error due to the CPCB network sites

often being located near to roadsides or in dense urban areas where the model will struggle to reproduce. This source

of error preferentially affects reactive trace gases that react on timescales with transport across individual model grid

cells. Previous studies have reported similar model limitations (Fountoukis et al., 2013; Paolella et al., 2018; Kuik270

et al., 2016; Tan et al., 2015; Sirithian and Thepanondh, 2016; Balasubramanian et al., 2020). Data for Pakistan are

not available for our modelling study period (2017/2018) so we instead use data from 2019 for the monsoon and post-

monsoon seasons and data from 2020 for the winter and pre-monsoon seasons, which represents an additional source of

error. Previous studies show that regional modelling over south Asia tends to overestimate satellite column observations

of NO2 by 10–50% over the Indo-Gangetic Plain, the bias peaking as high at 90% during winter months (Kumar275

et al., 2012b), and up to +131% when compared to ground-based observations over densely populated urban regions

(Karambelas et al., 2018). These differences have been attributed mainly to errors in NOx emission inventories over

densely populated areas, uncertainties in seasonal variations of emissions, absence of diurnal and vertical profiles of

anthropogenic emissions(Kumar et al., 2012b; Karambelas et al., 2018), and underestimation of precipitation rate that

will reduce the loss of soluble trace gases Kumar et al. (2012a). Similarly, previous regional model studies of IGP region280

have tended to over-predict concentrations of SO2, with NMB>3.5 (Conibear et al., 2018; Kota et al., 2018). We attribute

our positive model bias of SO2 to using an outdated emission inventory that does not take into account the beginning of a

shift from coal to gas-based power plants (Sharma and Khare, 2017). Urbanisation has been shown to affect the diurnal

spatial distribution of surface ozone (Li et al. (2014) and references therein), and also the magnitude and location of

anthropogenic emissions of NOx and VOCs that subsequently affect surface ozone photochemistry (Zhang et al., 2004;285

Ghude et al., 2013). Finally, some fraction of the overestimation of surface ozone is linked to our use of the MOZART

chemical mechanism that has been previously reported to have a positive model bias over south Asia compared to other

mechanisms (Sharma et al., 2017). Collectively, these model limitations associated with describing reactive trace gases

will impact our ability to model particulate matter, especially secondary components over urban areas across the IGP.

For OA, the model reproduces the order-of-magnitude seasonal trends (Table B4) but additional measurements are needed290

to robustly assess model performance. Table B5 shows that WRF-Chem AOD agree with spatial distributions of MODIS

AODs with r typically > 0.5 with the exception of the monsoon season (r=0.35). Poor model skill during the monsoon
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season may reflect difficulties in retrieving AOD during extensive seasonal cloud coverage. In addition, the model has

specific difficulties in reproducing atmospheric aerosol abundances during monsoon season, as highlighted earlier in

this section, that could affect the simulated total AOD column. The model tends to overestimate MODIS AOD during pre-295

monsoon (NMB=0.33, 0.26 for Terra and Aqua satellites) and slightly underestimate AOD in the other seasons (NMB ranges

from -0.06 to -0.19).

3 Results

First, we summarise the seasonal meteorology over the IGP, which influences the physical and chemical environments that

determine PM2.5 and OA. We then report seasonal distributions of surface PM2.5 and the corresponding constituent aerosol300

composition. Finally, we investigate the seasonal influence of POA and SOA on PM2.5 and the volatility of the surface SOA

across the IGP. In describing the seasonal distribution of PM2.5, OA, POA and SOA we highlight the influence of anthro-

pogenic, pyrogenic, and biogenic emissions and synoptic meteorology in shaping these patterns.

For the purpose of describing PM2.5 and OA we begin our narrative with the post-monsoon season and finish with the

monsoon season, reflecting the central importance of the monsoon system on atmospheric chemistry over the IGP. However,305

in the corresponding figures we retain the chronological order of events in a calendar year.

3.1 Seasonal Meteorological Drivers

Figure A1 shows model seasonal mean values for planetary boundary layer height (PBLH, m), surface relative humidity (RH,

%), surface temperature (◦C), mean daily rainfall (mm day−1), and 10 m wind (m s−1) over the IGP. Given that PBLH and

RH show a diurnal cycle with high variance we report nighttime and daytime values for these variables.310

During the pre-monsoon season, mean surface temperatures are higher than 30◦C. Mean PBLH ranges from 1000 m up to

4500 m at daytime, with the highest values are over Pakistan and central IGP, and is almost an order of magnitude smaller

during nighttime (120 m up to 400 m). Seasonal mean winds are typically 3 m s−1, southward from the northern mountain

chain of Hindu Kush and the Himalayas, and stronger northward from the coast, allowing pollutants to be transported mainly

in the inland. Air is much more humid over the lowest part of the IGP (>60%). Rainfall follows similar patterns of RH, limited315

to Bangladesh with values below ∼3 mm day−1.

During the monsoon season, the dominant feature is the monsoon itself. This manifests most obviously in increased rainfall,

which increases the washout of hydrophillic pollutants, mainly in the central and lower part of the IGP, with mean daily rainfall

values of 3-7 mm day−1 with localized regions of rainfall in excess of 15 mm day−1, and wind speeds in excess of 6 m s−1

north-northeastward. Values of RH are >50% almost everywhere over the IGP, and relatively low values for the PBLH allow320

a well mixed chemical environment, with smaller day to night variation compared to pre-monsoon (1000-3000 m day, 500-

1200 m night). Mean temperatures are similar to those during the pre-monsoon, with the most prominent increase over northern

Pakistan (>35 ◦C).
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Figure 3. Seasonal mean spatial distributions of PM2.5 (µg m−3) over the upper, middle and lower IGP. The numbers inset of pre-monsoon

(a–c), monsoon (d–f), post-monsoon (g–i), and winter (l–n) seasons denote the regional mean PM2.5 value.

The post-monsoon season is characterized by cooler temperatures than the previous two seasons with mean values of∼23◦C,

much lower values for PBLH (below 2000 m during day and ∼200 m during night), and weaker wind speeds (< 1 m s−1 with325

no predominant direction, a combination of factors that results in pollution stagnation. With the exception of Bangladesh and

the Indian states that are adjacent to the Bay of Bengal, rainfall is almost absent from the IGP. Nevertheless, air continues to

be humid with the distribution and values of RH similar to the monsoon season, with values of up to 80% over the central and

lower IGP, environmental conditions that favour water significantly contributing to PM mass without washout from rain.

During winter, mean temperature further drops to ∼15◦C with cooler temperatures over regions adjacent to the northern330

mountain chains. PBLH values are at their daily annual minimum (<∼1000 m) and its night values are similar to post-monsoon

(<∼200 m). Winds speeds are typically <12 m s−1 with a net west-east gradient from the upper IGP to the lower IGP, which

transports pollutants towards Bihar, West Bengal and Bangladesh, and with a north-south gradient over the Indus Basin that

transports pollution from northern Pakistan to the coast. Daily rainfall is below 3 mm day−1 anywhere across the IGP, but as

for post-monsoon, RH remains high over the central and lower IGP (>40% daytime, 70% during nighttime).335
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ANTHROPOGENIC PYROGENIC BIOGENIC

Figure 4. Seasonal sensitivity of PM2.5 concentrations to changes in (left column) anthropogenic, (middle column) pyrogenic, and (right

column) biogenic emissions (µ g m−3Gg−1). The calculation is described in the main text. Regions marked as white denote where sensitivity

corresponds to PM2.5 concentrations below the set threshold of 4 µg m−3.

3.2 Seasonal Distributions of Surface PM2.5

Figure 3 shows seasonal variations of surface PM2.5 across the upper, middle, and lower IGP. Generally, we find the highest

values of surface PM2.5, up to 350 µg m−3, during post-monsoon and winter seasons that are associated with lower PBLH

allowing large anthropogenic emissions to accumulate in the boundary layer without ventilation from strong winds. From this

section we begin our narrative from the post-monsoon season and finish with the monsoon season, but retain the figure panels340

in chronological order for a particular calendar year. Our seasonal distributions of PM2.5 are similar to recent studies (Shahid

et al., 2015; Ojha et al., 2020; Mhawish et al., 2020) although we report higher PM2.5 concentrations especially over the lower

IGP. Compared to these studies, our model also takes into account water content in PM2.5 mass in addition to dry PM2.5

mass through aqueous phase chemistry. Our results shows that water content in PM2.5 is substantial, especially over

the lower IGP where water makes up to 42% of total PM2.5 mass (see later in this section). This helps to explain our345

comparatively high PM2.5 estimates.
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During the post-monsoon season (Figure 3 (g–i)), the mean values of surface PM2.5 in the upper, middle, and lower IGP

are 137 µg m−3, 176 µg m−3, and 185 µg m−3, respectively. On a local scale, Kolkata and its surroundings in the lower IGP

experience the worst air quality with mean PM2.5 values in excess of 300 µg m−3, closely followed by Delhi NCT, the border

region between Indian and Pakistani Punjab, and Singrauli at the southern border of middle IGP (∼300 µg m−3). The best air350

quality is found in the Pakistani state of Sindh with PM2.5 concentrations below 75 µg m−3. Biomass burning in the Indian

Punjab plays a key role in shaping the distribution of PM2.5 during this season. Figure 4h shows that fire emissions have the

largest impact on PM2.5 concentrations across the Indian and Pakistani Punjab region, Haryana and Delhi NCT (sensitivities

of up to > 103 µg m−3 Gg−1). The impact of post-monsoon biomass burning emissions extends to the central part of

the middle IGP over Uttar-Pradesh, where sensitivity of PM2.5 to pyrogenic emissions (up to 6× 102 µg m−3 Gg−1) is355

higher than anthopogenic emissions (up to 4× 102 µg m−3 Gg−1).

The sensitivity of PM2.5 to changes in biogenic emissions (Figure 4i) have non-negligible values (< 2×102 µg m−3 Gg−1)

only over part of West Bengal in the lower IGP.

During the winter season (Figure 3(j–l)), wind patterns transport pollutants from the upper IGP to the lower IGP, resulting in

west-east gradient in seasonal mean PM2.5 concentrations . The mean PM2.5 value in the lower IGP is 191 µg m−3, the highest360

mean seasonal value for the IGP. The highest PM2.5 concentrations are reached in Kolkata (>300 µg m−3), and in the Bihar

state, with a local peak in Patna (>220 µg m−3) known as the ‘Bihar pollution pool’ (Kumar et al., 2018). In the middle IGP,

mean PM2.5 concentrations are 18 µg m−3 lower than post-monsoon levels, with east Delhi and Singauli remaining the largest

hotspots of the region (>220 µg m−3). The upper IGP experiences the lowest seasonal PM2.5 concentration (86 µg m−3),

lower than half the value in the lower IGP, with concentrations decreasing from the Punjab to the Sindth coast. Anthropogenic365

emissions dominate the distribution of PM2.5 during winter over the lower IGP (sensitivity up to 4×102 µg m−3 Gg−1, Figure

4j), with the highest sensitivities over cities Kolkata, Singrauli. The influence of biomass burning is is significant over the the

Indus basin, stretching until Uttar Pradesh (sensitivity up to 103 µg m−3 Gg−1, Figure 4k), while biogenic emissions do not

show a significant influence during this season (Figure 4l).

During the pre-monsoon season (Figure 3 a–c), air quality begins to improve due to higher PBLHs and stronger winds (Figure370

A1) that help to disperse pollutants. Mean PM2.5 concentrations are similar over the upper and middle IGP with values lower

than 90 µg m−3. Higher concentrations remain in the lower IGP (128 µg m−3) due to the accumulation of pollutants from the

winds blowing from the Bay of Bengal to the slopes of the Himalayas over North Bangladesh. High aerosol loading over the

lower IGP during the premonsoon season is also influenced by biomass burning from Northeast India and Myanmar-

Laos, which are partially included in our model domain. PM2.5 values over the upper part of the middle IGP (Figure3375

b) show some influence from biomass burning (Figure 4 b). We find that anthropogenic emissions are most important over

the lower IGP and localized region in the central IGP (Figure 4 a). PM2.5 concentrations in Delhi NCT are jointly influenced

by biomass burning and anthropogenic sources. Biogenic sources only have a significant impact over localized regions in the

lower and middle IGP (Figure 4(c)).

Generally, the onset of the monsoon results in better air quality across the IGP due to higher rainfall rates, which increases380

wet deposition of aerosols, and higher PBLHs that improve the physical dispersal of surface emissions. Mean values of PM2.5
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Figure 5. Seasonal mean PM2.5 composition from the WRF-Chem model across the IGP: (a) upper, (b), middle, and (c) lower IGP. The
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are≤100 µg m−3 across the IGP. The largest values of PM2.5 are over the lower IGP (up to 170 µg m−3). We find that PM2.5

is sensitive to biogenic emissions over localized regions across the IGP, where PM2.5 can be more sensitive to changes in

biogenic emissions than changes in anthropogenic emissions (∼200-500 µg m−3) and <200 µg m−3, respectively). Fires

play only a small role in PM2.5 during this season.385

Surface PM2.5 composition

Figure 5 shows the modelled composition of PM2.5 across the IGP. Generally, we find more variability between seasons

than across different parts of the IGP, except for the water contribution to PM2.5 mass. The results we report for the chem-

ical composition and seasonal trends of PM2.5 are broadly consistent with chemical characterisation studies over the region

(Chowdhury et al., 2007; Bhowmik et al., 2020). As discussed in Section 2.3, model limitations in reproducing precursor390

trace gases will affect our ability to model secondary components of particulate matter. When comparing the model

with recent field observations of PM1 over Delhi during postmonsoon and winter (Gani et al., 2019; Gunthe et al., 2021;

Patel et al., 2021), corresponding to two of our study seasons, we find that the model generally underestimates PM1

(57-161 µg m−3 observed, 17-22 µg m−3 simulated) although we acknowledge that the model configuration we use is

not ideal to model sub-micron PM due to our use of four sectional size bins. The model overestimates the contribution395
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of PM1 from nitrate (6-11% observed, 11-13% simulated), but underestimates the contributions from sulfate (7-9%

observed, 2% simulated) and organics (54-68% observed, 16-18% simulated).

Inorganic species (secondary inorganic aerosol of sulfate, nitrate and ammonium and other inorganic aerosol) dominate

the chemical composition by mass of PM2.5, representing between 30–80% of total PM2.5 for each season across the IGP.

The mean seasonal mass of total inorganics across the IGP is 54–70 µg m−3 during the pre-monsoon season, 27–35 µg m−3400

during the monsoon season,79–111 µg m−3 during the post-monsoon season, and 51–114 µg m−3 during winter. The largest

inorganic aerosol values are found during the post-monsoon and winter seasons due to nitrate from fossil fuel combustion and

from residential and energy use. We find a similar but relatively muted seasonal variation for black carbon with mass values

between 2–11 µg m−3. Sea salt transported from the coasts during the monsoon season adds 3–5 µg m−3 (3–9%) to PM2.5

across the IGP.405

The water contribution to PM2.5 is substantial over the lower IGP during pre-monsoon, monsoon, and post-monsoon seasons,

with mass contribution of 32–44 µg m−3 (25–42%), while during winter it accounts for 6 µg m−3 (3.5%). For the middle

IGP, water is a non-negligible fraction of PM2.5 mainly during monsoon (20 µg m−3, 24%) and winter (12 µg m−3, 8%)

seasons, while for the upper IGP the highest values of water mass are found during only the monsoon season (4 µg m−3,

8%). The seasonal variation of water content reflects RH distritbuions, which above values of 60–70% allows PM hydrophilic410

components (e.g., nitrate, sulfate, sea salt) to uptake water via deliquescence.

The sum of primary and secondary OA contributes by mass between 17% and 31% of PM2.5 across the IGP, with contri-

butions from POA and SOA varying with season. During the pre-monsoon season, OA contributes 11–21 µg m−3 to PM2.5,

representing 17–22% of the total mass. A similar mass contribution is found during the monsoon season (18–21 µg m−3) but

with higher percentage contribution to PM2.5 (20–31%). The percentage mass contribution of OA to PM2.5 is similar dur-415

ing the post-monsoon (28–31%, 43–52 µg m−3) and winter (22–31%, 26–60 µg m−3), with higher mass contribution during

post-monsoon for the middle and lower IGP and during the winter season for the lower IGP. Our results for modeled PM2.5

composition confirm the significance of OA contribution to fine particulate matter, and we analyse in more detail OA and its

components in the next sections.

3.3 Seasonal Distribution of Surface OA420
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Figure 6. Seasonal mean distributions of total OA over the upper, middle and lower IGP. The numbers inset of pre-monsoon (a–c), monsoon

(d–f), post-monsoon (g–i), and winter (l–n) seasons denote the regional mean total OA value.
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Figure 7. Seasonal sensitivity of total OA to changes in (left column) anthropogenic, (middle column) pyrogenic, and (right column) biogenic

emissions (µ g m−3Gg−1). The sensitivity calculation is described in the main text. Regions marked as white shows where sensitivity

corresponds to OA concentrations below the set threshold of 1 µg m−3.

Figure 6 shows the season mean distributions of total OA with the corresponding POA and SOA distributions shown by

Figures A2 and A3. We generally find that POA dominates seasonal values of total OA across the IGP, with the exception of

the post-monsoon season when SOA and POA have comparable values.

During the post-monsoon season (Figure 6g-i), the largest OA concentrations are over the upper IGP at the border of Pak-

istani and Indian Punjab (> 80 µg m−3), where POA values can exceed 50 µg m−3. Although the largest regional mean is425

found over the lower IGP (52 µg m−3) due to urban anthropogenic emissions in and around Kolkata and Patna where values

are >70 µg m−3. Over the middle IGP, the mean OA value is similar to the lower IGP (52 µg m−3) but shows a more homoge-

neous distribution, with the highest OA values found at the borders between upper and lower IGP. Regional mean POA values

range 23–29 µg m−3 (Figure A2g-i), similar to SOA values (20–24 µg m−3, Figure A3g-i). POA levels are much higher than

SOA over the Punjab states in India and Pakistan and in the Indian lower IGP ( 40–70 and 30–40 µg m−3 for POA and SOA,430

respectively). Over the middle IGP, SOA is generally higher than POA (29 and 24 µg m−3 for SOA and POA, respectively),

with highest concentrations of SOA found in the lower Uttar Pradesh (up to 40 µg m−3). Over Bangladesh and the Pakistani

state of Sindth POA and SOA have comparable values (<35 µg m−3).
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Similarly to PM2.5, we find that during the post-monsoon season, the OA distribution across the IGP is most sensitive

to changes in biomass burning emissions (Figure 7g-i), with higher values over the Punjab to Delhi NCT, and part of Ut-435

tar Pradesh (up to 103 µg m−3 where fires are located over Indian Punjab). The sensitivity of OA to changes in biomass

burning are localised, with POA most influenced by fires over Punjab and Haryana (Figure A4h) and corresponding

impact on SOA extending over Pakistani Punjab and towards the middle IGP (Figure A5h). Similarly, biogenic emis-

sions play only a localised role in OA and SOA concentrations where biogenic emissions are still significant during this

season (Figures 7i) and A5i). OA are most sensitive to anthropogenic emissions over the Indian part of the lower IGP and in440

the Pakistani Punjab values (between 50-150 µg m−3). We find that OA over the Delhi NCT megacity is not sensitive to these

changes unlike other cities mentioned previously, so that Delhi is not one of the main hotspots of OA across IGP during this

season (Figure 6h) unlike it is for PM2.5 (Figure 3h). We find that the sensitivity of POA and SOA to changes in anthropogenic

emissions are comparable across major cities of the Punjab states (Figures A4g, A5g).

We find that the largest seasonal mean values of OA are during winter over the lower IGP (60 µg m−3, Figure 6j-l) with445

contributing localised peaks over Kolkata and Patna (>80 µg m−3) and at the border between Pakistan and India (ranging 40–

70 µg m−3). Seasonal mean values of POA and SOA also peak during winter over the lower IGP (34 µg m−3 and 26 µg m−3,

respectively.) During winter, the OA distribution is shaped by anthopogenic and pyrogenic emissions (Figure 7j-l). POA con-

centrations show to be sensitive to anthropogenic emissions in a similar way as it is for post-monsoon season (Figure A4g,j).

SOA is also mostly determined by anthropogenic emissions over the lower IGP (Figure A5j). POA and SOA are also sensitive450

to pyrogenic emissions, but during this season it is limited to fires over the Indus basin in Pakistan and central IGP (Figures

A4k, A5k). We find that biogenic emissions do not significantly influence OA during winter.

During pre-monsoon and monsoon seasons, the OA distributions (Figure 6a-f) have similar mean values over the middle

and lower IGP (20–21 µg m−3) and lower mean values over the upper IGP (11 and 18 µg m−3, respectively). The highest

POA concentrations are found at the border on India and Pakistan and over the lower IGP ('30 and 40 µg m−3, respectively).455

In both seasons, mean SOA concentrations are below 15 µg m−3) across all the IGP. During pre-monsoon and monsoon

seasons, OA concentrations are sensitive to anthropogenic emissions across the IGP with similar spatial distributions (Figure

7a,d). Pyrogenic emissions influence the OA distribution during the pre-monsoon season over the central IGP (Figure 7b), but

OA less sensitive to these emissions compared with the post-monsoon season (Figure 7h). During the monsoon season, the

influence of fires on OA is negligible across the IGP. The influence of biogenic emissions on OA, determined exclusively in460

our model via SOA, is limited to the lower IGP during the pre-monsoon season. During the monsoon season, these emissions

have a widespread impact on OA (Figure 7f) with seasonal mean peak sensitivity of up to 2.3× 102 µg m−3 Gg−1.

PM2.5 and OA are more sensitive to changes in biogenic emissions than changes in anthropogenic emissions during

the monsoon period because of the role that anthropogenic emissions play in controlling the production of biogenic

SOA. Previous studies have shown that anthropogenic emissions can enhance biogenic SOA production, with NOx465

concentrations playing a strong role in enhancing SOA formation from isoprene, and terpenes (Spracklen et al., 2011;

Shilling et al., 2013; Shrivastava et al., 2019; Xu et al., 2020). A disadvantage of our using a single-variable perturbative
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Figure 8. Seasonal mean volatility distribution of SOA over the upper, middle, and lower IGP as calculated within the WRF-Chem 1-D VBS

scheme for (a–c) pre-monsoon, (d–f) monsoon, (g–i) post-monsoon, and (j–l) winter seasons.

method is that we can only consider the impacts of one controlling factor in the production of OA. A study that considers

the interactions between controlling factors is outside the scope of this study.

3.4 Seasonal Distribution of SOA Volatility470

We use aerosol volatility to describe how SOA is partitioned between the gas and particle phase to understand when it con-

tributes to PM2.5 mass loading. Figure 8 shows the seasonal mean volatility distributions for SOA across the IGP simulated

using the 1-D VBS model in WRF-Chem (Knote et al., 2015). Seasonal and regional variations reflect changes in the physical

and chemical environment in which the SOA is formed. Broadly, we find a gradual increase in the volatility of SOA from the
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pre-monsoon season to the winter season, mainly reflecting the increase in the mean OA loading (Figure 6). Higher OA loading475

leads to a shift in the gas-particle partitioning towards more volatile bins, reflected in the seasonal variation in the population of

the inert bin (denoted here as log10C∗ =−4, as described above). The contribution of this inert bin is negligible during winter

and peaks during the monsoon season, with intermediate values during the pre-monsoon and post-monsoon transition seasons.

During the post-monsoon season, the particle phase organic mass is present at high volatility bins up to log10C∗ = 2. The

largest particle phase mass loading (10 µg m−3) is found over the middle IGP. The upper and lower IGP show a similar480

volatility distribution as the middle IGP but with lower mass loadings, with the lower IGP having the lowest mass loadings.

The smallest values over the lower IGP reflect the persistence of rainfall over this region that leads to continued removal of

water soluble gas-phase and aerosol-phase organics.

Surface-level atmospheric organic mass becomes even more volatile during the winter season, with particle phase organic

matter present in all volatility bins. The largest mass loading for SOA are found over the lower IGP (> 10 µg m−3) and485

decreases westwards towards the upper IGP, reflecting the E-W gradient of the total OA loading (Figure 6j–l).

SOA during the pre-monsoon (Figure 8 a–c) and monsoon (Figure 8 d–f) seasons are characterised by a volatility ≤
log10C

∗ = 1, and with aerosol masses lower than 5 µg m−3 for each volatility bin in both seasons. The higher volatility bins

(log10C∗ = 2 and log10C
∗ = 3) are occupied exclusively by gas-phase organic compounds. We attribute this to water-soluble

SVOCs being washed out by monsoonal rainfall. The washout of SVOCs results in gas-aerosol re-partitioning to establish490

thermodynamic equilibrium, associated with particle phase organics partitioning to the gas-phase. Aerosols are also removed

via wet and dry deposition but we find most of the loss of SVOCs and SOA mass is lost via the gas phase (Knote et al., 2015).

This also helps to explain the low levels of OA during the pre-monsoon and monsoon seasons (Figure 6). The OA volatility dis-

tribution is similar across the IGP, reflecting an approximately uniform physical environment during the two seasons (Figures

A1 and 7).495

4 Concluding Remarks

We used the WRF-Chem regional atmospheric chemistry model to understand the influence of anthropogenic, pyrogenic and

biogenic emissions and meteorology on seasonal variations of the magnitude, distribution, and composition of PM2.5 and

organic aerosol across the Indo-Gangetic Plain (IGP) during 2017/2018.

We find that the model reasonably reproduces concentrations of PM2.5 in all seasons (NMB<0.2, r>0.6) except for the500

monsoon season (NMB=0.4, r=0.09), a reflection that modelling monsoonal meteorology remains challenging. However,

uncertainty in our estimates remains on the individual PM2.5 secondary components, given the limitation we found in

the modeling to reproduce precursors gases surface concentrations when compared with observations. Availability of

additional monitoring stations outside urban areas that are more representative of the spatial scales associated with

model grid cells would help to evaluate model error, as well as use of finer-resolution and up to date inventories for505

precursors gases over the rapidly changing region of IGP.
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We find that the IGP experiences the highest seasonal mean levels of PM2.5 during the post-monsoon (October—December,

166 µg m−3) and winter (January—February, 145 µg m−3) seasons with an heterogeneous distribution, in agreement with pre-

vious studies. The magnitude and distribution of anthropogenic emissions across the IGP are approximately constant through-

out the year. During the post-monsoon season, agricultural burning emissions of post-harvest residues influence PM2.5 mostly510

over the upper and middle IGP, particularly affecting the Indian and Pakistani Punjab region. These additional emissions are

exacerbated by high pressure weather systems that reduce ventilation of surface air pollution to the free troposphere. During the

winter season, ongoing anthropogenic emissions, wind patterns, and a seasonally shallow boundary layer result in a gradient

in air quality from the upper to lower IGP, with the highest PM2.5 values (in excess of 250 µg m−3 ) over Kolkata and the

state of Bihar. During the pre-monsoon (March–May) and monsoon (June–September) seasons wet scavenging of hydrophilic515

gas-phase aerosol precursors and aerosols, and more rigorous vertical mixing, reduces levels of PM2.5 ( 95-79 µg m−3 re-

spectively).Generally, we find that PM2.5 composition has a stronger seasonal variation than a geographical variation within

each season. Total inorganic species dominate PM2.5 composition (30-80%), with water uptake contributing substantially to

the PM2.5 mass especially over the lower IGP (up to 40%).

We find that OA represents a significant contribution to PM2.5 throughout the year. On an annual mean basis, OA represents520

17–30% of PM2.5, with higher contributions during post-monsoon and winter seasons. Typically, POA contributes more to the

OA loading than SOA in all seasons across the IGP. Anthropogenic and pyrogenic sources impact POA and SOA with similar

patterns of PM2.5 across the IGP during all seasons. Biogenic sources have a significant impact on SOA distribution across the

IGP during the monsoon season but are limited to the lower IGP during the pre- and post- monsoon seasons. We find that the

volatility distribution of SOA is driven mainly by the mean total OA loading and the washout of aerosols and gas-phase aerosol525

precursors that result in SOA being less volatile during the pre-monsoon and monsoon season than during the post-monsoon

and winter seasons.

Mitigating levels of PM2.5 over the IGP will require a range of regional and state-level policies that address the influences

of intra- and inter- state anthropogenic, pyrogenic, and biogenic emissions. The relative influence of these emissions on PM2.5

and the broader photochemical environment will likely change in the context of a warmer climate, e.g. biogenic emissions will530

increase as they are temperature dependent. It is therefore imperative that future studies should also consider sub-regional and

city spatial scales, where individual sectors will be more important, and where there is the highest population density that will

suffer from poor air quality.
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Appendix A: Meteorological drivers, POA and SOA distribution

Figure A1 shows the mean seasonal WRF-Chem meteorological driver or pre-monsoon, monsoon and post-monsoon 2017 and535

winter 2018. Figure A2, to A5 show POA and SOA distribution over the IGP and their sensitivity to emissions drivers.
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(a) (b) (c) (d)

(e) (f) (g)

Figure A1. Seasonal mean WRF-Chem meteorological fields: (a) daytime planetary boundary layer height (m); (b) nighttime planetary

boundary layer height (m); (c) daytime surface relative humidity (%); (d) nighttime surface relative humidity (%); (e) surface temperature at

2 m (◦C; (f) daily precipitation rate (mm day−1)); and (g) wind speed (m s−1) and direction at 10 m.
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Figure A2. Seasonal mean distributions of POA over the upper, middle and lower IGP. The numbers inset of pre-monsoon (a–c), monsoon

(d–f), post-monsoon g–i), and winter (j–l) seasons denote the regional mean POA value.
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Figure A3. As A2 but for SOA.
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ANTHROPOGENIC PYROGENIC BIOGENIC

Figure A4. Seasonal sensitivity of POA to changes in (left column) anthropogenic, (middle column) pyrogenic, and (right column) biogenic

emissions (µ g m−3Gg−1). The sensitivity calculation is described in the main text. Regions marked as white shows where sensitivity

corresponds to OA concentrations below the set threshold of 1 µg m−3.
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ANTHROPOGENIC PYROGENIC BIOGENIC

Figure A5. As Figure A4 but for SOA.
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Appendix B: WRF-Chem set-up and evaluation

Table B1 summarises the parametrisation for meteorology we use in WRF-Chem. The following subsections describe the

evaluation of model result with ground based observation, OA values from literature and with satellite AOD respectively.

B1 Ground-based Measurements evaluation540

We use ground-based measurements from the Central Pollution Control Board and the U.S. Embassies, which are available

for our 2017/2018 study period, and accessed through the OpenAQ Platform (OpenAQ). Data from Pakistan are only available

from 2019 so we use 2019 data for the monsoon and post-monsoon seasons and data from 2020 for the winter and pre-monsoon

seasons.

We apply a cleaning procedure of data for each pollutant. The cleaning procedure followed five sequential steps: 1) Exclude545

non valid, negative and zero values; 2) exclude hourly data with zscore ≥ 3 respect to daily mean; 3) exclude days with fewer

than 12 hourly measurements per day; 4) exclude stations with less then 15 days measurements per simulated season; and

5) exclude all stations but one if there are multiple stations in the same model grid-cell (for statistical independence in the

comparison). From this cleaning procedure we get 31 independent stations (Table B2, Figure B1) with a total of seasonal

measurements: 63 for CO, 54 for SO2, 61 for NO2, 50 for O3, 84 for PM2.5, 20 for PM10. For particulate matter, we compare550

the dry mass of PM2.5 and PM10.

To compare the model against these measurements, we sample the model at the time and location of each measurement. In

practice, we identify the model value closest to the measurement. We report seasonal mean statistics.

We evaluate the model using five metrics: the Mean Bias (MB), Root Mean Square Error (RMSE), Normalised Mean Bias

(NMB), Mean Normalised Absolute Error (MNAE), and sample Pearson correlation coefficient (r). These metrics are widely555

used for air quality model evaluation (Zhang et al., 2006; Kumar et al., 2012b; Brasseur and Jacob, 2017; Conibear et al.,

2018). Table B3 summarises the seasonal mean evaluation of the model with the metrics described.

B2 Organic Aerosols

In the absence of continuous monitoring data of OA, we compare our model OC values with values found in the literature.

Table B4 shows the comparison of modeled OC with measurements studies. Location of measurement sites is shown in560

Figure B1 OA are converted from organic aerosol mass to organic carbon mass assuming OA/OC ratios 1.4 for POA and 2.0

for SOA, following (Knote et al., 2015).

B3 Total AOD column

We compare our modeled prediction against satellite AOD retrievals for 2017/2018 at 550 nm with a 10 km horizontal res-

olution obtained from both Terra (MOD04_L2) and Aqua (MYD04_L2) MODIS instruments. We use the best-quality AOD565

retrievals merged from the dark target and the deep blue algorithms (Levy et al., 2013). We re-grid the 10 km Terra and Aqua

MODIS AOD data to the coarse WRF-Chem 20 km×20 km model grid.
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We calculate the 550 nm AOD using WRF-Chem values at 300 nm and 1000 nm by interpolation using the Ångström power

law. We sample the model at the local overpass time of Terra (1030) and Aqua (1330) where there exists at least one best-quality

AOD retrieval. We then mean model and MODIS AOD values over time to generate seasonal statistics. Table B5 reports the570

main statistical metrics for AOD evaluation together with the range of observed and modeled AOD.
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Figure B1. Location of ground based observation for PM and gases (purple) and OA (orange). ID Number for each station correspond

to ID number in table A2 and A4 respectively. The inset map shows in detail Delhi NCT.
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Table B1. Chosen parametrisations for meteorological processes in WRF-Chem.

Process Parametrisation

Cloud microphysics Morrison double-moment scheme (Morrison et al., 2005)

Planetary boundary layer Mellor-Yamada Nakanishi and Niino 2.5 (MYNN2) (Nakanishi and Niino, 2006)

Convection Grell 3D scheme (Grell and Dévényi, 2002).

Short and long wave radiation The Rapid Radiative Transfer Model (RRTM) (Iacono et al., 2008).

Land surface Noah Land Surface Model coupled with a urban canopy model

(Ek et al., 2003; Kusaka and Kimura, 2004)
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Table B2. List of selected ground-based stations and their measurements used for model evaluation.

number ID city station name latitude longitude

1 Agra Sanjay Palace 27.20 78.01

2 Delhi Income Tax Office 28.62 77.25

3 Delhi Delhi Technological University 28.74 77.12

4 Delhi Shadipur 28.65 77.16

5 Delhi Anand Vihar 28.65 77.32

6 Delhi Punjabi Bagh 28.67 77.12

7 Delhi NSIT Dwarka 28.59 77.05

8 Delhi IHBAS 28.68 77.31

9 Delhi Mandir Marg 28.63 77.20

10 Delhi R K Puram 28.56 77.17

11 Dhaka US Diplomatic Post: Dhaka 23.80 90.42

12 Faridabad Sector16A Faridabad 28.41 77.31

13 Gaya Collectorate - Gaya - BSPCB 24.75 84.94

14 Gurgaon Vikas Sadan Gurgaon - HSPCB 28.45 77.03

15 Haldia Haldia - WBPCB 22.06 88.11

16 Islamabad US Diplomatic Post: Islamabad 33.72 73.12

17 Jaipur VK Industrial Area Jaipur - RSPCB 26.97 75.77

18 Jodhpur Collectorate Jodhpur - RSPCB 26.29 73.04

19 Kanpur Nehru Nagar 26.47 80.33

20 Karachi US Diplomatic Post: Karachi 24.84 67.01

21 Kolkata US Diplomatic Post: Kolkata 22.56 88.36

22 Kolkata Rabindra Bharati University, Kolkata - WBSPCB 22.63 88.38

23 Lahore US Diplomatic Post:Lahore 31.56 74.34

24 Lucknow Central School 26.85 81.00

25 Lucknow Lalbagh, DN Park 26.85 80.94

26 Muzaffarpur Collectorate - Muzaffarpur - BSPCB 26.08 85.41

27 Panchkula Sector 6 Panchkula - HSPCB 30.71 76.85

28 Patna IGSC Planetarium Complex - Patna - BSPCB 25.36 85.08

29 Peshawar US Diplomatic Post: Peshawar 34.01 71.54

30 Rohtak MD University, Rohtak - HSPCB 28.88 76.62

31 Varanasi Ardhali Bazar 25.35 82.98
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Table B3. Statistical evaluation of model performance with ground based measurements for main PM and main gas pollutants.

pollutant season NMB NMAE MB [µg m−3] RMSE [µg m−3] r

PM2.5

pre-monsoon 0.12 0.31 10 34 0.62

monsoon 0.41 0.65 19 36 0.09

post-monsoon 0.19 0.28 33 62 0.84

winter 0.004 0.28 0.7 53 0.69

PM10

pre-monsoon 0.15 0.59 32 133 0.11

monsoon -0.21 0.28 -25 46 0.69

post-monsoon -0.14 0.36 -41 122 0.66

winter -0.25 0.43 -64 131 -0.85

CO

pre-monsoon. -0.64 0.64 -643 825 0.44

monsoon -0.55 0.55 -428 567 0.12

post-monsoon -0.65 0.65 -1439 2272 0.29

winter -0.52 0.61 -703 1163 -0.20

NO2

pre-monsoon 0.14 0.95 6 57 0.27

monsoon 0.46 1.00 11 32 0.08

post-monsoon 0.65 1.44 36 97 0.15

winter 0.31 0.98 17 66 0.30

O3

pre-monsoon 1.59 1.67 75 91 -0.52

monsoon 2.92 2.92 64 66 -0.12

post-monsoon 2.96 2.98 98 113 -0.75

winter 2.87 2.92 71 87 -0.55

SO2

pre-monsoon 0.25 0.85 3 13 0.04

monsoon 0.27 1.38 4 34 -0.18

post-monsoon 2.36 2.44 33 49 0.51

winter 1.85 2.15 27 43 0.04
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Table B4. Comparison of modeled OC with measurements studies in the literature. Model values refers to the mean over the corresponding

season of observations.

number ID location period species OC obs [µg m−3] OC model [µg m−3] reference

1 Delhi

Jan-Feb 13-16

PM2.5

23.6 ± 12.9 23.4

Jain et al. (2020)
Mar-May 13-16 9.82 ± 4.16 13.3

Jun-Set 13-16 6.77 ±2.63 12.1

Oct-Dec 13-16 25.2 ±14.7 38.6

1 Delhi

Jan-Feb 13-16

PM10

30.1±12.1 23.5

Jain et al. (2020)
Mar-May 13-16 23.4 ± 10.7 13.4

Jun-Set 13-16 15.9 ±9.7 12.3

Oct-Dec 13-16 39.4 ±15.6 38.7

2 Kanpur

Oct-Nov 08

PM10

. 53.3 ±21.2 37.2

Ram et al. (2012)Dec 08 - Feb 09 29 ± 14.5 21.9

Mar-Apr 09 23.1 ± 11.5 12.3

3 Kharagpur Nov 09 - Mar 10 PM2.5 30.7± 12.1 42.0 Srinivas and Sarin (2014)

4 Kolkata

Jan-06

PM2.5

18.5±2.0 67.2

Chatterjee et al. (2012)
Apr-May 06 15.5± 3.6 7.8

Jul-06 5±1 14.3

Oct-Nov 06 11.5±5.0 57.4.

5 Lahore

Jan-07

PM2.5

76.5 34.0

Stone et al. (2010)
Apr-May-07 43.5 20.0

Jul-07 31.5 18.2

Oct-Nov 07 111.2 61.0
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Table B5. Seasonal comparison of modeled total AOD column and satellite AOD observations for the Terra and Aqua instruments over the

IGP for the simulated period 2017/2018.

satellite season MB NMB NMAE RMSE r range obs range model

Terra

pre-monsoon 0.33 0.53 0.56 0.44. 0.53 0.06 - 1.78 0.10 - 2.29

monsoon 0.04 0.05 0.45 0.52 0.35 0.00 - 3.42 0.10 - 3.78

post-monsoon -0.05 -0.06 0.25 0.25 0.76 0.07 - 3.50 0.12 - 1.71

winter -0.11 -0.19 0.30 0.21 0.64 0.05 - 1.74 0.11 - 1.16

Aqua

pre-monsoon 0.27 0.44 0.49 0.40 0.52 0.07 - 3.50 0.08 - 2.82

monsoon -0.18 -0.19 0.43 0.53. 0.35 0.04 - 2.53 0.11 - 3.17

post-monsoon -0.05 -0.06 0.25 0.23 0.74 0.06 - 2.23 0.12 - 1.47

winter -0.08 -0.14 0.33 0.22 0.47 0.09 - 1.17 0.08 - 1.2
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Code and data availability. All the data and materials used in this study are freely available. The WRF-Chem model code is available from

https://www2.acom.ucar.edu/wrf-chem. NCEP FNL global tropospheric analyses were taken from https://rda.ucar.edu/datasets/ds083.3/.

CAM-CHEM global model results were downloaded from https://www.acom.ucar.edu/cam-chem/cam-chem.shtml. The EDGAR-HTAPv2.2

emissions dataset ready for be used in WRF-Chem were downloaded from https://www2.acom.ucar.edu/wrf-chem/wrf-chem-tools-community.575

The FINN biomass burning emissions dataset was downloaded from https://bai.acom.ucar.edu/Data/fire/. Ground based observation used for

the model evaluation where obtained from https://openaq.org/. The MODIS data are available from https://ladsweb.modaps.eosdis.nasa.gov/.

Model setup files and code scripts for all the analysis described in the paper are available at DOI 10.5281/zenodo.5006024.
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