
Response to all referee comments (RCs) - MS No. acp-2021-69

May 24, 2021

Many thanks to our referees for taking the time to give us thoughtful comments on our manuscript. Here we provide
responses to these referee comments: referee comments are shown in bold, and our responses in plain text. The
parts of the manuscript revised in response to comments are in italics here, and in bold in the revised manuscript.

Response to Referee1 Comments (RC1)

Mogno et al. present a comprehensive modelling study of seasonal distribution of particulate matter
over the Indo Gangetic Plain (IGP), one of the world’s most populated and polluted region. The
manuscript is well-written and contains valuable results. This is a good overview paper on the
drivers of air pollution in the IGP. However, the authors are requested to frankly acknowledge and
openly discuss the large discrepancies between their simulation and observations, and additionally
provide further description of their method of sensitivity analysis and its interpretation.

1. Could you double check if the population of IGP is 400 million as per most recent estimates
and perhaps provide a suitable reference?

Using the most recent estimates from national statistics department of Bangladesh (Bangladesh Bureau of
Statistics, 2011) India (Indian National Commission on Population, 2020) and Pakistan (Pakistan Bureau of
Statistics, 2017), the population in the IGP (as geographically defined in Figure 1) is estimated to be 700
million people, 9% of world population.

We have amended the new estimate adding the references in the text:

Abstract: The Indo-Gangetic Plain (IGP) is home to 9% of the global population.

Introduction: It is home to ∼ 700 million people (9% of the global population (Bangladesh Bureau
of Statistics, 2011; Indian National Commission on Population, 2020; Pakistan Bureau of Statistics,
2017)).

2. L37: get rid of the extra “(June to September)”
Amended as suggested.

3. Add a sentence on the limitations of using the 1D VBS scheme

We added the following sentence to the description of limitations of the 1D-VBS implementation used in our
study:

Section 2.1: The 1-D version of the VBS model is unable to describe some aspects of SOA formation,
including fragmentation and the increase in OA oxidation state, which are better described by the 2-D
version of the model that tracks the oxygen-to-carbon ratio (O:C) in addition to just organic mass (Don-
ahue et al., 2012). Previous studies have shown that the 2-D VBS model improves model-measurement
agreement in SOA (e.g., Zhao et al. (2016)) but has a significant associated computational burden when
used in 3-D chemistry transport models.

4. L150: “Fasibalad” should be “Faisalabad”
Amended as suggested.

5. Please confirm if emissions of all species have been added together to produce the plots in Fig 2.

Yes, emissions of all species are added together in Figure 2 for producing total anthropogenic and pyrogenic
emissions, while for biogenic emissions only isoprene is considered, as indicated in the text (L139-144). For
additional clarity, we have added the following sentence to Figure 2 caption:

Figure2 caption: Emissions of all species are added together to produce total anthropogenic and pyrogenic
emissions respectively, while for biogenic emissions we only consider isoprene.

6. L206: “components”
Amended as suggested.

7. L270: “out” should be “our”
Amended as suggested.

8. Emissions from 2010 have been used to simulate pollution in 2017-18. Comment on the na-
ture of change in emissions that has occurred during this period (for example, you can consult
McDuffie et al., 2020) and the expected changes in model results.

We highlight the changing in emissions between 2010 and 2017-18 and limitation of using a 2010 inventory
for simulating pollution in 2017-18 as follow:
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• Section 2.1: Using an anthropogenic emission inventory for 2010 to describe atmospheric chemistry
during 2017-2018 will inevitably introduce some biases in our model PM2.5 estimates, since our study
domain includes regions with rapidly growing emissions. From 2010 to 2017, India has seen reductions
in BC, OC, CO and NMVOC emissions from the residential sector owing to policies that have enabled
a switch to cleaner residential fuels and energy sources. However the increase in energy, industrial
goods, and transport demand has led to a rapid increase of NOx and SO2 emissions from the industrial
sector(∼ +12%,∼ +10%) and energy sector (∼ +20%, ∼ +26%), and an increase in NOx and NMVOC
from on-road transportation (∼ +50%, ∼ +27%). Increase in intensive agricultural practices over the
Indian IGP has increased ammonia emissions NH3 (∼ +15%) (McDuffie et al., 2020). Errors in PM
precursor gaseous emissions will impact our ability to describe air pollution for our study year, especially
for individual components of secondary inorganic aerosols (nitrate, sulfate and ammonium) and SOA.
It remains difficult to disentangle the impact of using outdated emission estimates from other sources of
model error, e.g., meteorology, chemistry, land-use model, and model resolution.

9. Provide your reasoning/explanation why your model results have reported higher PM2.5 levels
over lower IGP

Compared to previous estimates, our model set-up takes also into account water content in PM2.5 mass in
addition to dry PM2.5 mass through aqueous phase chemistry simulation. Our model results shows that water
content in PM2.5 is substantial, especially over the lower IGP where it contributes up to 42% of total PM2.5

mass (Figure 4). This at least helps to explain our higher PM2.5 estimates compared to previous studies,
especially over the lower IGP.

We added this explanation in the text:

• Section 3.2: Compared to these studies, our model also takes into account water content in PM2.5 mass
in addition to dry PM2.5 mass through aqueous phase chemistry. Our results shows that water content
in PM2.5 is substantial, especially over the lower IGP where water makes up to 42% of total PM2.5 mass
(see later in this section). This helps to explain our comparatively high PM2.5 estimates.

10. L281: You mention that “post-monsoon biomass burning do not impact the central and lower
IGP”. However, as per Figure 4h, if I read the colorscale properly, there’s considerable influ-
ence of biomass burning (pyrogenic) emissions – on the scale of 250-500 ugm-3 Gg-1 all the way
up to eastern Uttar Pradesh. These values appear to be higher than those from anthropogenic
emissions in Figure 4g. Also, how do you reconcile this result with, for example, Ojha et al.,
2020, who reported up to 20% contribution of biomass burning emissions to PM2.5 over central
IGP cities? Since you are comparing values across different emission types, I suggest replotting
Figure 4 and 7 using a common colorscale for all three emission categories.

We replotted Figure 4, 7 A4 and A5 (below) with a common colour scale. We changed also the colour palette
to make changes of sensitivities clearer. Using a common scale, biomass burning emissions do indeed impact
the central part of the middle IGP, as suggested by the reviewer. This result is consistent with Ojha et al.
2020. We reinterpret the figure as follows:

• Section 3.2: The impact of post-monsoon biomass burning emissions extends to the central part of
the middle IGP over Uttar-Pradesh, where sensitivity of PM2.5 to pyrogenic emissions (up to 6 ×
102 µg m−3 Gg−1) is higher than anthropogenic emissions (up to 4× 102 µg m−3 Gg−1).

ANTHROPOGENIC PYROGENIC BIOGENIC

Figure 4
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ANTHROPOGENIC PYROGENIC BIOGENIC

Figure 7

ANTHROPOGENIC PYROGENIC BIOGENIC

Figure A4

ANTHROPOGENIC PYROGENIC BIOGENIC

Figure A5

11. Section 2.2: This section can benefit from a clearer description of the sensitivity analysis. For
example, it is not clear what is ∆t here – is it equal to a week, i.e., 7 days x 24 hours = 168 terms
that were summed for each species for each gridpoint? Also, how is this particular sensitivity
index supposed to be interpreted when thinking about control policies? It seems to me that
you’d get a higher value for a grid if it is highly influenced by its own (local) emissions while
other highly polluted grids may be influenced by emissions from several other grids leading to
a much higher pollutant concentration but they won’t show higher sensitivity values in this
particular metric that you’ve presented. This can cause confusion in interpreting such a metric
especially for policymaking, when pollution is highly regional as is the case in IGP. Therefore, I
request you to provide a richer discussion on the meaning and interpretability of the sensitivity
index maps presented in Figure 4 and 7.

We modified the sensitivity method section as follows:

• Section 2.2: Finally, we calculate the sensitivity Sij of species concentration to the changes in a given
source of emissions as:

Sij =
∆Cij

∆E
=

∆Cij

Ep
tot − Eb

tot

=

∑
t(C

p
ij,t − Cb

ij,t)∑
ij,t,s(E

p
ij,t,s − Eb

ij,t,s)
, (1)

∆Cij represents the concentration change of our target species (PM2.5 and OA in this study) at grid
point ij in response to an emission change ∆E summed over the IGP for a particular source. We per-
turb directly anthropogenic and fire emissions rates. Biogenic emissions are calculated online by scaling
normalized emission rates by factors that describes changes in, for example, temperature, photosynthetic
active radiation, leaf area index (LAI) (Guenther et al., 2006). We modify the WRF-Chem code to in-
crement only isoprene emissions because our calculations suggest they account for almost all of biogenic
emissions over the IGP, in agreement with other studies (Singh et al., 2011; Surl et al., 2018). ∆Cij is
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calculated by summing over time the difference in concentrations at each grid cell ij of the perturbed run
p Cp

ij,t and the base run b Cb
ij,t. The change in concentration in each grid cell is therefore scaled by the

same ∆E, allowing to consider local and non-local emission influences equally and to avoid singularities
in grid cells where there is no net emission change. We use this scaling because it allows us to compare
the sensitivity of atmospheric concentrations to different sources types. ∆E is calculated as the difference
of total emissions within the IGP domain between the perturbed model run and the base model run for a
given source type.

Total emissions across the IGP for the perturbed run Ep
tot and for the base run Eb

tot are calculated by
summing emissions from all species for the length of the simulation and for all grid cells across the IGP.
In more detail, emissions at each grid point ij for species s between two consecutive model outputs at t
and t+ 1 is calculated (for both the perturbed and base runs) by Eij,t,s = εij,t,s∆tAij. εij,t,s denotes the
emission rate of species s at location ij and output time t, Aij denotes the area of grid point ij, which in
our calculations is constant at 400 km2, and ∆t corresponds to an interval of model output which in our
calculation is 3 hours. To take into account the different spatial variability of emissions from different
sources (Figure 2), we scale ∆E with the total number of grid cells within the IGP for which the emission
difference is >0.001 g m−2 day−1, corresponding approximately to cumulative emissions > 2.8 Mg for
each grid cell in one week. This threshold corresponds to a lower limit for significant emissions rate
across the area considered (Figure 2). We also neglect values of Sij for which the change in the pollutant
concentration Cij <5% of mean pollutant seasonal concentration over the IGP (4 µg m−3 and 1 µg m−3

for PM2.5 and total OA, respectively). Using this additional threshold allows us to isolate significant
changes in concentrations due to direct changes in emissions, and remove smaller values due to model
non-linearity. We report the sensitivity parameter Sij with units of µg m−3 Gg−1. In a policy-making
context, our sensitivity parameter provides information about how to control atmospheric concentrations
by changing different emission sources in order to obtain the highest air quality benefits from certain
emission reductions.

12. L352: “Punjabi Pakistan” would be better replaced by “Pakistani Punjab”!
Amended as suggested.

13. Figure 8: Please increase size of the legend (gas,aerosol)
We increased the font size as suggested.
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14. L400: log10C* = 2 is written twice here. Should it be = 3 in the second instance?
Yes, the second is should be =3. We amended as suggested.

15. 15. L452: Replace “then” with “than”.
Amended as suggested.

16. Table A3: The model shows poor performance for NO2 all year round. Given that nitrate
aerosol is a significant portion of PM2.5 as simulated by your modelling system particularly
during post-monsoon and winter, how confident are you about this result? How does it compare
with field observations such as Gani et al, 2019; Patel et al. 2021; Gunthe et al., 2021? Simi-
larly, how do you explain the dramatic overprediction of SO2 during post monsoon and winter
and such low r-values? What are its implications for the simulated sulfate in your model? How
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do you explain the negative r-values for Ozone all year round? What are its implications for
SOA simulation and regional contribution? These model weaknesses need to be acknowledged
and discussed and the results and conclusions of the study need to be qualified in light of these
weaknesses.

We have revised the text in a few places to take into account this comment.

• Section 2.3: We generally find poorer model agreement with gas-phase pollutants, including a positive
model bias and comparatively poor correlations with observations of NO2, SO2 O3 (Table A3). We at-
tribute this to multiple sources of error. Given the coarse spatial and temporal resolution our model
(20 km×20 km spatial, 3 hour temporal), we expect our model to be affected by non-negligible repre-
sentation error due to the CPCB network sites often being located near to roadsides or in dense urban
areas where the model will struggle to reproduce. This source of error preferentially affects reactive trace
gases that react on timescales with transport across individual model grid cells. Previous studies have
reported similar model limitations (Fountoukis et al., 2013; Paolella et al., 2018; Kuik et al., 2016; Tan
et al., 2015; Sirithian and Thepanondh, 2016; Balasubramanian et al., 2020). Data for Pakistan are not
available for our modelling study period (2017/2018) so we instead use data from 2019 for the monsoon
and post-monsoon seasons and data from 2020 for the winter and pre-monsoon seasons, which represents
an additional source of error. Previous studies show that regional modelling over south-Asia tends to
overestimate satellite column observations of NO2 by 10–50% over the Indo-Gangetic Plain, the bias
peaking as high at 90% during winter months Kumar et al. (2012b), and up to +131% when compared to
ground-based observations over densely populated urban regions (Karambelas et al., 2018). These differ-
ences have been attributed mainly to errors in NOx emission inventories over densely populated areas,
uncertainties in seasonal variations of emissions, absence of diurnal and vertical profiles of anthropogenic
emissions(Kumar et al., 2012b; Karambelas et al., 2018), and underestimation of precipitation rate that
will reduce the loss of soluble trace gases Kumar et al. (2012a). Similarly, previous regional model studies
of IGP region have tended to over-predict concentrations of SO2, with NMB>3.5 (Conibear et al., 2018;
Kota et al., 2018). We attribute our positive model bias of SO2 to using an outdated emission inventory
that does not take into account the beginning of a shift from coal to gas-based power plants (Sharma
and Khare, 2017). Urbanisation has bee shown to affect diurnal spatial distribution of surface ozone (Li
et al. (2014) and references therein), and also the magnitude and location of anthropogenic emissions of
NOx and VOCs that subsequently affect surface ozone photochemistry (Zhang et al., 2004; Ghude et al.,
2013). Finally, some fraction of the overestimation of surface ozone is linked to our use of the MOZART
chemical mechanism that has been previously reported to have a positive model bias over south Asia com-
pared to other mechanisms (Sharma et al., 2017). Collectively, these model limitations associated with
describing reactive trace gases will impact our ability to model particulate matter, especially secondary
components over urban areas across the IGP.

• Section 3.2: As discussed in Section 2.3, model limitations in reproducing precursor trace gases will affect
our ability to model secondary components of particulate matter. When comparing the model with recent
field observations of PM1 over Delhi during postmonsoon and winter (Gani et al., 2019; Gunthe et al.,
2021; Patel et al., 2021), corresponding to two of our study seasons, we find that the model generally
underestimates PM1 (57-161 µg m−3 observed, 17-22 µg m−3 simulated) although we acknowledge that
the model configuration we use is not ideal to model sub-micron PM due to our use of four sectional size
bins. The model overestimates the contribution of PM1 from nitrate (6-11% observed, 11-13% simulated),
but underestimates the contributions from sulfate (7-9% observed, 2% simulated) and organics (54-68%
observed, 16-18% simulated).

• Concluding remarks: We find that the model reasonably reproduces concentrations of PM2.5 in all seasons
(NMB<0.2, r>0.6) except for the monsoon season (NMB=0.4, r=0.09), a reflection that modelling
monsoonal meteorology remains challenging. However, uncertainty in our estimates remains on the
individual PM2.5 secondary components, given the limitation we found in the modeling to reproduce
precursors gases surface concentrations when compared with observations. Availability of additional
monitoring stations outside urban areas that are more representative of the spatial scales associated with
model grid cells would help to evaluate model error, as well as use of finer-resolution and up to date
inventories for precursors gases over the rapidly changing region of IGP.

17. L351: You say that OA distribution during post-monsoon is most sensitive to changes in an-
thropogenic emissions but if I read the colorscales correctly, the sensitivity index is a maximum
of 100 for anthropogenic emissions but is way above 100 for biomass burning emission over large
parts of IGP. Again, please replot this figure with a common colourscale and reinterpret.

We have now reinterpreted our results in light of the new plots that use a common colourscale:

• Section 3.3: Similar to PM2.5, we find that during the post-monsoon season, the OA distribution across
the IGP is most sensitive to changes in biomass burning emissions (Figure 7g-i), with higher values over
the Punjab to Delhi NCT, and part of Uttar Pradesh (up to 103 µg m−3 where fires are located over Indian
Punjab). The sensitivity of OA to changes in biomass burning are localised, with POA most influenced
by fires over Punjab and Haryana (Figure A4h) and the corresponding impact on SOA extending over
the Pakistani Punjab and towards the middle IGP (Figure A5h). Similarly, biogenic emissions play only
a localised role in OA and SOA concentrations where biogenic emissions are still significant during this
season (Figures 7i and A5i).

18. Figure 4 and 7: During the monsoon season, the sensitivity of PM2.5 and OA is higher towards
changes in biogenic emissions than to changes in anthropogenic emissions. The reasons for this
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should be detailed in the text.

We have modified the text as follows:

• Section 3.3: PM2.5 and OA is more sensitive to changes in biogenic emissions than to changes in
anthropogenic emissions during the monsoon period because of the role that anthropogenic emissions play
in controlling the production of biogenic SOA. Previous studies have shown that anthropogenic emissions
can enhance biogenic SOA production, with NOx concentrations playing a strong role in enhancing SOA
formation from isoprene, and terpenes (Spracklen et al., 2011; Shilling et al., 2013; Shrivastava et al.,
2019; Xu et al., 2020). A disadvantage of our using a single-variable perturbative method is that we can
only consider the impacts of one controlling factor in the production of OA. A study that considers the
interactions between controlling factors is outside the scope of this study.

19. 19. L299: Here you attribute the high PM2.5 concentrations in the lower IGP during pre-
monsoon primarily to meteorology but this is actually a peak biomass burning season over the
Myanmar-Laos region (see, for example, Figure 3 and 5 in Ansari et al., 2016; Figure 5 in
Reddington et al., 2019). You can check your pyrogenic emissions file if it contains emissions
beyond lower IGP, otherwise it must be coming from the chemical boundary conditions. You
should include this influence in the sentence.

The file with pyrogenic emissions from pre-monsoon shows indeed biomass burning in the Northeast India
and Myanmar:

Fire emissions in premonsoon season over model domain.

We include the following sentence:

• Section 3.2: High aerosol loading over the lower IGP during the premonsoon season is also influenced
by biomass burning from Northeast India and Myanmar-Laos, which are partially included in our model
domain.

Response to Referee2 Comments (RC2)

The authors use the WRF-Chem model to study the influences on fine particulate matter and
organic aerosol (OA) over the Indo-Gangetic Plain (IGP). This paper presents a well constructed and
informative sensitivity study to establish the extent to which PM2.5 concentrations are dependent
on the strength of various emission sources, in different seasons. The paper is well written and
certainly within the scope of ACP – I would recommend publication once the following minor issues
are addressed.General comments:

1. The distinction between anthropogenic and pyrogenic is a tricky one in reality so it would be
useful to describe explicitly what is included in each category here. Is pyrogenic everything
in the FINN inventory? For example, where do emissions from solid fuel combustion or agri-
cultural burning fall? It’s difficult (or impossible) to disentangle these two sources completely
but it will be helpful for those doing further work in this area if you can clarify exactly which
emissions are where.

Thanks. This is an excellent point. We have now clearly defined what we mean by both terms.

• Section 2.1: Pyrogenic emissions are apportioned between FINN and EDGAR-HTAP inventories. The
FINNv1.5 inventory includes global estimates of trace gas and particle emissions from open burning of
biomass, which includes wildfire, agricultural fires, and prescribed burning (Wiedinmyer et al., 2011).
EDGAR-HTAPv2.2 is focused on anthropogenic emissions but excludes large-scale biomass burning (e.g.

6



forest fires, peat fires), agricultural waste or field burning. Within its residential sector, emissions in-
clude small-scale combustion, including heating, lighting, cooking and solid waste disposal or incineration
(Janssens-Maenhout et al., 2015).

2. In general, the model performs quite poorly at simulating atmospheric composition during the
monsoon season which may be related to issues with the precipitation or circulation patterns,
rather than emission sources. I appreciate that these are beyond the scope of this study to
explore but some further discussion of the performance of the model in this regard, or reference
to studies that have looked at this, would be helpful to the reader.

We amend as following the evaluation section:

• Section 2.3: Poorer model performance during the monsoon period may be due to a number of com-
pounding factors. In particular, it is challenging to reproduce observed atmospheric water vapour and
precipitation over the Bay of Bengal, western coasts of India and the Himalayan foothills during summer
months. Uncertainties in the representation of topography, insufficient mixing in the boundary layer,
errors in moisture transport and simulation of surface moisture availability, soil temperature and an
excessive water vapor flux from the ocean all contribute to model error (Kumar et al., 2012a). Previous
studies have shown that monsoonal rainfall is not well described by regional models such as MM5 or WRF
(Rakesh et al., 2009; Ratnam and Kumar, 2005). When we compare our WRF model simulation with
MERRA-2 reanalysed meteorology (Gelaro et al., 2017) we find that precipitation rates have a negative
model bias of '80% over the IGP, similarly to what Conibear et al. (2018) obtained with a similar model
set-up.

3. Could you review the color scales for the figures? On several of them (e.g., Figure 2 and
Figure A1 (f)) it’s quite difficult to discern the variation that is referred to in the text because
of the choice of values.

Color scales for figure 2 and Figure A1 (f) and (g) have been revised to make the variations clearer:

PYROGENIC BIOGENIC

Figure8
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(a) (b) (c) (d)

(e) (f) (g)

FigureA1

Minor / specific comments:

4. 4 Page 1, line 23: could you rephrase this description of the sources of pollution to clarify how
they are distributed? If the pollution is concentrated over the cities, then you could say that
it is distributed proportionally, according to population?

We rephrase the description as follow:

• Introduction: It is home to ∼ 700 million people (9% of the global population, (Bangladesh Bureau
of Statistics, 2011; Indian National Commission on Population, 2020; Pakistan Bureau of Statistics,
2017)) and to the associated sources of anthropogenic air pollution, which are distributed proportionally
to population, with main hotspots over cities of various sizes from megacities of more than 10 million
people, e.g. Karachi, Lahore, Delhi, Kolkata, and Dhaka, to smaller cities of a few million inhabitants,
e.g. Faisalabad, Patna, Kanpur, Lucknow, and Varanasi (DESA, 2018).

5. Page 2, line 37: there is a spare “(June to September)” here
Removed as suggested.

6. Page 6, line 138: sorry if I’ve missed this point elsewhere, but it would be useful to state
somewhere in the Methods how the land cover is described / defined in WRF-Chem as this
will have an important impact on the biogenic emissions being generated by MEGAN

The referee is indeed right, we didn’t specify in the manuscript how land cover is described. Our apologies.
We used land use and soil categories interpolated from MODIS IGPB 21-category data at 30 arc-seconds
resolution (∼ 1 km) (Friedl et al., 2010). We added this information in the Methods:

• Section 2.1: For the description of terrain data for the domain (land use and soil categories) we use
MODIS IGPB 21 category data at 30 arc-seconds resolution (∼ 1 km) (Friedl et al., 2010).

7. 7 Page 7, line 162: check this reference?

There was an error in the latex bibliography file, we corrected that and now the citation is correct as (Ministry
of Environment Government of Pakistan, 2009).

8. Page 8, line 203-204: could you include a map (in the Appendix?) to show the location of
the stations used in the evaluation (those from OpenAQ and the literature values), this would
help the reader to understand how they are distributed across the IGP region and the extent
to which they can be used to constrain the model’s performance in each region
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We included the following map in the appendix showing both ground based stations for PM and gases and for
OA from literature. We also added the number ID column in table A2 and A4 corresponding to the number
reported in the map.
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Figure B1: Location of ground based observation for PM and gases (purple) and OA (orange). ID Number for each
station correspond to ID number in table A2 and A4 respectively. The inset map magnifies the area of Delhi NCT.

9. Page 8, line 206: correct “components”
Amended as suggested.

10. 10 Page 8, line 220: somewhere in this section it’s worth being clear about the fact that the
model has been run for 2017/2018 and many of the observations that are available do not
necessarily cover the same time period

We added a clarification on this issue in responding to comment 16 of Reviewer 1:

• Section 2.1: Data for Pakistan are not available for our modelling study period (2017/2018) so we instead
use data from 2019 for the monsoon and postmonsoon seasons and data from 2020 for the winter and
pre-monsoon seasons, which represents an additional source of error.

11. Page 9, line 224: you say that the poor model skill may be attributed to difficulties in re-
trieving AOD during the monsoon season, but the model also performs poorly at simulating
PM2.5 concentrations during the monsoon season (according to Table A3). Could you edit this
section to reflect the fact that, whilst there may be difficulties in retrieving AOD during the
monsoon, the model may also not simulate AOD accurately during this period?

We added this additional point:

• Section 2.3: Poor model skill during the monsoon season may reflect difficulties in retrieving AOD
during extensive seasonal cloud coverage and simulating atmospheric aerosols, as highlighted earlier in
this section.

12. Page 11, line 270: correct “out” to “our”
Amended as suggested.

13. Page 12, line 308: “The sensitivity of PM2.5 is highest for biogenic emissions” this isn’t nec-
essarily clear from Figure 4 due to the different color scales used to show the different sources,
can you add some quantification to this?

This was also a request from reviewer 1. We re-plotted figures 4,7, A4, A5 with a common colourscale. We
also added a quantification in the results as suggested:

• Section 3.2: We find that PM2.5 is sensitive to biogenic emissions over localized regions across the IGP,
where PM2.5 can be more sensitive to changes in biogenic emissions than to anthropogenic emissions
(∼200-500 µg m−3) and <200 µg m−3, respectively).

14. Page 12, line 311: add here that this is the simulated / modelled composition (since you do
also have observations in the study)

We added this clarification as follow:

• Section 3.2: Figure 5 shows the model composition of PM2.5 across the IGP.
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Response to Editor Comments

Through personal communication, the Editor asked to specify in the manuscript which years we
examined the AOD retrieved from MODIS Terra and Aqua, since this information is not found in
the text.

The editor is indeed right, we didn’t specify in the manuscript which years we examined the AOD retrive from
MODIS. Our apologies. We compared simulated AOD with satellite retrival of 2017/2018 corresponding to our
simulation period. We added this information in the text:

• Appendix B:We compare our model prediction against satellite AOD retrievals for 2017/2018 at 550 nm
with a 10 km horizontal resolution obtained from both Terra (MOD04 L2) and Aqua (MYD04 L2) MODIS
instruments.

• Caption Table A5: Seasonal comparison of modeled total AOD column and satellite AOD observation for
the simulated period 2017/2018.
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