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David Mitchell Review Author Response 
 
Dear David,  
 

Firstly, we would like to thank you for taking the time to review our study and 
provide detailed feedback on a specific area for improvement. Regarding the 
orographic component of the vertical velocity by Joos et al. (2008, 2010), it was 
excluded from the first submission, as in initial tests we believed we were double 
counting the TKE and orographic components of the vertical velocity in grid cells 
where orography was active. This resulted in high ICNC values that did not provide 
us with confidence in our results. It turned out this was not the case and was merely 
down to a numerical issue, related to parallelization, when using the 
parameterization in ECHAM6.3 with the new P3 ice microphysics scheme (Morrison 
and Milbrandt, 2015; Dietlicher et al. 2018, 2019). After reworking the code to make 
it compatible with P3 we could easily include this vertical velocity component in our 
simulations. However, after re-running the Full_D19 reference simulation to verify 
this new approach, we found that including the orographic component is not needed 
when using the P3 microphysics scheme. In this response we provide our findings 
that support this claim, and lay out a solution that is implemented in the revised 
manuscript.   
 

In the manuscript we validate our model with the in-situ measurements by 
Krämer et al. (2020). Figure 1, below, shows the model validation comparison 
between our original model that is presented in the manuscript (P3 Ref) and the 
revised model including the orographic velocity component (P3 Oro) for the 
reference Full_D19 simulation. It is clear that this extra component has an impact on 
the modelled ICNC values at lower temperatures (T < 215 K). The model no longer 
captures the higher frequency of low ICNC values at these temperatures. Instead, 
the model median is about two orders of magnitude higher than the observed 
median value. The high frequency ICNC of 1000 L-1 around 205 K is not present in 
the in-situ measurements. Furthermore, at higher temperatures, the model also does 
not capture frequent low ICNC values.  



 
Figure 1: ICNC frequency diagrams for ice crystals with a diameter of at least 3 μm as a function of temperature between 
180 K and 250 K binned like in Krämer et al. (2020) for every 1 K for P3 without the orographic velocity component (P3 
Ref) and with the orographic velocity component (P3 Oro). The five-year global mean data from the model is plotted in the 
top row and the compilation of in-situ flight data from Krämer et al. (2020) is plotted in the bottom row. The red line in the 
upper plot represents the binned median ICNC value of the model data, and the black line in both plots is the same value for 
the observational data. 

 
We examined this further by comparing our model to the DARDAR satellite 

remote-sensing ICNC dataset by Sourdeval et al. (2018) in Figure 2. Firstly, our 
model shows much wider ICNC variation than the DARDAR data for all temperature 
bins presented here. Muench and Lohmann (2020) note similar biases in their 
reference simulation associated with convective detrainment as well as the reduction 
of ice crystal sedimentation enhancement factors with their new cloud scheme. With 
the prognostic treatment of sedimentation with P3 (Dietlicher et al., 2018,2019), ice 
crystal removal is also slower and may contribute to high ICNC biases compared to 
DARDAR. Figure 3 shows the scatter of the modeled ICNC with and without the 
orographic component activated relative to the DARDAR ICNC dataset. We see that 
including the orographic component improves the correlation between the model and 
the satellite only between 223 and 233 K. For the colder temperature bins, activating 
the orographic velocity parameterization increases the root mean square error and 
worsens the correlation. However, the DARDAR data is not without its own biases 
that may not capture wider variability in the observed ICNC. Figure 4 from Krämer et 



al. (2020) below shows the DARDAR retrieval frequency as well as ICNC percentiles 
for both the DARDAR dataset and the in-situ measurements. Firstly, it is noted that 
the majority of DARDAR measurements (~50%) are at temperatures > 225 K likely 
due to the overlapping occurrence of in-situ origin and liquid-origin cirrus clouds 
(Krämer et al., 2020; Wernli et al., 2016; Gasparini et al., 2018). However, what is 
important here is the variability of the ICNC values in the figure between the in-situ 
measurements (blue) and the DARDAR observations (red). Krämer et al. (2020) 
provide several reasons that explain the differences between the ICNC of these two 
observation platforms. Most notably is that DARDAR cannot detect the low ICNC 
associated with aged thin cirrus clouds at cold temperatures that were observed in 
the in-situ measurements. This is primarily due to insufficient sensitivity of the 
satellite instruments to these low ICNC values. A further bias originates from the 
assumptions made in the retrieval algorithm that is based on the parameterization by 
Delanoë et al. (2005) on particle size distribution (PSD) parameter constraints. As 
Sourdeval et al. (2018) note, this parameterization does not necessarily capture the 
multi-modality of the ice PSD observed in the in-situ measurements they compared 
in their study. This culminates in a potential overprediction of small ice crystals 
associated with high ICNC values at low temperatures that Krämer et al. (2020) 
explain is due to the transient nature of homogeneous nucleation and the 
complexities in observing this process in in-situ field campaigns. Finally, while our 
model shows more variability than the DARDAR data, likely as we can capture more 
regions of low ICNC at lower temperatures, it is within the range of the instantaneous 
in-situ measurement variability. In addition, by adding the orographic 
parameterization, high ICNC biases are enhanced due to the higher frequency of 
homogeneous nucleation, see below.  
 

 
 
Figure 2: Spatial distribution of ICNC per DARDAR temperature bin. DARDAR data from Sourdeval et al. (2018) is plotted 
in a-c, 2010 annual mean model data without the orographic velocity component (P3 Ref) is plotted in d-f, and with the 
orographic velocity component in g-i. 



 
Figure 3: Adapted from Lohmann et al. (2020). Scatterplots of ICNC for the 2006-2016 annual mean DARDAR satellite 
remote-sensing dataset and the 2010 annual mean ECHAM-HAM ICNC for three DARDAR-defined temperature bins. The 
left column show the spread for the model without the orographic velocity component activated, and the right column the 
same but with the orographic component active. RMS is the root mean square error, R is the correlation coefficient, and 
sigma is the standard deviation of the difference between the modeled and satellite ICNC.  

 
The key comparison is between P3 Ref (Figure 2d-f) and P3 Oro (Figure 2g-i). 

At the coldest temperatures between 203 and 213 K we find the highest mean ICNC 
values in our model for both P3 Ref and P3 Oro. In the former one can clearly see 
that mountainous regions around the Himalayas, the Andes, and the Rockies show 
local ICNC maxima. This is enhanced by adding the orographic velocity component 
in P3 Oro such that it weakens regional ICNC heterogeneity. In our P3 Ref 
simulation local ICNC maxima over mountainous regions become more apparent at 
higher temperatures, for example the elevated ICNC over Northern Chile and 
Southern Peru between 223 and 233 K (Figure 2f).  
 
 



 
Figure 4: From Krämer et al. (2020). ICNC-temperature climatology. The colors in the background indicate the DARDAR 
retrieval frequency. The lines on the plot refer to the 10th and 90th (dotted), then 25th and 75th (dashed), and the 50th (solid) 
percentiles of DARDAR dataset (red) and the in-situ observations (blue).  

 
Your main concern regarding our study as we understand it was that 

homogeneous nucleation within cirrus is underpredicted when excluding the 
orographic parameterization due to its strong dependence on vertical velocity. Figure 
5 presents the ice number tracers at 200 hPa that were added to the model for this 
study. Like Figures 6 and 9 in the manuscript, these tracers represent the ice formed 
in-situ in the cirrus scheme that are then passed back to the microphysics scheme. 
Homogeneous nucleation forms the majority of in-situ cirrus ice in our model 
regardless of whether we include the orographic velocity component (Figure 5a and 
5c). In fact, with this component activated homogeneous nucleation becomes more 
dominant, and like the DARDAR comparison above, some spatial heterogeneity is 
no longer evident. Heterogeneous nucleation also increases as critical ice saturation 
ratio values are reached more easily with the orographic component activated. 
Furthermore, Figure 6 is taken from Gasparini and Lohmann (2016) and shows the 
sources of cirrus ice using the default ECHAM microphysics scheme (2M) by 
Lohmann et al. (2007). Where heterogeneous nucleation was the dominant source of 
ice at 200 hPa for Gasparini and Lohmann (2016), that is not the case for our model 
with the P3 ice microphysics. Therefore, we argue that we do not underpredict 
homogeneous nucleation in in-situ cirrus in our model.  
 



 
Figure 5: 2010 annual mean spatial distribution of in-situ ice number tracers on 200 hPa for the model without the 
orographic velocity component (a-b) and with the orographic velocity component (c-d). 

 
Figure 6: From Gasparini and Lohmann (2016), five year annual mean ice sources at 200 hPa for homogeneous nucleated 
ice, heterogeneously nucleated ice, and detrained ice crystals.. 

 
Based on the findings presented here, we conclude that the inclusion of the 

orographic velocity component is not needed with the P3 ice microphysics scheme. 
This highlights the fundamental difference between this newer microphysics scheme 
and the default ECHAM scheme (2M) by Lohmann et al. (2007) that was used in 
previous studies from our group (Gasparini and Lohmann, 2016; Gasparini et al., 
2017). P3 utilizes prognostic sedimentation of ice hydrometeors by simulating the ice 
population using a single category, whereas the 2M scheme separates ice into two 
classes, in-cloud and precipitating. In order to maintain cloud-ice values and cloud 
radiative properties within the range of observations with the 2M scheme, ice 



removal was sped up by enhancing ice crystal aggregation to form snow (Neubauer 
et al., 2019). This is no longer necessary with P3 as the size-class separation is no 
longer included in the model, and the updated cloud fraction scheme allows for 
fractional cirrus cloud cover above ice saturation. The result is much slower ice 
removal via sedimentation. We can clearly see the effects of this behavior in the 
plots presented here. Large ICNC values at the coldest temperatures (Figure 2d), 
originating predominantly from homogeneous nucleation (Figure 5a), are already 
achieved in our model. With the prognostic sedimentation in our model, these small 
ice crystals remain in the atmosphere for an extended period. The effect of the 
orographic velocity component is only to enhance homogeneous nucleation and form 
more ice that remains in the atmosphere for an even longer time period. We argue 
that while the orographic component was vital for ensuring homogeneous nucleation 
was not underpredicted when using the 2M scheme, it is no longer needed with the 
P3 scheme.  
 

In conclusion, we excluded the orographic velocity component from our study 
based on our findings. However, as this is the first time the P3 ice microphysics 
scheme was validated with and without this component, we added an Appendix to 
the revised manuscript with the figures and explanations presented here.  
 

Sincerely,  
Colin Tully (on behalf of all co-authors) 
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