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Abstract:

PMb s, generated via both direct emissions and secondary formations, can have varying
environmental impacts due to different physical and chemical properties of its components.
However, traditional methods to quantify different PM2s components are often based on
online observations or lab analyses, which are generally high economic cost and labor-
intensive. Chemical transport model (CTM) is another useful tool to reveal the composition
characteristics of PM2s but with high requirement of computation cost. In this study, we
develop a new method, named multi-tracer estimation algorithm (MTEA), to identify the
primary and secondary components from routine observation of PM»s. By comparing with
the long-term and short-term measurements of aerosol chemical components in China and the
United States, MTEA is proved to be able to successfully capture the magnitude and variation
of the primary PM 5 (PPM) and secondary PM» s (SPM). Meanwhile, our model poses a good
agreement with the reanalysis dataset from one of the most advanced CTMs in China as well.
Applying MTEA to China national air quality network, we find that 1) SPM accounts for 63.5%
of PMzs in southern cities of China averaged for 2014-2018, while in the North the
proportion drops to 57.1%, and at the same time the secondary proportion in regional
background regions is ~19% higher than that in populous regions; 2) the summertime
secondary PMz s proportion presents a slight but consistent increasing trend (from 58.5% to
59.2%) in most populous cities, mainly because of the recent increase in O3 pollution in
China; 3) the secondary PMaz s proportion in Beijing significantly increases by 34% during the
COVID-19 lockdown, which might be the main reason of the observed unexpected PM
pollution in this special period; and at least, 4) SPM and O3z show similar positive correlations
in the BTH and YRD regions, but the correlations between total PMzs5 and O3 in these two
regions are quite different as PPM levels determine. In general, MTEA is a promising tool for

efficiently estimating PPM and SPM, and has huge potential for future PM mitigation.
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1 Introduction

Fine particulate matter (PMa2s, aerodynamic diameter less than 2.5 pum) can be
categorized into primary and secondary PM> s according to its formation processes. Primary
PMas (PPM), including primary organic aerosol (POA), elemental carbon (EC), sea salt and
mineral dust, is the product of direct emission from combustion of fossil/biomass fuel, dust
blowing and sea spray. Secondary PM» s (SPM) mainly generates from the further oxidation
of gaseous precursors emitted by anthropogenic and biogenic activities (Zhu et al., 2018;
Wang et al., 2019). SPM consists of secondary organic aerosol (SOA) and secondary
inorganic aerosol (SIA, including sulfate, nitrate and ammonium). The primary and
secondary components of PM» s have different environmental impacts on air quality, human
health and climate change. For example, as a typical PPM, EC can severely reduce
atmospheric visibility and greatly influence weather and climate due to its strong absorption
of solar radiation (Bond et al., 2013; IPCC, 2013; Mao et al., 2017). Sulfate, a critical
hygroscopic component of secondary PM»s (SPM), can be fast formed under high relative
humidity conditions and further leads to grievous air pollution (Cheng et al., 2016; Guo et al.,
2014; Quan et al., 2015). Furthermore, the sulfate and other hygroscopic PM;s have
considerable influences on climate change mostly by changing cloud properties (Leng et al.,
2013; von Schneidemesser et al., 2015). In addition, different PM> s components also have
various deleterious impacts on human health for their toxicities (Hu et al., 2017; Khan et al.,

2016; Maji et al., 2018).

To understand the severe PM s pollution characteristics in China over the past several
years (An et al., 2019; Song et al., 2017; Yang et al., 2016), many observational studies have
been conducted on PMzs components. The basic methods of these studies are offline
laboratory analysis and online instrument measurement such as aerosol mass spectrometer
(AMS). The observational studies are crucial to exactly identify the aerosol chemical
compositions. For offline approach, it is the most widely used method (Ming et al., 2017;
Tang et al., 2017; Tao et al., 2017; Dai et al., 2018; Gao et al., 2018; Liu et al., 2018a; Wang
et al., 2018; Zhang et al., 2018; Xu et al., 2019; Yu et al., 2019) and is successfully applied to
investigate the inter-annual variations of different aerosol chemical species (Ding et al., 2019;
Liu et al.,, 2018b). In terms of online approach, AMS is the state-of-the-art method for
analyzing different chemical species with high time resolution, which has great application
value in diagnosing the causes of haze events in China over the past decade (Huang et al.,

2014b; Quan et al., 2015; Guo et al., 2014; Yang et al., 2021; Gao et al., 2021; Hu et al., 2021;
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Zhang et al., 2022).

Nevertheless, both the online and offline measurements require a high level of
manpower and economic cost, and for this reason, these methods are expensive and rarely

applied in large-scale regions or long-term periods.

Chemical transport model (CTM) is another useful tool to identify the composition
characteristics of PM 5. The simulation predicted by CTM is featured as high spatio-temporal
resolution (Geng et al., 2021). Meanwhile, it also provides vertical profiles of diverse
chemical species (Ding et al., 2016). However, the CTM results are largely dependent on
external inputs such as emission inventories, boundary conditions, initial conditions, etc. The
internal parameterizations of itself significantly influence the final model results as well
(Huang et al., 2021), which leads to uncertainty in the simulated PM> s and its composition.
In addition, the burden of high requirement in computational cost and storage also makes

CTM hard to universally use.

In this study, we develop a novel method, Multi-Tracer Estimation Algorithm (MTEA),
with the aim of distinguishing the primary and secondary compositions of PMz s from routine
observation of PMas concentration. Different from traditional CTMs, MTEA proposed by
this study is based on statistical assumption and works in a more convenient way. This
algorithm and its application are tested in China and the United States. In Section 2, we
introduce the structure and principle of MTEA. In Section 3, we evaluate the MTEA results
comparing with three PM2 s composition data sets, (1) short-term measurements in 16 cities
in China from 2012 to 2016 reported by previous studies, (2) continuous long-term
measurements in Beijing and Shanghai from 2014 to 2018, and (3) IMPROVE network in the
United States during 2014 and 2018. Additionally, we also compare MTEA model with one
of the most advanced datasets from CTM in China. Subsequently, in Section 4 we investigate
the spatio-temporal characteristics of PPM and SPM concentrations in China, explain the
unexpected haze event in several cities of China during the COVID-19 lockdown and discuss
the complicated correlation between PM and Os. This study is different from previous works
as follows: (1) we develop an efficient approach to explore PPM and SPM with low
economy-/technique-cost and computation burden, (2) we apply this approach to observation
data from the MEE network, offering an unprecedented opportunity to quantify the PM s

components on a large space and time scale.

4/44



10

15

20

25

30

2 Methodology
2.1 The Multi-Tracer Estimation Algorithm (MTEA)

In order to distinguish PPM and SPM efficiently from the observed PM s, we develop a
new approach, named Multi-Tracer Estimation Algorithm (MTEA). The multi-tracer (marked
as X) is defined to represent multiple primary contributions to PMa.s, mainly resulting from
incomplete combustion of carbonaceous material and flying dust. We select the typical
combustion product CO as one tracer to represent the combustion process, and the particles in
coarse mode (PMcoarse, marked as PMC, PMC = PMjy9 — PM>s) as the other tracer to track
flying dust. Then, we combine the CO and PMC to generate the multi-tracer X (Eq. 1), which

can represent hybrid primary contributions to PMz s.
X=axCO+b*PMC (a+b=100%) (1)

As shown in Eq. 1, we use a and b to quantify the relative contributions of combustion
and dust process to PPM. Given that the complicated process such as the combustion from
multiple sources is hard to represent via current routine CO observations, we avoid
considering the correlation among these sources but focus on the relative weights of
combustion process and flying dust. Meanwhile, the uncertainty resulting from the
apportioning coefficient @ and b will be further discussed in Section 4.5. The values of the
coefficients depend on the ratio of emission intensities of POA+EC (combustion products)

and fine mode dust, as shown in Eq. 2.

a Eoa+ Egc 1.2Egoc+ Egc

5= = (2)

Efinedust Epm2.5—(1.2Eoc+ EgctEsos* Eno3)

where, Eoa, Eec, Efinedust, Eoc, Epm2.5, Esos and Enos represent the emissions of OA, EC,
fine mode dust, OC, PM s, sulfate and nitrate, respectively. We obtain anthropogenic PM> s,
EC and OC emissions in China from Multi-resolution Emission Inventory for China (MEIC,
http://meicmodel.org/, last access: 1 August 2021) developed by Tsinghua University (Li et
al., 2017c). For the United States, we retrieve the emission data from the global inventory
HTAP (https://edgar.jrc.ec.europa.eu/htap v2/index.php? SECURE=123, last access: 1
August 2021). We further estimate POA emission using POC emission multiply by an
empirical factor of 1.2 recommended in literature (Seinfeld and Pandis, 2006), and quantify
sulfate and nitrate emissions using PMa.s emission multiply by an investigative coefficient of
0.1 (Zhang 2019). However, this investigative coefficient for quantifying primary sulfate and
nitrate emissions might be relatively higher compared to empirical coefficients (0.01-0.05)

used in previous simulation studies. We evaluated the potential effect of the coefficient, by
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conducting a set of comparative simulation with the coefficient of 0.03, and found that the
final estimated SPM was not sensitive to this coefficient (Table S1). Thus we concluded that
the uncertainty of primary sulfate and nitrate emissions did not significantly influence the
final estimation of MTEA model. For other uncertainties of X which are dependent on
emission intensities or tracer concentrations, we would conduct discussions in the later
Section 4.5. Coefficient b is aimed at reflecting the activity intensity of fine mode dust by
counting its emissions. However, MEIC does not directly provide fine mode dust emissions.
It is included in the emissions of total PM>s (Li et al., 2017b). Thus we inferred the fine
mode dust emission by deducting the emissions of EC, POA, sulfate and nitrate from the
PMb> s emissions. Based on Eq. 2, we establish a dynamic “a-b value” database, which can
reflect the specific changes of PMa s sources in terms of different years, seasons, hours, and

different regions.

With the help of the multi-tracer X, we can describe secondary PM; s as follows:

SPM = PM, . — PPM 3)
—PM,, - Pl:(M X )

Here, PM7s is the observed PMa,s concentration, and the multi-tracer X can be
calculated from the observed CO, PMzs and PMio concentrations. The original
concentrations of CO, PM>s and PM o are normalized to avoid the influences of their initial
levels. To calculate SPM, the key step is to find out the target ratio of PPM/X. In the MTEA
method, we give the PPM/X ratio a reasonable range (a range from 0 to 400 is used in this
work) and then scan the ratio with an interval of 1. For more precise results, a smaller
scanning step can be applied while it may take larger calculation cost. As a result, each
varying ratio may obtain a series of SPM, along with a coefficient of determination (R?)
between SPM and X (Fig. S1). If we assume that PPM and SPM came from different sources
or processes, then the appropriate PPM/X ratio should be the one that corresponds to weak
correlation between SPM and X-tracer. To better understand the principle of the MTEA
approach, we show the flow chart in Fig. 1. We also provide the MTEA software package and
input data sets at http://nuistairquality.com/m_tea (last access: 1 August 2021).

The MTEA approach makes some improvement based on the similar principle and
assumptions with the modified EC-tracer method developed by Hu et al. (2012). They

estimated primary and secondary organic carbon (marked as POC and SOC) concentrations
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by adopting a proper POC/EC ratio when SOC correlated with EC worst. However, this
assumption may be too hard to exist in the real atmosphere. Therefore in the MTEA approach,
we take a range of proper ratios of PPM/X when SPM correlates with X-tracer non-
significantly (with p-value greater than 0.05). As a result, the calculated SPM concentration
for each case is a range (Table S2). We employed the concentration ranges to represent the
severity of secondary pollution and discussed its uncertainties in the following discussions.
While for quantitative calculation, the mean values of the concentration ranges stand for the

final estimation.

2.2 PM:2.5 measurements
2.2.1 PMa2s concentration measurements from the MEE network in China

Focus on the PMzs pollution in China, MEE set up a comprehensive air quality
monitoring network for consistently accessing hourly concentrations of PM» s as well as SO»,
NO», CO, O3 and PMjy since 2013. This network is the most advanced monitoring network
currently in China. In this study, we obtained surface observations of hourly PMas, PMio, CO
and O3 at 334 national monitoring sites in 50 cities from 2014 to 2018 from the MEE public
website (http://106.37.208.233:20035/, last access: 1 August 2021). 31 among the 50 cities
are provincial capital cities, employed to represent populous cities, while the rest 19
relatively small cities are categorized as regional background cities (Table S3). The mean
PM,s concentration of each regional background city is less than 35.0 pug-m™ (National
Ambient Air Quality Standard level II of China, NAAQS) except for Guyuan, indicating that
they are slightly impacted by anthropogenic activities. By comparing populous cities with
regional background cities, we could reveal the discrepancy in PPM and SPM among those
regions which suffer from different levels of PMas pollution. Geographical distribution of

those populous and regional background cities is shown in Fig. 2a.

Recently, the Chinese government carried out a series of control policies, such as
elimination of backward industry, desulfurization and denitration of flue gas, as well as
restriction on motor vehicles (Tang et al.,, 2019; Wu et al., 2017). Consequently, the
concentrations of the major gaseous and particle pollutants have been decreased year by year
(Zhai et al., 2019; Shen et al., 2020) . Take PM> 5 as an example, previous studies revealed
that annual mean PM> 5 decreased by 30-50% across China during the period of 2013-2018.
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2.2.2 PM2s5 composition measurements in China

Numerous studies focused on the aerosol chemical composition in China employed
offline filter-based observations coupled with laboratory analysis to obtain detailed
information of PM2 s compositions. For directly comparing the estimated PPM/SPM with the
measured ones in China, we made an evaluation via two long-term time series in-situ
measurements in Beijing (Peking University, PKU) and Shanghai (Shanghai Academy of
Environment Sciences, SAES) during 2014-2018 (Huang et al., 2019; Tan et al., 2018). The
chemical compositions of measurements include ions (NH4", Na*, K™ Mg?*, Ca*", SO4*", NOs",
CI, by ion chromatography), elements (Al, Si, Ti, Ca, Ti, Mn, etc., through X-ray
fluorescence spectrometry), and carbonaceous components (EC and organic carbon, using the
thermal-optical transmittance carbon analyzer). After accessing the chemical compositions,
we categorized them into PPM and SPM for further evaluation. Specifically, SOA was
roughly identified from OM by EC-tracer model (Ge et al., 2017). SPM concentrations were
calculated via summing SO4*, NOs’, NHs" and SOA concentrations. Then PPM could be
calculated though deducting SPM from PMa s.

In addition, we investigated observation-based PM> s component analyses in 16 cities of
China during 2012-2016 from 32 published studies. This survey offered an opportunity to
compare the estimation by MTEA with the past measurements in the terms of the secondary
fraction of PM2s. SPM concentrations in literature were roughly estimated by multiplying
OM from 0.5 because of the limit of data source. Meanwhile, it is noted that the factor which

converts OC to OM is dependent on the definition of each observation study itself.

2.2.3 PM2.5 composition measurements from IMPROVE network in the United States

The Interagency Monitoring of Protected Visual Environments (IMPROVE) aerosol
network has continuous records of PMio, PM2s and its chemical speciation in the United
States since 1987. The specific aerosol chemical compositions include ammonium sulfate,
ammonium nitrate, organic/elemental carbon and soil/mineral dust. The categorization for
PPM and SPM in IMPROVE dataset is similar to the process in Section 2.2.2. The only
difference is that SPM concentration is the sum of ammonium sulfate, ammonium nitrate and
SOA. More  detailed descriptions about IMPORVE are  available at
http://vista.cira.colostate.edu/Improve/ (last access: 1 August 2021). Here we extracted the

measurements at 104 valid sites in the United States from 2014 to 2018 for the evaluation of
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MTEA. The spatial distribution of IMPROVE sites used in this work is shown in Fig. 2b. It is
noted that IMPROVE program only provides a single aerosol component profile every three
days. We lowered the time resolution into the monthly average for further evaluation.
However, CO is excluded in IMPROVE program. We therefore adopted the Kriging
interpolation of CO data based on the hourly archives from the United States EPA
(https://www.epa.gov/outdoor-air-quality-data, last access: 1 August 2021) as an alternative

for model input when running the MTEA.

2.3 PPM and SPM estimated by CTM

Apart from evaluating PPM and SPM with various composition measurements, we also
compared MTEA estimation with CTM results. Here we utilized the PM2s composition
gridded dataset with a spatial resolution of 10 kmx10 km developed by Tsinghua University
for further comparisons. This dataset is named Tracking Air Pollution in China (TAP,
available at http://tapdata.org.cn/, last access 15 Mar 2022) (Geng et al., 2021; Geng et al.,
2017). TAP is directly calculated by Community Multiscale Air Quality (CMAQ) model. In
terms of methodology, based on machine learning algorithms, TAP integrates surface
measurements, satellite remote sensing retrievals, emission inventories (MEIC) with CMAQ
simulations. Moreover, it is also constrained by ground aerosol composition measurements.
We collected the monthly mean concentrations of aerosol species during 2014-2018 from
TAP, including SO4*, NOs", NH4*, OM, BC and total PM, 5. SOA was further calculated from
OM by EC-tracer model (Ge et al., 2017). SPM concentrations were inferred by summing
SO4%, NO3,, NHs" and SOA. PPM concentrations were then obtained via deducting SPM
from PM; 5.

3 Model evaluation
3.1 Evaluation in China
3.1.1 Comparison with continuous long-term measurements in Beijing and Shanghai

We compared the MTEA results with the two sets of long-term in-situ measurements in
Beijing and Shanghai, China, and show the evaluations in Fig. 3. Reduced major axis (RMA)
regression was applied for fitting the data. Given the discrepancy in PMa2s concentrations

between in-situ measurements of a single site and multiple MEE national sites, we firstly
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preprocessed the data for further evaluation. In data preprocessing, we removed the in-situ
daily measurements whose value was over 30 pg-m™ higher than the city average (from

MEE).

The comparisons between the estimated and observed PPM in the two cities are given in
Fig. 3a and 3c. The correlation coefficient r for predicted PPM versus observed PPM is 0.85
in Beijing and 0.87 in Shanghai. The slope of regression is 1.29 in Beijing and 0.73 in
Shanghai, which indicates an overestimation (NMB=32%) or underestimation (NMB= — 9%))
in these two cities. In terms of SPM, the regression line in Shanghai is quite close to the 1:1
ratio line (s=1.13, d=— 2.3), and its statistical correlation is up to 0.89. The estimated SPM in
Beijing also shows a high correlation with the observed ones, with its r value exceeding 0.80,
though the fitting formula indicates an underestimation of 27%. The discrepancies can be
explained by the fact that the observations of primary emission tracers and PMz s are obtained
from different sites. Specifically, the CO and PMC observations are obtained from 12
monitoring MEE sites in Beijing, while the PM» s component measurements are from single
spot at PKU which is away from crowded streets (Tan et al., 2018). The MTEA predictions
based on the data from MEE sites located at high-emitting densities district may propose a

quite overestimation on PPM concentrations.

Overall, MTEA model performed satisfactorily in case of the comparison with the long-
term in-situ measurements in Beijing and Shanghai. Nearly all the dots are located at the
range between 2:1 ratio and 1:2 ratio. It is believed that our model is able to capture the
magnitudes and variations of the PPM and SPM. The comparison about the estimated and the
observed inter-annual variations in PPM and SPM would be further discussed in the

following texts (Sect. 4.2.2).

3.1.2 Comparison with various short-term measurements

To evaluate the reliability of the MTEA approach, we also conducted a literature review
for collecting a variety of observation-based PM> s component analyses in 16 cities of China
during 2012-2016 (Chen et al., 2016; Du et al., 2017; Cui et al., 2015; Dai et al., 2018; Gao et
al., 2018; Huang et al., 2014a; Huang et al., 2014b; Huang et al., 2017; Jiang et al., 2017; Li
et al., 2016; Li et al., 2017a; Lin et al., 2016; Liu et al., 2017; Liu et al., 2014; Liu et al.,
2018a; Liu et al., 2018b; Ming et al., 2017; Niu et al., 2016; Tan et al., 2016; Tang et al., 2017;
Tao et al., 2017; Tao et al., 2015; Tian et al., 2015; Wang et al., 2018; Wang et al., 2016a;

10/44



10

15

20

25

30

Wang et al., 2016b; Wu et al., 2016; Xu et al., 2019; Yu et al., 2019; Zhang et al., 2015;
Zhang et al., 2018; Zhao et al., 2015). Most field measurements focused on regions in eastern
China and on episodes during the winter. We listed the concentrations of observed PM s,
S04%, NOs", NH4", and SOA from these studies in Table S4. It should be noted that there may
be inconsistencies in the observation due to different sampling locations, observational time

and analytical instruments in each study.

The estimated PPM and SPM from MTEA show a reasonable agreement with the
observation-based PM2s component analyses in China. The MTEA estimated secondary
proportions of PMz s (i.e. secondary PMz s / total PM2s) vary in a range of 41% to 67%, and
are higher in eastern cities of China, consistent with the observational results. However, we
find that there are still a few discrepancies between the estimated and observation-based
results. For example, we overestimated the secondary proportions of PM> s in cities such as
Haikou, Lanzhou and Lhasa. Though all of them show a considerable overestimation of over
20%, the causes lead to this kind of bias may be quite different. In coastal city Haikou, we
may attribute this discrepancy between MTEA and observation to the neglect of the
contribution of sea salt aerosols. The PM» s offline measurements in 2015 exhibited that the
contribution of sea salt aerosols to ambient PM s mass concentration in Haikou is 3.6-8.3%
(Liu et al., 2017). Secondly, the overestimation phenomenon in Lanzhou, which is a typical
inland city located in northwestern China, can be explained by overlooking the contribution
of natural dust to PMz 5 speciation. Generally, both sea salt and natural dust are categorized
into non-anthropogenic processes, and are not accounted for by anthropogenic emission
inventory, resulting in the underestimation of representing primary process intensity. Finally,
for Lhasa, the observation-based results which are derived from too few samplers also pose

controversial comparison against MTEA model.

3.1.3 Comparison with the CTM simulation

In addition to evaluating our model via PPM and SPM measurements in China, we also
provided a comparison between MTEA estimation and CTM simulation in 31 populous cities
based on the monthly mean PM concentrations. As shown in Fig. 4 a-b, the correlation
coefficient r for TAP versus MTEA is 0.86 in terms of PPM concentration and 0.91 in terms
of SPM concentration, showing a strongly positive correlation between the two models. At

the same time, both slopes (1.26 and 0.89) and intercepts (=3.7 pg m=>and 1.9 pg m) of the
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regression about PPM and SPM illustrate that most of the scattering spots distribute around

1:1 ratio line.

Moreover, we further compared the long-term varying trends between MTEA versus
TAP in averaged PPM and SPM concentration of 31 populous cities (Fig. 4 c-d). Both of
them exhibit a descending interannual trend in PPM concentration, with a rate of 2.0 pg m>
yr'! for MTEA and —1.9 ug m™ yr! for TAP. In terms of SPM concentration, the decline rates
are 2.9 ug m> yr'! and —2.8 ug m> yr'!, respectively. Meanwhile, the statistical correlations
between two interannual variations are 0.98 (PPM) and 0.99 (SPM), which are quite close to

1, showing a good agreement.

Thus, the comparisons about PPM/SPM concentration magnitudes and interannual
variations between two kinds of models suggest that statistical model can infer similar
estimation with traditional CTM. Meanwhile, it is again highlighted that our model is capable
of capturing reasonable PPM and SPM concentrations. Furthermore, it is also shown that
MTEA can track primary and secondary component of PM2 5 by using proxy at a much lower

cost when compared to traditional air quality model simulations.

3.2 Evaluation in the United States

Based on the chemical component measurements of IMPROVE network, we evaluated
the performance of the MTEA model in the United States. Figure 5 presents the scatter plots
of the evaluation results, with x-axis indicates the observed concentrations and the y-axis
indicates the estimated concentrations. The validation was done in the form of temporal,
spatial, as well as spatio-temporal. Each dot represents a monthly mean of either observed or

estimated PM concentration.

Almost all of the dots are located in the region between the 2:1 and 1:2 dotted line,
indicating that our model is capable of predicting the magnitudes of PPM/SPM in the United
States. Based on correlation analysis, we find that the correlation coefficient r for PPM ranges
from 0.69 (spatio-temporal validation) to 0.75 (temporal validation), while for SPM, the r is
even up to 0.98 (temporal validation). The results reveal that the MTEA approach
successfully captured the spatial and temporal variations of PPM and SPM in the United
States.

The majority of dots are distributed around the 1:1 dotted line. Based on the fitting

results, the slopes for regression lines vary from 1.12 (spatial validation) to 1.15 (temporal
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validation) for PPM and from 0.92 (temporal validation) to 0.93 (spatio-temporal validation)
for SPM. In general, PPM and SPM show a slight overestimation and underestimation,
respectively. The discrepancies may result from the influences of emission inventory. It is
reported that the emissions of PMC and CO in the United States continuously declined over
the past decade (https://www.statista.com/statistics/501298/volume-of-particulate-matter-2-5-
emissions-us/, last access: 2 October 2021). Thus the coefficients a and b derived from HTAP
global emission inventory in 2010 overestimate the contribution of primary emissions during
the studying period. However, the impacts of emission are inevitable, and we will discuss the
uncertainty of emission inventory in Sect. 4.5. In addition, the intercepts of these regression
lines for both PPM and SPM are less than £0.1 pg-m™. The verification results strongly show
that our model can reasonably reproduce the monthly averaged concentration of PPM and

SPM in the United States.

4 Results and discussion

We used the MTEA approach and the MEE observation data to estimate PPM and SPM
concentrations in China for the period of 2014-2018. The observations during severe haze
events (top 10% CO and PMC polluted days) were excluded to avoid the influence of
unfavorable meteorological conditions and extreme high primary emission cases.
Unfavorable meteorological conditions are major causes for haze events. PPM under these
unfavored meteorological conditions may have considerable high co-linear relationship with
total PMa2s. The concentration of SPM from complicated formation pathways is then
underestimated. Therefore, we excluded these polluted days to focus more attention on

general characteristics of PPM and SPM concentration.

4.1 Spatial distribution

Figure 6 shows spatial patterns of the MTEA estimated PPM and SPM concentrations
over China averaged for the period of 2014-2018. 16 populous cities and 9 regional
background cities in the north, and 15 populous cities and 10 regional background cities in
the south (North-South is separated by the Qinling-Huaihe line) are involved in the following

discussions.

In populous cities, the concentrations of both PPM and SPM in the north (5-year
averaged 21.5 pg-m for PPM and 26.6 pg-m™ for SPM) are 15-43% higher than those in the
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south (15.0 pg-m™ for PPM and 23.2 ug-m= for SPM). The North-South difference is mainly
caused by the higher energy consumption and consequent stronger pollutant emissions
occurring in northern populous regions. Nevertheless, in background regions, the difference
is relatively smaller for SPM. The SPM in the South (12.5 pg'm™) is only 1% higher than that
in the North (12.4 pg-m?).

In terms of the secondary proportion of PM» s, the MTEA approach speculates it to be
higher in southern regions (63.5%) than that in northern regions (57.1%). The result confirms
the fact that atmospheric condition in the South is more favorable for secondary pollutant
formation than it is in the North. In addition, the MTEA approach reasonably captures the
difference of the secondary proportion of PMa s between populous and regional background
cities. As shown in Fig. 6e and 6f, the secondary proportions of PMz s in regional background
cities are 19% higher than those in populous cities, consistent with recent observational
studies (Liu et al., 2018b). Secondary aerosols can affect a larger area than primary aerosols,
mostly due to the diffusion of its gaseous precursors. Thus, for regional background regions,
the role of secondary PMz s tends to be more important, mainly caused by the transmitted

secondary pollutants from surrounding populous regions.

4.2 Temporal variation
4.2.1 Seasonal variation

We compare seasonal mean concentrations of the MTEA estimated PPM and SPM in 31
populous cities and 19 regional background cities in Table 1. Both the concentrations of PPM
and SPM are the highest in winter, with the seasonal mean concentration of 16.6 ug-m= for
PPM and 24.9 pg-m for SPM across China. This phenomenon can be mainly explained by
adverse diffusion conditions, such as low boundary layer height and strong temperature
inversion (Zhao et al., 2013), as well as fossil-fuel and biofuel usage for winter home heating
(Zhang et al., 2009; Zhang and Cao, 2015). Summer is the least polluted season in the year,
with the seasonal mean PPM is 10.2 pg-m™ and SPM is 15.8 pg-m™ nationwide, largely
benefiting from the higher boundary layer (Guo et al., 2019) and abundant precipitations.

In terms of the secondary proportion of PMys, we also compared the secondary
contributions in different seasons and in the 50 different Chinese cities (Table 1). The MTEA
approach estimates that the secondary proportion tends to be the lowest in fall, with seasonal

mean value to be 56.1% nationwide, while for the other three seasons, the seasonal
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proportions stay around 61%. At the same time, the seasonality of the secondary proportion
varies among different regions. In the north of China, the secondary proportions are higher in
spring and summer, which is attributed to the stronger atmospheric oxidizing capacity (AOC)
in the warmer seasons. But in the south of China, the highest secondary proportions occur in
winter, which is mainly explained by the tremendous pollutants (secondary particles and its

gaseous precursors) transported from northern China in the presence of the monsoon.

4.2.2 Inter-annual variation

Figure 7 illustrates the inter-annual variations of the estimated PPM and SPM based on
MTEA in the 31 populous cities and 19 regional background cities of China. We analyzed the
MEE observational data during 2014-2018, but excluded the data in 2014 in the regional

background regions due to data deficiencies in several cities.

The observed PM s concentrations in populous cities are continuously and significantly
reduced since 2014, largely benefiting from a series of emission control measures led by the
governments, such as “Action Plan on Prevention and Control of Air Pollution” (Chinese
State Council, 2013). Using the MTEA approach, we find that both PPM and SPM are
decreased simultaneously, at an annual decreasing rate of 1.9 pg-m>-yr! and 2.7 pg-m>-yr’!,
respectively. Consequently, the secondary proportion of PM»s remains relatively constant
(56.4-58.5%). But it presents a consistent increase trend (from 58.5% to 59.2%) in summer
during the studying period, which can be attributed to the continuing worsening O3z pollution
(Tang et al., 2022). However, for regional background cities, the MTEA approach reports
different features of the PM» s mitigation. The estimated SPM is considerably reduced by 1.1
pg-m yr'! in regional background cities, while the PPM keeps nearly unchanged (decreasing
rate is 0.2 pg'm>-yr!). This is because SPM in regional background cities is largely
contributed by pollutants transport from surrounding populous regions, where the air quality
is getting better resulting from the aforementioned emission controls. However, the PPM,
mostly deriving from local sources, is rarely affected by those emission controls which do

mostly focus on densely-populated and industrialized cities but not on background regions.

We discussed the inter-annual variations of PPM and SPM concentration on the basis of
long-term in-situ observations in Beijing and Shanghai as well. As Fig. 8 shows, long-term
measurements demonstrate a decline of total PM,s by 4.0 pg'm™ yr'! in Beijing (1.6 ug-m™

yr'! for PPM and 2.4 pug-m> yr''for SPM) and by 3.9 pg'm™ yr'! in Shanghai (1.7 pg'm? yr'!
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for PM and 2.2 ug'm? yr''for SPM). The observed secondary proportion of PMas shows a
slight decrease of -0.4% yr! in Beijing, but a small increase of 0.8% yr!' in Shanghai.
Applying the MTEA model to this case, we are delighted to find that our model not only
successfully reproduces the consistent decreasing trends of PPM and SPM in Beijing and
Shanghai (correlation coefficient r of observation versus estimation ranges from 0.83 to 0.89),
but also captures the different trends in secondary proportions of PMz s in the two cities (-0.6%

yr'l in Beijing and 0.3% yr! in Shanghai).

4.3 Application during the COVID-19 lockdown

To curb the spread of the novel Coronavirus Disease 2019 (COVID-19) pandemic,
China conducted the entire city’s lockdown first in Wuhan, Hubei on January 23, 2020. Other
provinces gradually implemented this restriction in the following three weeks (Le et al.,
2020). The lockdown greatly limited the traffic and outdoor activities, which directly reduced
the emissions of primary pollutants (Huang et al., 2020). Through analyzing the MEE
monitoring data before (1~23 Jan 2020) and during (24-Jan ~ 17-Feb 2020) the nationwide
lockdown (Fig. 9 and Fig. S2), we show that the national mean NOz, PM2s and CO
concentrations were decreased by 56%, 30%, and 24%, respectively, while O3 posed an
increase (34%) in general which would promote the AOC efficiently. However, the surface
monitoring network still observed an unexpected PMz s pollution in cities over BTH region
during the lockdown. Especially in Beijing, the mean PM> 5 concentration was increased by

~100% compared to its averaged value (41 pug-m) before the nationwide lockdown.

To explore this unexpected air pollution, we find that the enhanced secondary pollution
could be the major factor, which even offset the reduction of primary emissions in the BTH
region during the lockdown. With the help of MTEA, we tracked variations of the secondary
proportions of PMa s in East China before and during the COVID-19 lockdown (Fig. 9 d-f).
The specific emission reductions owing to the national lockdown were derived from Huang et
al. (2020). Based on the bottom-up dynamic estimation, provincial emissions of CO, NOy,
SOz, VOC, PM3s5, BC and OC decreased by 13-41%, 29-57%, 15-42%, 28-46%, 9-34%, 13-
54%, and 3-42%, respectively during the lockdown period. The secondary proportions in the
BTH region show an evident increase, at the level of 7%-34%, which highlights the
importance of the secondary formation during the lockdown. Our result is consistent with

recent observation and simulation studies (Chang et al., 2020; Huang et al., 2020; Le et al.,
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2020), which suggested that the reduced NO; resulted in O3 enhancement, further increasing
the AOC and facilitating secondary aerosol formation. In addition, another cause of the air
pollution is the unfavorable atmospheric diffusion conditions. CO, a nonreactive pollutant,
was increased by 22% in Beijing during the lockdown even under considerable reduction on

1ts emission.

For other regions of China, the MTEA approach suggests the secondary proportions of
PM3 5 to be increased by 20% over the YRD region, but to be decreased by 32% over Central
China. Although O3 and AOC had enhanced in all these regions, the unprecedented

reductions on precursors ultimately resulted in a net drop in secondary pollution.

4.4 Correlation analysis with O3

PM:s and O; are closely correlated with each other. One reason is that PM2s and O3
have similar precursors, i.e. NOx and VOCs. Besides, PM2 5 can impact Oz formation through
adjusting radiation balance (Li et al., 2018) and affecting radical level via aerosol chemistry
(Li et al., 2019). There is therefore a complicated interaction between PM>s and Osz. Our
study utilized the MTEA approach for exploring the relationship between PM versus O3z from

the perspective of exploring the statistical correlation.

Figure S3 illustrates the hourly correlations between the estimated SPM versus the
observed O3 averaged for 31 populous cities in China (cities which failed to pass the
significant test were excluded) in summer. In general, SPM and O; show a nationwide
positive relationship, especially during the afternoon (14:00~18:00, r up to 0.56). This
phenomenon might be explained that productions of both O3 and SPM are simultaneously
affected by AOC; thus the higher correlation tends to occur at time of stronger AOC.
Moreover, the hourly correlations between SPM and O; are higher than that between PPM
and O3 throughout the day, suggesting that secondary oxidation processes may be well

captured by the MTEA method.

A series of recent studies have focused on the correlation between PM» s and O3, and
many of them agreed that the correlation varies greatly in different regions of China.
Specifically, the statistical correlation is stronger positive in southern cities compared to that
in northern cities (Chu et al., 2020). Because of this significant difference, a question raises:
is the difference mostly caused by PPM, or SPM, or both of them? To address this question,

we compare the correlations between daily PPM, SPM and total PMz 5 versus O3 in Beijing-
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Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) region during the studying period, with
the help of META approach. The O3 diurnal formation regime can be destroyed because of
the suppressed radiative condition under precipitation. The local O3 concentration level is
mainly dominated by background fields. Here we would like to focus our attention on the
secondary formation relationship between daily PM2s and Os. Therefore the cases when
precipitation took place were removed to avoid the cleaning impacts of wet deposition on
MDAS (maximum daily 8-h average) O3 concentrations. Precipitation data is based on the
ERAS reanalysis database from the European Centre for Medium-Range Weather Forecasts

(ECMWEF, https.://www.ecmwf.int/, last access, 1 August 2021).

As shown in Fig. 10, the correlations between total PM» s and O3 are positive and are
stronger in YRD (r=0.14) than in BTH (r=0.09). However, compared with total PM> s, the
correlations between SPM and O3 are much stronger (r=0.21-0.24) and show minor regional
differences, but for PPM, its correlation with O3 is not significant (p-value>0.05) in both
regions. The higher correlation between SPM and O3 is mostly because both of them are
secondary oxidation products. Higher ambient O3 concentration indicates stronger AOC, and
further leads to more SPM generation. However, for PPM, its effect on O3 is mainly to inhibit
the production of O3 via adjusting radiation balance and affecting radical level. Hence, we
suggest that the regional differences in the correlation between total PM» 5 and O3 are mainly

caused by the different PPM levels in BTH and YRD regions.

4.5 Uncertainties

Based on the previous evaluation and discussions, we believe that the MTEA can
successfully capture the magnitudes and spatio-temporal variations of PPM and SPM in
China. However, there are still some uncertainties in the model estimation and its application

in China.

Firstly, the assumption of non-significant correlation between PPM versus SPM may be
violated by the fact that SO, and NOx emitted from combustions will further generate
secondary sulfate and nitrate particulates. Nevertheless, the combustion processes for
generating SO2/NOx and PPM are still different. PPM, i.e. BC and POC, mainly comes from
incomplete combustion of residential activities, such as burning biofuels and coal (Long et al.,
2013), but SOz and NOx mainly come from the complete combustion process of industrial

and transportation sources, such as coal, gasoline and diesel (Lu et al., 2011; Li et al., 2017b;
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Tang et al., 2019). In addition, the MTEA approach uses the assumption of non-significant
correlation rather than irrelevance. Such processing also reduces uncertainty to a certain

extent.

Secondly, natural sources of PPM, such as fine dust from desert and sea salt, are not
taken into account in the MTEA approach. As a result, PPM in the city near a desert or sea
could be underestimated. For example, the PM2s components observational campaign
conducted in 2015 showed that the contribution of sea salt aerosols to ambient PM; s mass

concentration in Haikou is 3.6-8.3% (Liu et al., 2017).

Thirdly, current bottom-up emission inventories are generally outdated with a time lag
of at least 1-2 years, mainly due to the lack of timely and accurate statistics. Consequently,
the adjoint uncertainty in MTEA estimation is inevitable. To evaluate the uncertainty, a
comparison test was conducted by adjusting the apportioning coefficient (the a and b in Eq. 1)
with a disturbance of +0.1. Firstly, we decreased the value of a in each populous city by 0.1.
Meanwhile, the coefficient b increased by 0.1. This scenario indicates an overestimation in
contribution of combustion-related process to primary PMzs or underestimation in
contribution of dust-related process. Secondly, we increased the value of a in each populous
city by 0.1 (decreased b by 0.1) for checking the opposite case. The results are presented in
Table S5 and point out that the estimated secondary proportions of PM; s varied less than 3%
in most populous cities caused by the changes of the apportioning coefficient. This sensitivity
experiment highlights that the apportioning coefficients depending on emissions has limited
impacts on the final estimation results. Generally, the uncertainty of apportioning coefticient
is one of two factors that directly affect the tracer X. The other one is the concentration of CO
and PMC itself. Hence, we also conducted a similar test to check the impacts of tracer X on
the model estimation by changing the tracer concentrations mentioned in Eq.1. Specifically,
we (1) increased CO concentration by 10% as well as decreased PMC concentration by 10%
and (2) decreased CO concentration by 10% as well as increased PMC concentration by 10%.
Both sets of adjustment show changes within +2% in the estimated secondary proportions of
PM; s in all cities except for Urumgqi (Table S6). This phenomenon from the perspective of
tracer concentration also supports that the impacts of the tracer X on the final model results
are limited. In summary, we believe that the most determinative stuft for the final results of
our model is the principle of the minimum correlation between PPM and SPM but not the

tracer X which relies on emissions or concentrations.
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5 Conclusions

In this study, we developed a new approach MTEA to distinguish the primary and
secondary compositions of PM» s efficiently from routine observation of PM» s concentration
with much less computation cost than traditional CTMs. By comparing with long-term and
short-term measurements of aerosol chemical components in China as well as aerosol
composition network in the United States, we showed that MTEA was able to capture
variations of PPM and SPM concentrations. Meanwhile, our model posed a great agreement

with the reanalysis dataset from one of the most advanced CTMs in China as well.

The method was then applied to the surface air pollutant concentrations from MEE
observation network in China, and offered an effective way to understand the characteristics
of PPM and SPM covering a wide area. In terms of spatial pattern, MTEA reveals that SPM
accounts for 63.5% of total PMa2s in southern cities averaged for 2014-2018, while in the
North the proportion drops to 57.1%. It should be noted that the secondary proportion in
regional background regions is ~19% higher than that in populous regions. In terms of
seasonality, the estimated national averaged secondary proportion is the lowest in fall

(56.1%), and for the other three seasons it stays among 61%.

Moreover, we applied MTEA to explore the changes of secondary proportion in PM 5 in
China. In recent years, the PM>s pollution in China has been significantly alleviated
benefiting from a series of emission control measures. The MTEA results suggest that both
PPM and SPM are decreased simultaneously in populous regions, while for regional
background regions, the reduction of secondary PM> s is much more notable than the PPM.
The secondary proportion of PM2 s in populous cities during 2014-2018 keeps constant (56.4-
58.5%) in general on an annual average scale, but it poses a slight but consistent increase in
summer, mostly due to the elevated O; and stronger photochemistry pollution in China. In
addition, with the help of MTEA, we found that the secondary PM s proportion in Beijing
significantly increased by 34% during the COVID-19 lockdown, which might be the main

reason for the observed unexpected PM pollution in this special period.

Finally, we applied MTEA to explore the synergistic correlation between PM2s and Os.
Estimated results demonstrate that PPM is weakly correlated with Os, its effect on O3 is
mainly to inhibit the production of O3z via adjusting radiation balance and affecting radical
level. While SPM is positive correlated with O3 in presence of the effect of AOC. Higher

ambient O3 concentration indicates stronger AOC, and further leads to more SPM generation.
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We suggested that the regional differences in the correlation between total PMa2 s and O3 are

mainly caused by the different PPM levels in BTH and YRD regions.

We also discussed the uncertainties of MTEA method. MTEA may pose overestimation
on the secondary fractions of PM: s in those regions which are near to desert or sea by ~20%
for failing taking natural dust into consideration. In addition, the sensitivity experiment
through imposing reasonable disturbance on emissions and tracer concentrations also show
the limited impacts on final estimation. Overall, the most determinative stuff for our model

estimate is the principle of the minimum correlation between PPM and SPM.

China has been plagued by PMb> s pollution in recent years. Different PM> 5 compositions
may have varying impacts on environment, climate and health, due to the different sources
and generation pathways. Therefore, it’s of great importance to quantify PPM and SPM for
the pollution recognition and prevention. The methods to quantify different PMas
components are often based on either lab analysis of offline filter samplings or online
observation instruments such as AMS. However, these methods are often labor-intensive,
strict technical and high economic cost. CTM is another useful tool to reveal the composition
characteristics of PMzs. But traditional CTMs are short in high requirement of hardware as
well. Our study develops an efficient approach based on statistical principle to explore PPM
and SPM with lower cost, and applying this approach to large-scale observation networks,
such as the MEE network, can offer an unprecedented opportunity to quantify the PMas

components on a large space and time scale.
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Table 1. Seasonal mean concentrations of the primary and secondary PM2 s in 31 populous

cities and 19 regional background cities of China.

PPM (ug-m>) SPM (pg-m™) SPM/PM2.s (%)
City J S D M J S M J S
A J O J A J O J A J O J
M A N F M A N F M A N F

Populous cities in the Northern China

Beijing 31.0 284 30.6 34.1 25.0 23.7 20.1 16.2 447 454 396 322
Tianjin 17.8 13.7 219 282 42.0 353 329 29.0 70.2 72.1 60.0 50.7
Shijiazhuang 35.0 224 41.5 54.0 36.7 355 321 377 51.2 613 43.6 41.1
Taiyuan 22.0 202 327 323 284 222 21.0 250 563 523 39.1 43.6
Hohhot 13.1 114 182 20.1 192 13.1 16.0 20.7 59.5 53.6 46.8 50.7
Shenyang 21.0 167 244 278 26.1 174 20.8 28.0 553 51.0 46.0 50.2
Changchun 213 158 202 289 183 123 172 250 462 439 460 464
Harbin 141 93 155 272 255 152 209 389 644 619 573 589
Jinan 256 230 299 324 382 30.7 30.7 383 59.9 57.1 50.7 54.2
Zhengzhou 248 202 28.6 34.1 452 288 339 441 64.6 587 543 56.4
Lhasa 6.6 59 82 58 130 92 93 136 663 612 532 70.1
Xian 241 153 313 37.1 31.5 20.1 245 413 56.7 56.7 44.0 52.7
Lanzhou 141 10.1 17.8 21.3 293 241 248 332 67.6 704 582 609
Xining 148 124 183 179 264 193 21.0 345 64.1 608 534 659
Yinchuan 129 82 16.1 18.7 228 21.8 21.1 27.0 63.8 728 56.7 59.1
Urumgqi 152 95 165 279 309 19.1 32.0 63.6 67.1 669 66.0 69.5
Average 19.6 152 232 28.0 28.7 21.7 236 323 59.4 589 504 535
Regional background cities in the Northern China

Weihai 8.1 7.1 86 10.7 23.8 185 149 137 74.6 722 634 56.0
Jiayuguan 78 70 75 7.0 16.6 11.4 145 19.2 68.1 619 659 734
Zhangjiakou 10.8 11.0 10.7 10.7 142 144 128 144 56.8 56.6 54.5 57.4
Daxinganling 43 3.6 46 57 92 77 93 116 68.0 679 67.0 669
Xilingol 23 23 28 3.1 102 93 7.7 9.1 81.8 80.1 73.1 74.7
Yanbian 99 56 94 117 153 9.1 135 174 60.7 62.1 589 59.7
Guyuan 123 9.0 119 13.1 19.0 13.1 14.7 20.1 60.7 59.2 554 60.6
Yushu 43 21 42 39 100 96 7.1 99 69.8 823 62.7 715
Altay 20 1.3 1.7 27 63 63 60 8.0 76.1 835 775 747
Average 69 55 68 76 13.8 11.1 11.2 137 669 67.0 62.1 642
Populous cities in the Southern China

Shanghai 124 11.1 11.7 158 29.5 225 20.8 254 70.4 67.0 64.1 61.6
Nanjing 19.1 16.0 199 243 29.2 187 199 285 60.4 539 50.1 54.0
Hangzhou 21.1 17.8 21.5 236 249 145 189 285 54.1 45.0 46.8 54.7
Hefei 164 146 179 232 39.8 26.7 30.1 39.8 709 646 62.7 632
Fuzhou 90 75 75 176 18.0 129 13.7 19.7 66.6 633 647 722
Nanchang 148 9.8 132 158 206 13.6 223 2838 582 58.1 629 64.6
Wuhan 185 156 189 253 364 199 30.0 453 663 56.1 613 642
Changsha 17.6 132 175 219 31.5 21.1 31.2 40.0 64.1 61.5 64.1 64.6
Guangzhou 11.6 9.5 12.1 127 226 163 234 266 66.0 633 659 677
Nanning 11.7 9.7 149 133 220 129 199 287 653 57.1 57.1 683
Haikou 58 47 81 6.0 11.5 69 87 158 663 594 518 72.6
Chongqing 179 140 18.6 21.6 241 194 250 3838 57.5 58.0 573 64.2
Chengdu 29.6 200 27.1 31.7 23.6 150 182 39.1 443 428 40.1 552
Guiyang 13.5 106 122 99 21.3 122 185 298 612 53.6 604 75.0
Kunming 93 65 69 8.1 21.1 135 16.1 184 69.5 67.6 699 693
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Average 152 12.0 152 174 251 164 21.1 30.2 62.2 57.7 58.1 63.5

Regional background cities in the Southern China
Huangshan 53 51 57 64 20.7 112 163 227 79.5 68.8 742 78.1

Nanping 6.1 50 64 57 159 114 134 174 722 69.7 679 754
Zhoushan 95 &80 84 119 13.7 102 10.1 11.5 59.2 562 545 49.1
Shanwei 79 48 82 57 16.6 103 174 227 67.8 68.2 68.1 799
Beihai 75 42 106 8.7 164 82 164 258 68.7 659 60.6 74.7
Qianxinan 33 1.7 22 29 125 12.1 122 13.8 79.2 879 84.8 829
Sanya 46 42 55 37 97 56 68 11.7 67.8 56.8 554 75.8
Aba 20 21 21 29 105 103 103 10.8 84.2 83.0 832 78.7
Linzhi 23 15 20 21 75 62 53 76 76.6 80.5 73.0 785
Diqing 19 15 1.7 16 105 94 94 102 84.7 864 84.8 86.2
Average 50 38 53 52 134 95 11.7 154 727 714 69.1 749
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Figure 1. The flow chart of the M-TEA approach. The part in red indicates the air
quality data and emission input. The part in green stands for the key process for
predicting PPM/SPM based on the routine PM> 5 observation. In this part, S.T. means
the significant test. The significant level a is set to 0.05. The part in orange indicates
the final output.
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Figure 2. The geographical locations for the observational data used in this study. (a)
Geographical locations of 31 populous cities (red circles) and 19 regional background
cities (blue triangles) of China in this study. (b) Spatial distribution of the IMPROVE
aerosol monitoring network (pink pentagrams) in the United States.
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Figure 3. The scatter evaluation between the monthly mean of observed PM versus
that of estimated PM in Beijing (a-b) and Shanghai (c-d), China. Panel (a, d), (b, e)
denotes PPM and SPM. The red numbers in each panel indicate the Pearson
correlation coefficient (r), the slope (s) and the intercept of fitting line (d). The fitting
lines in red were based on the Reduced Major Axis (RMA) regression. The black
dotted line in each panel from left to right represents 2:1, 1:1 and 1:2 ratio
respectively.
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Figure 4. Comparisons between MTEA and TAP in terms of PPM, SPM
concentrations and their annual trends from 2014 to 2018 in 31 populous cities of
China. In panel (a) and (b), each blue solid dot stands for a monthly mean
concentration of PPM or SPM in one of 31 populous cities. The number of samples is
1860 (60%31). The metrics r, s and d represent correlation coefficient, slope and
intercept of fitting line, respectively. The fitting method follows the Reduced Major
Axis (RMA) regression. In panel (¢) and (d), MTEA and TAP are marked by blue
circles and red triangles. Each dot represents the mean PPM/SPM concentration of 31
cities. The colorful numbers stand for the annual trends of PPM and SPM
concentrations during 2014-2018. At the same time, the correlation coefficient (r)
between MTEA versus TAP is also provided.
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Figure 5. The scatter evaluation between the monthly mean of observed PPM(a-

¢)/SPM(d-f) versus that of estimated PPM/SPM in the United States. Panel (a, d), (b, ¢)

and (c, f) denotes temporal, spatial and spatio-temporal mixed validation respectively.

The red numbers in each panel indicate the Pearson correlation coefficient (r), the
slope (s) and the intercept of fitting line (d). The fitting lines in red were based on the
RMA regression. The black dotted line in each panel from left to right represents 2:1,

1:1 and 1:2 ratio respectively.
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Figure 6. Spatial distributions of PPM (a, b), SPM (c, d) and total PM2 s concentration
(e, f) averaged for the studying period. The secondary proportions of PMys
(SPM/total PM> 5) are also shown in (e, f). The left column (a, ¢, e) indicates populous
cities. The right column (b, d, f) is for the regional background cities. The black
dotted line in each panel shows the Qinling-Huaihe line.
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Figure 7. Inter-annual variations of PPM concentrations (blue solid line), SPM
concentrations (blue dotted line) and the secondary proportions of PMa s (red solid
line) in populous cities (a-e) and regional background cities (f-j). MAM (a, 1), JJA (b,
g), SON (c, h) and DJF (d, 1) denotes spring, summer, fall and winter respectively.
The absolute decreases in PPM/SPM concentration are labeled in blue/red near the

panel (e, j).
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Figure 8. The monthly time series variation of PM in Beijing (a-b) and Shanghai (c-
d). Panel (a, d), (b, e) denotes PPM, SPM respectively. In each panel, in-situ
observation and MTEA estimation is shown in blue and red dots. Meanwhile, bule
and red dotted line stands for the long-term trend in concentration changes. The
values of the decrease rates in PPM and SPM concentrations as well as the relative
changes in the secondary proportions of PM2.s (SPM %) are also provided at the upper
right corner of each panel.
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Figure 9. The application of M-TEA in estimating PPM/SPM during the COVID-19
lockdown. Panel a and b denotes the spatial distribution of PM> s mass concentration
before the national lockdown (01~23 Jan 2020, pre-lockdown) and during the national
lockdown (23-Jan ~ 17-Feb 2020, post-lockdown). And panel c indicates the relative
change between panel a and panel b, i.e. (post-lockdown — pre-lockdown)/pre-

lockdown. Panel (d-f) is the same as panel (a-c), but for the secondary proportions of
PM; s.
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Figure 10. Scatter plot about the correlation between daily PM concentration and MDAS O3
concentration in Beijing (blue) and Shanghai (red). Based on the reanalysis dataset ERAS
from ECMWE, those days when precipitation took place were removed. Panel a-c indicates
PPM, SPM and total PM> s respectively. In each panel, solid-colored lines represent the fitting
line based on Least Squares method. The Peason correlation coefficient (r) are also given at

the bottom right of the panels.
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