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Abstract:  

PM2.5, generated via both direct emissions and secondary formations, can have varying 

environmental impacts due to different physical and chemical properties of its components. 

However, traditional methods to quantify different PM2.5 components are often based on 

online observations or lab analyses, which are generally high economic cost and labor-5 

intensive. Chemical transport model (CTM) is another useful tool to reveal the composition 

characteristics of PM2.5 but with high requirement of computation cost. In this study, we 

develop a new method, named multi-tracer estimation algorithm (MTEA), to identify the 

primary and secondary components from routine observation of PM2.5. By comparing with 

the long-term and short-term measurements of aerosol chemical components in China and the 10 

United States, MTEA is proved to be able to successfully capture the magnitude and variation 

of the primary PM2.5 (PPM) and secondary PM2.5 (SPM). Meanwhile, our model poses a good 

agreement with the reanalysis dataset from one of the most advanced CTMs in China as well. 

Applying MTEA to China national air quality network, we find that 1) SPM accounts for 63.5% 

of PM2.5 in southern cities of China averaged for 2014-2018, while in the North the 15 

proportion drops to 57.1%, and at the same time the secondary proportion in regional 

background regions is ~19% higher than that in populous regions; 2) the summertime 

secondary PM2.5 proportion presents a slight but consistent increasing trend (from 58.5% to 

59.2%) in most populous cities, mainly because of the recent increase in O3 pollution in 

China; 3) the secondary PM2.5 proportion in Beijing significantly increases by 34% during the 20 

COVID-19 lockdown, which might be the main reason of the observed unexpected PM 

pollution in this special period; and at least, 4) SPM and O3 show similar positive correlations 

in the BTH and YRD regions, but the correlations between total PM2.5 and O3 in these two 

regions are quite different as PPM levels determine. In general, MTEA is a promising tool for 

efficiently estimating PPM and SPM, and has huge potential for future PM mitigation. 25 
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1 Introduction 

Fine particulate matter (PM2.5, aerodynamic diameter less than 2.5 μm) can be 

categorized into primary and secondary PM2.5 according to its formation processes. Primary 

PM2.5 (PPM), including primary organic aerosol (POA), elemental carbon (EC), sea salt and 

mineral dust, is the product of direct emission from combustion of fossil/biomass fuel, dust 5 

blowing and sea spray. Secondary PM2.5 (SPM) mainly generates from the further oxidation 

of gaseous precursors emitted by anthropogenic and biogenic activities (Zhu et al., 2018; 

Wang et al., 2019). SPM consists of secondary organic aerosol (SOA) and secondary 

inorganic aerosol (SIA, including sulfate, nitrate and ammonium). The primary and 

secondary components of PM2.5 have different environmental impacts on air quality, human 10 

health and climate change. For example, as a typical PPM, EC can severely reduce 

atmospheric visibility and greatly influence weather and climate due to its strong absorption 

of solar radiation (Bond et al., 2013; IPCC, 2013; Mao et al., 2017). Sulfate, a critical 

hygroscopic component of secondary PM2.5 (SPM), can be fast formed under high relative 

humidity conditions and further leads to grievous air pollution (Cheng et al., 2016; Guo et al., 15 

2014; Quan et al., 2015). Furthermore, the sulfate and other hygroscopic PM2.5 have 

considerable influences on climate change mostly by changing cloud properties (Leng et al., 

2013; von Schneidemesser et al., 2015). In addition, different PM2.5 components also have 

various deleterious impacts on human health for their toxicities (Hu et al., 2017; Khan et al., 

2016; Maji et al., 2018). 20 

To understand the severe PM2.5 pollution characteristics in China over the past several 

years (An et al., 2019; Song et al., 2017; Yang et al., 2016), many observational studies have 

been conducted on PM2.5 components. The basic methods of these studies are offline 

laboratory analysis and online instrument measurement such as aerosol mass spectrometer 

(AMS). The observational studies are crucial to exactly identify the aerosol chemical 25 

compositions. For offline approach, it is the most widely used method (Ming et al., 2017; 

Tang et al., 2017; Tao et al., 2017; Dai et al., 2018; Gao et al., 2018; Liu et al., 2018a; Wang 

et al., 2018; Zhang et al., 2018; Xu et al., 2019; Yu et al., 2019) and is successfully applied to 

investigate the inter-annual variations of different aerosol chemical species (Ding et al., 2019; 

Liu et al., 2018b). In terms of online approach, AMS is the state-of-the-art method for 30 

analyzing different chemical species with high time resolution, which has great application 

value in diagnosing the causes of haze events in China over the past decade (Huang et al., 

2014b; Quan et al., 2015; Guo et al., 2014; Yang et al., 2021; Gao et al., 2021; Hu et al., 2021; 
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Zhang et al., 2022). 

Nevertheless, both the online and offline measurements require a high level of 

manpower and economic cost, and for this reason, these methods are expensive and rarely 

applied in large-scale regions or long-term periods. 

Chemical transport model (CTM) is another useful tool to identify the composition 5 

characteristics of PM2.5. The simulation predicted by CTM is featured as high spatio-temporal 

resolution (Geng et al., 2021). Meanwhile, it also provides vertical profiles of diverse 

chemical species (Ding et al., 2016). However, the CTM results are largely dependent on 

external inputs such as emission inventories, boundary conditions, initial conditions, etc. The 

internal parameterizations of itself significantly influence the final model results as well 10 

(Huang et al., 2021), which leads to uncertainty in the simulated PM2.5 and its composition. 

In addition, the burden of high requirement in computational cost and storage also makes 

CTM hard to universally use. 

In this study, we develop a novel method, Multi-Tracer Estimation Algorithm (MTEA), 

with the aim of distinguishing the primary and secondary compositions of PM2.5 from routine 15 

observation of PM2.5 concentration. Different from traditional CTMs, MTEA proposed by 

this study is based on statistical assumption and works in a more convenient way. This 

algorithm and its application are tested in China and the United States. In Section 2, we 

introduce the structure and principle of MTEA. In Section 3, we evaluate the MTEA results 

comparing with three PM2.5 composition data sets, (1) short-term measurements in 16 cities 20 

in China from 2012 to 2016 reported by previous studies, (2) continuous long-term 

measurements in Beijing and Shanghai from 2014 to 2018, and (3) IMPROVE network in the 

United States during 2014 and 2018. Additionally, we also compare MTEA model with one 

of the most advanced datasets from CTM in China. Subsequently, in Section 4 we investigate 

the spatio-temporal characteristics of PPM and SPM concentrations in China, explain the 25 

unexpected haze event in several cities of China during the COVID-19 lockdown and discuss 

the complicated correlation between PM and O3. This study is different from previous works 

as follows: (1) we develop an efficient approach to explore PPM and SPM with low 

economy-/technique-cost and computation burden, (2) we apply this approach to observation 

data from the MEE network, offering an unprecedented opportunity to quantify the PM2.5 30 

components on a large space and time scale.  
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2 Methodology 

2.1 The Multi-Tracer Estimation Algorithm (MTEA)  

In order to distinguish PPM and SPM efficiently from the observed PM2.5, we develop a 

new approach, named Multi-Tracer Estimation Algorithm (MTEA). The multi-tracer (marked 

as X) is defined to represent multiple primary contributions to PM2.5, mainly resulting from 5 

incomplete combustion of carbonaceous material and flying dust. We select the typical 

combustion product CO as one tracer to represent the combustion process, and the particles in 

coarse mode (PMcoarse, marked as PMC, PMC = PM10 – PM2.5) as the other tracer to track 

flying dust. Then, we combine the CO and PMC to generate the multi-tracer X (Eq. 1), which 

can represent hybrid primary contributions to PM2.5. 10 

X = 𝑎𝑎 ∗ CO + 𝑏𝑏 ∗ PMC  (𝑎𝑎 + 𝑏𝑏 = 100%)    (1) 

As shown in Eq. 1, we use a and b to quantify the relative contributions of combustion 

and dust process to PPM. Given that the complicated process such as the combustion from 

multiple sources is hard to represent via current routine CO observations, we avoid 

considering the correlation among these sources but focus on the relative weights of 15 

combustion process and flying dust. Meanwhile, the uncertainty resulting from the 

apportioning coefficient a and b will be further discussed in Section 4.5. The values of the 

coefficients depend on the ratio of emission intensities of POA+EC (combustion products) 

and fine mode dust, as shown in Eq. 2.  

𝑎𝑎
𝑏𝑏

=  EOA+ EEC
Efinedust

=  1.2EOC+ EEC
EPM2.5−(1.2EOC+ EEC+ESO4+ ENO3)

   (2) 20 

where, EOA, EEC, Efinedust, EOC, EPM2.5, ESO4 and ENO3 represent the emissions of OA, EC, 

fine mode dust, OC, PM2.5, sulfate and nitrate, respectively. We obtain anthropogenic PM2.5, 

EC and OC emissions in China from Multi-resolution Emission Inventory for China (MEIC, 

http://meicmodel.org/, last access: 1 August 2021) developed by Tsinghua University (Li et 

al., 2017c). For the United States, we retrieve the emission data from the global inventory 25 

HTAP (https://edgar.jrc.ec.europa.eu/htap_v2/index.php?SECURE=123, last access: 1 

August 2021). We further estimate POA emission using POC emission multiply by an 

empirical factor of 1.2 recommended in literature (Seinfeld and Pandis, 2006), and quantify 

sulfate and nitrate emissions using PM2.5 emission multiply by an investigative coefficient of 

0.1 (Zhang 2019). However, this investigative coefficient for quantifying primary sulfate and 30 

nitrate emissions might be relatively higher compared to empirical coefficients (0.01-0.05) 

used in previous simulation studies. We evaluated the potential effect of the coefficient, by 
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conducting a set of comparative simulation with the coefficient of 0.03, and found that the 

final estimated SPM was not sensitive to this coefficient (Table S1). Thus we concluded that 

the uncertainty of primary sulfate and nitrate emissions did not significantly influence the 

final estimation of MTEA model. For other uncertainties of X which are dependent on 

emission intensities or tracer concentrations, we would conduct discussions in the later 5 

Section 4.5. Coefficient b is aimed at reflecting the activity intensity of fine mode dust by 

counting its emissions. However, MEIC does not directly provide fine mode dust emissions. 

It is included in the emissions of total PM2.5 (Li et al., 2017b). Thus we inferred the fine 

mode dust emission by deducting the emissions of EC, POA, sulfate and nitrate from the 

PM2.5 emissions. Based on Eq. 2, we establish a dynamic “a-b value” database, which can 10 

reflect the specific changes of PM2.5 sources in terms of different years, seasons, hours, and 

different regions.  

With the help of the multi-tracer X, we can describe secondary PM2.5 as follows: 

−2.5SPM = PM PPM                (3) 

− ×2.5
PPM= PM X

X
    (4) 15 

Here, PM2.5 is the observed PM2.5 concentration, and the multi-tracer X can be 

calculated from the observed CO, PM2.5 and PM10 concentrations. The original 

concentrations of CO, PM2.5 and PM10 are normalized to avoid the influences of their initial 

levels. To calculate SPM, the key step is to find out the target ratio of PPM/X. In the MTEA 

method, we give the PPM/X ratio a reasonable range (a range from 0 to 400 is used in this 20 

work) and then scan the ratio with an interval of 1. For more precise results, a smaller 

scanning step can be applied while it may take larger calculation cost. As a result, each 

varying ratio may obtain a series of SPM, along with a coefficient of determination (R2) 

between SPM and X (Fig. S1). If we assume that PPM and SPM came from different sources 

or processes, then the appropriate PPM/X ratio should be the one that corresponds to weak 25 

correlation between SPM and X-tracer. To better understand the principle of the MTEA 

approach, we show the flow chart in Fig. 1. We also provide the MTEA software package and 

input data sets at http://nuistairquality.com/m_tea (last access: 1 August 2021). 

The MTEA approach makes some improvement based on the similar principle and 

assumptions with the modified EC-tracer method developed by Hu et al. (2012). They 30 

estimated primary and secondary organic carbon (marked as POC and SOC) concentrations 
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by adopting a proper POC/EC ratio when SOC correlated with EC worst. However, this 

assumption may be too hard to exist in the real atmosphere. Therefore in the MTEA approach, 

we take a range of proper ratios of PPM/X when SPM correlates with X-tracer non-

significantly (with p-value greater than 0.05). As a result, the calculated SPM concentration 

for each case is a range (Table S2). We employed the concentration ranges to represent the 5 

severity of secondary pollution and discussed its uncertainties in the following discussions. 

While for quantitative calculation, the mean values of the concentration ranges stand for the 

final estimation. 

 

2.2 PM2.5 measurements 10 

2.2.1 PM2.5 concentration measurements from the MEE network in China 

Focus on the PM2.5 pollution in China, MEE set up a comprehensive air quality 

monitoring network for consistently accessing hourly concentrations of PM2.5 as well as SO2, 

NO2, CO, O3 and PM10 since 2013. This network is the most advanced monitoring network 

currently in China. In this study, we obtained surface observations of hourly PM2.5, PM10, CO 15 

and O3 at 334 national monitoring sites in 50 cities from 2014 to 2018 from the MEE public 

website (http://106.37.208.233:20035/, last access: 1 August 2021). 31 among the 50 cities 

are provincial capital cities, employed to represent populous cities, while the rest 19 

relatively small cities are categorized as regional background cities (Table S3). The mean 

PM2.5 concentration of each regional background city is less than 35.0 μg·m-3 (National 20 

Ambient Air Quality Standard level Ⅱ of China, NAAQS) except for Guyuan, indicating that 

they are slightly impacted by anthropogenic activities. By comparing populous cities with 

regional background cities, we could reveal the discrepancy in PPM and SPM among those 

regions which suffer from different levels of PM2.5 pollution. Geographical distribution of 

those populous and regional background cities is shown in Fig. 2a.  25 

Recently, the Chinese government carried out a series of control policies, such as 

elimination of backward industry, desulfurization and denitration of flue gas, as well as 

restriction on motor vehicles (Tang et al., 2019; Wu et al., 2017). Consequently, the 

concentrations of the major gaseous and particle pollutants have been decreased year by year 

(Zhai et al., 2019; Shen et al., 2020) . Take PM2.5 as an example, previous studies revealed 30 

that annual mean PM2.5 decreased by 30-50% across China during the period of 2013-2018. 
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2.2.2 PM2.5 composition measurements in China 

Numerous studies focused on the aerosol chemical composition in China employed 

offline filter-based observations coupled with laboratory analysis to obtain detailed 

information of PM2.5 compositions. For directly comparing the estimated PPM/SPM with the 

measured ones in China, we made an evaluation via two long-term time series in-situ 5 

measurements in Beijing (Peking University, PKU) and Shanghai (Shanghai Academy of 

Environment Sciences, SAES) during 2014-2018 (Huang et al., 2019; Tan et al., 2018). The 

chemical compositions of measurements include ions (NH4
+, Na+, K+ Mg2+, Ca2+, SO4

2-, NO3
-, 

Cl-, by ion chromatography), elements (Al, Si, Ti, Ca, Ti, Mn, etc., through X-ray 

fluorescence spectrometry), and carbonaceous components (EC and organic carbon, using the 10 

thermal-optical transmittance carbon analyzer). After accessing the chemical compositions, 

we categorized them into PPM and SPM for further evaluation. Specifically, SOA was 

roughly identified from OM by EC-tracer model (Ge et al., 2017). SPM concentrations were 

calculated via summing SO4
2-, NO3

-, NH4
+ and SOA concentrations. Then PPM could be 

calculated though deducting SPM from PM2.5. 15 

In addition, we investigated observation-based PM2.5 component analyses in 16 cities of 

China during 2012-2016 from 32 published studies. This survey offered an opportunity to 

compare the estimation by MTEA with the past measurements in the terms of the secondary 

fraction of PM2.5. SPM concentrations in literature were roughly estimated by multiplying 

OM from 0.5 because of the limit of data source. Meanwhile, it is noted that the factor which 20 

converts OC to OM is dependent on the definition of each observation study itself. 

 

2.2.3 PM2.5 composition measurements from IMPROVE network in the United States 

The Interagency Monitoring of Protected Visual Environments (IMPROVE) aerosol 

network has continuous records of PM10, PM2.5 and its chemical speciation in the United 25 

States since 1987. The specific aerosol chemical compositions include ammonium sulfate, 

ammonium nitrate, organic/elemental carbon and soil/mineral dust. The categorization for 

PPM and SPM in IMPROVE dataset is similar to the process in Section 2.2.2. The only 

difference is that SPM concentration is the sum of ammonium sulfate, ammonium nitrate and 

SOA. More detailed descriptions about IMPORVE are available at 30 

http://vista.cira.colostate.edu/Improve/ (last access: 1 August 2021). Here we extracted the 

measurements at 104 valid sites in the United States from 2014 to 2018 for the evaluation of 
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MTEA. The spatial distribution of IMPROVE sites used in this work is shown in Fig. 2b. It is 

noted that IMPROVE program only provides a single aerosol component profile every three 

days. We lowered the time resolution into the monthly average for further evaluation. 

However, CO is excluded in IMPROVE program. We therefore adopted the Kriging 

interpolation of CO data based on the hourly archives from the United States EPA 5 

(https://www.epa.gov/outdoor-air-quality-data, last access: 1 August 2021) as an alternative 

for model input when running the MTEA. 

 

2.3 PPM and SPM estimated by CTM 

Apart from evaluating PPM and SPM with various composition measurements, we also 10 

compared MTEA estimation with CTM results. Here we utilized the PM2.5 composition 

gridded dataset with a spatial resolution of 10 km×10 km developed by Tsinghua University 

for further comparisons. This dataset is named Tracking Air Pollution in China (TAP, 

available at http://tapdata.org.cn/, last access 15 Mar 2022) (Geng et al., 2021; Geng et al., 

2017). TAP is directly calculated by Community Multiscale Air Quality (CMAQ) model. In 15 

terms of methodology, based on machine learning algorithms, TAP integrates surface 

measurements, satellite remote sensing retrievals, emission inventories (MEIC) with CMAQ 

simulations. Moreover, it is also constrained by ground aerosol composition measurements. 

We collected the monthly mean concentrations of aerosol species during 2014-2018 from 

TAP, including SO4
2-, NO3

-, NH4
+, OM, BC and total PM2.5. SOA was further calculated from 20 

OM by EC-tracer model (Ge et al., 2017). SPM concentrations were inferred by summing 

SO4
2-, NO3

-, NH4
+ and SOA. PPM concentrations were then obtained via deducting SPM 

from PM2.5. 

 

3 Model evaluation 25 

3.1 Evaluation in China 

3.1.1 Comparison with continuous long-term measurements in Beijing and Shanghai 

We compared the MTEA results with the two sets of long-term in-situ measurements in 

Beijing and Shanghai, China, and show the evaluations in Fig. 3. Reduced major axis (RMA) 

regression was applied for fitting the data. Given the discrepancy in PM2.5 concentrations 30 

between in-situ measurements of a single site and multiple MEE national sites, we firstly 
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preprocessed the data for further evaluation. In data preprocessing, we removed the in-situ 

daily measurements whose value was over 30 μg·m-3 higher than the city average (from 

MEE).  

The comparisons between the estimated and observed PPM in the two cities are given in 

Fig. 3a and 3c. The correlation coefficient r for predicted PPM versus observed PPM is 0.85 5 

in Beijing and 0.87 in Shanghai. The slope of regression is 1.29 in Beijing and 0.73 in 

Shanghai, which indicates an overestimation (NMB=32%) or underestimation (NMB= – 9%) 

in these two cities. In terms of SPM, the regression line in Shanghai is quite close to the 1:1 

ratio line (s=1.13, d= – 2.3), and its statistical correlation is up to 0.89. The estimated SPM in 

Beijing also shows a high correlation with the observed ones, with its r value exceeding 0.80, 10 

though the fitting formula indicates an underestimation of 27%. The discrepancies can be 

explained by the fact that the observations of primary emission tracers and PM2.5 are obtained 

from different sites. Specifically, the CO and PMC observations are obtained from 12 

monitoring MEE sites in Beijing, while the PM2.5 component measurements are from single 

spot at PKU which is away from crowded streets (Tan et al., 2018). The MTEA predictions 15 

based on the data from MEE sites located at high-emitting densities district may propose a 

quite overestimation on PPM concentrations. 

Overall, MTEA model performed satisfactorily in case of the comparison with the long-

term in-situ measurements in Beijing and Shanghai. Nearly all the dots are located at the 

range between 2:1 ratio and 1:2 ratio. It is believed that our model is able to capture the 20 

magnitudes and variations of the PPM and SPM. The comparison about the estimated and the 

observed inter-annual variations in PPM and SPM would be further discussed in the 

following texts (Sect. 4.2.2). 

 

3.1.2 Comparison with various short-term measurements 25 

To evaluate the reliability of the MTEA approach, we also conducted a literature review 

for collecting a variety of observation-based PM2.5 component analyses in 16 cities of China 

during 2012-2016 (Chen et al., 2016; Du et al., 2017; Cui et al., 2015; Dai et al., 2018; Gao et 

al., 2018; Huang et al., 2014a; Huang et al., 2014b; Huang et al., 2017; Jiang et al., 2017; Li 

et al., 2016; Li et al., 2017a; Lin et al., 2016; Liu et al., 2017; Liu et al., 2014; Liu et al., 30 

2018a; Liu et al., 2018b; Ming et al., 2017; Niu et al., 2016; Tan et al., 2016; Tang et al., 2017; 

Tao et al., 2017; Tao et al., 2015; Tian et al., 2015; Wang et al., 2018; Wang et al., 2016a; 



 

11/44 
 

Wang et al., 2016b; Wu et al., 2016; Xu et al., 2019; Yu et al., 2019; Zhang et al., 2015; 

Zhang et al., 2018; Zhao et al., 2015). Most field measurements focused on regions in eastern 

China and on episodes during the winter. We listed the concentrations of observed PM2.5, 

SO4
2-, NO3

-, NH4
+, and SOA from these studies in Table S4. It should be noted that there may 

be inconsistencies in the observation due to different sampling locations, observational time 5 

and analytical instruments in each study. 

The estimated PPM and SPM from MTEA show a reasonable agreement with the 

observation-based PM2.5 component analyses in China. The MTEA estimated secondary 

proportions of PM2.5 (i.e. secondary PM2.5 / total PM2.5) vary in a range of 41% to 67%, and 

are higher in eastern cities of China, consistent with the observational results. However, we 10 

find that there are still a few discrepancies between the estimated and observation-based 

results. For example, we overestimated the secondary proportions of PM2.5 in cities such as 

Haikou, Lanzhou and Lhasa. Though all of them show a considerable overestimation of over 

20%, the causes lead to this kind of bias may be quite different. In coastal city Haikou, we 

may attribute this discrepancy between MTEA and observation to the neglect of the 15 

contribution of sea salt aerosols. The PM2.5 offline measurements in 2015 exhibited that the 

contribution of sea salt aerosols to ambient PM2.5 mass concentration in Haikou is 3.6-8.3% 

(Liu et al., 2017). Secondly, the overestimation phenomenon in Lanzhou, which is a typical 

inland city located in northwestern China, can be explained by overlooking the contribution 

of natural dust to PM2.5 speciation. Generally, both sea salt and natural dust are categorized 20 

into non-anthropogenic processes, and are not accounted for by anthropogenic emission 

inventory, resulting in the underestimation of representing primary process intensity. Finally, 

for Lhasa, the observation-based results which are derived from too few samplers also pose 

controversial comparison against MTEA model. 

 25 

3.1.3 Comparison with the CTM simulation 

In addition to evaluating our model via PPM and SPM measurements in China, we also 

provided a comparison between MTEA estimation and CTM simulation in 31 populous cities 

based on the monthly mean PM concentrations. As shown in Fig. 4 a-b, the correlation 

coefficient r for TAP versus MTEA is 0.86 in terms of PPM concentration and 0.91 in terms 30 

of SPM concentration, showing a strongly positive correlation between the two models. At 

the same time, both slopes (1.26 and 0.89) and intercepts (–3.7 μg m-3 and 1.9 μg m-3) of the 
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regression about PPM and SPM illustrate that most of the scattering spots distribute around 

1:1 ratio line.  

Moreover, we further compared the long-term varying trends between MTEA versus 

TAP in averaged PPM and SPM concentration of 31 populous cities (Fig. 4 c-d). Both of 

them exhibit a descending interannual trend in PPM concentration, with a rate of –2.0 μg m-3 5 

yr-1 for MTEA and –1.9 μg m-3 yr-1 for TAP. In terms of SPM concentration, the decline rates 

are –2.9 μg m-3 yr-1 and –2.8 μg m-3 yr-1, respectively. Meanwhile, the statistical correlations 

between two interannual variations are 0.98 (PPM) and 0.99 (SPM), which are quite close to 

1, showing a good agreement. 

Thus, the comparisons about PPM/SPM concentration magnitudes and interannual 10 

variations between two kinds of models suggest that statistical model can infer similar 

estimation with traditional CTM. Meanwhile, it is again highlighted that our model is capable 

of capturing reasonable PPM and SPM concentrations. Furthermore, it is also shown that 

MTEA can track primary and secondary component of PM2.5 by using proxy at a much lower 

cost when compared to traditional air quality model simulations. 15 

 

3.2 Evaluation in the United States 

Based on the chemical component measurements of IMPROVE network, we evaluated 

the performance of the MTEA model in the United States. Figure 5 presents the scatter plots 

of the evaluation results, with x-axis indicates the observed concentrations and the y-axis 20 

indicates the estimated concentrations. The validation was done in the form of temporal, 

spatial, as well as spatio-temporal. Each dot represents a monthly mean of either observed or 

estimated PM concentration.  

Almost all of the dots are located in the region between the 2:1 and 1:2 dotted line, 

indicating that our model is capable of predicting the magnitudes of PPM/SPM in the United 25 

States. Based on correlation analysis, we find that the correlation coefficient r for PPM ranges 

from 0.69 (spatio-temporal validation) to 0.75 (temporal validation), while for SPM, the r is 

even up to 0.98 (temporal validation). The results reveal that the MTEA approach 

successfully captured the spatial and temporal variations of PPM and SPM in the United 

States.  30 

The majority of dots are distributed around the 1:1 dotted line. Based on the fitting 

results, the slopes for regression lines vary from 1.12 (spatial validation) to 1.15 (temporal 
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validation) for PPM and from 0.92 (temporal validation) to 0.93 (spatio-temporal validation) 

for SPM.  In general, PPM and SPM show a slight overestimation and underestimation, 

respectively. The discrepancies may result from the influences of emission inventory. It is 

reported that the emissions of PMC and CO in the United States continuously declined over 

the past decade (https://www.statista.com/statistics/501298/volume-of-particulate-matter-2-5-5 

emissions-us/, last access: 2 October 2021). Thus the coefficients a and b derived from HTAP 

global emission inventory in 2010 overestimate the contribution of primary emissions during 

the studying period. However, the impacts of emission are inevitable, and we will discuss the 

uncertainty of emission inventory in Sect. 4.5. In addition, the intercepts of these regression 

lines for both PPM and SPM are less than ±0.1 μg·m-3. The verification results strongly show 10 

that our model can reasonably reproduce the monthly averaged concentration of PPM and 

SPM in the United States. 

 

4 Results and discussion 

We used the MTEA approach and the MEE observation data to estimate PPM and SPM 15 

concentrations in China for the period of 2014-2018. The observations during severe haze 

events (top 10% CO and PMC polluted days) were excluded to avoid the influence of 

unfavorable meteorological conditions and extreme high primary emission cases. 

Unfavorable meteorological conditions are major causes for haze events. PPM under these 

unfavored meteorological conditions may have considerable high co-linear relationship with 20 

total PM2.5. The concentration of SPM from complicated formation pathways is then 

underestimated. Therefore, we excluded these polluted days to focus more attention on 

general characteristics of PPM and SPM concentration. 

 

4.1 Spatial distribution 25 

Figure 6 shows spatial patterns of the MTEA estimated PPM and SPM concentrations 

over China averaged for the period of 2014-2018. 16 populous cities and 9 regional 

background cities in the north, and 15 populous cities and 10 regional background cities in 

the south (North-South is separated by the Qinling-Huaihe line) are involved in the following 

discussions.  30 

In populous cities, the concentrations of both PPM and SPM in the north (5-year 

averaged 21.5 μg·m-3 for PPM and 26.6 μg·m-3 for SPM) are 15-43% higher than those in the 
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south (15.0 μg·m-3 for PPM and 23.2 μg·m-3 for SPM). The North-South difference is mainly 

caused by the higher energy consumption and consequent stronger pollutant emissions 

occurring in northern populous regions. Nevertheless, in background regions, the difference 

is relatively smaller for SPM. The SPM in the South (12.5 μg·m-3) is only 1% higher than that 

in the North (12.4 μg·m-3). 5 

In terms of the secondary proportion of PM2.5, the MTEA approach speculates it to be 

higher in southern regions (63.5%) than that in northern regions (57.1%). The result confirms 

the fact that atmospheric condition in the South is more favorable for secondary pollutant 

formation than it is in the North. In addition, the MTEA approach reasonably captures the 

difference of the secondary proportion of PM2.5 between populous and regional background 10 

cities. As shown in Fig. 6e and 6f, the secondary proportions of PM2.5 in regional background 

cities are 19% higher than those in populous cities, consistent with recent observational 

studies (Liu et al., 2018b). Secondary aerosols can affect a larger area than primary aerosols, 

mostly due to the diffusion of its gaseous precursors. Thus, for regional background regions, 

the role of secondary PM2.5 tends to be more important, mainly caused by the transmitted 15 

secondary pollutants from surrounding populous regions. 

 

4.2 Temporal variation  

4.2.1 Seasonal variation 

We compare seasonal mean concentrations of the MTEA estimated PPM and SPM in 31 20 

populous cities and 19 regional background cities in Table 1. Both the concentrations of PPM 

and SPM are the highest in winter, with the seasonal mean concentration of 16.6 μg·m-3 for 

PPM and 24.9 μg·m-3 for SPM across China. This phenomenon can be mainly explained by 

adverse diffusion conditions, such as low boundary layer height and strong temperature 

inversion (Zhao et al., 2013), as well as fossil-fuel and biofuel usage for winter home heating 25 

(Zhang et al., 2009; Zhang and Cao, 2015). Summer is the least polluted season in the year, 

with the seasonal mean PPM is 10.2 μg·m-3 and SPM is 15.8 μg·m-3 nationwide, largely 

benefiting from the higher boundary layer (Guo et al., 2019) and abundant precipitations.  

In terms of the secondary proportion of PM2.5, we also compared the secondary 

contributions in different seasons and in the 50 different Chinese cities (Table 1). The MTEA 30 

approach estimates that the secondary proportion tends to be the lowest in fall, with seasonal 

mean value to be 56.1% nationwide, while for the other three seasons, the seasonal 
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proportions stay around 61%. At the same time, the seasonality of the secondary proportion 

varies among different regions. In the north of China, the secondary proportions are higher in 

spring and summer, which is attributed to the stronger atmospheric oxidizing capacity (AOC) 

in the warmer seasons. But in the south of China, the highest secondary proportions occur in 

winter, which is mainly explained by the tremendous pollutants (secondary particles and its 5 

gaseous precursors) transported from northern China in the presence of the monsoon. 

 

4.2.2 Inter-annual variation 

Figure 7 illustrates the inter-annual variations of the estimated PPM and SPM based on 

MTEA in the 31 populous cities and 19 regional background cities of China. We analyzed the 10 

MEE observational data during 2014-2018, but excluded the data in 2014 in the regional 

background regions due to data deficiencies in several cities. 

The observed PM2.5 concentrations in populous cities are continuously and significantly 

reduced since 2014, largely benefiting from a series of emission control measures led by the 

governments, such as “Action Plan on Prevention and Control of Air Pollution” (Chinese 15 

State Council, 2013). Using the MTEA approach, we find that both PPM and SPM are 

decreased simultaneously, at an annual decreasing rate of 1.9 μg·m-3·yr-1 and 2.7 μg·m-3·yr-1, 

respectively. Consequently, the secondary proportion of PM2.5 remains relatively constant 

(56.4-58.5%). But it presents a consistent increase trend (from 58.5% to 59.2%) in summer 

during the studying period, which can be attributed to the continuing worsening O3 pollution 20 

(Tang et al., 2022). However, for regional background cities, the MTEA approach reports 

different features of the PM2.5 mitigation. The estimated SPM is considerably reduced by 1.1 

μg·m-3 yr-1 in regional background cities, while the PPM keeps nearly unchanged (decreasing 

rate is 0.2 μg·m-3·yr-1). This is because SPM in regional background cities is largely 

contributed by pollutants transport from surrounding populous regions, where the air quality 25 

is getting better resulting from the aforementioned emission controls. However, the PPM, 

mostly deriving from local sources, is rarely affected by those emission controls which do 

mostly focus on densely-populated and industrialized cities but not on background regions.  

We discussed the inter-annual variations of PPM and SPM concentration on the basis of 

long-term in-situ observations in Beijing and Shanghai as well. As Fig. 8 shows, long-term 30 

measurements demonstrate a decline of total PM2.5 by 4.0 μg·m-3 yr-1 in Beijing (1.6 μg·m-3 

yr-1 for PPM and 2.4 μg·m-3 yr-1for SPM) and by 3.9 μg·m-3 yr-1 in Shanghai (1.7 μg·m-3 yr-1 
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for PM and 2.2 μg·m-3 yr-1for SPM). The observed secondary proportion of PM2.5 shows a 

slight decrease of -0.4% yr-1 in Beijing, but a small increase of 0.8% yr-1 in Shanghai. 

Applying the MTEA model to this case, we are delighted to find that our model not only 

successfully reproduces the consistent decreasing trends of PPM and SPM in Beijing and 

Shanghai (correlation coefficient r of observation versus estimation ranges from 0.83 to 0.89), 5 

but also captures the different trends in secondary proportions of PM2.5 in the two cities (-0.6% 

yr-1 in Beijing and 0.3% yr-1 in Shanghai).  

 

4.3 Application during the COVID-19 lockdown 

To curb the spread of the novel Coronavirus Disease 2019 (COVID-19) pandemic, 10 

China conducted the entire city’s lockdown first in Wuhan, Hubei on January 23, 2020. Other 

provinces gradually implemented this restriction in the following three weeks (Le et al., 

2020). The lockdown greatly limited the traffic and outdoor activities, which directly reduced 

the emissions of primary pollutants (Huang et al., 2020). Through analyzing the MEE 

monitoring data before (1~23 Jan 2020) and during (24-Jan ~ 17-Feb 2020) the nationwide 15 

lockdown (Fig. 9 and Fig. S2), we show that the national mean NO2, PM2.5 and CO 

concentrations were decreased by 56%, 30%, and 24%, respectively, while O3 posed an 

increase (34%) in general which would promote the AOC efficiently. However, the surface 

monitoring network still observed an unexpected PM2.5 pollution in cities over BTH region 

during the lockdown. Especially in Beijing, the mean PM2.5 concentration was increased by 20 

~100% compared to its averaged value (41 μg·m-3) before the nationwide lockdown.  

To explore this unexpected air pollution, we find that the enhanced secondary pollution 

could be the major factor, which even offset the reduction of primary emissions in the BTH 

region during the lockdown. With the help of MTEA, we tracked variations of the secondary 

proportions of PM2.5 in East China before and during the COVID-19 lockdown (Fig. 9 d-f). 25 

The specific emission reductions owing to the national lockdown were derived from Huang et 

al. (2020). Based on the bottom-up dynamic estimation, provincial emissions of CO, NOx, 

SO2, VOC, PM2.5, BC and OC decreased by 13-41%, 29-57%, 15-42%, 28-46%, 9-34%, 13-

54%, and 3-42%, respectively during the lockdown period. The secondary proportions in the 

BTH region show an evident increase, at the level of 7%-34%, which highlights the 30 

importance of the secondary formation during the lockdown. Our result is consistent with 

recent observation and simulation studies (Chang et al., 2020; Huang et al., 2020; Le et al., 
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2020), which suggested that the reduced NO2 resulted in O3 enhancement, further increasing 

the AOC and facilitating secondary aerosol formation. In addition, another cause of the air 

pollution is the unfavorable atmospheric diffusion conditions. CO, a nonreactive pollutant, 

was increased by 22% in Beijing during the lockdown even under considerable reduction on 

its emission.  5 

For other regions of China, the MTEA approach suggests the secondary proportions of 

PM2.5 to be increased by 20% over the YRD region, but to be decreased by 32% over Central 

China. Although O3 and AOC had enhanced in all these regions, the unprecedented 

reductions on precursors ultimately resulted in a net drop in secondary pollution.  

 10 

4.4 Correlation analysis with O3 

PM2.5 and O3 are closely correlated with each other. One reason is that PM2.5 and O3 

have similar precursors, i.e. NOx and VOCs. Besides, PM2.5 can impact O3 formation through 

adjusting radiation balance (Li et al., 2018) and affecting radical level via aerosol chemistry 

(Li et al., 2019). There is therefore a complicated interaction between PM2.5 and O3. Our 15 

study utilized the MTEA approach for exploring the relationship between PM versus O3 from 

the perspective of exploring the statistical correlation.  

Figure S3 illustrates the hourly correlations between the estimated SPM versus the 

observed O3 averaged for 31 populous cities in China (cities which failed to pass the 

significant test were excluded) in summer. In general, SPM and O3 show a nationwide 20 

positive relationship, especially during the afternoon (14:00~18:00, r up to 0.56). This 

phenomenon might be explained that productions of both O3 and SPM are simultaneously 

affected by AOC; thus the higher correlation tends to occur at time of stronger AOC. 

Moreover, the hourly correlations between SPM and O3 are higher than that between PPM 

and O3 throughout the day, suggesting that secondary oxidation processes may be well 25 

captured by the MTEA method.  

A series of recent studies have focused on the correlation between PM2.5 and O3, and 

many of them agreed that the correlation varies greatly in different regions of China. 

Specifically, the statistical correlation is stronger positive in southern cities compared to that 

in northern cities (Chu et al., 2020). Because of this significant difference, a question raises: 30 

is the difference mostly caused by PPM, or SPM, or both of them? To address this question, 

we compare the correlations between daily PPM, SPM and total PM2.5 versus O3 in Beijing-
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Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) region during the studying period, with 

the help of META approach. The O3 diurnal formation regime can be destroyed because of 

the suppressed radiative condition under precipitation. The local O3 concentration level is 

mainly dominated by background fields. Here we would like to focus our attention on the 

secondary formation relationship between daily PM2.5 and O3. Therefore the cases when 5 

precipitation took place were removed to avoid the cleaning impacts of wet deposition on 

MDA8 (maximum daily 8-h average) O3 concentrations. Precipitation data is based on the 

ERA5 reanalysis database from the European Centre for Medium-Range Weather Forecasts 

(ECMWF, https://www.ecmwf.int/, last access, 1 August 2021). 

As shown in Fig. 10, the correlations between total PM2.5 and O3 are positive and are 10 

stronger in YRD (r=0.14) than in BTH (r=0.09). However, compared with total PM2.5, the 

correlations between SPM and O3 are much stronger (r=0.21-0.24) and show minor regional 

differences, but for PPM, its correlation with O3 is not significant (p-value>0.05) in both 

regions. The higher correlation between SPM and O3 is mostly because both of them are 

secondary oxidation products. Higher ambient O3 concentration indicates stronger AOC, and 15 

further leads to more SPM generation. However, for PPM, its effect on O3 is mainly to inhibit 

the production of O3 via adjusting radiation balance and affecting radical level. Hence, we 

suggest that the regional differences in the correlation between total PM2.5 and O3 are mainly 

caused by the different PPM levels in BTH and YRD regions.  

 20 

4.5 Uncertainties 

Based on the previous evaluation and discussions, we believe that the MTEA can 

successfully capture the magnitudes and spatio-temporal variations of PPM and SPM in 

China. However, there are still some uncertainties in the model estimation and its application 

in China.  25 

Firstly, the assumption of non-significant correlation between PPM versus SPM may be 

violated by the fact that SO2 and NOx emitted from combustions will further generate 

secondary sulfate and nitrate particulates. Nevertheless, the combustion processes for 

generating SO2/NOx and PPM are still different. PPM, i.e. BC and POC, mainly comes from 

incomplete combustion of residential activities, such as burning biofuels and coal (Long et al., 30 

2013), but SO2 and NOx mainly come from the complete combustion process of industrial 

and transportation sources, such as coal, gasoline and diesel (Lu et al., 2011; Li et al., 2017b; 
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Tang et al., 2019). In addition, the MTEA approach uses the assumption of non-significant 

correlation rather than irrelevance. Such processing also reduces uncertainty to a certain 

extent. 

Secondly, natural sources of PPM, such as fine dust from desert and sea salt, are not 

taken into account in the MTEA approach. As a result, PPM in the city near a desert or sea 5 

could be underestimated. For example, the PM2.5 components observational campaign 

conducted in 2015 showed that the contribution of sea salt aerosols to ambient PM2.5 mass 

concentration in Haikou is 3.6-8.3% (Liu et al., 2017). 

Thirdly, current bottom-up emission inventories are generally outdated with a time lag 

of at least 1-2 years, mainly due to the lack of timely and accurate statistics. Consequently, 10 

the adjoint uncertainty in MTEA estimation is inevitable. To evaluate the uncertainty, a 

comparison test was conducted by adjusting the apportioning coefficient (the a and b in Eq. 1) 

with a disturbance of ±0.1. Firstly, we decreased the value of a in each populous city by 0.1. 

Meanwhile, the coefficient b increased by 0.1. This scenario indicates an overestimation in 

contribution of combustion-related process to primary PM2.5 or underestimation in 15 

contribution of dust-related process. Secondly, we increased the value of a in each populous 

city by 0.1 (decreased b by 0.1) for checking the opposite case. The results are presented in 

Table S5 and point out that the estimated secondary proportions of PM2.5 varied less than ±3% 

in most populous cities caused by the changes of the apportioning coefficient. This sensitivity 

experiment highlights that the apportioning coefficients depending on emissions has limited 20 

impacts on the final estimation results. Generally, the uncertainty of apportioning coefficient 

is one of two factors that directly affect the tracer X. The other one is the concentration of CO 

and PMC itself. Hence, we also conducted a similar test to check the impacts of tracer X on 

the model estimation by changing the tracer concentrations mentioned in Eq.1. Specifically, 

we (1) increased CO concentration by 10% as well as decreased PMC concentration by 10% 25 

and (2) decreased CO concentration by 10% as well as increased PMC concentration by 10%. 

Both sets of adjustment show changes within ±2% in the estimated secondary proportions of 

PM2.5 in all cities except for Urumqi (Table S6). This phenomenon from the perspective of 

tracer concentration also supports that the impacts of the tracer X on the final model results 

are limited. In summary, we believe that the most determinative stuff for the final results of 30 

our model is the principle of the minimum correlation between PPM and SPM but not the 

tracer X which relies on emissions or concentrations. 
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5 Conclusions 

In this study, we developed a new approach MTEA to distinguish the primary and 

secondary compositions of PM2.5 efficiently from routine observation of PM2.5 concentration 

with much less computation cost than traditional CTMs. By comparing with long-term and 

short-term measurements of aerosol chemical components in China as well as aerosol 5 

composition network in the United States, we showed that MTEA was able to capture 

variations of PPM and SPM concentrations. Meanwhile, our model posed a great agreement 

with the reanalysis dataset from one of the most advanced CTMs in China as well. 

 The method was then applied to the surface air pollutant concentrations from MEE 

observation network in China, and offered an effective way to understand the characteristics 10 

of PPM and SPM covering a wide area. In terms of spatial pattern, MTEA reveals that SPM 

accounts for 63.5% of total PM2.5 in southern cities averaged for 2014-2018, while in the 

North the proportion drops to 57.1%. It should be noted that the secondary proportion in 

regional background regions is ~19% higher than that in populous regions. In terms of 

seasonality, the estimated national averaged secondary proportion is the lowest in fall 15 

(56.1%), and for the other three seasons it stays among 61%.  

Moreover, we applied MTEA to explore the changes of secondary proportion in PM2.5 in 

China. In recent years, the PM2.5 pollution in China has been significantly alleviated 

benefiting from a series of emission control measures. The MTEA results suggest that both 

PPM and SPM are decreased simultaneously in populous regions, while for regional 20 

background regions, the reduction of secondary PM2.5 is much more notable than the PPM. 

The secondary proportion of PM2.5 in populous cities during 2014-2018 keeps constant (56.4-

58.5%) in general on an annual average scale, but it poses a slight but consistent increase in 

summer, mostly due to the elevated O3 and stronger photochemistry pollution in China. In 

addition, with the help of MTEA, we found that the secondary PM2.5 proportion in Beijing 25 

significantly increased by 34% during the COVID-19 lockdown, which might be the main 

reason for the observed unexpected PM pollution in this special period. 

Finally, we applied MTEA to explore the synergistic correlation between PM2.5 and O3. 

Estimated results demonstrate that PPM is weakly correlated with O3, its effect on O3 is 

mainly to inhibit the production of O3 via adjusting radiation balance and affecting radical 30 

level. While SPM is positive correlated with O3 in presence of the effect of AOC. Higher 

ambient O3 concentration indicates stronger AOC, and further leads to more SPM generation. 
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We suggested that the regional differences in the correlation between total PM2.5 and O3 are 

mainly caused by the different PPM levels in BTH and YRD regions. 

We also discussed the uncertainties of MTEA method. MTEA may pose overestimation 

on the secondary fractions of PM2.5 in those regions which are near to desert or sea by ~20% 

for failing taking natural dust into consideration. In addition, the sensitivity experiment 5 

through imposing reasonable disturbance on emissions and tracer concentrations also show 

the limited impacts on final estimation. Overall, the most determinative stuff for our model 

estimate is the principle of the minimum correlation between PPM and SPM. 

China has been plagued by PM2.5 pollution in recent years. Different PM2.5 compositions 

may have varying impacts on environment, climate and health, due to the different sources 10 

and generation pathways. Therefore, it’s of great importance to quantify PPM and SPM for 

the pollution recognition and prevention. The methods to quantify different PM2.5 

components are often based on either lab analysis of offline filter samplings or online 

observation instruments such as AMS. However, these methods are often labor-intensive, 

strict technical and high economic cost. CTM is another useful tool to reveal the composition 15 

characteristics of PM2.5. But traditional CTMs are short in high requirement of hardware as 

well. Our study develops an efficient approach based on statistical principle to explore PPM 

and SPM with lower cost, and applying this approach to large-scale observation networks, 

such as the MEE network, can offer an unprecedented opportunity to quantify the PM2.5 

components on a large space and time scale.  20 
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Table 1. Seasonal mean concentrations of the primary and secondary PM2.5 in 31 populous 
cities and 19 regional background cities of China.  

City 
PPM (μg·m-3)  SPM (μg·m-3)  SPM/PM2.5 (%)  

M 
A 
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J 
J 
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O 
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J 
J 
A 

S 
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D 
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M 
A 
M 

J 
J 
A 

S 
O 
N 

D 
J 
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Populous cities in the Northern China 
Beijing 31.0 28.4 30.6 34.1  25.0 23.7 20.1 16.2  44.7 45.4 39.6 32.2 
Tianjin 17.8 13.7 21.9 28.2  42.0 35.3 32.9 29.0  70.2 72.1 60.0 50.7 
Shijiazhuang 35.0 22.4 41.5 54.0  36.7 35.5 32.1 37.7  51.2 61.3 43.6 41.1 
Taiyuan 22.0 20.2 32.7 32.3  28.4 22.2 21.0 25.0  56.3 52.3 39.1 43.6 
Hohhot 13.1 11.4 18.2 20.1  19.2 13.1 16.0 20.7  59.5 53.6 46.8 50.7 
Shenyang 21.0 16.7 24.4 27.8  26.1 17.4 20.8 28.0  55.3 51.0 46.0 50.2 
Changchun 21.3 15.8 20.2 28.9  18.3 12.3 17.2 25.0  46.2 43.9 46.0 46.4 
Harbin 14.1 9.3 15.5 27.2  25.5 15.2 20.9 38.9  64.4 61.9 57.3 58.9 
Jinan 25.6 23.0 29.9 32.4  38.2 30.7 30.7 38.3  59.9 57.1 50.7 54.2 
Zhengzhou 24.8 20.2 28.6 34.1  45.2 28.8 33.9 44.1  64.6 58.7 54.3 56.4 
Lhasa 6.6 5.9 8.2 5.8  13.0 9.2 9.3 13.6  66.3 61.2 53.2 70.1 
Xian 24.1 15.3 31.3 37.1  31.5 20.1 24.5 41.3  56.7 56.7 44.0 52.7 
Lanzhou 14.1 10.1 17.8 21.3  29.3 24.1 24.8 33.2  67.6 70.4 58.2 60.9 
Xining 14.8 12.4 18.3 17.9  26.4 19.3 21.0 34.5  64.1 60.8 53.4 65.9 
Yinchuan 12.9 8.2 16.1 18.7  22.8 21.8 21.1 27.0  63.8 72.8 56.7 59.1 
Urumqi 15.2 9.5 16.5 27.9  30.9 19.1 32.0 63.6  67.1 66.9 66.0 69.5 
Average 19.6 15.2 23.2 28.0  28.7 21.7 23.6 32.3  59.4 58.9 50.4 53.5 
Regional background cities in the Northern China 
Weihai 8.1 7.1 8.6 10.7  23.8 18.5 14.9 13.7  74.6 72.2 63.4 56.0 
Jiayuguan 7.8 7.0 7.5 7.0  16.6 11.4 14.5 19.2  68.1 61.9 65.9 73.4 
Zhangjiakou 10.8 11.0 10.7 10.7  14.2 14.4 12.8 14.4  56.8 56.6 54.5 57.4 
Daxinganling 4.3 3.6 4.6 5.7  9.2 7.7 9.3 11.6  68.0 67.9 67.0 66.9 
Xilingol 2.3 2.3 2.8 3.1  10.2 9.3 7.7 9.1  81.8 80.1 73.1 74.7 
Yanbian 9.9 5.6 9.4 11.7  15.3 9.1 13.5 17.4  60.7 62.1 58.9 59.7 
Guyuan 12.3 9.0 11.9 13.1  19.0 13.1 14.7 20.1  60.7 59.2 55.4 60.6 
Yushu 4.3 2.1 4.2 3.9  10.0 9.6 7.1 9.9  69.8 82.3 62.7 71.5 
Altay 2.0 1.3 1.7 2.7  6.3 6.3 6.0 8.0  76.1 83.5 77.5 74.7 
Average 6.9 5.5 6.8 7.6  13.8 11.1 11.2 13.7  66.9 67.0 62.1 64.2 
Populous cities in the Southern China 
Shanghai 12.4 11.1 11.7 15.8  29.5 22.5 20.8 25.4  70.4 67.0 64.1 61.6 
Nanjing 19.1 16.0 19.9 24.3  29.2 18.7 19.9 28.5  60.4 53.9 50.1 54.0 
Hangzhou 21.1 17.8 21.5 23.6  24.9 14.5 18.9 28.5  54.1 45.0 46.8 54.7 
Hefei 16.4 14.6 17.9 23.2  39.8 26.7 30.1 39.8  70.9 64.6 62.7 63.2 
Fuzhou 9.0 7.5 7.5 7.6  18.0 12.9 13.7 19.7  66.6 63.3 64.7 72.2 
Nanchang 14.8 9.8 13.2 15.8  20.6 13.6 22.3 28.8  58.2 58.1 62.9 64.6 
Wuhan 18.5 15.6 18.9 25.3  36.4 19.9 30.0 45.3  66.3 56.1 61.3 64.2 
Changsha 17.6 13.2 17.5 21.9  31.5 21.1 31.2 40.0  64.1 61.5 64.1 64.6 
Guangzhou 11.6 9.5 12.1 12.7  22.6 16.3 23.4 26.6  66.0 63.3 65.9 67.7 
Nanning 11.7 9.7 14.9 13.3  22.0 12.9 19.9 28.7  65.3 57.1 57.1 68.3 
Haikou 5.8 4.7 8.1 6.0  11.5 6.9 8.7 15.8  66.3 59.4 51.8 72.6 
Chongqing 17.9 14.0 18.6 21.6  24.1 19.4 25.0 38.8  57.5 58.0 57.3 64.2 
Chengdu 29.6 20.0 27.1 31.7  23.6 15.0 18.2 39.1  44.3 42.8 40.1 55.2 
Guiyang 13.5 10.6 12.2 9.9  21.3 12.2 18.5 29.8  61.2 53.6 60.4 75.0 
Kunming 9.3 6.5 6.9 8.1  21.1 13.5 16.1 18.4  69.5 67.6 69.9 69.3 
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Average 15.2 12.0 15.2 17.4  25.1 16.4 21.1 30.2  62.2 57.7 58.1 63.5 
Regional background cities in the Southern China 
Huangshan 5.3 5.1 5.7 6.4  20.7 11.2 16.3 22.7  79.5 68.8 74.2 78.1 
Nanping 6.1 5.0 6.4 5.7  15.9 11.4 13.4 17.4  72.2 69.7 67.9 75.4 
Zhoushan 9.5 8.0 8.4 11.9  13.7 10.2 10.1 11.5  59.2 56.2 54.5 49.1 
Shanwei 7.9 4.8 8.2 5.7  16.6 10.3 17.4 22.7  67.8 68.2 68.1 79.9 
Beihai 7.5 4.2 10.6 8.7  16.4 8.2 16.4 25.8  68.7 65.9 60.6 74.7 
Qianxinan 3.3 1.7 2.2 2.9  12.5 12.1 12.2 13.8  79.2 87.9 84.8 82.9 
Sanya 4.6 4.2 5.5 3.7  9.7 5.6 6.8 11.7  67.8 56.8 55.4 75.8 
Aba 2.0 2.1 2.1 2.9  10.5 10.3 10.3 10.8  84.2 83.0 83.2 78.7 
Linzhi 2.3 1.5 2.0 2.1  7.5 6.2 5.3 7.6  76.6 80.5 73.0 78.5 
Diqing 1.9 1.5 1.7 1.6  10.5 9.4 9.4 10.2  84.7 86.4 84.8 86.2 
Average 5.0 3.8 5.3 5.2  13.4 9.5 11.7 15.4  72.7 71.4 69.1 74.9 
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Figure 1. The flow chart of the M-TEA approach. The part in red indicates the air 
quality data and emission input. The part in green stands for the key process for 
predicting PPM/SPM based on the routine PM2.5 observation. In this part, S.T. means 
the significant test. The significant level α is set to 0.05. The part in orange indicates 
the final output. 
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Figure 2. The geographical locations for the observational data used in this study. (a) 
Geographical locations of 31 populous cities (red circles) and 19 regional background 
cities (blue triangles) of China in this study. (b) Spatial distribution of the IMPROVE 
aerosol monitoring network (pink pentagrams) in the United States.  

(a)

(b)
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Figure 3. The scatter evaluation between the monthly mean of observed PM versus 
that of estimated PM in Beijing (a-b) and Shanghai (c-d), China. Panel (a, d), (b, e) 
denotes PPM and SPM. The red numbers in each panel indicate the Pearson 
correlation coefficient (r), the slope (s) and the intercept of fitting line (d). The fitting 
lines in red were based on the Reduced Major Axis (RMA) regression. The black 
dotted line in each panel from left to right represents 2:1, 1:1 and 1:2 ratio 
respectively. 
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Figure 4. Comparisons between MTEA and TAP in terms of PPM, SPM 
concentrations and their annual trends from 2014 to 2018 in 31 populous cities of 
China. In panel (a) and (b), each blue solid dot stands for a monthly mean 
concentration of PPM or SPM in one of 31 populous cities. The number of samples is 
1860 (60×31). The metrics r, s and d represent correlation coefficient, slope and 
intercept of fitting line, respectively. The fitting method follows the Reduced Major 
Axis (RMA) regression. In panel (c) and (d), MTEA and TAP are marked by blue 
circles and red triangles. Each dot represents the mean PPM/SPM concentration of 31 
cities. The colorful numbers stand for the annual trends of PPM and SPM 
concentrations during 2014-2018. At the same time, the correlation coefficient (r) 
between MTEA versus TAP is also provided. 
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Figure 5. The scatter evaluation between the monthly mean of observed PPM(a-
c)/SPM(d-f) versus that of estimated PPM/SPM in the United States. Panel (a, d), (b, e) 
and (c, f) denotes temporal, spatial and spatio-temporal mixed validation respectively. 
The red numbers in each panel indicate the Pearson correlation coefficient (r), the 
slope (s) and the intercept of fitting line (d). The fitting lines in red were based on the 
RMA regression. The black dotted line in each panel from left to right represents 2:1, 
1:1 and 1:2 ratio respectively. 
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Figure 6. Spatial distributions of PPM (a, b), SPM (c, d) and total PM2.5 concentration 
(e, f) averaged for the studying period. The secondary proportions of PM2.5 
(SPM/total PM2.5) are also shown in (e, f). The left column (a, c, e) indicates populous 
cities. The right column (b, d, f) is for the regional background cities. The black 
dotted line in each panel shows the Qinling-Huaihe line. 
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Figure 7. Inter-annual variations of PPM concentrations (blue solid line), SPM 
concentrations (blue dotted line) and the secondary proportions of PM2.5 (red solid 
line) in populous cities (a-e) and regional background cities (f-j). MAM (a, f), JJA (b, 
g), SON (c, h) and DJF (d, i) denotes spring, summer, fall and winter respectively. 
The absolute decreases in PPM/SPM concentration are labeled in blue/red near the 
panel (e, j). 
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Figure 8. The monthly time series variation of PM in Beijing (a-b) and Shanghai (c-
d). Panel (a, d), (b, e) denotes PPM, SPM respectively. In each panel, in-situ 
observation and MTEA estimation is shown in blue and red dots. Meanwhile, bule 
and red dotted line stands for the long-term trend in concentration changes. The 
values of the decrease rates in PPM and SPM concentrations as well as the relative 
changes in the secondary proportions of PM2.5 (SPM %) are also provided at the upper 
right corner of each panel.  
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Figure 9. The application of M-TEA in estimating PPM/SPM during the COVID-19 
lockdown. Panel a and b denotes the spatial distribution of PM2.5 mass concentration 
before the national lockdown (01~23 Jan 2020, pre-lockdown) and during the national 
lockdown (23-Jan ~ 17-Feb 2020, post-lockdown). And panel c indicates the relative 
change between panel a and panel b, i.e. (post-lockdown – pre-lockdown)/pre-
lockdown. Panel (d-f) is the same as panel (a-c), but for the secondary proportions of 
PM2.5. 
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Figure 10. Scatter plot about the correlation between daily PM concentration and MDA8 O3 
concentration in Beijing (blue) and Shanghai (red). Based on the reanalysis dataset ERA5 
from ECMWF, those days when precipitation took place were removed. Panel a-c indicates 
PPM, SPM and total PM2.5 respectively. In each panel, solid-colored lines represent the fitting 
line based on Least Squares method. The Peason correlation coefficient (r) are also given at 
the bottom right of the panels. 




